mesa: remove now unused sampler index handing code
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "compiler/glsl/ast.h"
39 #include "compiler/glsl/ir.h"
40 #include "compiler/glsl/ir_expression_flattening.h"
41 #include "compiler/glsl/ir_visitor.h"
42 #include "compiler/glsl/ir_optimization.h"
43 #include "compiler/glsl/ir_uniform.h"
44 #include "compiler/glsl/glsl_parser_extras.h"
45 #include "compiler/glsl_types.h"
46 #include "compiler/glsl/linker.h"
47 #include "compiler/glsl/program.h"
48 #include "program/hash_table.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_optimize.h"
51 #include "program/prog_print.h"
52 #include "program/program.h"
53 #include "program/prog_parameter.h"
54
55
56 static int swizzle_for_size(int size);
57
58 namespace {
59
60 class src_reg;
61 class dst_reg;
62
63 /**
64 * This struct is a corresponding struct to Mesa prog_src_register, with
65 * wider fields.
66 */
67 class src_reg {
68 public:
69 src_reg(gl_register_file file, int index, const glsl_type *type)
70 {
71 this->file = file;
72 this->index = index;
73 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
74 this->swizzle = swizzle_for_size(type->vector_elements);
75 else
76 this->swizzle = SWIZZLE_XYZW;
77 this->negate = 0;
78 this->reladdr = NULL;
79 }
80
81 src_reg()
82 {
83 this->file = PROGRAM_UNDEFINED;
84 this->index = 0;
85 this->swizzle = 0;
86 this->negate = 0;
87 this->reladdr = NULL;
88 }
89
90 explicit src_reg(dst_reg reg);
91
92 gl_register_file file; /**< PROGRAM_* from Mesa */
93 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
94 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
95 int negate; /**< NEGATE_XYZW mask from mesa */
96 /** Register index should be offset by the integer in this reg. */
97 src_reg *reladdr;
98 };
99
100 class dst_reg {
101 public:
102 dst_reg(gl_register_file file, int writemask)
103 {
104 this->file = file;
105 this->index = 0;
106 this->writemask = writemask;
107 this->cond_mask = COND_TR;
108 this->reladdr = NULL;
109 }
110
111 dst_reg()
112 {
113 this->file = PROGRAM_UNDEFINED;
114 this->index = 0;
115 this->writemask = 0;
116 this->cond_mask = COND_TR;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 GLuint cond_mask:4;
126 /** Register index should be offset by the integer in this reg. */
127 src_reg *reladdr;
128 };
129
130 } /* anonymous namespace */
131
132 src_reg::src_reg(dst_reg reg)
133 {
134 this->file = reg.file;
135 this->index = reg.index;
136 this->swizzle = SWIZZLE_XYZW;
137 this->negate = 0;
138 this->reladdr = reg.reladdr;
139 }
140
141 dst_reg::dst_reg(src_reg reg)
142 {
143 this->file = reg.file;
144 this->index = reg.index;
145 this->writemask = WRITEMASK_XYZW;
146 this->cond_mask = COND_TR;
147 this->reladdr = reg.reladdr;
148 }
149
150 namespace {
151
152 class ir_to_mesa_instruction : public exec_node {
153 public:
154 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
155
156 enum prog_opcode op;
157 dst_reg dst;
158 src_reg src[3];
159 /** Pointer to the ir source this tree came from for debugging */
160 ir_instruction *ir;
161 GLboolean cond_update;
162 bool saturate;
163 int sampler; /**< sampler index */
164 int tex_target; /**< One of TEXTURE_*_INDEX */
165 GLboolean tex_shadow;
166 };
167
168 class variable_storage : public exec_node {
169 public:
170 variable_storage(ir_variable *var, gl_register_file file, int index)
171 : file(file), index(index), var(var)
172 {
173 /* empty */
174 }
175
176 gl_register_file file;
177 int index;
178 ir_variable *var; /* variable that maps to this, if any */
179 };
180
181 class function_entry : public exec_node {
182 public:
183 ir_function_signature *sig;
184
185 /**
186 * identifier of this function signature used by the program.
187 *
188 * At the point that Mesa instructions for function calls are
189 * generated, we don't know the address of the first instruction of
190 * the function body. So we make the BranchTarget that is called a
191 * small integer and rewrite them during set_branchtargets().
192 */
193 int sig_id;
194
195 /**
196 * Pointer to first instruction of the function body.
197 *
198 * Set during function body emits after main() is processed.
199 */
200 ir_to_mesa_instruction *bgn_inst;
201
202 /**
203 * Index of the first instruction of the function body in actual
204 * Mesa IR.
205 *
206 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
207 */
208 int inst;
209
210 /** Storage for the return value. */
211 src_reg return_reg;
212 };
213
214 class ir_to_mesa_visitor : public ir_visitor {
215 public:
216 ir_to_mesa_visitor();
217 ~ir_to_mesa_visitor();
218
219 function_entry *current_function;
220
221 struct gl_context *ctx;
222 struct gl_program *prog;
223 struct gl_shader_program *shader_program;
224 struct gl_shader_compiler_options *options;
225
226 int next_temp;
227
228 variable_storage *find_variable_storage(const ir_variable *var);
229
230 src_reg get_temp(const glsl_type *type);
231 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
232
233 src_reg src_reg_for_float(float val);
234
235 /**
236 * \name Visit methods
237 *
238 * As typical for the visitor pattern, there must be one \c visit method for
239 * each concrete subclass of \c ir_instruction. Virtual base classes within
240 * the hierarchy should not have \c visit methods.
241 */
242 /*@{*/
243 virtual void visit(ir_variable *);
244 virtual void visit(ir_loop *);
245 virtual void visit(ir_loop_jump *);
246 virtual void visit(ir_function_signature *);
247 virtual void visit(ir_function *);
248 virtual void visit(ir_expression *);
249 virtual void visit(ir_swizzle *);
250 virtual void visit(ir_dereference_variable *);
251 virtual void visit(ir_dereference_array *);
252 virtual void visit(ir_dereference_record *);
253 virtual void visit(ir_assignment *);
254 virtual void visit(ir_constant *);
255 virtual void visit(ir_call *);
256 virtual void visit(ir_return *);
257 virtual void visit(ir_discard *);
258 virtual void visit(ir_texture *);
259 virtual void visit(ir_if *);
260 virtual void visit(ir_emit_vertex *);
261 virtual void visit(ir_end_primitive *);
262 virtual void visit(ir_barrier *);
263 /*@}*/
264
265 src_reg result;
266
267 /** List of variable_storage */
268 exec_list variables;
269
270 /** List of function_entry */
271 exec_list function_signatures;
272 int next_signature_id;
273
274 /** List of ir_to_mesa_instruction */
275 exec_list instructions;
276
277 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
280 dst_reg dst, src_reg src0);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst, src_reg src0, src_reg src1);
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286 dst_reg dst,
287 src_reg src0, src_reg src1, src_reg src2);
288
289 /**
290 * Emit the correct dot-product instruction for the type of arguments
291 */
292 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
293 dst_reg dst,
294 src_reg src0,
295 src_reg src1,
296 unsigned elements);
297
298 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
299 dst_reg dst, src_reg src0);
300
301 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
302 dst_reg dst, src_reg src0, src_reg src1);
303
304 bool try_emit_mad(ir_expression *ir,
305 int mul_operand);
306 bool try_emit_mad_for_and_not(ir_expression *ir,
307 int mul_operand);
308
309 void emit_swz(ir_expression *ir);
310
311 bool process_move_condition(ir_rvalue *ir);
312
313 void copy_propagate(void);
314
315 void *mem_ctx;
316 };
317
318 } /* anonymous namespace */
319
320 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
321
322 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
323
324 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
325
326 static int
327 swizzle_for_size(int size)
328 {
329 static const int size_swizzles[4] = {
330 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
331 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
332 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
333 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
334 };
335
336 assert((size >= 1) && (size <= 4));
337 return size_swizzles[size - 1];
338 }
339
340 ir_to_mesa_instruction *
341 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
342 dst_reg dst,
343 src_reg src0, src_reg src1, src_reg src2)
344 {
345 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
346 int num_reladdr = 0;
347
348 /* If we have to do relative addressing, we want to load the ARL
349 * reg directly for one of the regs, and preload the other reladdr
350 * sources into temps.
351 */
352 num_reladdr += dst.reladdr != NULL;
353 num_reladdr += src0.reladdr != NULL;
354 num_reladdr += src1.reladdr != NULL;
355 num_reladdr += src2.reladdr != NULL;
356
357 reladdr_to_temp(ir, &src2, &num_reladdr);
358 reladdr_to_temp(ir, &src1, &num_reladdr);
359 reladdr_to_temp(ir, &src0, &num_reladdr);
360
361 if (dst.reladdr) {
362 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
363 num_reladdr--;
364 }
365 assert(num_reladdr == 0);
366
367 inst->op = op;
368 inst->dst = dst;
369 inst->src[0] = src0;
370 inst->src[1] = src1;
371 inst->src[2] = src2;
372 inst->ir = ir;
373
374 this->instructions.push_tail(inst);
375
376 return inst;
377 }
378
379
380 ir_to_mesa_instruction *
381 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
382 dst_reg dst, src_reg src0, src_reg src1)
383 {
384 return emit(ir, op, dst, src0, src1, undef_src);
385 }
386
387 ir_to_mesa_instruction *
388 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
389 dst_reg dst, src_reg src0)
390 {
391 assert(dst.writemask != 0);
392 return emit(ir, op, dst, src0, undef_src, undef_src);
393 }
394
395 ir_to_mesa_instruction *
396 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
397 {
398 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
399 }
400
401 ir_to_mesa_instruction *
402 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
403 dst_reg dst, src_reg src0, src_reg src1,
404 unsigned elements)
405 {
406 static const enum prog_opcode dot_opcodes[] = {
407 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
408 };
409
410 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
411 }
412
413 /**
414 * Emits Mesa scalar opcodes to produce unique answers across channels.
415 *
416 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
417 * channel determines the result across all channels. So to do a vec4
418 * of this operation, we want to emit a scalar per source channel used
419 * to produce dest channels.
420 */
421 void
422 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
423 dst_reg dst,
424 src_reg orig_src0, src_reg orig_src1)
425 {
426 int i, j;
427 int done_mask = ~dst.writemask;
428
429 /* Mesa RCP is a scalar operation splatting results to all channels,
430 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
431 * dst channels.
432 */
433 for (i = 0; i < 4; i++) {
434 GLuint this_mask = (1 << i);
435 ir_to_mesa_instruction *inst;
436 src_reg src0 = orig_src0;
437 src_reg src1 = orig_src1;
438
439 if (done_mask & this_mask)
440 continue;
441
442 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
443 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
444 for (j = i + 1; j < 4; j++) {
445 /* If there is another enabled component in the destination that is
446 * derived from the same inputs, generate its value on this pass as
447 * well.
448 */
449 if (!(done_mask & (1 << j)) &&
450 GET_SWZ(src0.swizzle, j) == src0_swiz &&
451 GET_SWZ(src1.swizzle, j) == src1_swiz) {
452 this_mask |= (1 << j);
453 }
454 }
455 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
456 src0_swiz, src0_swiz);
457 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
458 src1_swiz, src1_swiz);
459
460 inst = emit(ir, op, dst, src0, src1);
461 inst->dst.writemask = this_mask;
462 done_mask |= this_mask;
463 }
464 }
465
466 void
467 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
468 dst_reg dst, src_reg src0)
469 {
470 src_reg undef = undef_src;
471
472 undef.swizzle = SWIZZLE_XXXX;
473
474 emit_scalar(ir, op, dst, src0, undef);
475 }
476
477 src_reg
478 ir_to_mesa_visitor::src_reg_for_float(float val)
479 {
480 src_reg src(PROGRAM_CONSTANT, -1, NULL);
481
482 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
483 (const gl_constant_value *)&val, 1, &src.swizzle);
484
485 return src;
486 }
487
488 static int
489 type_size(const struct glsl_type *type)
490 {
491 unsigned int i;
492 int size;
493
494 switch (type->base_type) {
495 case GLSL_TYPE_UINT:
496 case GLSL_TYPE_INT:
497 case GLSL_TYPE_FLOAT:
498 case GLSL_TYPE_BOOL:
499 if (type->is_matrix()) {
500 return type->matrix_columns;
501 } else {
502 /* Regardless of size of vector, it gets a vec4. This is bad
503 * packing for things like floats, but otherwise arrays become a
504 * mess. Hopefully a later pass over the code can pack scalars
505 * down if appropriate.
506 */
507 return 1;
508 }
509 break;
510 case GLSL_TYPE_DOUBLE:
511 if (type->is_matrix()) {
512 if (type->vector_elements > 2)
513 return type->matrix_columns * 2;
514 else
515 return type->matrix_columns;
516 } else {
517 if (type->vector_elements > 2)
518 return 2;
519 else
520 return 1;
521 }
522 break;
523 case GLSL_TYPE_ARRAY:
524 assert(type->length > 0);
525 return type_size(type->fields.array) * type->length;
526 case GLSL_TYPE_STRUCT:
527 size = 0;
528 for (i = 0; i < type->length; i++) {
529 size += type_size(type->fields.structure[i].type);
530 }
531 return size;
532 case GLSL_TYPE_SAMPLER:
533 case GLSL_TYPE_IMAGE:
534 case GLSL_TYPE_SUBROUTINE:
535 /* Samplers take up one slot in UNIFORMS[], but they're baked in
536 * at link time.
537 */
538 return 1;
539 case GLSL_TYPE_ATOMIC_UINT:
540 case GLSL_TYPE_VOID:
541 case GLSL_TYPE_ERROR:
542 case GLSL_TYPE_INTERFACE:
543 assert(!"Invalid type in type_size");
544 break;
545 }
546
547 return 0;
548 }
549
550 /**
551 * In the initial pass of codegen, we assign temporary numbers to
552 * intermediate results. (not SSA -- variable assignments will reuse
553 * storage). Actual register allocation for the Mesa VM occurs in a
554 * pass over the Mesa IR later.
555 */
556 src_reg
557 ir_to_mesa_visitor::get_temp(const glsl_type *type)
558 {
559 src_reg src;
560
561 src.file = PROGRAM_TEMPORARY;
562 src.index = next_temp;
563 src.reladdr = NULL;
564 next_temp += type_size(type);
565
566 if (type->is_array() || type->is_record()) {
567 src.swizzle = SWIZZLE_NOOP;
568 } else {
569 src.swizzle = swizzle_for_size(type->vector_elements);
570 }
571 src.negate = 0;
572
573 return src;
574 }
575
576 variable_storage *
577 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
578 {
579 foreach_in_list(variable_storage, entry, &this->variables) {
580 if (entry->var == var)
581 return entry;
582 }
583
584 return NULL;
585 }
586
587 void
588 ir_to_mesa_visitor::visit(ir_variable *ir)
589 {
590 if (strcmp(ir->name, "gl_FragCoord") == 0) {
591 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
592
593 fp->OriginUpperLeft = ir->data.origin_upper_left;
594 fp->PixelCenterInteger = ir->data.pixel_center_integer;
595 }
596
597 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
598 unsigned int i;
599 const ir_state_slot *const slots = ir->get_state_slots();
600 assert(slots != NULL);
601
602 /* Check if this statevar's setup in the STATE file exactly
603 * matches how we'll want to reference it as a
604 * struct/array/whatever. If not, then we need to move it into
605 * temporary storage and hope that it'll get copy-propagated
606 * out.
607 */
608 for (i = 0; i < ir->get_num_state_slots(); i++) {
609 if (slots[i].swizzle != SWIZZLE_XYZW) {
610 break;
611 }
612 }
613
614 variable_storage *storage;
615 dst_reg dst;
616 if (i == ir->get_num_state_slots()) {
617 /* We'll set the index later. */
618 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
619 this->variables.push_tail(storage);
620
621 dst = undef_dst;
622 } else {
623 /* The variable_storage constructor allocates slots based on the size
624 * of the type. However, this had better match the number of state
625 * elements that we're going to copy into the new temporary.
626 */
627 assert((int) ir->get_num_state_slots() == type_size(ir->type));
628
629 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
630 this->next_temp);
631 this->variables.push_tail(storage);
632 this->next_temp += type_size(ir->type);
633
634 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
635 }
636
637
638 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
639 int index = _mesa_add_state_reference(this->prog->Parameters,
640 (gl_state_index *)slots[i].tokens);
641
642 if (storage->file == PROGRAM_STATE_VAR) {
643 if (storage->index == -1) {
644 storage->index = index;
645 } else {
646 assert(index == storage->index + (int)i);
647 }
648 } else {
649 src_reg src(PROGRAM_STATE_VAR, index, NULL);
650 src.swizzle = slots[i].swizzle;
651 emit(ir, OPCODE_MOV, dst, src);
652 /* even a float takes up a whole vec4 reg in a struct/array. */
653 dst.index++;
654 }
655 }
656
657 if (storage->file == PROGRAM_TEMPORARY &&
658 dst.index != storage->index + (int) ir->get_num_state_slots()) {
659 linker_error(this->shader_program,
660 "failed to load builtin uniform `%s' "
661 "(%d/%d regs loaded)\n",
662 ir->name, dst.index - storage->index,
663 type_size(ir->type));
664 }
665 }
666 }
667
668 void
669 ir_to_mesa_visitor::visit(ir_loop *ir)
670 {
671 emit(NULL, OPCODE_BGNLOOP);
672
673 visit_exec_list(&ir->body_instructions, this);
674
675 emit(NULL, OPCODE_ENDLOOP);
676 }
677
678 void
679 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
680 {
681 switch (ir->mode) {
682 case ir_loop_jump::jump_break:
683 emit(NULL, OPCODE_BRK);
684 break;
685 case ir_loop_jump::jump_continue:
686 emit(NULL, OPCODE_CONT);
687 break;
688 }
689 }
690
691
692 void
693 ir_to_mesa_visitor::visit(ir_function_signature *ir)
694 {
695 assert(0);
696 (void)ir;
697 }
698
699 void
700 ir_to_mesa_visitor::visit(ir_function *ir)
701 {
702 /* Ignore function bodies other than main() -- we shouldn't see calls to
703 * them since they should all be inlined before we get to ir_to_mesa.
704 */
705 if (strcmp(ir->name, "main") == 0) {
706 const ir_function_signature *sig;
707 exec_list empty;
708
709 sig = ir->matching_signature(NULL, &empty, false);
710
711 assert(sig);
712
713 foreach_in_list(ir_instruction, ir, &sig->body) {
714 ir->accept(this);
715 }
716 }
717 }
718
719 bool
720 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
721 {
722 int nonmul_operand = 1 - mul_operand;
723 src_reg a, b, c;
724
725 ir_expression *expr = ir->operands[mul_operand]->as_expression();
726 if (!expr || expr->operation != ir_binop_mul)
727 return false;
728
729 expr->operands[0]->accept(this);
730 a = this->result;
731 expr->operands[1]->accept(this);
732 b = this->result;
733 ir->operands[nonmul_operand]->accept(this);
734 c = this->result;
735
736 this->result = get_temp(ir->type);
737 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
738
739 return true;
740 }
741
742 /**
743 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
744 *
745 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
746 * implemented using multiplication, and logical-or is implemented using
747 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
748 * As result, the logical expression (a & !b) can be rewritten as:
749 *
750 * - a * !b
751 * - a * (1 - b)
752 * - (a * 1) - (a * b)
753 * - a + -(a * b)
754 * - a + (a * -b)
755 *
756 * This final expression can be implemented as a single MAD(a, -b, a)
757 * instruction.
758 */
759 bool
760 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
761 {
762 const int other_operand = 1 - try_operand;
763 src_reg a, b;
764
765 ir_expression *expr = ir->operands[try_operand]->as_expression();
766 if (!expr || expr->operation != ir_unop_logic_not)
767 return false;
768
769 ir->operands[other_operand]->accept(this);
770 a = this->result;
771 expr->operands[0]->accept(this);
772 b = this->result;
773
774 b.negate = ~b.negate;
775
776 this->result = get_temp(ir->type);
777 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
778
779 return true;
780 }
781
782 void
783 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
784 src_reg *reg, int *num_reladdr)
785 {
786 if (!reg->reladdr)
787 return;
788
789 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
790
791 if (*num_reladdr != 1) {
792 src_reg temp = get_temp(glsl_type::vec4_type);
793
794 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
795 *reg = temp;
796 }
797
798 (*num_reladdr)--;
799 }
800
801 void
802 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
803 {
804 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
805 * This means that each of the operands is either an immediate value of -1,
806 * 0, or 1, or is a component from one source register (possibly with
807 * negation).
808 */
809 uint8_t components[4] = { 0 };
810 bool negate[4] = { false };
811 ir_variable *var = NULL;
812
813 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
814 ir_rvalue *op = ir->operands[i];
815
816 assert(op->type->is_scalar());
817
818 while (op != NULL) {
819 switch (op->ir_type) {
820 case ir_type_constant: {
821
822 assert(op->type->is_scalar());
823
824 const ir_constant *const c = op->as_constant();
825 if (c->is_one()) {
826 components[i] = SWIZZLE_ONE;
827 } else if (c->is_zero()) {
828 components[i] = SWIZZLE_ZERO;
829 } else if (c->is_negative_one()) {
830 components[i] = SWIZZLE_ONE;
831 negate[i] = true;
832 } else {
833 assert(!"SWZ constant must be 0.0 or 1.0.");
834 }
835
836 op = NULL;
837 break;
838 }
839
840 case ir_type_dereference_variable: {
841 ir_dereference_variable *const deref =
842 (ir_dereference_variable *) op;
843
844 assert((var == NULL) || (deref->var == var));
845 components[i] = SWIZZLE_X;
846 var = deref->var;
847 op = NULL;
848 break;
849 }
850
851 case ir_type_expression: {
852 ir_expression *const expr = (ir_expression *) op;
853
854 assert(expr->operation == ir_unop_neg);
855 negate[i] = true;
856
857 op = expr->operands[0];
858 break;
859 }
860
861 case ir_type_swizzle: {
862 ir_swizzle *const swiz = (ir_swizzle *) op;
863
864 components[i] = swiz->mask.x;
865 op = swiz->val;
866 break;
867 }
868
869 default:
870 assert(!"Should not get here.");
871 return;
872 }
873 }
874 }
875
876 assert(var != NULL);
877
878 ir_dereference_variable *const deref =
879 new(mem_ctx) ir_dereference_variable(var);
880
881 this->result.file = PROGRAM_UNDEFINED;
882 deref->accept(this);
883 if (this->result.file == PROGRAM_UNDEFINED) {
884 printf("Failed to get tree for expression operand:\n");
885 deref->print();
886 printf("\n");
887 exit(1);
888 }
889
890 src_reg src;
891
892 src = this->result;
893 src.swizzle = MAKE_SWIZZLE4(components[0],
894 components[1],
895 components[2],
896 components[3]);
897 src.negate = ((unsigned(negate[0]) << 0)
898 | (unsigned(negate[1]) << 1)
899 | (unsigned(negate[2]) << 2)
900 | (unsigned(negate[3]) << 3));
901
902 /* Storage for our result. Ideally for an assignment we'd be using the
903 * actual storage for the result here, instead.
904 */
905 const src_reg result_src = get_temp(ir->type);
906 dst_reg result_dst = dst_reg(result_src);
907
908 /* Limit writes to the channels that will be used by result_src later.
909 * This does limit this temp's use as a temporary for multi-instruction
910 * sequences.
911 */
912 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
913
914 emit(ir, OPCODE_SWZ, result_dst, src);
915 this->result = result_src;
916 }
917
918 void
919 ir_to_mesa_visitor::visit(ir_expression *ir)
920 {
921 unsigned int operand;
922 src_reg op[ARRAY_SIZE(ir->operands)];
923 src_reg result_src;
924 dst_reg result_dst;
925
926 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
927 */
928 if (ir->operation == ir_binop_add) {
929 if (try_emit_mad(ir, 1))
930 return;
931 if (try_emit_mad(ir, 0))
932 return;
933 }
934
935 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
936 */
937 if (ir->operation == ir_binop_logic_and) {
938 if (try_emit_mad_for_and_not(ir, 1))
939 return;
940 if (try_emit_mad_for_and_not(ir, 0))
941 return;
942 }
943
944 if (ir->operation == ir_quadop_vector) {
945 this->emit_swz(ir);
946 return;
947 }
948
949 for (operand = 0; operand < ir->get_num_operands(); operand++) {
950 this->result.file = PROGRAM_UNDEFINED;
951 ir->operands[operand]->accept(this);
952 if (this->result.file == PROGRAM_UNDEFINED) {
953 printf("Failed to get tree for expression operand:\n");
954 ir->operands[operand]->print();
955 printf("\n");
956 exit(1);
957 }
958 op[operand] = this->result;
959
960 /* Matrix expression operands should have been broken down to vector
961 * operations already.
962 */
963 assert(!ir->operands[operand]->type->is_matrix());
964 }
965
966 int vector_elements = ir->operands[0]->type->vector_elements;
967 if (ir->operands[1]) {
968 vector_elements = MAX2(vector_elements,
969 ir->operands[1]->type->vector_elements);
970 }
971
972 this->result.file = PROGRAM_UNDEFINED;
973
974 /* Storage for our result. Ideally for an assignment we'd be using
975 * the actual storage for the result here, instead.
976 */
977 result_src = get_temp(ir->type);
978 /* convenience for the emit functions below. */
979 result_dst = dst_reg(result_src);
980 /* Limit writes to the channels that will be used by result_src later.
981 * This does limit this temp's use as a temporary for multi-instruction
982 * sequences.
983 */
984 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
985
986 switch (ir->operation) {
987 case ir_unop_logic_not:
988 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
989 * older GPUs implement SEQ using multiple instructions (i915 uses two
990 * SGE instructions and a MUL instruction). Since our logic values are
991 * 0.0 and 1.0, 1-x also implements !x.
992 */
993 op[0].negate = ~op[0].negate;
994 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
995 break;
996 case ir_unop_neg:
997 op[0].negate = ~op[0].negate;
998 result_src = op[0];
999 break;
1000 case ir_unop_abs:
1001 emit(ir, OPCODE_ABS, result_dst, op[0]);
1002 break;
1003 case ir_unop_sign:
1004 emit(ir, OPCODE_SSG, result_dst, op[0]);
1005 break;
1006 case ir_unop_rcp:
1007 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1008 break;
1009
1010 case ir_unop_exp2:
1011 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1012 break;
1013 case ir_unop_exp:
1014 case ir_unop_log:
1015 assert(!"not reached: should be handled by ir_explog_to_explog2");
1016 break;
1017 case ir_unop_log2:
1018 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1019 break;
1020 case ir_unop_sin:
1021 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1022 break;
1023 case ir_unop_cos:
1024 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1025 break;
1026
1027 case ir_unop_dFdx:
1028 emit(ir, OPCODE_DDX, result_dst, op[0]);
1029 break;
1030 case ir_unop_dFdy:
1031 emit(ir, OPCODE_DDY, result_dst, op[0]);
1032 break;
1033
1034 case ir_unop_saturate: {
1035 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1036 result_dst, op[0]);
1037 inst->saturate = true;
1038 break;
1039 }
1040 case ir_unop_noise: {
1041 const enum prog_opcode opcode =
1042 prog_opcode(OPCODE_NOISE1
1043 + (ir->operands[0]->type->vector_elements) - 1);
1044 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1045
1046 emit(ir, opcode, result_dst, op[0]);
1047 break;
1048 }
1049
1050 case ir_binop_add:
1051 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1052 break;
1053 case ir_binop_sub:
1054 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1055 break;
1056
1057 case ir_binop_mul:
1058 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1059 break;
1060 case ir_binop_div:
1061 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1062 break;
1063 case ir_binop_mod:
1064 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1065 assert(ir->type->is_integer());
1066 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1067 break;
1068
1069 case ir_binop_less:
1070 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1071 break;
1072 case ir_binop_greater:
1073 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1074 break;
1075 case ir_binop_lequal:
1076 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1077 break;
1078 case ir_binop_gequal:
1079 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1080 break;
1081 case ir_binop_equal:
1082 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1083 break;
1084 case ir_binop_nequal:
1085 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1086 break;
1087 case ir_binop_all_equal:
1088 /* "==" operator producing a scalar boolean. */
1089 if (ir->operands[0]->type->is_vector() ||
1090 ir->operands[1]->type->is_vector()) {
1091 src_reg temp = get_temp(glsl_type::vec4_type);
1092 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1093
1094 /* After the dot-product, the value will be an integer on the
1095 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1096 */
1097 emit_dp(ir, result_dst, temp, temp, vector_elements);
1098
1099 /* Negating the result of the dot-product gives values on the range
1100 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1101 * achieved using SGE.
1102 */
1103 src_reg sge_src = result_src;
1104 sge_src.negate = ~sge_src.negate;
1105 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1106 } else {
1107 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1108 }
1109 break;
1110 case ir_binop_any_nequal:
1111 /* "!=" operator producing a scalar boolean. */
1112 if (ir->operands[0]->type->is_vector() ||
1113 ir->operands[1]->type->is_vector()) {
1114 src_reg temp = get_temp(glsl_type::vec4_type);
1115 if (ir->operands[0]->type->is_boolean() &&
1116 ir->operands[1]->as_constant() &&
1117 ir->operands[1]->as_constant()->is_zero()) {
1118 temp = op[0];
1119 } else {
1120 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1121 }
1122
1123 /* After the dot-product, the value will be an integer on the
1124 * range [0,4]. Zero stays zero, and positive values become 1.0.
1125 */
1126 ir_to_mesa_instruction *const dp =
1127 emit_dp(ir, result_dst, temp, temp, vector_elements);
1128 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1129 /* The clamping to [0,1] can be done for free in the fragment
1130 * shader with a saturate.
1131 */
1132 dp->saturate = true;
1133 } else {
1134 /* Negating the result of the dot-product gives values on the range
1135 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1136 * achieved using SLT.
1137 */
1138 src_reg slt_src = result_src;
1139 slt_src.negate = ~slt_src.negate;
1140 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1141 }
1142 } else {
1143 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1144 }
1145 break;
1146
1147 case ir_binop_logic_xor:
1148 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1149 break;
1150
1151 case ir_binop_logic_or: {
1152 /* After the addition, the value will be an integer on the
1153 * range [0,2]. Zero stays zero, and positive values become 1.0.
1154 */
1155 ir_to_mesa_instruction *add =
1156 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1157 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1158 /* The clamping to [0,1] can be done for free in the fragment
1159 * shader with a saturate.
1160 */
1161 add->saturate = true;
1162 } else {
1163 /* Negating the result of the addition gives values on the range
1164 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1165 * is achieved using SLT.
1166 */
1167 src_reg slt_src = result_src;
1168 slt_src.negate = ~slt_src.negate;
1169 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1170 }
1171 break;
1172 }
1173
1174 case ir_binop_logic_and:
1175 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1176 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1177 break;
1178
1179 case ir_binop_dot:
1180 assert(ir->operands[0]->type->is_vector());
1181 assert(ir->operands[0]->type == ir->operands[1]->type);
1182 emit_dp(ir, result_dst, op[0], op[1],
1183 ir->operands[0]->type->vector_elements);
1184 break;
1185
1186 case ir_unop_sqrt:
1187 /* sqrt(x) = x * rsq(x). */
1188 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1189 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1190 /* For incoming channels <= 0, set the result to 0. */
1191 op[0].negate = ~op[0].negate;
1192 emit(ir, OPCODE_CMP, result_dst,
1193 op[0], result_src, src_reg_for_float(0.0));
1194 break;
1195 case ir_unop_rsq:
1196 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1197 break;
1198 case ir_unop_i2f:
1199 case ir_unop_u2f:
1200 case ir_unop_b2f:
1201 case ir_unop_b2i:
1202 case ir_unop_i2u:
1203 case ir_unop_u2i:
1204 /* Mesa IR lacks types, ints are stored as truncated floats. */
1205 result_src = op[0];
1206 break;
1207 case ir_unop_f2i:
1208 case ir_unop_f2u:
1209 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1210 break;
1211 case ir_unop_f2b:
1212 case ir_unop_i2b:
1213 emit(ir, OPCODE_SNE, result_dst,
1214 op[0], src_reg_for_float(0.0));
1215 break;
1216 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1217 case ir_unop_bitcast_f2u:
1218 case ir_unop_bitcast_i2f:
1219 case ir_unop_bitcast_u2f:
1220 break;
1221 case ir_unop_trunc:
1222 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1223 break;
1224 case ir_unop_ceil:
1225 op[0].negate = ~op[0].negate;
1226 emit(ir, OPCODE_FLR, result_dst, op[0]);
1227 result_src.negate = ~result_src.negate;
1228 break;
1229 case ir_unop_floor:
1230 emit(ir, OPCODE_FLR, result_dst, op[0]);
1231 break;
1232 case ir_unop_fract:
1233 emit(ir, OPCODE_FRC, result_dst, op[0]);
1234 break;
1235 case ir_unop_pack_snorm_2x16:
1236 case ir_unop_pack_snorm_4x8:
1237 case ir_unop_pack_unorm_2x16:
1238 case ir_unop_pack_unorm_4x8:
1239 case ir_unop_pack_half_2x16:
1240 case ir_unop_pack_double_2x32:
1241 case ir_unop_unpack_snorm_2x16:
1242 case ir_unop_unpack_snorm_4x8:
1243 case ir_unop_unpack_unorm_2x16:
1244 case ir_unop_unpack_unorm_4x8:
1245 case ir_unop_unpack_half_2x16:
1246 case ir_unop_unpack_double_2x32:
1247 case ir_unop_bitfield_reverse:
1248 case ir_unop_bit_count:
1249 case ir_unop_find_msb:
1250 case ir_unop_find_lsb:
1251 case ir_unop_d2f:
1252 case ir_unop_f2d:
1253 case ir_unop_d2i:
1254 case ir_unop_i2d:
1255 case ir_unop_d2u:
1256 case ir_unop_u2d:
1257 case ir_unop_d2b:
1258 case ir_unop_frexp_sig:
1259 case ir_unop_frexp_exp:
1260 assert(!"not supported");
1261 break;
1262 case ir_binop_min:
1263 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1264 break;
1265 case ir_binop_max:
1266 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1267 break;
1268 case ir_binop_pow:
1269 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1270 break;
1271
1272 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1273 * hardware backends have no way to avoid Mesa IR generation
1274 * even if they don't use it, we need to emit "something" and
1275 * continue.
1276 */
1277 case ir_binop_lshift:
1278 case ir_binop_rshift:
1279 case ir_binop_bit_and:
1280 case ir_binop_bit_xor:
1281 case ir_binop_bit_or:
1282 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1283 break;
1284
1285 case ir_unop_bit_not:
1286 case ir_unop_round_even:
1287 emit(ir, OPCODE_MOV, result_dst, op[0]);
1288 break;
1289
1290 case ir_binop_ubo_load:
1291 assert(!"not supported");
1292 break;
1293
1294 case ir_triop_lrp:
1295 /* ir_triop_lrp operands are (x, y, a) while
1296 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1297 */
1298 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1299 break;
1300
1301 case ir_binop_vector_extract:
1302 case ir_triop_fma:
1303 case ir_triop_bitfield_extract:
1304 case ir_triop_vector_insert:
1305 case ir_quadop_bitfield_insert:
1306 case ir_binop_ldexp:
1307 case ir_triop_csel:
1308 case ir_binop_carry:
1309 case ir_binop_borrow:
1310 case ir_binop_imul_high:
1311 case ir_unop_interpolate_at_centroid:
1312 case ir_binop_interpolate_at_offset:
1313 case ir_binop_interpolate_at_sample:
1314 case ir_unop_dFdx_coarse:
1315 case ir_unop_dFdx_fine:
1316 case ir_unop_dFdy_coarse:
1317 case ir_unop_dFdy_fine:
1318 case ir_unop_subroutine_to_int:
1319 case ir_unop_get_buffer_size:
1320 assert(!"not supported");
1321 break;
1322
1323 case ir_unop_ssbo_unsized_array_length:
1324 case ir_quadop_vector:
1325 /* This operation should have already been handled.
1326 */
1327 assert(!"Should not get here.");
1328 break;
1329 }
1330
1331 this->result = result_src;
1332 }
1333
1334
1335 void
1336 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1337 {
1338 src_reg src;
1339 int i;
1340 int swizzle[4];
1341
1342 /* Note that this is only swizzles in expressions, not those on the left
1343 * hand side of an assignment, which do write masking. See ir_assignment
1344 * for that.
1345 */
1346
1347 ir->val->accept(this);
1348 src = this->result;
1349 assert(src.file != PROGRAM_UNDEFINED);
1350 assert(ir->type->vector_elements > 0);
1351
1352 for (i = 0; i < 4; i++) {
1353 if (i < ir->type->vector_elements) {
1354 switch (i) {
1355 case 0:
1356 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1357 break;
1358 case 1:
1359 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1360 break;
1361 case 2:
1362 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1363 break;
1364 case 3:
1365 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1366 break;
1367 }
1368 } else {
1369 /* If the type is smaller than a vec4, replicate the last
1370 * channel out.
1371 */
1372 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1373 }
1374 }
1375
1376 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1377
1378 this->result = src;
1379 }
1380
1381 void
1382 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1383 {
1384 variable_storage *entry = find_variable_storage(ir->var);
1385 ir_variable *var = ir->var;
1386
1387 if (!entry) {
1388 switch (var->data.mode) {
1389 case ir_var_uniform:
1390 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1391 var->data.param_index);
1392 this->variables.push_tail(entry);
1393 break;
1394 case ir_var_shader_in:
1395 /* The linker assigns locations for varyings and attributes,
1396 * including deprecated builtins (like gl_Color),
1397 * user-assigned generic attributes (glBindVertexLocation),
1398 * and user-defined varyings.
1399 */
1400 assert(var->data.location != -1);
1401 entry = new(mem_ctx) variable_storage(var,
1402 PROGRAM_INPUT,
1403 var->data.location);
1404 break;
1405 case ir_var_shader_out:
1406 assert(var->data.location != -1);
1407 entry = new(mem_ctx) variable_storage(var,
1408 PROGRAM_OUTPUT,
1409 var->data.location);
1410 break;
1411 case ir_var_system_value:
1412 entry = new(mem_ctx) variable_storage(var,
1413 PROGRAM_SYSTEM_VALUE,
1414 var->data.location);
1415 break;
1416 case ir_var_auto:
1417 case ir_var_temporary:
1418 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1419 this->next_temp);
1420 this->variables.push_tail(entry);
1421
1422 next_temp += type_size(var->type);
1423 break;
1424 }
1425
1426 if (!entry) {
1427 printf("Failed to make storage for %s\n", var->name);
1428 exit(1);
1429 }
1430 }
1431
1432 this->result = src_reg(entry->file, entry->index, var->type);
1433 }
1434
1435 void
1436 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1437 {
1438 ir_constant *index;
1439 src_reg src;
1440 int element_size = type_size(ir->type);
1441
1442 index = ir->array_index->constant_expression_value();
1443
1444 ir->array->accept(this);
1445 src = this->result;
1446
1447 if (index) {
1448 src.index += index->value.i[0] * element_size;
1449 } else {
1450 /* Variable index array dereference. It eats the "vec4" of the
1451 * base of the array and an index that offsets the Mesa register
1452 * index.
1453 */
1454 ir->array_index->accept(this);
1455
1456 src_reg index_reg;
1457
1458 if (element_size == 1) {
1459 index_reg = this->result;
1460 } else {
1461 index_reg = get_temp(glsl_type::float_type);
1462
1463 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1464 this->result, src_reg_for_float(element_size));
1465 }
1466
1467 /* If there was already a relative address register involved, add the
1468 * new and the old together to get the new offset.
1469 */
1470 if (src.reladdr != NULL) {
1471 src_reg accum_reg = get_temp(glsl_type::float_type);
1472
1473 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1474 index_reg, *src.reladdr);
1475
1476 index_reg = accum_reg;
1477 }
1478
1479 src.reladdr = ralloc(mem_ctx, src_reg);
1480 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1481 }
1482
1483 /* If the type is smaller than a vec4, replicate the last channel out. */
1484 if (ir->type->is_scalar() || ir->type->is_vector())
1485 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1486 else
1487 src.swizzle = SWIZZLE_NOOP;
1488
1489 this->result = src;
1490 }
1491
1492 void
1493 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1494 {
1495 unsigned int i;
1496 const glsl_type *struct_type = ir->record->type;
1497 int offset = 0;
1498
1499 ir->record->accept(this);
1500
1501 for (i = 0; i < struct_type->length; i++) {
1502 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1503 break;
1504 offset += type_size(struct_type->fields.structure[i].type);
1505 }
1506
1507 /* If the type is smaller than a vec4, replicate the last channel out. */
1508 if (ir->type->is_scalar() || ir->type->is_vector())
1509 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1510 else
1511 this->result.swizzle = SWIZZLE_NOOP;
1512
1513 this->result.index += offset;
1514 }
1515
1516 /**
1517 * We want to be careful in assignment setup to hit the actual storage
1518 * instead of potentially using a temporary like we might with the
1519 * ir_dereference handler.
1520 */
1521 static dst_reg
1522 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1523 {
1524 /* The LHS must be a dereference. If the LHS is a variable indexed array
1525 * access of a vector, it must be separated into a series conditional moves
1526 * before reaching this point (see ir_vec_index_to_cond_assign).
1527 */
1528 assert(ir->as_dereference());
1529 ir_dereference_array *deref_array = ir->as_dereference_array();
1530 if (deref_array) {
1531 assert(!deref_array->array->type->is_vector());
1532 }
1533
1534 /* Use the rvalue deref handler for the most part. We'll ignore
1535 * swizzles in it and write swizzles using writemask, though.
1536 */
1537 ir->accept(v);
1538 return dst_reg(v->result);
1539 }
1540
1541 /* Calculate the sampler index and also calculate the base uniform location
1542 * for struct members.
1543 */
1544 static void
1545 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1546 unsigned *offset, unsigned *array_elements,
1547 unsigned *location)
1548 {
1549 if (deref->ir_type == ir_type_dereference_variable)
1550 return;
1551
1552 switch (deref->ir_type) {
1553 case ir_type_dereference_array: {
1554 ir_dereference_array *deref_arr = deref->as_dereference_array();
1555 ir_constant *array_index =
1556 deref_arr->array_index->constant_expression_value();
1557
1558 if (!array_index) {
1559 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1560 * while GLSL 1.30 requires that the array indices be
1561 * constant integer expressions. We don't expect any driver
1562 * to actually work with a really variable array index, so
1563 * all that would work would be an unrolled loop counter that ends
1564 * up being constant above.
1565 */
1566 ralloc_strcat(&prog->InfoLog,
1567 "warning: Variable sampler array index unsupported.\n"
1568 "This feature of the language was removed in GLSL 1.20 "
1569 "and is unlikely to be supported for 1.10 in Mesa.\n");
1570 } else {
1571 *offset += array_index->value.u[0] * *array_elements;
1572 }
1573
1574 *array_elements *= deref_arr->array->type->length;
1575
1576 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1577 offset, array_elements, location);
1578 break;
1579 }
1580
1581 case ir_type_dereference_record: {
1582 ir_dereference_record *deref_record = deref->as_dereference_record();
1583 unsigned field_index =
1584 deref_record->record->type->field_index(deref_record->field);
1585 *location +=
1586 deref_record->record->type->record_location_offset(field_index);
1587 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1588 offset, array_elements, location);
1589 break;
1590 }
1591
1592 default:
1593 unreachable("Invalid deref type");
1594 break;
1595 }
1596 }
1597
1598 static int
1599 get_sampler_uniform_value(class ir_dereference *sampler,
1600 struct gl_shader_program *shader_program,
1601 const struct gl_program *prog)
1602 {
1603 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1604 ir_variable *var = sampler->variable_referenced();
1605 unsigned location = var->data.location;
1606 unsigned array_elements = 1;
1607 unsigned offset = 0;
1608
1609 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1610 &location);
1611
1612 assert(shader_program->UniformStorage[location].opaque[shader].active);
1613 return shader_program->UniformStorage[location].opaque[shader].index +
1614 offset;
1615 }
1616
1617 /**
1618 * Process the condition of a conditional assignment
1619 *
1620 * Examines the condition of a conditional assignment to generate the optimal
1621 * first operand of a \c CMP instruction. If the condition is a relational
1622 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1623 * used as the source for the \c CMP instruction. Otherwise the comparison
1624 * is processed to a boolean result, and the boolean result is used as the
1625 * operand to the CMP instruction.
1626 */
1627 bool
1628 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1629 {
1630 ir_rvalue *src_ir = ir;
1631 bool negate = true;
1632 bool switch_order = false;
1633
1634 ir_expression *const expr = ir->as_expression();
1635 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1636 bool zero_on_left = false;
1637
1638 if (expr->operands[0]->is_zero()) {
1639 src_ir = expr->operands[1];
1640 zero_on_left = true;
1641 } else if (expr->operands[1]->is_zero()) {
1642 src_ir = expr->operands[0];
1643 zero_on_left = false;
1644 }
1645
1646 /* a is - 0 + - 0 +
1647 * (a < 0) T F F ( a < 0) T F F
1648 * (0 < a) F F T (-a < 0) F F T
1649 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1650 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1651 * (a > 0) F F T (-a < 0) F F T
1652 * (0 > a) T F F ( a < 0) T F F
1653 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1654 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1655 *
1656 * Note that exchanging the order of 0 and 'a' in the comparison simply
1657 * means that the value of 'a' should be negated.
1658 */
1659 if (src_ir != ir) {
1660 switch (expr->operation) {
1661 case ir_binop_less:
1662 switch_order = false;
1663 negate = zero_on_left;
1664 break;
1665
1666 case ir_binop_greater:
1667 switch_order = false;
1668 negate = !zero_on_left;
1669 break;
1670
1671 case ir_binop_lequal:
1672 switch_order = true;
1673 negate = !zero_on_left;
1674 break;
1675
1676 case ir_binop_gequal:
1677 switch_order = true;
1678 negate = zero_on_left;
1679 break;
1680
1681 default:
1682 /* This isn't the right kind of comparison afterall, so make sure
1683 * the whole condition is visited.
1684 */
1685 src_ir = ir;
1686 break;
1687 }
1688 }
1689 }
1690
1691 src_ir->accept(this);
1692
1693 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1694 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1695 * choose which value OPCODE_CMP produces without an extra instruction
1696 * computing the condition.
1697 */
1698 if (negate)
1699 this->result.negate = ~this->result.negate;
1700
1701 return switch_order;
1702 }
1703
1704 void
1705 ir_to_mesa_visitor::visit(ir_assignment *ir)
1706 {
1707 dst_reg l;
1708 src_reg r;
1709 int i;
1710
1711 ir->rhs->accept(this);
1712 r = this->result;
1713
1714 l = get_assignment_lhs(ir->lhs, this);
1715
1716 /* FINISHME: This should really set to the correct maximal writemask for each
1717 * FINISHME: component written (in the loops below). This case can only
1718 * FINISHME: occur for matrices, arrays, and structures.
1719 */
1720 if (ir->write_mask == 0) {
1721 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1722 l.writemask = WRITEMASK_XYZW;
1723 } else if (ir->lhs->type->is_scalar()) {
1724 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1725 * FINISHME: W component of fragment shader output zero, work correctly.
1726 */
1727 l.writemask = WRITEMASK_XYZW;
1728 } else {
1729 int swizzles[4];
1730 int first_enabled_chan = 0;
1731 int rhs_chan = 0;
1732
1733 assert(ir->lhs->type->is_vector());
1734 l.writemask = ir->write_mask;
1735
1736 for (int i = 0; i < 4; i++) {
1737 if (l.writemask & (1 << i)) {
1738 first_enabled_chan = GET_SWZ(r.swizzle, i);
1739 break;
1740 }
1741 }
1742
1743 /* Swizzle a small RHS vector into the channels being written.
1744 *
1745 * glsl ir treats write_mask as dictating how many channels are
1746 * present on the RHS while Mesa IR treats write_mask as just
1747 * showing which channels of the vec4 RHS get written.
1748 */
1749 for (int i = 0; i < 4; i++) {
1750 if (l.writemask & (1 << i))
1751 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1752 else
1753 swizzles[i] = first_enabled_chan;
1754 }
1755 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1756 swizzles[2], swizzles[3]);
1757 }
1758
1759 assert(l.file != PROGRAM_UNDEFINED);
1760 assert(r.file != PROGRAM_UNDEFINED);
1761
1762 if (ir->condition) {
1763 const bool switch_order = this->process_move_condition(ir->condition);
1764 src_reg condition = this->result;
1765
1766 for (i = 0; i < type_size(ir->lhs->type); i++) {
1767 if (switch_order) {
1768 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1769 } else {
1770 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1771 }
1772
1773 l.index++;
1774 r.index++;
1775 }
1776 } else {
1777 for (i = 0; i < type_size(ir->lhs->type); i++) {
1778 emit(ir, OPCODE_MOV, l, r);
1779 l.index++;
1780 r.index++;
1781 }
1782 }
1783 }
1784
1785
1786 void
1787 ir_to_mesa_visitor::visit(ir_constant *ir)
1788 {
1789 src_reg src;
1790 GLfloat stack_vals[4] = { 0 };
1791 GLfloat *values = stack_vals;
1792 unsigned int i;
1793
1794 /* Unfortunately, 4 floats is all we can get into
1795 * _mesa_add_unnamed_constant. So, make a temp to store an
1796 * aggregate constant and move each constant value into it. If we
1797 * get lucky, copy propagation will eliminate the extra moves.
1798 */
1799
1800 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1801 src_reg temp_base = get_temp(ir->type);
1802 dst_reg temp = dst_reg(temp_base);
1803
1804 foreach_in_list(ir_constant, field_value, &ir->components) {
1805 int size = type_size(field_value->type);
1806
1807 assert(size > 0);
1808
1809 field_value->accept(this);
1810 src = this->result;
1811
1812 for (i = 0; i < (unsigned int)size; i++) {
1813 emit(ir, OPCODE_MOV, temp, src);
1814
1815 src.index++;
1816 temp.index++;
1817 }
1818 }
1819 this->result = temp_base;
1820 return;
1821 }
1822
1823 if (ir->type->is_array()) {
1824 src_reg temp_base = get_temp(ir->type);
1825 dst_reg temp = dst_reg(temp_base);
1826 int size = type_size(ir->type->fields.array);
1827
1828 assert(size > 0);
1829
1830 for (i = 0; i < ir->type->length; i++) {
1831 ir->array_elements[i]->accept(this);
1832 src = this->result;
1833 for (int j = 0; j < size; j++) {
1834 emit(ir, OPCODE_MOV, temp, src);
1835
1836 src.index++;
1837 temp.index++;
1838 }
1839 }
1840 this->result = temp_base;
1841 return;
1842 }
1843
1844 if (ir->type->is_matrix()) {
1845 src_reg mat = get_temp(ir->type);
1846 dst_reg mat_column = dst_reg(mat);
1847
1848 for (i = 0; i < ir->type->matrix_columns; i++) {
1849 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1850 values = &ir->value.f[i * ir->type->vector_elements];
1851
1852 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1853 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1854 (gl_constant_value *) values,
1855 ir->type->vector_elements,
1856 &src.swizzle);
1857 emit(ir, OPCODE_MOV, mat_column, src);
1858
1859 mat_column.index++;
1860 }
1861
1862 this->result = mat;
1863 return;
1864 }
1865
1866 src.file = PROGRAM_CONSTANT;
1867 switch (ir->type->base_type) {
1868 case GLSL_TYPE_FLOAT:
1869 values = &ir->value.f[0];
1870 break;
1871 case GLSL_TYPE_UINT:
1872 for (i = 0; i < ir->type->vector_elements; i++) {
1873 values[i] = ir->value.u[i];
1874 }
1875 break;
1876 case GLSL_TYPE_INT:
1877 for (i = 0; i < ir->type->vector_elements; i++) {
1878 values[i] = ir->value.i[i];
1879 }
1880 break;
1881 case GLSL_TYPE_BOOL:
1882 for (i = 0; i < ir->type->vector_elements; i++) {
1883 values[i] = ir->value.b[i];
1884 }
1885 break;
1886 default:
1887 assert(!"Non-float/uint/int/bool constant");
1888 }
1889
1890 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1891 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1892 (gl_constant_value *) values,
1893 ir->type->vector_elements,
1894 &this->result.swizzle);
1895 }
1896
1897 void
1898 ir_to_mesa_visitor::visit(ir_call *)
1899 {
1900 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1901 }
1902
1903 void
1904 ir_to_mesa_visitor::visit(ir_texture *ir)
1905 {
1906 src_reg result_src, coord, lod_info, projector, dx, dy;
1907 dst_reg result_dst, coord_dst;
1908 ir_to_mesa_instruction *inst = NULL;
1909 prog_opcode opcode = OPCODE_NOP;
1910
1911 if (ir->op == ir_txs)
1912 this->result = src_reg_for_float(0.0);
1913 else
1914 ir->coordinate->accept(this);
1915
1916 /* Put our coords in a temp. We'll need to modify them for shadow,
1917 * projection, or LOD, so the only case we'd use it as is is if
1918 * we're doing plain old texturing. Mesa IR optimization should
1919 * handle cleaning up our mess in that case.
1920 */
1921 coord = get_temp(glsl_type::vec4_type);
1922 coord_dst = dst_reg(coord);
1923 emit(ir, OPCODE_MOV, coord_dst, this->result);
1924
1925 if (ir->projector) {
1926 ir->projector->accept(this);
1927 projector = this->result;
1928 }
1929
1930 /* Storage for our result. Ideally for an assignment we'd be using
1931 * the actual storage for the result here, instead.
1932 */
1933 result_src = get_temp(glsl_type::vec4_type);
1934 result_dst = dst_reg(result_src);
1935
1936 switch (ir->op) {
1937 case ir_tex:
1938 case ir_txs:
1939 opcode = OPCODE_TEX;
1940 break;
1941 case ir_txb:
1942 opcode = OPCODE_TXB;
1943 ir->lod_info.bias->accept(this);
1944 lod_info = this->result;
1945 break;
1946 case ir_txf:
1947 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1948 case ir_txl:
1949 opcode = OPCODE_TXL;
1950 ir->lod_info.lod->accept(this);
1951 lod_info = this->result;
1952 break;
1953 case ir_txd:
1954 opcode = OPCODE_TXD;
1955 ir->lod_info.grad.dPdx->accept(this);
1956 dx = this->result;
1957 ir->lod_info.grad.dPdy->accept(this);
1958 dy = this->result;
1959 break;
1960 case ir_txf_ms:
1961 assert(!"Unexpected ir_txf_ms opcode");
1962 break;
1963 case ir_lod:
1964 assert(!"Unexpected ir_lod opcode");
1965 break;
1966 case ir_tg4:
1967 assert(!"Unexpected ir_tg4 opcode");
1968 break;
1969 case ir_query_levels:
1970 assert(!"Unexpected ir_query_levels opcode");
1971 break;
1972 case ir_samples_identical:
1973 unreachable("Unexpected ir_samples_identical opcode");
1974 case ir_texture_samples:
1975 unreachable("Unexpected ir_texture_samples opcode");
1976 }
1977
1978 const glsl_type *sampler_type = ir->sampler->type;
1979
1980 if (ir->projector) {
1981 if (opcode == OPCODE_TEX) {
1982 /* Slot the projector in as the last component of the coord. */
1983 coord_dst.writemask = WRITEMASK_W;
1984 emit(ir, OPCODE_MOV, coord_dst, projector);
1985 coord_dst.writemask = WRITEMASK_XYZW;
1986 opcode = OPCODE_TXP;
1987 } else {
1988 src_reg coord_w = coord;
1989 coord_w.swizzle = SWIZZLE_WWWW;
1990
1991 /* For the other TEX opcodes there's no projective version
1992 * since the last slot is taken up by lod info. Do the
1993 * projective divide now.
1994 */
1995 coord_dst.writemask = WRITEMASK_W;
1996 emit(ir, OPCODE_RCP, coord_dst, projector);
1997
1998 /* In the case where we have to project the coordinates "by hand,"
1999 * the shadow comparitor value must also be projected.
2000 */
2001 src_reg tmp_src = coord;
2002 if (ir->shadow_comparitor) {
2003 /* Slot the shadow value in as the second to last component of the
2004 * coord.
2005 */
2006 ir->shadow_comparitor->accept(this);
2007
2008 tmp_src = get_temp(glsl_type::vec4_type);
2009 dst_reg tmp_dst = dst_reg(tmp_src);
2010
2011 /* Projective division not allowed for array samplers. */
2012 assert(!sampler_type->sampler_array);
2013
2014 tmp_dst.writemask = WRITEMASK_Z;
2015 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2016
2017 tmp_dst.writemask = WRITEMASK_XY;
2018 emit(ir, OPCODE_MOV, tmp_dst, coord);
2019 }
2020
2021 coord_dst.writemask = WRITEMASK_XYZ;
2022 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2023
2024 coord_dst.writemask = WRITEMASK_XYZW;
2025 coord.swizzle = SWIZZLE_XYZW;
2026 }
2027 }
2028
2029 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2030 * comparitor was put in the correct place (and projected) by the code,
2031 * above, that handles by-hand projection.
2032 */
2033 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2034 /* Slot the shadow value in as the second to last component of the
2035 * coord.
2036 */
2037 ir->shadow_comparitor->accept(this);
2038
2039 /* XXX This will need to be updated for cubemap array samplers. */
2040 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2041 sampler_type->sampler_array) {
2042 coord_dst.writemask = WRITEMASK_W;
2043 } else {
2044 coord_dst.writemask = WRITEMASK_Z;
2045 }
2046
2047 emit(ir, OPCODE_MOV, coord_dst, this->result);
2048 coord_dst.writemask = WRITEMASK_XYZW;
2049 }
2050
2051 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2052 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2053 coord_dst.writemask = WRITEMASK_W;
2054 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2055 coord_dst.writemask = WRITEMASK_XYZW;
2056 }
2057
2058 if (opcode == OPCODE_TXD)
2059 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2060 else
2061 inst = emit(ir, opcode, result_dst, coord);
2062
2063 if (ir->shadow_comparitor)
2064 inst->tex_shadow = GL_TRUE;
2065
2066 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2067 prog);
2068
2069 switch (sampler_type->sampler_dimensionality) {
2070 case GLSL_SAMPLER_DIM_1D:
2071 inst->tex_target = (sampler_type->sampler_array)
2072 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2073 break;
2074 case GLSL_SAMPLER_DIM_2D:
2075 inst->tex_target = (sampler_type->sampler_array)
2076 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2077 break;
2078 case GLSL_SAMPLER_DIM_3D:
2079 inst->tex_target = TEXTURE_3D_INDEX;
2080 break;
2081 case GLSL_SAMPLER_DIM_CUBE:
2082 inst->tex_target = TEXTURE_CUBE_INDEX;
2083 break;
2084 case GLSL_SAMPLER_DIM_RECT:
2085 inst->tex_target = TEXTURE_RECT_INDEX;
2086 break;
2087 case GLSL_SAMPLER_DIM_BUF:
2088 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2089 break;
2090 case GLSL_SAMPLER_DIM_EXTERNAL:
2091 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2092 break;
2093 default:
2094 assert(!"Should not get here.");
2095 }
2096
2097 this->result = result_src;
2098 }
2099
2100 void
2101 ir_to_mesa_visitor::visit(ir_return *ir)
2102 {
2103 /* Non-void functions should have been inlined. We may still emit RETs
2104 * from main() unless the EmitNoMainReturn option is set.
2105 */
2106 assert(!ir->get_value());
2107 emit(ir, OPCODE_RET);
2108 }
2109
2110 void
2111 ir_to_mesa_visitor::visit(ir_discard *ir)
2112 {
2113 if (ir->condition) {
2114 ir->condition->accept(this);
2115 this->result.negate = ~this->result.negate;
2116 emit(ir, OPCODE_KIL, undef_dst, this->result);
2117 } else {
2118 emit(ir, OPCODE_KIL_NV);
2119 }
2120 }
2121
2122 void
2123 ir_to_mesa_visitor::visit(ir_if *ir)
2124 {
2125 ir_to_mesa_instruction *cond_inst, *if_inst;
2126 ir_to_mesa_instruction *prev_inst;
2127
2128 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2129
2130 ir->condition->accept(this);
2131 assert(this->result.file != PROGRAM_UNDEFINED);
2132
2133 if (this->options->EmitCondCodes) {
2134 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2135
2136 /* See if we actually generated any instruction for generating
2137 * the condition. If not, then cook up a move to a temp so we
2138 * have something to set cond_update on.
2139 */
2140 if (cond_inst == prev_inst) {
2141 src_reg temp = get_temp(glsl_type::bool_type);
2142 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2143 }
2144 cond_inst->cond_update = GL_TRUE;
2145
2146 if_inst = emit(ir->condition, OPCODE_IF);
2147 if_inst->dst.cond_mask = COND_NE;
2148 } else {
2149 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2150 }
2151
2152 this->instructions.push_tail(if_inst);
2153
2154 visit_exec_list(&ir->then_instructions, this);
2155
2156 if (!ir->else_instructions.is_empty()) {
2157 emit(ir->condition, OPCODE_ELSE);
2158 visit_exec_list(&ir->else_instructions, this);
2159 }
2160
2161 emit(ir->condition, OPCODE_ENDIF);
2162 }
2163
2164 void
2165 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2166 {
2167 assert(!"Geometry shaders not supported.");
2168 }
2169
2170 void
2171 ir_to_mesa_visitor::visit(ir_end_primitive *)
2172 {
2173 assert(!"Geometry shaders not supported.");
2174 }
2175
2176 void
2177 ir_to_mesa_visitor::visit(ir_barrier *)
2178 {
2179 unreachable("GLSL barrier() not supported.");
2180 }
2181
2182 ir_to_mesa_visitor::ir_to_mesa_visitor()
2183 {
2184 result.file = PROGRAM_UNDEFINED;
2185 next_temp = 1;
2186 next_signature_id = 1;
2187 current_function = NULL;
2188 mem_ctx = ralloc_context(NULL);
2189 }
2190
2191 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2192 {
2193 ralloc_free(mem_ctx);
2194 }
2195
2196 static struct prog_src_register
2197 mesa_src_reg_from_ir_src_reg(src_reg reg)
2198 {
2199 struct prog_src_register mesa_reg;
2200
2201 mesa_reg.File = reg.file;
2202 assert(reg.index < (1 << INST_INDEX_BITS));
2203 mesa_reg.Index = reg.index;
2204 mesa_reg.Swizzle = reg.swizzle;
2205 mesa_reg.RelAddr = reg.reladdr != NULL;
2206 mesa_reg.Negate = reg.negate;
2207 mesa_reg.Abs = 0;
2208 mesa_reg.HasIndex2 = GL_FALSE;
2209 mesa_reg.RelAddr2 = 0;
2210 mesa_reg.Index2 = 0;
2211
2212 return mesa_reg;
2213 }
2214
2215 static void
2216 set_branchtargets(ir_to_mesa_visitor *v,
2217 struct prog_instruction *mesa_instructions,
2218 int num_instructions)
2219 {
2220 int if_count = 0, loop_count = 0;
2221 int *if_stack, *loop_stack;
2222 int if_stack_pos = 0, loop_stack_pos = 0;
2223 int i, j;
2224
2225 for (i = 0; i < num_instructions; i++) {
2226 switch (mesa_instructions[i].Opcode) {
2227 case OPCODE_IF:
2228 if_count++;
2229 break;
2230 case OPCODE_BGNLOOP:
2231 loop_count++;
2232 break;
2233 case OPCODE_BRK:
2234 case OPCODE_CONT:
2235 mesa_instructions[i].BranchTarget = -1;
2236 break;
2237 default:
2238 break;
2239 }
2240 }
2241
2242 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2243 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2244
2245 for (i = 0; i < num_instructions; i++) {
2246 switch (mesa_instructions[i].Opcode) {
2247 case OPCODE_IF:
2248 if_stack[if_stack_pos] = i;
2249 if_stack_pos++;
2250 break;
2251 case OPCODE_ELSE:
2252 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2253 if_stack[if_stack_pos - 1] = i;
2254 break;
2255 case OPCODE_ENDIF:
2256 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2257 if_stack_pos--;
2258 break;
2259 case OPCODE_BGNLOOP:
2260 loop_stack[loop_stack_pos] = i;
2261 loop_stack_pos++;
2262 break;
2263 case OPCODE_ENDLOOP:
2264 loop_stack_pos--;
2265 /* Rewrite any breaks/conts at this nesting level (haven't
2266 * already had a BranchTarget assigned) to point to the end
2267 * of the loop.
2268 */
2269 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2270 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2271 mesa_instructions[j].Opcode == OPCODE_CONT) {
2272 if (mesa_instructions[j].BranchTarget == -1) {
2273 mesa_instructions[j].BranchTarget = i;
2274 }
2275 }
2276 }
2277 /* The loop ends point at each other. */
2278 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2279 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2280 break;
2281 case OPCODE_CAL:
2282 foreach_in_list(function_entry, entry, &v->function_signatures) {
2283 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2284 mesa_instructions[i].BranchTarget = entry->inst;
2285 break;
2286 }
2287 }
2288 break;
2289 default:
2290 break;
2291 }
2292 }
2293 }
2294
2295 static void
2296 print_program(struct prog_instruction *mesa_instructions,
2297 ir_instruction **mesa_instruction_annotation,
2298 int num_instructions)
2299 {
2300 ir_instruction *last_ir = NULL;
2301 int i;
2302 int indent = 0;
2303
2304 for (i = 0; i < num_instructions; i++) {
2305 struct prog_instruction *mesa_inst = mesa_instructions + i;
2306 ir_instruction *ir = mesa_instruction_annotation[i];
2307
2308 fprintf(stdout, "%3d: ", i);
2309
2310 if (last_ir != ir && ir) {
2311 int j;
2312
2313 for (j = 0; j < indent; j++) {
2314 fprintf(stdout, " ");
2315 }
2316 ir->print();
2317 printf("\n");
2318 last_ir = ir;
2319
2320 fprintf(stdout, " "); /* line number spacing. */
2321 }
2322
2323 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2324 PROG_PRINT_DEBUG, NULL);
2325 }
2326 }
2327
2328 namespace {
2329
2330 class add_uniform_to_shader : public program_resource_visitor {
2331 public:
2332 add_uniform_to_shader(struct gl_shader_program *shader_program,
2333 struct gl_program_parameter_list *params,
2334 gl_shader_stage shader_type)
2335 : shader_program(shader_program), params(params), idx(-1),
2336 shader_type(shader_type)
2337 {
2338 /* empty */
2339 }
2340
2341 void process(ir_variable *var)
2342 {
2343 this->idx = -1;
2344 this->program_resource_visitor::process(var);
2345 var->data.param_index = this->idx;
2346 }
2347
2348 private:
2349 virtual void visit_field(const glsl_type *type, const char *name,
2350 bool row_major);
2351
2352 struct gl_shader_program *shader_program;
2353 struct gl_program_parameter_list *params;
2354 int idx;
2355 gl_shader_stage shader_type;
2356 };
2357
2358 } /* anonymous namespace */
2359
2360 void
2361 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2362 bool row_major)
2363 {
2364 unsigned int size;
2365
2366 (void) row_major;
2367
2368 /* atomics don't get real storage */
2369 if (type->contains_atomic())
2370 return;
2371
2372 if (type->is_vector() || type->is_scalar()) {
2373 size = type->vector_elements;
2374 if (type->is_double())
2375 size *= 2;
2376 } else {
2377 size = type_size(type) * 4;
2378 }
2379
2380 gl_register_file file;
2381 if (type->without_array()->is_sampler()) {
2382 file = PROGRAM_SAMPLER;
2383 } else {
2384 file = PROGRAM_UNIFORM;
2385 }
2386
2387 int index = _mesa_lookup_parameter_index(params, -1, name);
2388 if (index < 0) {
2389 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2390 NULL, NULL);
2391
2392 /* Sampler uniform values are stored in prog->SamplerUnits,
2393 * and the entry in that array is selected by this index we
2394 * store in ParameterValues[].
2395 */
2396 if (file == PROGRAM_SAMPLER) {
2397 unsigned location;
2398 const bool found =
2399 this->shader_program->UniformHash->get(location,
2400 params->Parameters[index].Name);
2401 assert(found);
2402
2403 if (!found)
2404 return;
2405
2406 struct gl_uniform_storage *storage =
2407 &this->shader_program->UniformStorage[location];
2408
2409 assert(storage->type->is_sampler() &&
2410 storage->opaque[shader_type].active);
2411
2412 for (unsigned int j = 0; j < size / 4; j++)
2413 params->ParameterValues[index + j][0].f =
2414 storage->opaque[shader_type].index + j;
2415 }
2416 }
2417
2418 /* The first part of the uniform that's processed determines the base
2419 * location of the whole uniform (for structures).
2420 */
2421 if (this->idx < 0)
2422 this->idx = index;
2423 }
2424
2425 /**
2426 * Generate the program parameters list for the user uniforms in a shader
2427 *
2428 * \param shader_program Linked shader program. This is only used to
2429 * emit possible link errors to the info log.
2430 * \param sh Shader whose uniforms are to be processed.
2431 * \param params Parameter list to be filled in.
2432 */
2433 void
2434 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2435 *shader_program,
2436 struct gl_shader *sh,
2437 struct gl_program_parameter_list
2438 *params)
2439 {
2440 add_uniform_to_shader add(shader_program, params, sh->Stage);
2441
2442 foreach_in_list(ir_instruction, node, sh->ir) {
2443 ir_variable *var = node->as_variable();
2444
2445 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2446 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2447 continue;
2448
2449 add.process(var);
2450 }
2451 }
2452
2453 void
2454 _mesa_associate_uniform_storage(struct gl_context *ctx,
2455 struct gl_shader_program *shader_program,
2456 struct gl_program_parameter_list *params)
2457 {
2458 /* After adding each uniform to the parameter list, connect the storage for
2459 * the parameter with the tracking structure used by the API for the
2460 * uniform.
2461 */
2462 unsigned last_location = unsigned(~0);
2463 for (unsigned i = 0; i < params->NumParameters; i++) {
2464 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2465 continue;
2466
2467 unsigned location;
2468 const bool found =
2469 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2470 assert(found);
2471
2472 if (!found)
2473 continue;
2474
2475 struct gl_uniform_storage *storage =
2476 &shader_program->UniformStorage[location];
2477
2478 /* Do not associate any uniform storage to built-in uniforms */
2479 if (storage->builtin)
2480 continue;
2481
2482 if (location != last_location) {
2483 enum gl_uniform_driver_format format = uniform_native;
2484
2485 unsigned columns = 0;
2486 int dmul = 4 * sizeof(float);
2487 switch (storage->type->base_type) {
2488 case GLSL_TYPE_UINT:
2489 assert(ctx->Const.NativeIntegers);
2490 format = uniform_native;
2491 columns = 1;
2492 break;
2493 case GLSL_TYPE_INT:
2494 format =
2495 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2496 columns = 1;
2497 break;
2498
2499 case GLSL_TYPE_DOUBLE:
2500 if (storage->type->vector_elements > 2)
2501 dmul *= 2;
2502 /* fallthrough */
2503 case GLSL_TYPE_FLOAT:
2504 format = uniform_native;
2505 columns = storage->type->matrix_columns;
2506 break;
2507 case GLSL_TYPE_BOOL:
2508 format = uniform_native;
2509 columns = 1;
2510 break;
2511 case GLSL_TYPE_SAMPLER:
2512 case GLSL_TYPE_IMAGE:
2513 case GLSL_TYPE_SUBROUTINE:
2514 format = uniform_native;
2515 columns = 1;
2516 break;
2517 case GLSL_TYPE_ATOMIC_UINT:
2518 case GLSL_TYPE_ARRAY:
2519 case GLSL_TYPE_VOID:
2520 case GLSL_TYPE_STRUCT:
2521 case GLSL_TYPE_ERROR:
2522 case GLSL_TYPE_INTERFACE:
2523 assert(!"Should not get here.");
2524 break;
2525 }
2526
2527 _mesa_uniform_attach_driver_storage(storage,
2528 dmul * columns,
2529 dmul,
2530 format,
2531 &params->ParameterValues[i]);
2532
2533 /* After attaching the driver's storage to the uniform, propagate any
2534 * data from the linker's backing store. This will cause values from
2535 * initializers in the source code to be copied over.
2536 */
2537 _mesa_propagate_uniforms_to_driver_storage(storage,
2538 0,
2539 MAX2(1, storage->array_elements));
2540
2541 last_location = location;
2542 }
2543 }
2544 }
2545
2546 /*
2547 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2548 * channels for copy propagation and updates following instructions to
2549 * use the original versions.
2550 *
2551 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2552 * will occur. As an example, a TXP production before this pass:
2553 *
2554 * 0: MOV TEMP[1], INPUT[4].xyyy;
2555 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2556 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2557 *
2558 * and after:
2559 *
2560 * 0: MOV TEMP[1], INPUT[4].xyyy;
2561 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2562 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2563 *
2564 * which allows for dead code elimination on TEMP[1]'s writes.
2565 */
2566 void
2567 ir_to_mesa_visitor::copy_propagate(void)
2568 {
2569 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2570 ir_to_mesa_instruction *,
2571 this->next_temp * 4);
2572 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2573 int level = 0;
2574
2575 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2576 assert(inst->dst.file != PROGRAM_TEMPORARY
2577 || inst->dst.index < this->next_temp);
2578
2579 /* First, do any copy propagation possible into the src regs. */
2580 for (int r = 0; r < 3; r++) {
2581 ir_to_mesa_instruction *first = NULL;
2582 bool good = true;
2583 int acp_base = inst->src[r].index * 4;
2584
2585 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2586 inst->src[r].reladdr)
2587 continue;
2588
2589 /* See if we can find entries in the ACP consisting of MOVs
2590 * from the same src register for all the swizzled channels
2591 * of this src register reference.
2592 */
2593 for (int i = 0; i < 4; i++) {
2594 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2595 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2596
2597 if (!copy_chan) {
2598 good = false;
2599 break;
2600 }
2601
2602 assert(acp_level[acp_base + src_chan] <= level);
2603
2604 if (!first) {
2605 first = copy_chan;
2606 } else {
2607 if (first->src[0].file != copy_chan->src[0].file ||
2608 first->src[0].index != copy_chan->src[0].index) {
2609 good = false;
2610 break;
2611 }
2612 }
2613 }
2614
2615 if (good) {
2616 /* We've now validated that we can copy-propagate to
2617 * replace this src register reference. Do it.
2618 */
2619 inst->src[r].file = first->src[0].file;
2620 inst->src[r].index = first->src[0].index;
2621
2622 int swizzle = 0;
2623 for (int i = 0; i < 4; i++) {
2624 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2625 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2626 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2627 (3 * i));
2628 }
2629 inst->src[r].swizzle = swizzle;
2630 }
2631 }
2632
2633 switch (inst->op) {
2634 case OPCODE_BGNLOOP:
2635 case OPCODE_ENDLOOP:
2636 /* End of a basic block, clear the ACP entirely. */
2637 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2638 break;
2639
2640 case OPCODE_IF:
2641 ++level;
2642 break;
2643
2644 case OPCODE_ENDIF:
2645 case OPCODE_ELSE:
2646 /* Clear all channels written inside the block from the ACP, but
2647 * leaving those that were not touched.
2648 */
2649 for (int r = 0; r < this->next_temp; r++) {
2650 for (int c = 0; c < 4; c++) {
2651 if (!acp[4 * r + c])
2652 continue;
2653
2654 if (acp_level[4 * r + c] >= level)
2655 acp[4 * r + c] = NULL;
2656 }
2657 }
2658 if (inst->op == OPCODE_ENDIF)
2659 --level;
2660 break;
2661
2662 default:
2663 /* Continuing the block, clear any written channels from
2664 * the ACP.
2665 */
2666 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2667 /* Any temporary might be written, so no copy propagation
2668 * across this instruction.
2669 */
2670 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2671 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2672 inst->dst.reladdr) {
2673 /* Any output might be written, so no copy propagation
2674 * from outputs across this instruction.
2675 */
2676 for (int r = 0; r < this->next_temp; r++) {
2677 for (int c = 0; c < 4; c++) {
2678 if (!acp[4 * r + c])
2679 continue;
2680
2681 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2682 acp[4 * r + c] = NULL;
2683 }
2684 }
2685 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2686 inst->dst.file == PROGRAM_OUTPUT) {
2687 /* Clear where it's used as dst. */
2688 if (inst->dst.file == PROGRAM_TEMPORARY) {
2689 for (int c = 0; c < 4; c++) {
2690 if (inst->dst.writemask & (1 << c)) {
2691 acp[4 * inst->dst.index + c] = NULL;
2692 }
2693 }
2694 }
2695
2696 /* Clear where it's used as src. */
2697 for (int r = 0; r < this->next_temp; r++) {
2698 for (int c = 0; c < 4; c++) {
2699 if (!acp[4 * r + c])
2700 continue;
2701
2702 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2703
2704 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2705 acp[4 * r + c]->src[0].index == inst->dst.index &&
2706 inst->dst.writemask & (1 << src_chan))
2707 {
2708 acp[4 * r + c] = NULL;
2709 }
2710 }
2711 }
2712 }
2713 break;
2714 }
2715
2716 /* If this is a copy, add it to the ACP. */
2717 if (inst->op == OPCODE_MOV &&
2718 inst->dst.file == PROGRAM_TEMPORARY &&
2719 !(inst->dst.file == inst->src[0].file &&
2720 inst->dst.index == inst->src[0].index) &&
2721 !inst->dst.reladdr &&
2722 !inst->saturate &&
2723 !inst->src[0].reladdr &&
2724 !inst->src[0].negate) {
2725 for (int i = 0; i < 4; i++) {
2726 if (inst->dst.writemask & (1 << i)) {
2727 acp[4 * inst->dst.index + i] = inst;
2728 acp_level[4 * inst->dst.index + i] = level;
2729 }
2730 }
2731 }
2732 }
2733
2734 ralloc_free(acp_level);
2735 ralloc_free(acp);
2736 }
2737
2738
2739 /**
2740 * Convert a shader's GLSL IR into a Mesa gl_program.
2741 */
2742 static struct gl_program *
2743 get_mesa_program(struct gl_context *ctx,
2744 struct gl_shader_program *shader_program,
2745 struct gl_shader *shader)
2746 {
2747 ir_to_mesa_visitor v;
2748 struct prog_instruction *mesa_instructions, *mesa_inst;
2749 ir_instruction **mesa_instruction_annotation;
2750 int i;
2751 struct gl_program *prog;
2752 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2753 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2754 struct gl_shader_compiler_options *options =
2755 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2756
2757 validate_ir_tree(shader->ir);
2758
2759 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2760 if (!prog)
2761 return NULL;
2762 prog->Parameters = _mesa_new_parameter_list();
2763 v.ctx = ctx;
2764 v.prog = prog;
2765 v.shader_program = shader_program;
2766 v.options = options;
2767
2768 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2769 prog->Parameters);
2770
2771 /* Emit Mesa IR for main(). */
2772 visit_exec_list(shader->ir, &v);
2773 v.emit(NULL, OPCODE_END);
2774
2775 prog->NumTemporaries = v.next_temp;
2776
2777 unsigned num_instructions = v.instructions.length();
2778
2779 mesa_instructions =
2780 (struct prog_instruction *)calloc(num_instructions,
2781 sizeof(*mesa_instructions));
2782 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2783 num_instructions);
2784
2785 v.copy_propagate();
2786
2787 /* Convert ir_mesa_instructions into prog_instructions.
2788 */
2789 mesa_inst = mesa_instructions;
2790 i = 0;
2791 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2792 mesa_inst->Opcode = inst->op;
2793 mesa_inst->CondUpdate = inst->cond_update;
2794 if (inst->saturate)
2795 mesa_inst->Saturate = GL_TRUE;
2796 mesa_inst->DstReg.File = inst->dst.file;
2797 mesa_inst->DstReg.Index = inst->dst.index;
2798 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2799 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2800 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2801 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2802 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2803 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2804 mesa_inst->TexSrcUnit = inst->sampler;
2805 mesa_inst->TexSrcTarget = inst->tex_target;
2806 mesa_inst->TexShadow = inst->tex_shadow;
2807 mesa_instruction_annotation[i] = inst->ir;
2808
2809 /* Set IndirectRegisterFiles. */
2810 if (mesa_inst->DstReg.RelAddr)
2811 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2812
2813 /* Update program's bitmask of indirectly accessed register files */
2814 for (unsigned src = 0; src < 3; src++)
2815 if (mesa_inst->SrcReg[src].RelAddr)
2816 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2817
2818 switch (mesa_inst->Opcode) {
2819 case OPCODE_IF:
2820 if (options->MaxIfDepth == 0) {
2821 linker_warning(shader_program,
2822 "Couldn't flatten if-statement. "
2823 "This will likely result in software "
2824 "rasterization.\n");
2825 }
2826 break;
2827 case OPCODE_BGNLOOP:
2828 if (options->EmitNoLoops) {
2829 linker_warning(shader_program,
2830 "Couldn't unroll loop. "
2831 "This will likely result in software "
2832 "rasterization.\n");
2833 }
2834 break;
2835 case OPCODE_CONT:
2836 if (options->EmitNoCont) {
2837 linker_warning(shader_program,
2838 "Couldn't lower continue-statement. "
2839 "This will likely result in software "
2840 "rasterization.\n");
2841 }
2842 break;
2843 case OPCODE_ARL:
2844 prog->NumAddressRegs = 1;
2845 break;
2846 default:
2847 break;
2848 }
2849
2850 mesa_inst++;
2851 i++;
2852
2853 if (!shader_program->LinkStatus)
2854 break;
2855 }
2856
2857 if (!shader_program->LinkStatus) {
2858 goto fail_exit;
2859 }
2860
2861 set_branchtargets(&v, mesa_instructions, num_instructions);
2862
2863 if (ctx->_Shader->Flags & GLSL_DUMP) {
2864 fprintf(stderr, "\n");
2865 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2866 shader_program->Name);
2867 _mesa_print_ir(stderr, shader->ir, NULL);
2868 fprintf(stderr, "\n");
2869 fprintf(stderr, "\n");
2870 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2871 shader_program->Name);
2872 print_program(mesa_instructions, mesa_instruction_annotation,
2873 num_instructions);
2874 fflush(stderr);
2875 }
2876
2877 prog->Instructions = mesa_instructions;
2878 prog->NumInstructions = num_instructions;
2879
2880 /* Setting this to NULL prevents a possible double free in the fail_exit
2881 * path (far below).
2882 */
2883 mesa_instructions = NULL;
2884
2885 do_set_program_inouts(shader->ir, prog, shader->Stage);
2886
2887 prog->SamplersUsed = shader->active_samplers;
2888 prog->ShadowSamplers = shader->shadow_samplers;
2889 _mesa_update_shader_textures_used(shader_program, prog);
2890
2891 /* Set the gl_FragDepth layout. */
2892 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2893 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2894 fp->FragDepthLayout = shader_program->FragDepthLayout;
2895 }
2896
2897 _mesa_reference_program(ctx, &shader->Program, prog);
2898
2899 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2900 _mesa_optimize_program(ctx, prog);
2901 }
2902
2903 /* This has to be done last. Any operation that can cause
2904 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2905 * program constant) has to happen before creating this linkage.
2906 */
2907 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2908 if (!shader_program->LinkStatus) {
2909 goto fail_exit;
2910 }
2911
2912 return prog;
2913
2914 fail_exit:
2915 free(mesa_instructions);
2916 _mesa_reference_program(ctx, &shader->Program, NULL);
2917 return NULL;
2918 }
2919
2920 extern "C" {
2921
2922 /**
2923 * Link a shader.
2924 * Called via ctx->Driver.LinkShader()
2925 * This actually involves converting GLSL IR into Mesa gl_programs with
2926 * code lowering and other optimizations.
2927 */
2928 GLboolean
2929 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2930 {
2931 assert(prog->LinkStatus);
2932
2933 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2934 if (prog->_LinkedShaders[i] == NULL)
2935 continue;
2936
2937 bool progress;
2938 exec_list *ir = prog->_LinkedShaders[i]->ir;
2939 const struct gl_shader_compiler_options *options =
2940 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2941
2942 do {
2943 progress = false;
2944
2945 /* Lowering */
2946 do_mat_op_to_vec(ir);
2947 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2948 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2949 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2950
2951 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2952
2953 progress = do_common_optimization(ir, true, true,
2954 options, ctx->Const.NativeIntegers)
2955 || progress;
2956
2957 progress = lower_quadop_vector(ir, true) || progress;
2958
2959 if (options->MaxIfDepth == 0)
2960 progress = lower_discard(ir) || progress;
2961
2962 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2963
2964 if (options->EmitNoNoise)
2965 progress = lower_noise(ir) || progress;
2966
2967 /* If there are forms of indirect addressing that the driver
2968 * cannot handle, perform the lowering pass.
2969 */
2970 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2971 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2972 progress =
2973 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
2974 options->EmitNoIndirectInput,
2975 options->EmitNoIndirectOutput,
2976 options->EmitNoIndirectTemp,
2977 options->EmitNoIndirectUniform)
2978 || progress;
2979
2980 progress = do_vec_index_to_cond_assign(ir) || progress;
2981 progress = lower_vector_insert(ir, true) || progress;
2982 } while (progress);
2983
2984 validate_ir_tree(ir);
2985 }
2986
2987 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2988 struct gl_program *linked_prog;
2989
2990 if (prog->_LinkedShaders[i] == NULL)
2991 continue;
2992
2993 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2994
2995 if (linked_prog) {
2996 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2997
2998 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
2999 linked_prog);
3000 if (!ctx->Driver.ProgramStringNotify(ctx,
3001 _mesa_shader_stage_to_program(i),
3002 linked_prog)) {
3003 return GL_FALSE;
3004 }
3005 }
3006
3007 _mesa_reference_program(ctx, &linked_prog, NULL);
3008 }
3009
3010 return prog->LinkStatus;
3011 }
3012
3013 /**
3014 * Link a GLSL shader program. Called via glLinkProgram().
3015 */
3016 void
3017 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3018 {
3019 unsigned int i;
3020
3021 _mesa_clear_shader_program_data(prog);
3022
3023 prog->LinkStatus = GL_TRUE;
3024
3025 for (i = 0; i < prog->NumShaders; i++) {
3026 if (!prog->Shaders[i]->CompileStatus) {
3027 linker_error(prog, "linking with uncompiled shader");
3028 }
3029 }
3030
3031 if (prog->LinkStatus) {
3032 link_shaders(ctx, prog);
3033 }
3034
3035 if (prog->LinkStatus) {
3036 if (!ctx->Driver.LinkShader(ctx, prog)) {
3037 prog->LinkStatus = GL_FALSE;
3038 } else {
3039 build_program_resource_list(prog);
3040 }
3041 }
3042
3043 if (ctx->_Shader->Flags & GLSL_DUMP) {
3044 if (!prog->LinkStatus) {
3045 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3046 }
3047
3048 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3049 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3050 fprintf(stderr, "%s\n", prog->InfoLog);
3051 }
3052 }
3053 }
3054
3055 } /* extern "C" */