glsl: Remove 2x16 half-precision pack/unpack opcodes.
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "glsl/ast.h"
39 #include "glsl/ir.h"
40 #include "glsl/ir_expression_flattening.h"
41 #include "glsl/ir_visitor.h"
42 #include "glsl/ir_optimization.h"
43 #include "glsl/ir_uniform.h"
44 #include "glsl/glsl_parser_extras.h"
45 #include "glsl/nir/glsl_types.h"
46 #include "glsl/linker.h"
47 #include "glsl/program.h"
48 #include "program/hash_table.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_optimize.h"
51 #include "program/prog_print.h"
52 #include "program/program.h"
53 #include "program/prog_parameter.h"
54 #include "program/sampler.h"
55
56
57 static int swizzle_for_size(int size);
58
59 namespace {
60
61 class src_reg;
62 class dst_reg;
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->cond_mask = COND_TR;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->cond_mask = COND_TR;
118 this->reladdr = NULL;
119 }
120
121 explicit dst_reg(src_reg reg);
122
123 gl_register_file file; /**< PROGRAM_* from Mesa */
124 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
125 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
126 GLuint cond_mask:4;
127 /** Register index should be offset by the integer in this reg. */
128 src_reg *reladdr;
129 };
130
131 } /* anonymous namespace */
132
133 src_reg::src_reg(dst_reg reg)
134 {
135 this->file = reg.file;
136 this->index = reg.index;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = reg.reladdr;
140 }
141
142 dst_reg::dst_reg(src_reg reg)
143 {
144 this->file = reg.file;
145 this->index = reg.index;
146 this->writemask = WRITEMASK_XYZW;
147 this->cond_mask = COND_TR;
148 this->reladdr = reg.reladdr;
149 }
150
151 namespace {
152
153 class ir_to_mesa_instruction : public exec_node {
154 public:
155 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
156
157 enum prog_opcode op;
158 dst_reg dst;
159 src_reg src[3];
160 /** Pointer to the ir source this tree came from for debugging */
161 ir_instruction *ir;
162 GLboolean cond_update;
163 bool saturate;
164 int sampler; /**< sampler index */
165 int tex_target; /**< One of TEXTURE_*_INDEX */
166 GLboolean tex_shadow;
167 };
168
169 class variable_storage : public exec_node {
170 public:
171 variable_storage(ir_variable *var, gl_register_file file, int index)
172 : file(file), index(index), var(var)
173 {
174 /* empty */
175 }
176
177 gl_register_file file;
178 int index;
179 ir_variable *var; /* variable that maps to this, if any */
180 };
181
182 class function_entry : public exec_node {
183 public:
184 ir_function_signature *sig;
185
186 /**
187 * identifier of this function signature used by the program.
188 *
189 * At the point that Mesa instructions for function calls are
190 * generated, we don't know the address of the first instruction of
191 * the function body. So we make the BranchTarget that is called a
192 * small integer and rewrite them during set_branchtargets().
193 */
194 int sig_id;
195
196 /**
197 * Pointer to first instruction of the function body.
198 *
199 * Set during function body emits after main() is processed.
200 */
201 ir_to_mesa_instruction *bgn_inst;
202
203 /**
204 * Index of the first instruction of the function body in actual
205 * Mesa IR.
206 *
207 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
208 */
209 int inst;
210
211 /** Storage for the return value. */
212 src_reg return_reg;
213 };
214
215 class ir_to_mesa_visitor : public ir_visitor {
216 public:
217 ir_to_mesa_visitor();
218 ~ir_to_mesa_visitor();
219
220 function_entry *current_function;
221
222 struct gl_context *ctx;
223 struct gl_program *prog;
224 struct gl_shader_program *shader_program;
225 struct gl_shader_compiler_options *options;
226
227 int next_temp;
228
229 variable_storage *find_variable_storage(const ir_variable *var);
230
231 src_reg get_temp(const glsl_type *type);
232 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
233
234 src_reg src_reg_for_float(float val);
235
236 /**
237 * \name Visit methods
238 *
239 * As typical for the visitor pattern, there must be one \c visit method for
240 * each concrete subclass of \c ir_instruction. Virtual base classes within
241 * the hierarchy should not have \c visit methods.
242 */
243 /*@{*/
244 virtual void visit(ir_variable *);
245 virtual void visit(ir_loop *);
246 virtual void visit(ir_loop_jump *);
247 virtual void visit(ir_function_signature *);
248 virtual void visit(ir_function *);
249 virtual void visit(ir_expression *);
250 virtual void visit(ir_swizzle *);
251 virtual void visit(ir_dereference_variable *);
252 virtual void visit(ir_dereference_array *);
253 virtual void visit(ir_dereference_record *);
254 virtual void visit(ir_assignment *);
255 virtual void visit(ir_constant *);
256 virtual void visit(ir_call *);
257 virtual void visit(ir_return *);
258 virtual void visit(ir_discard *);
259 virtual void visit(ir_texture *);
260 virtual void visit(ir_if *);
261 virtual void visit(ir_emit_vertex *);
262 virtual void visit(ir_end_primitive *);
263 virtual void visit(ir_barrier *);
264 /*@}*/
265
266 src_reg result;
267
268 /** List of variable_storage */
269 exec_list variables;
270
271 /** List of function_entry */
272 exec_list function_signatures;
273 int next_signature_id;
274
275 /** List of ir_to_mesa_instruction */
276 exec_list instructions;
277
278 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
281 dst_reg dst, src_reg src0);
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
284 dst_reg dst, src_reg src0, src_reg src1);
285
286 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
287 dst_reg dst,
288 src_reg src0, src_reg src1, src_reg src2);
289
290 /**
291 * Emit the correct dot-product instruction for the type of arguments
292 */
293 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
294 dst_reg dst,
295 src_reg src0,
296 src_reg src1,
297 unsigned elements);
298
299 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
300 dst_reg dst, src_reg src0);
301
302 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
303 dst_reg dst, src_reg src0, src_reg src1);
304
305 bool try_emit_mad(ir_expression *ir,
306 int mul_operand);
307 bool try_emit_mad_for_and_not(ir_expression *ir,
308 int mul_operand);
309
310 void emit_swz(ir_expression *ir);
311
312 bool process_move_condition(ir_rvalue *ir);
313
314 void copy_propagate(void);
315
316 void *mem_ctx;
317 };
318
319 } /* anonymous namespace */
320
321 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
322
323 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
324
325 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
326
327 static int
328 swizzle_for_size(int size)
329 {
330 static const int size_swizzles[4] = {
331 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
332 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
333 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
334 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
335 };
336
337 assert((size >= 1) && (size <= 4));
338 return size_swizzles[size - 1];
339 }
340
341 ir_to_mesa_instruction *
342 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
343 dst_reg dst,
344 src_reg src0, src_reg src1, src_reg src2)
345 {
346 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
347 int num_reladdr = 0;
348
349 /* If we have to do relative addressing, we want to load the ARL
350 * reg directly for one of the regs, and preload the other reladdr
351 * sources into temps.
352 */
353 num_reladdr += dst.reladdr != NULL;
354 num_reladdr += src0.reladdr != NULL;
355 num_reladdr += src1.reladdr != NULL;
356 num_reladdr += src2.reladdr != NULL;
357
358 reladdr_to_temp(ir, &src2, &num_reladdr);
359 reladdr_to_temp(ir, &src1, &num_reladdr);
360 reladdr_to_temp(ir, &src0, &num_reladdr);
361
362 if (dst.reladdr) {
363 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
364 num_reladdr--;
365 }
366 assert(num_reladdr == 0);
367
368 inst->op = op;
369 inst->dst = dst;
370 inst->src[0] = src0;
371 inst->src[1] = src1;
372 inst->src[2] = src2;
373 inst->ir = ir;
374
375 this->instructions.push_tail(inst);
376
377 return inst;
378 }
379
380
381 ir_to_mesa_instruction *
382 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
383 dst_reg dst, src_reg src0, src_reg src1)
384 {
385 return emit(ir, op, dst, src0, src1, undef_src);
386 }
387
388 ir_to_mesa_instruction *
389 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
390 dst_reg dst, src_reg src0)
391 {
392 assert(dst.writemask != 0);
393 return emit(ir, op, dst, src0, undef_src, undef_src);
394 }
395
396 ir_to_mesa_instruction *
397 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
398 {
399 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
400 }
401
402 ir_to_mesa_instruction *
403 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
404 dst_reg dst, src_reg src0, src_reg src1,
405 unsigned elements)
406 {
407 static const enum prog_opcode dot_opcodes[] = {
408 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
409 };
410
411 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
412 }
413
414 /**
415 * Emits Mesa scalar opcodes to produce unique answers across channels.
416 *
417 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
418 * channel determines the result across all channels. So to do a vec4
419 * of this operation, we want to emit a scalar per source channel used
420 * to produce dest channels.
421 */
422 void
423 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
424 dst_reg dst,
425 src_reg orig_src0, src_reg orig_src1)
426 {
427 int i, j;
428 int done_mask = ~dst.writemask;
429
430 /* Mesa RCP is a scalar operation splatting results to all channels,
431 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
432 * dst channels.
433 */
434 for (i = 0; i < 4; i++) {
435 GLuint this_mask = (1 << i);
436 ir_to_mesa_instruction *inst;
437 src_reg src0 = orig_src0;
438 src_reg src1 = orig_src1;
439
440 if (done_mask & this_mask)
441 continue;
442
443 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
444 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
445 for (j = i + 1; j < 4; j++) {
446 /* If there is another enabled component in the destination that is
447 * derived from the same inputs, generate its value on this pass as
448 * well.
449 */
450 if (!(done_mask & (1 << j)) &&
451 GET_SWZ(src0.swizzle, j) == src0_swiz &&
452 GET_SWZ(src1.swizzle, j) == src1_swiz) {
453 this_mask |= (1 << j);
454 }
455 }
456 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
457 src0_swiz, src0_swiz);
458 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
459 src1_swiz, src1_swiz);
460
461 inst = emit(ir, op, dst, src0, src1);
462 inst->dst.writemask = this_mask;
463 done_mask |= this_mask;
464 }
465 }
466
467 void
468 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
469 dst_reg dst, src_reg src0)
470 {
471 src_reg undef = undef_src;
472
473 undef.swizzle = SWIZZLE_XXXX;
474
475 emit_scalar(ir, op, dst, src0, undef);
476 }
477
478 src_reg
479 ir_to_mesa_visitor::src_reg_for_float(float val)
480 {
481 src_reg src(PROGRAM_CONSTANT, -1, NULL);
482
483 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
484 (const gl_constant_value *)&val, 1, &src.swizzle);
485
486 return src;
487 }
488
489 static int
490 type_size(const struct glsl_type *type)
491 {
492 unsigned int i;
493 int size;
494
495 switch (type->base_type) {
496 case GLSL_TYPE_UINT:
497 case GLSL_TYPE_INT:
498 case GLSL_TYPE_FLOAT:
499 case GLSL_TYPE_BOOL:
500 if (type->is_matrix()) {
501 return type->matrix_columns;
502 } else {
503 /* Regardless of size of vector, it gets a vec4. This is bad
504 * packing for things like floats, but otherwise arrays become a
505 * mess. Hopefully a later pass over the code can pack scalars
506 * down if appropriate.
507 */
508 return 1;
509 }
510 break;
511 case GLSL_TYPE_DOUBLE:
512 if (type->is_matrix()) {
513 if (type->vector_elements > 2)
514 return type->matrix_columns * 2;
515 else
516 return type->matrix_columns;
517 } else {
518 if (type->vector_elements > 2)
519 return 2;
520 else
521 return 1;
522 }
523 break;
524 case GLSL_TYPE_ARRAY:
525 assert(type->length > 0);
526 return type_size(type->fields.array) * type->length;
527 case GLSL_TYPE_STRUCT:
528 size = 0;
529 for (i = 0; i < type->length; i++) {
530 size += type_size(type->fields.structure[i].type);
531 }
532 return size;
533 case GLSL_TYPE_SAMPLER:
534 case GLSL_TYPE_IMAGE:
535 case GLSL_TYPE_SUBROUTINE:
536 /* Samplers take up one slot in UNIFORMS[], but they're baked in
537 * at link time.
538 */
539 return 1;
540 case GLSL_TYPE_ATOMIC_UINT:
541 case GLSL_TYPE_VOID:
542 case GLSL_TYPE_ERROR:
543 case GLSL_TYPE_INTERFACE:
544 assert(!"Invalid type in type_size");
545 break;
546 }
547
548 return 0;
549 }
550
551 /**
552 * In the initial pass of codegen, we assign temporary numbers to
553 * intermediate results. (not SSA -- variable assignments will reuse
554 * storage). Actual register allocation for the Mesa VM occurs in a
555 * pass over the Mesa IR later.
556 */
557 src_reg
558 ir_to_mesa_visitor::get_temp(const glsl_type *type)
559 {
560 src_reg src;
561
562 src.file = PROGRAM_TEMPORARY;
563 src.index = next_temp;
564 src.reladdr = NULL;
565 next_temp += type_size(type);
566
567 if (type->is_array() || type->is_record()) {
568 src.swizzle = SWIZZLE_NOOP;
569 } else {
570 src.swizzle = swizzle_for_size(type->vector_elements);
571 }
572 src.negate = 0;
573
574 return src;
575 }
576
577 variable_storage *
578 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
579 {
580 foreach_in_list(variable_storage, entry, &this->variables) {
581 if (entry->var == var)
582 return entry;
583 }
584
585 return NULL;
586 }
587
588 void
589 ir_to_mesa_visitor::visit(ir_variable *ir)
590 {
591 if (strcmp(ir->name, "gl_FragCoord") == 0) {
592 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
593
594 fp->OriginUpperLeft = ir->data.origin_upper_left;
595 fp->PixelCenterInteger = ir->data.pixel_center_integer;
596 }
597
598 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
599 unsigned int i;
600 const ir_state_slot *const slots = ir->get_state_slots();
601 assert(slots != NULL);
602
603 /* Check if this statevar's setup in the STATE file exactly
604 * matches how we'll want to reference it as a
605 * struct/array/whatever. If not, then we need to move it into
606 * temporary storage and hope that it'll get copy-propagated
607 * out.
608 */
609 for (i = 0; i < ir->get_num_state_slots(); i++) {
610 if (slots[i].swizzle != SWIZZLE_XYZW) {
611 break;
612 }
613 }
614
615 variable_storage *storage;
616 dst_reg dst;
617 if (i == ir->get_num_state_slots()) {
618 /* We'll set the index later. */
619 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
620 this->variables.push_tail(storage);
621
622 dst = undef_dst;
623 } else {
624 /* The variable_storage constructor allocates slots based on the size
625 * of the type. However, this had better match the number of state
626 * elements that we're going to copy into the new temporary.
627 */
628 assert((int) ir->get_num_state_slots() == type_size(ir->type));
629
630 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
631 this->next_temp);
632 this->variables.push_tail(storage);
633 this->next_temp += type_size(ir->type);
634
635 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
636 }
637
638
639 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
640 int index = _mesa_add_state_reference(this->prog->Parameters,
641 (gl_state_index *)slots[i].tokens);
642
643 if (storage->file == PROGRAM_STATE_VAR) {
644 if (storage->index == -1) {
645 storage->index = index;
646 } else {
647 assert(index == storage->index + (int)i);
648 }
649 } else {
650 src_reg src(PROGRAM_STATE_VAR, index, NULL);
651 src.swizzle = slots[i].swizzle;
652 emit(ir, OPCODE_MOV, dst, src);
653 /* even a float takes up a whole vec4 reg in a struct/array. */
654 dst.index++;
655 }
656 }
657
658 if (storage->file == PROGRAM_TEMPORARY &&
659 dst.index != storage->index + (int) ir->get_num_state_slots()) {
660 linker_error(this->shader_program,
661 "failed to load builtin uniform `%s' "
662 "(%d/%d regs loaded)\n",
663 ir->name, dst.index - storage->index,
664 type_size(ir->type));
665 }
666 }
667 }
668
669 void
670 ir_to_mesa_visitor::visit(ir_loop *ir)
671 {
672 emit(NULL, OPCODE_BGNLOOP);
673
674 visit_exec_list(&ir->body_instructions, this);
675
676 emit(NULL, OPCODE_ENDLOOP);
677 }
678
679 void
680 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
681 {
682 switch (ir->mode) {
683 case ir_loop_jump::jump_break:
684 emit(NULL, OPCODE_BRK);
685 break;
686 case ir_loop_jump::jump_continue:
687 emit(NULL, OPCODE_CONT);
688 break;
689 }
690 }
691
692
693 void
694 ir_to_mesa_visitor::visit(ir_function_signature *ir)
695 {
696 assert(0);
697 (void)ir;
698 }
699
700 void
701 ir_to_mesa_visitor::visit(ir_function *ir)
702 {
703 /* Ignore function bodies other than main() -- we shouldn't see calls to
704 * them since they should all be inlined before we get to ir_to_mesa.
705 */
706 if (strcmp(ir->name, "main") == 0) {
707 const ir_function_signature *sig;
708 exec_list empty;
709
710 sig = ir->matching_signature(NULL, &empty, false);
711
712 assert(sig);
713
714 foreach_in_list(ir_instruction, ir, &sig->body) {
715 ir->accept(this);
716 }
717 }
718 }
719
720 bool
721 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
722 {
723 int nonmul_operand = 1 - mul_operand;
724 src_reg a, b, c;
725
726 ir_expression *expr = ir->operands[mul_operand]->as_expression();
727 if (!expr || expr->operation != ir_binop_mul)
728 return false;
729
730 expr->operands[0]->accept(this);
731 a = this->result;
732 expr->operands[1]->accept(this);
733 b = this->result;
734 ir->operands[nonmul_operand]->accept(this);
735 c = this->result;
736
737 this->result = get_temp(ir->type);
738 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
739
740 return true;
741 }
742
743 /**
744 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
745 *
746 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
747 * implemented using multiplication, and logical-or is implemented using
748 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
749 * As result, the logical expression (a & !b) can be rewritten as:
750 *
751 * - a * !b
752 * - a * (1 - b)
753 * - (a * 1) - (a * b)
754 * - a + -(a * b)
755 * - a + (a * -b)
756 *
757 * This final expression can be implemented as a single MAD(a, -b, a)
758 * instruction.
759 */
760 bool
761 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
762 {
763 const int other_operand = 1 - try_operand;
764 src_reg a, b;
765
766 ir_expression *expr = ir->operands[try_operand]->as_expression();
767 if (!expr || expr->operation != ir_unop_logic_not)
768 return false;
769
770 ir->operands[other_operand]->accept(this);
771 a = this->result;
772 expr->operands[0]->accept(this);
773 b = this->result;
774
775 b.negate = ~b.negate;
776
777 this->result = get_temp(ir->type);
778 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
779
780 return true;
781 }
782
783 void
784 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
785 src_reg *reg, int *num_reladdr)
786 {
787 if (!reg->reladdr)
788 return;
789
790 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
791
792 if (*num_reladdr != 1) {
793 src_reg temp = get_temp(glsl_type::vec4_type);
794
795 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
796 *reg = temp;
797 }
798
799 (*num_reladdr)--;
800 }
801
802 void
803 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
804 {
805 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
806 * This means that each of the operands is either an immediate value of -1,
807 * 0, or 1, or is a component from one source register (possibly with
808 * negation).
809 */
810 uint8_t components[4] = { 0 };
811 bool negate[4] = { false };
812 ir_variable *var = NULL;
813
814 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
815 ir_rvalue *op = ir->operands[i];
816
817 assert(op->type->is_scalar());
818
819 while (op != NULL) {
820 switch (op->ir_type) {
821 case ir_type_constant: {
822
823 assert(op->type->is_scalar());
824
825 const ir_constant *const c = op->as_constant();
826 if (c->is_one()) {
827 components[i] = SWIZZLE_ONE;
828 } else if (c->is_zero()) {
829 components[i] = SWIZZLE_ZERO;
830 } else if (c->is_negative_one()) {
831 components[i] = SWIZZLE_ONE;
832 negate[i] = true;
833 } else {
834 assert(!"SWZ constant must be 0.0 or 1.0.");
835 }
836
837 op = NULL;
838 break;
839 }
840
841 case ir_type_dereference_variable: {
842 ir_dereference_variable *const deref =
843 (ir_dereference_variable *) op;
844
845 assert((var == NULL) || (deref->var == var));
846 components[i] = SWIZZLE_X;
847 var = deref->var;
848 op = NULL;
849 break;
850 }
851
852 case ir_type_expression: {
853 ir_expression *const expr = (ir_expression *) op;
854
855 assert(expr->operation == ir_unop_neg);
856 negate[i] = true;
857
858 op = expr->operands[0];
859 break;
860 }
861
862 case ir_type_swizzle: {
863 ir_swizzle *const swiz = (ir_swizzle *) op;
864
865 components[i] = swiz->mask.x;
866 op = swiz->val;
867 break;
868 }
869
870 default:
871 assert(!"Should not get here.");
872 return;
873 }
874 }
875 }
876
877 assert(var != NULL);
878
879 ir_dereference_variable *const deref =
880 new(mem_ctx) ir_dereference_variable(var);
881
882 this->result.file = PROGRAM_UNDEFINED;
883 deref->accept(this);
884 if (this->result.file == PROGRAM_UNDEFINED) {
885 printf("Failed to get tree for expression operand:\n");
886 deref->print();
887 printf("\n");
888 exit(1);
889 }
890
891 src_reg src;
892
893 src = this->result;
894 src.swizzle = MAKE_SWIZZLE4(components[0],
895 components[1],
896 components[2],
897 components[3]);
898 src.negate = ((unsigned(negate[0]) << 0)
899 | (unsigned(negate[1]) << 1)
900 | (unsigned(negate[2]) << 2)
901 | (unsigned(negate[3]) << 3));
902
903 /* Storage for our result. Ideally for an assignment we'd be using the
904 * actual storage for the result here, instead.
905 */
906 const src_reg result_src = get_temp(ir->type);
907 dst_reg result_dst = dst_reg(result_src);
908
909 /* Limit writes to the channels that will be used by result_src later.
910 * This does limit this temp's use as a temporary for multi-instruction
911 * sequences.
912 */
913 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
914
915 emit(ir, OPCODE_SWZ, result_dst, src);
916 this->result = result_src;
917 }
918
919 void
920 ir_to_mesa_visitor::visit(ir_expression *ir)
921 {
922 unsigned int operand;
923 src_reg op[ARRAY_SIZE(ir->operands)];
924 src_reg result_src;
925 dst_reg result_dst;
926
927 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
928 */
929 if (ir->operation == ir_binop_add) {
930 if (try_emit_mad(ir, 1))
931 return;
932 if (try_emit_mad(ir, 0))
933 return;
934 }
935
936 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
937 */
938 if (ir->operation == ir_binop_logic_and) {
939 if (try_emit_mad_for_and_not(ir, 1))
940 return;
941 if (try_emit_mad_for_and_not(ir, 0))
942 return;
943 }
944
945 if (ir->operation == ir_quadop_vector) {
946 this->emit_swz(ir);
947 return;
948 }
949
950 for (operand = 0; operand < ir->get_num_operands(); operand++) {
951 this->result.file = PROGRAM_UNDEFINED;
952 ir->operands[operand]->accept(this);
953 if (this->result.file == PROGRAM_UNDEFINED) {
954 printf("Failed to get tree for expression operand:\n");
955 ir->operands[operand]->print();
956 printf("\n");
957 exit(1);
958 }
959 op[operand] = this->result;
960
961 /* Matrix expression operands should have been broken down to vector
962 * operations already.
963 */
964 assert(!ir->operands[operand]->type->is_matrix());
965 }
966
967 int vector_elements = ir->operands[0]->type->vector_elements;
968 if (ir->operands[1]) {
969 vector_elements = MAX2(vector_elements,
970 ir->operands[1]->type->vector_elements);
971 }
972
973 this->result.file = PROGRAM_UNDEFINED;
974
975 /* Storage for our result. Ideally for an assignment we'd be using
976 * the actual storage for the result here, instead.
977 */
978 result_src = get_temp(ir->type);
979 /* convenience for the emit functions below. */
980 result_dst = dst_reg(result_src);
981 /* Limit writes to the channels that will be used by result_src later.
982 * This does limit this temp's use as a temporary for multi-instruction
983 * sequences.
984 */
985 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
986
987 switch (ir->operation) {
988 case ir_unop_logic_not:
989 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
990 * older GPUs implement SEQ using multiple instructions (i915 uses two
991 * SGE instructions and a MUL instruction). Since our logic values are
992 * 0.0 and 1.0, 1-x also implements !x.
993 */
994 op[0].negate = ~op[0].negate;
995 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
996 break;
997 case ir_unop_neg:
998 op[0].negate = ~op[0].negate;
999 result_src = op[0];
1000 break;
1001 case ir_unop_abs:
1002 emit(ir, OPCODE_ABS, result_dst, op[0]);
1003 break;
1004 case ir_unop_sign:
1005 emit(ir, OPCODE_SSG, result_dst, op[0]);
1006 break;
1007 case ir_unop_rcp:
1008 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1009 break;
1010
1011 case ir_unop_exp2:
1012 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1013 break;
1014 case ir_unop_exp:
1015 case ir_unop_log:
1016 assert(!"not reached: should be handled by ir_explog_to_explog2");
1017 break;
1018 case ir_unop_log2:
1019 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1020 break;
1021 case ir_unop_sin:
1022 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1023 break;
1024 case ir_unop_cos:
1025 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1026 break;
1027
1028 case ir_unop_dFdx:
1029 emit(ir, OPCODE_DDX, result_dst, op[0]);
1030 break;
1031 case ir_unop_dFdy:
1032 emit(ir, OPCODE_DDY, result_dst, op[0]);
1033 break;
1034
1035 case ir_unop_saturate: {
1036 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1037 result_dst, op[0]);
1038 inst->saturate = true;
1039 break;
1040 }
1041 case ir_unop_noise: {
1042 const enum prog_opcode opcode =
1043 prog_opcode(OPCODE_NOISE1
1044 + (ir->operands[0]->type->vector_elements) - 1);
1045 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1046
1047 emit(ir, opcode, result_dst, op[0]);
1048 break;
1049 }
1050
1051 case ir_binop_add:
1052 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1053 break;
1054 case ir_binop_sub:
1055 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1056 break;
1057
1058 case ir_binop_mul:
1059 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1060 break;
1061 case ir_binop_div:
1062 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1063 break;
1064 case ir_binop_mod:
1065 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1066 assert(ir->type->is_integer());
1067 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1068 break;
1069
1070 case ir_binop_less:
1071 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1072 break;
1073 case ir_binop_greater:
1074 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1075 break;
1076 case ir_binop_lequal:
1077 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1078 break;
1079 case ir_binop_gequal:
1080 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1081 break;
1082 case ir_binop_equal:
1083 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1084 break;
1085 case ir_binop_nequal:
1086 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1087 break;
1088 case ir_binop_all_equal:
1089 /* "==" operator producing a scalar boolean. */
1090 if (ir->operands[0]->type->is_vector() ||
1091 ir->operands[1]->type->is_vector()) {
1092 src_reg temp = get_temp(glsl_type::vec4_type);
1093 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1094
1095 /* After the dot-product, the value will be an integer on the
1096 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1097 */
1098 emit_dp(ir, result_dst, temp, temp, vector_elements);
1099
1100 /* Negating the result of the dot-product gives values on the range
1101 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1102 * achieved using SGE.
1103 */
1104 src_reg sge_src = result_src;
1105 sge_src.negate = ~sge_src.negate;
1106 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1107 } else {
1108 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1109 }
1110 break;
1111 case ir_binop_any_nequal:
1112 /* "!=" operator producing a scalar boolean. */
1113 if (ir->operands[0]->type->is_vector() ||
1114 ir->operands[1]->type->is_vector()) {
1115 src_reg temp = get_temp(glsl_type::vec4_type);
1116 if (ir->operands[0]->type->is_boolean() &&
1117 ir->operands[1]->as_constant() &&
1118 ir->operands[1]->as_constant()->is_zero()) {
1119 temp = op[0];
1120 } else {
1121 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1122 }
1123
1124 /* After the dot-product, the value will be an integer on the
1125 * range [0,4]. Zero stays zero, and positive values become 1.0.
1126 */
1127 ir_to_mesa_instruction *const dp =
1128 emit_dp(ir, result_dst, temp, temp, vector_elements);
1129 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1130 /* The clamping to [0,1] can be done for free in the fragment
1131 * shader with a saturate.
1132 */
1133 dp->saturate = true;
1134 } else {
1135 /* Negating the result of the dot-product gives values on the range
1136 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1137 * achieved using SLT.
1138 */
1139 src_reg slt_src = result_src;
1140 slt_src.negate = ~slt_src.negate;
1141 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1142 }
1143 } else {
1144 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1145 }
1146 break;
1147
1148 case ir_binop_logic_xor:
1149 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1150 break;
1151
1152 case ir_binop_logic_or: {
1153 /* After the addition, the value will be an integer on the
1154 * range [0,2]. Zero stays zero, and positive values become 1.0.
1155 */
1156 ir_to_mesa_instruction *add =
1157 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1158 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1159 /* The clamping to [0,1] can be done for free in the fragment
1160 * shader with a saturate.
1161 */
1162 add->saturate = true;
1163 } else {
1164 /* Negating the result of the addition gives values on the range
1165 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1166 * is achieved using SLT.
1167 */
1168 src_reg slt_src = result_src;
1169 slt_src.negate = ~slt_src.negate;
1170 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1171 }
1172 break;
1173 }
1174
1175 case ir_binop_logic_and:
1176 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1177 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1178 break;
1179
1180 case ir_binop_dot:
1181 assert(ir->operands[0]->type->is_vector());
1182 assert(ir->operands[0]->type == ir->operands[1]->type);
1183 emit_dp(ir, result_dst, op[0], op[1],
1184 ir->operands[0]->type->vector_elements);
1185 break;
1186
1187 case ir_unop_sqrt:
1188 /* sqrt(x) = x * rsq(x). */
1189 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1190 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1191 /* For incoming channels <= 0, set the result to 0. */
1192 op[0].negate = ~op[0].negate;
1193 emit(ir, OPCODE_CMP, result_dst,
1194 op[0], result_src, src_reg_for_float(0.0));
1195 break;
1196 case ir_unop_rsq:
1197 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1198 break;
1199 case ir_unop_i2f:
1200 case ir_unop_u2f:
1201 case ir_unop_b2f:
1202 case ir_unop_b2i:
1203 case ir_unop_i2u:
1204 case ir_unop_u2i:
1205 /* Mesa IR lacks types, ints are stored as truncated floats. */
1206 result_src = op[0];
1207 break;
1208 case ir_unop_f2i:
1209 case ir_unop_f2u:
1210 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1211 break;
1212 case ir_unop_f2b:
1213 case ir_unop_i2b:
1214 emit(ir, OPCODE_SNE, result_dst,
1215 op[0], src_reg_for_float(0.0));
1216 break;
1217 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1218 case ir_unop_bitcast_f2u:
1219 case ir_unop_bitcast_i2f:
1220 case ir_unop_bitcast_u2f:
1221 break;
1222 case ir_unop_trunc:
1223 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1224 break;
1225 case ir_unop_ceil:
1226 op[0].negate = ~op[0].negate;
1227 emit(ir, OPCODE_FLR, result_dst, op[0]);
1228 result_src.negate = ~result_src.negate;
1229 break;
1230 case ir_unop_floor:
1231 emit(ir, OPCODE_FLR, result_dst, op[0]);
1232 break;
1233 case ir_unop_fract:
1234 emit(ir, OPCODE_FRC, result_dst, op[0]);
1235 break;
1236 case ir_unop_pack_snorm_2x16:
1237 case ir_unop_pack_snorm_4x8:
1238 case ir_unop_pack_unorm_2x16:
1239 case ir_unop_pack_unorm_4x8:
1240 case ir_unop_pack_half_2x16:
1241 case ir_unop_pack_double_2x32:
1242 case ir_unop_unpack_snorm_2x16:
1243 case ir_unop_unpack_snorm_4x8:
1244 case ir_unop_unpack_unorm_2x16:
1245 case ir_unop_unpack_unorm_4x8:
1246 case ir_unop_unpack_half_2x16:
1247 case ir_unop_unpack_double_2x32:
1248 case ir_unop_bitfield_reverse:
1249 case ir_unop_bit_count:
1250 case ir_unop_find_msb:
1251 case ir_unop_find_lsb:
1252 case ir_unop_d2f:
1253 case ir_unop_f2d:
1254 case ir_unop_d2i:
1255 case ir_unop_i2d:
1256 case ir_unop_d2u:
1257 case ir_unop_u2d:
1258 case ir_unop_d2b:
1259 case ir_unop_frexp_sig:
1260 case ir_unop_frexp_exp:
1261 assert(!"not supported");
1262 break;
1263 case ir_binop_min:
1264 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1265 break;
1266 case ir_binop_max:
1267 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1268 break;
1269 case ir_binop_pow:
1270 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1271 break;
1272
1273 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1274 * hardware backends have no way to avoid Mesa IR generation
1275 * even if they don't use it, we need to emit "something" and
1276 * continue.
1277 */
1278 case ir_binop_lshift:
1279 case ir_binop_rshift:
1280 case ir_binop_bit_and:
1281 case ir_binop_bit_xor:
1282 case ir_binop_bit_or:
1283 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1284 break;
1285
1286 case ir_unop_bit_not:
1287 case ir_unop_round_even:
1288 emit(ir, OPCODE_MOV, result_dst, op[0]);
1289 break;
1290
1291 case ir_binop_ubo_load:
1292 assert(!"not supported");
1293 break;
1294
1295 case ir_triop_lrp:
1296 /* ir_triop_lrp operands are (x, y, a) while
1297 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1298 */
1299 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1300 break;
1301
1302 case ir_binop_vector_extract:
1303 case ir_triop_fma:
1304 case ir_triop_bitfield_extract:
1305 case ir_triop_vector_insert:
1306 case ir_quadop_bitfield_insert:
1307 case ir_binop_ldexp:
1308 case ir_triop_csel:
1309 case ir_binop_carry:
1310 case ir_binop_borrow:
1311 case ir_binop_imul_high:
1312 case ir_unop_interpolate_at_centroid:
1313 case ir_binop_interpolate_at_offset:
1314 case ir_binop_interpolate_at_sample:
1315 case ir_unop_dFdx_coarse:
1316 case ir_unop_dFdx_fine:
1317 case ir_unop_dFdy_coarse:
1318 case ir_unop_dFdy_fine:
1319 case ir_unop_subroutine_to_int:
1320 case ir_unop_get_buffer_size:
1321 assert(!"not supported");
1322 break;
1323
1324 case ir_unop_ssbo_unsized_array_length:
1325 case ir_quadop_vector:
1326 /* This operation should have already been handled.
1327 */
1328 assert(!"Should not get here.");
1329 break;
1330 }
1331
1332 this->result = result_src;
1333 }
1334
1335
1336 void
1337 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1338 {
1339 src_reg src;
1340 int i;
1341 int swizzle[4];
1342
1343 /* Note that this is only swizzles in expressions, not those on the left
1344 * hand side of an assignment, which do write masking. See ir_assignment
1345 * for that.
1346 */
1347
1348 ir->val->accept(this);
1349 src = this->result;
1350 assert(src.file != PROGRAM_UNDEFINED);
1351 assert(ir->type->vector_elements > 0);
1352
1353 for (i = 0; i < 4; i++) {
1354 if (i < ir->type->vector_elements) {
1355 switch (i) {
1356 case 0:
1357 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1358 break;
1359 case 1:
1360 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1361 break;
1362 case 2:
1363 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1364 break;
1365 case 3:
1366 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1367 break;
1368 }
1369 } else {
1370 /* If the type is smaller than a vec4, replicate the last
1371 * channel out.
1372 */
1373 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1374 }
1375 }
1376
1377 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1378
1379 this->result = src;
1380 }
1381
1382 void
1383 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1384 {
1385 variable_storage *entry = find_variable_storage(ir->var);
1386 ir_variable *var = ir->var;
1387
1388 if (!entry) {
1389 switch (var->data.mode) {
1390 case ir_var_uniform:
1391 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1392 var->data.location);
1393 this->variables.push_tail(entry);
1394 break;
1395 case ir_var_shader_in:
1396 /* The linker assigns locations for varyings and attributes,
1397 * including deprecated builtins (like gl_Color),
1398 * user-assigned generic attributes (glBindVertexLocation),
1399 * and user-defined varyings.
1400 */
1401 assert(var->data.location != -1);
1402 entry = new(mem_ctx) variable_storage(var,
1403 PROGRAM_INPUT,
1404 var->data.location);
1405 break;
1406 case ir_var_shader_out:
1407 assert(var->data.location != -1);
1408 entry = new(mem_ctx) variable_storage(var,
1409 PROGRAM_OUTPUT,
1410 var->data.location);
1411 break;
1412 case ir_var_system_value:
1413 entry = new(mem_ctx) variable_storage(var,
1414 PROGRAM_SYSTEM_VALUE,
1415 var->data.location);
1416 break;
1417 case ir_var_auto:
1418 case ir_var_temporary:
1419 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1420 this->next_temp);
1421 this->variables.push_tail(entry);
1422
1423 next_temp += type_size(var->type);
1424 break;
1425 }
1426
1427 if (!entry) {
1428 printf("Failed to make storage for %s\n", var->name);
1429 exit(1);
1430 }
1431 }
1432
1433 this->result = src_reg(entry->file, entry->index, var->type);
1434 }
1435
1436 void
1437 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1438 {
1439 ir_constant *index;
1440 src_reg src;
1441 int element_size = type_size(ir->type);
1442
1443 index = ir->array_index->constant_expression_value();
1444
1445 ir->array->accept(this);
1446 src = this->result;
1447
1448 if (index) {
1449 src.index += index->value.i[0] * element_size;
1450 } else {
1451 /* Variable index array dereference. It eats the "vec4" of the
1452 * base of the array and an index that offsets the Mesa register
1453 * index.
1454 */
1455 ir->array_index->accept(this);
1456
1457 src_reg index_reg;
1458
1459 if (element_size == 1) {
1460 index_reg = this->result;
1461 } else {
1462 index_reg = get_temp(glsl_type::float_type);
1463
1464 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1465 this->result, src_reg_for_float(element_size));
1466 }
1467
1468 /* If there was already a relative address register involved, add the
1469 * new and the old together to get the new offset.
1470 */
1471 if (src.reladdr != NULL) {
1472 src_reg accum_reg = get_temp(glsl_type::float_type);
1473
1474 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1475 index_reg, *src.reladdr);
1476
1477 index_reg = accum_reg;
1478 }
1479
1480 src.reladdr = ralloc(mem_ctx, src_reg);
1481 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1482 }
1483
1484 /* If the type is smaller than a vec4, replicate the last channel out. */
1485 if (ir->type->is_scalar() || ir->type->is_vector())
1486 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1487 else
1488 src.swizzle = SWIZZLE_NOOP;
1489
1490 this->result = src;
1491 }
1492
1493 void
1494 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1495 {
1496 unsigned int i;
1497 const glsl_type *struct_type = ir->record->type;
1498 int offset = 0;
1499
1500 ir->record->accept(this);
1501
1502 for (i = 0; i < struct_type->length; i++) {
1503 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1504 break;
1505 offset += type_size(struct_type->fields.structure[i].type);
1506 }
1507
1508 /* If the type is smaller than a vec4, replicate the last channel out. */
1509 if (ir->type->is_scalar() || ir->type->is_vector())
1510 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1511 else
1512 this->result.swizzle = SWIZZLE_NOOP;
1513
1514 this->result.index += offset;
1515 }
1516
1517 /**
1518 * We want to be careful in assignment setup to hit the actual storage
1519 * instead of potentially using a temporary like we might with the
1520 * ir_dereference handler.
1521 */
1522 static dst_reg
1523 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1524 {
1525 /* The LHS must be a dereference. If the LHS is a variable indexed array
1526 * access of a vector, it must be separated into a series conditional moves
1527 * before reaching this point (see ir_vec_index_to_cond_assign).
1528 */
1529 assert(ir->as_dereference());
1530 ir_dereference_array *deref_array = ir->as_dereference_array();
1531 if (deref_array) {
1532 assert(!deref_array->array->type->is_vector());
1533 }
1534
1535 /* Use the rvalue deref handler for the most part. We'll ignore
1536 * swizzles in it and write swizzles using writemask, though.
1537 */
1538 ir->accept(v);
1539 return dst_reg(v->result);
1540 }
1541
1542 /**
1543 * Process the condition of a conditional assignment
1544 *
1545 * Examines the condition of a conditional assignment to generate the optimal
1546 * first operand of a \c CMP instruction. If the condition is a relational
1547 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1548 * used as the source for the \c CMP instruction. Otherwise the comparison
1549 * is processed to a boolean result, and the boolean result is used as the
1550 * operand to the CMP instruction.
1551 */
1552 bool
1553 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1554 {
1555 ir_rvalue *src_ir = ir;
1556 bool negate = true;
1557 bool switch_order = false;
1558
1559 ir_expression *const expr = ir->as_expression();
1560 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1561 bool zero_on_left = false;
1562
1563 if (expr->operands[0]->is_zero()) {
1564 src_ir = expr->operands[1];
1565 zero_on_left = true;
1566 } else if (expr->operands[1]->is_zero()) {
1567 src_ir = expr->operands[0];
1568 zero_on_left = false;
1569 }
1570
1571 /* a is - 0 + - 0 +
1572 * (a < 0) T F F ( a < 0) T F F
1573 * (0 < a) F F T (-a < 0) F F T
1574 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1575 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1576 * (a > 0) F F T (-a < 0) F F T
1577 * (0 > a) T F F ( a < 0) T F F
1578 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1579 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1580 *
1581 * Note that exchanging the order of 0 and 'a' in the comparison simply
1582 * means that the value of 'a' should be negated.
1583 */
1584 if (src_ir != ir) {
1585 switch (expr->operation) {
1586 case ir_binop_less:
1587 switch_order = false;
1588 negate = zero_on_left;
1589 break;
1590
1591 case ir_binop_greater:
1592 switch_order = false;
1593 negate = !zero_on_left;
1594 break;
1595
1596 case ir_binop_lequal:
1597 switch_order = true;
1598 negate = !zero_on_left;
1599 break;
1600
1601 case ir_binop_gequal:
1602 switch_order = true;
1603 negate = zero_on_left;
1604 break;
1605
1606 default:
1607 /* This isn't the right kind of comparison afterall, so make sure
1608 * the whole condition is visited.
1609 */
1610 src_ir = ir;
1611 break;
1612 }
1613 }
1614 }
1615
1616 src_ir->accept(this);
1617
1618 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1619 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1620 * choose which value OPCODE_CMP produces without an extra instruction
1621 * computing the condition.
1622 */
1623 if (negate)
1624 this->result.negate = ~this->result.negate;
1625
1626 return switch_order;
1627 }
1628
1629 void
1630 ir_to_mesa_visitor::visit(ir_assignment *ir)
1631 {
1632 dst_reg l;
1633 src_reg r;
1634 int i;
1635
1636 ir->rhs->accept(this);
1637 r = this->result;
1638
1639 l = get_assignment_lhs(ir->lhs, this);
1640
1641 /* FINISHME: This should really set to the correct maximal writemask for each
1642 * FINISHME: component written (in the loops below). This case can only
1643 * FINISHME: occur for matrices, arrays, and structures.
1644 */
1645 if (ir->write_mask == 0) {
1646 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1647 l.writemask = WRITEMASK_XYZW;
1648 } else if (ir->lhs->type->is_scalar()) {
1649 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1650 * FINISHME: W component of fragment shader output zero, work correctly.
1651 */
1652 l.writemask = WRITEMASK_XYZW;
1653 } else {
1654 int swizzles[4];
1655 int first_enabled_chan = 0;
1656 int rhs_chan = 0;
1657
1658 assert(ir->lhs->type->is_vector());
1659 l.writemask = ir->write_mask;
1660
1661 for (int i = 0; i < 4; i++) {
1662 if (l.writemask & (1 << i)) {
1663 first_enabled_chan = GET_SWZ(r.swizzle, i);
1664 break;
1665 }
1666 }
1667
1668 /* Swizzle a small RHS vector into the channels being written.
1669 *
1670 * glsl ir treats write_mask as dictating how many channels are
1671 * present on the RHS while Mesa IR treats write_mask as just
1672 * showing which channels of the vec4 RHS get written.
1673 */
1674 for (int i = 0; i < 4; i++) {
1675 if (l.writemask & (1 << i))
1676 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1677 else
1678 swizzles[i] = first_enabled_chan;
1679 }
1680 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1681 swizzles[2], swizzles[3]);
1682 }
1683
1684 assert(l.file != PROGRAM_UNDEFINED);
1685 assert(r.file != PROGRAM_UNDEFINED);
1686
1687 if (ir->condition) {
1688 const bool switch_order = this->process_move_condition(ir->condition);
1689 src_reg condition = this->result;
1690
1691 for (i = 0; i < type_size(ir->lhs->type); i++) {
1692 if (switch_order) {
1693 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1694 } else {
1695 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1696 }
1697
1698 l.index++;
1699 r.index++;
1700 }
1701 } else {
1702 for (i = 0; i < type_size(ir->lhs->type); i++) {
1703 emit(ir, OPCODE_MOV, l, r);
1704 l.index++;
1705 r.index++;
1706 }
1707 }
1708 }
1709
1710
1711 void
1712 ir_to_mesa_visitor::visit(ir_constant *ir)
1713 {
1714 src_reg src;
1715 GLfloat stack_vals[4] = { 0 };
1716 GLfloat *values = stack_vals;
1717 unsigned int i;
1718
1719 /* Unfortunately, 4 floats is all we can get into
1720 * _mesa_add_unnamed_constant. So, make a temp to store an
1721 * aggregate constant and move each constant value into it. If we
1722 * get lucky, copy propagation will eliminate the extra moves.
1723 */
1724
1725 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1726 src_reg temp_base = get_temp(ir->type);
1727 dst_reg temp = dst_reg(temp_base);
1728
1729 foreach_in_list(ir_constant, field_value, &ir->components) {
1730 int size = type_size(field_value->type);
1731
1732 assert(size > 0);
1733
1734 field_value->accept(this);
1735 src = this->result;
1736
1737 for (i = 0; i < (unsigned int)size; i++) {
1738 emit(ir, OPCODE_MOV, temp, src);
1739
1740 src.index++;
1741 temp.index++;
1742 }
1743 }
1744 this->result = temp_base;
1745 return;
1746 }
1747
1748 if (ir->type->is_array()) {
1749 src_reg temp_base = get_temp(ir->type);
1750 dst_reg temp = dst_reg(temp_base);
1751 int size = type_size(ir->type->fields.array);
1752
1753 assert(size > 0);
1754
1755 for (i = 0; i < ir->type->length; i++) {
1756 ir->array_elements[i]->accept(this);
1757 src = this->result;
1758 for (int j = 0; j < size; j++) {
1759 emit(ir, OPCODE_MOV, temp, src);
1760
1761 src.index++;
1762 temp.index++;
1763 }
1764 }
1765 this->result = temp_base;
1766 return;
1767 }
1768
1769 if (ir->type->is_matrix()) {
1770 src_reg mat = get_temp(ir->type);
1771 dst_reg mat_column = dst_reg(mat);
1772
1773 for (i = 0; i < ir->type->matrix_columns; i++) {
1774 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1775 values = &ir->value.f[i * ir->type->vector_elements];
1776
1777 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1778 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1779 (gl_constant_value *) values,
1780 ir->type->vector_elements,
1781 &src.swizzle);
1782 emit(ir, OPCODE_MOV, mat_column, src);
1783
1784 mat_column.index++;
1785 }
1786
1787 this->result = mat;
1788 return;
1789 }
1790
1791 src.file = PROGRAM_CONSTANT;
1792 switch (ir->type->base_type) {
1793 case GLSL_TYPE_FLOAT:
1794 values = &ir->value.f[0];
1795 break;
1796 case GLSL_TYPE_UINT:
1797 for (i = 0; i < ir->type->vector_elements; i++) {
1798 values[i] = ir->value.u[i];
1799 }
1800 break;
1801 case GLSL_TYPE_INT:
1802 for (i = 0; i < ir->type->vector_elements; i++) {
1803 values[i] = ir->value.i[i];
1804 }
1805 break;
1806 case GLSL_TYPE_BOOL:
1807 for (i = 0; i < ir->type->vector_elements; i++) {
1808 values[i] = ir->value.b[i];
1809 }
1810 break;
1811 default:
1812 assert(!"Non-float/uint/int/bool constant");
1813 }
1814
1815 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1816 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1817 (gl_constant_value *) values,
1818 ir->type->vector_elements,
1819 &this->result.swizzle);
1820 }
1821
1822 void
1823 ir_to_mesa_visitor::visit(ir_call *)
1824 {
1825 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1826 }
1827
1828 void
1829 ir_to_mesa_visitor::visit(ir_texture *ir)
1830 {
1831 src_reg result_src, coord, lod_info, projector, dx, dy;
1832 dst_reg result_dst, coord_dst;
1833 ir_to_mesa_instruction *inst = NULL;
1834 prog_opcode opcode = OPCODE_NOP;
1835
1836 if (ir->op == ir_txs)
1837 this->result = src_reg_for_float(0.0);
1838 else
1839 ir->coordinate->accept(this);
1840
1841 /* Put our coords in a temp. We'll need to modify them for shadow,
1842 * projection, or LOD, so the only case we'd use it as is is if
1843 * we're doing plain old texturing. Mesa IR optimization should
1844 * handle cleaning up our mess in that case.
1845 */
1846 coord = get_temp(glsl_type::vec4_type);
1847 coord_dst = dst_reg(coord);
1848 emit(ir, OPCODE_MOV, coord_dst, this->result);
1849
1850 if (ir->projector) {
1851 ir->projector->accept(this);
1852 projector = this->result;
1853 }
1854
1855 /* Storage for our result. Ideally for an assignment we'd be using
1856 * the actual storage for the result here, instead.
1857 */
1858 result_src = get_temp(glsl_type::vec4_type);
1859 result_dst = dst_reg(result_src);
1860
1861 switch (ir->op) {
1862 case ir_tex:
1863 case ir_txs:
1864 opcode = OPCODE_TEX;
1865 break;
1866 case ir_txb:
1867 opcode = OPCODE_TXB;
1868 ir->lod_info.bias->accept(this);
1869 lod_info = this->result;
1870 break;
1871 case ir_txf:
1872 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1873 case ir_txl:
1874 opcode = OPCODE_TXL;
1875 ir->lod_info.lod->accept(this);
1876 lod_info = this->result;
1877 break;
1878 case ir_txd:
1879 opcode = OPCODE_TXD;
1880 ir->lod_info.grad.dPdx->accept(this);
1881 dx = this->result;
1882 ir->lod_info.grad.dPdy->accept(this);
1883 dy = this->result;
1884 break;
1885 case ir_txf_ms:
1886 assert(!"Unexpected ir_txf_ms opcode");
1887 break;
1888 case ir_lod:
1889 assert(!"Unexpected ir_lod opcode");
1890 break;
1891 case ir_tg4:
1892 assert(!"Unexpected ir_tg4 opcode");
1893 break;
1894 case ir_query_levels:
1895 assert(!"Unexpected ir_query_levels opcode");
1896 break;
1897 case ir_samples_identical:
1898 unreachable("Unexpected ir_samples_identical opcode");
1899 case ir_texture_samples:
1900 unreachable("Unexpected ir_texture_samples opcode");
1901 }
1902
1903 const glsl_type *sampler_type = ir->sampler->type;
1904
1905 if (ir->projector) {
1906 if (opcode == OPCODE_TEX) {
1907 /* Slot the projector in as the last component of the coord. */
1908 coord_dst.writemask = WRITEMASK_W;
1909 emit(ir, OPCODE_MOV, coord_dst, projector);
1910 coord_dst.writemask = WRITEMASK_XYZW;
1911 opcode = OPCODE_TXP;
1912 } else {
1913 src_reg coord_w = coord;
1914 coord_w.swizzle = SWIZZLE_WWWW;
1915
1916 /* For the other TEX opcodes there's no projective version
1917 * since the last slot is taken up by lod info. Do the
1918 * projective divide now.
1919 */
1920 coord_dst.writemask = WRITEMASK_W;
1921 emit(ir, OPCODE_RCP, coord_dst, projector);
1922
1923 /* In the case where we have to project the coordinates "by hand,"
1924 * the shadow comparitor value must also be projected.
1925 */
1926 src_reg tmp_src = coord;
1927 if (ir->shadow_comparitor) {
1928 /* Slot the shadow value in as the second to last component of the
1929 * coord.
1930 */
1931 ir->shadow_comparitor->accept(this);
1932
1933 tmp_src = get_temp(glsl_type::vec4_type);
1934 dst_reg tmp_dst = dst_reg(tmp_src);
1935
1936 /* Projective division not allowed for array samplers. */
1937 assert(!sampler_type->sampler_array);
1938
1939 tmp_dst.writemask = WRITEMASK_Z;
1940 emit(ir, OPCODE_MOV, tmp_dst, this->result);
1941
1942 tmp_dst.writemask = WRITEMASK_XY;
1943 emit(ir, OPCODE_MOV, tmp_dst, coord);
1944 }
1945
1946 coord_dst.writemask = WRITEMASK_XYZ;
1947 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
1948
1949 coord_dst.writemask = WRITEMASK_XYZW;
1950 coord.swizzle = SWIZZLE_XYZW;
1951 }
1952 }
1953
1954 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
1955 * comparitor was put in the correct place (and projected) by the code,
1956 * above, that handles by-hand projection.
1957 */
1958 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
1959 /* Slot the shadow value in as the second to last component of the
1960 * coord.
1961 */
1962 ir->shadow_comparitor->accept(this);
1963
1964 /* XXX This will need to be updated for cubemap array samplers. */
1965 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
1966 sampler_type->sampler_array) {
1967 coord_dst.writemask = WRITEMASK_W;
1968 } else {
1969 coord_dst.writemask = WRITEMASK_Z;
1970 }
1971
1972 emit(ir, OPCODE_MOV, coord_dst, this->result);
1973 coord_dst.writemask = WRITEMASK_XYZW;
1974 }
1975
1976 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
1977 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
1978 coord_dst.writemask = WRITEMASK_W;
1979 emit(ir, OPCODE_MOV, coord_dst, lod_info);
1980 coord_dst.writemask = WRITEMASK_XYZW;
1981 }
1982
1983 if (opcode == OPCODE_TXD)
1984 inst = emit(ir, opcode, result_dst, coord, dx, dy);
1985 else
1986 inst = emit(ir, opcode, result_dst, coord);
1987
1988 if (ir->shadow_comparitor)
1989 inst->tex_shadow = GL_TRUE;
1990
1991 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
1992 this->shader_program,
1993 this->prog);
1994
1995 switch (sampler_type->sampler_dimensionality) {
1996 case GLSL_SAMPLER_DIM_1D:
1997 inst->tex_target = (sampler_type->sampler_array)
1998 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
1999 break;
2000 case GLSL_SAMPLER_DIM_2D:
2001 inst->tex_target = (sampler_type->sampler_array)
2002 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2003 break;
2004 case GLSL_SAMPLER_DIM_3D:
2005 inst->tex_target = TEXTURE_3D_INDEX;
2006 break;
2007 case GLSL_SAMPLER_DIM_CUBE:
2008 inst->tex_target = TEXTURE_CUBE_INDEX;
2009 break;
2010 case GLSL_SAMPLER_DIM_RECT:
2011 inst->tex_target = TEXTURE_RECT_INDEX;
2012 break;
2013 case GLSL_SAMPLER_DIM_BUF:
2014 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2015 break;
2016 case GLSL_SAMPLER_DIM_EXTERNAL:
2017 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2018 break;
2019 default:
2020 assert(!"Should not get here.");
2021 }
2022
2023 this->result = result_src;
2024 }
2025
2026 void
2027 ir_to_mesa_visitor::visit(ir_return *ir)
2028 {
2029 /* Non-void functions should have been inlined. We may still emit RETs
2030 * from main() unless the EmitNoMainReturn option is set.
2031 */
2032 assert(!ir->get_value());
2033 emit(ir, OPCODE_RET);
2034 }
2035
2036 void
2037 ir_to_mesa_visitor::visit(ir_discard *ir)
2038 {
2039 if (ir->condition) {
2040 ir->condition->accept(this);
2041 this->result.negate = ~this->result.negate;
2042 emit(ir, OPCODE_KIL, undef_dst, this->result);
2043 } else {
2044 emit(ir, OPCODE_KIL_NV);
2045 }
2046 }
2047
2048 void
2049 ir_to_mesa_visitor::visit(ir_if *ir)
2050 {
2051 ir_to_mesa_instruction *cond_inst, *if_inst;
2052 ir_to_mesa_instruction *prev_inst;
2053
2054 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2055
2056 ir->condition->accept(this);
2057 assert(this->result.file != PROGRAM_UNDEFINED);
2058
2059 if (this->options->EmitCondCodes) {
2060 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2061
2062 /* See if we actually generated any instruction for generating
2063 * the condition. If not, then cook up a move to a temp so we
2064 * have something to set cond_update on.
2065 */
2066 if (cond_inst == prev_inst) {
2067 src_reg temp = get_temp(glsl_type::bool_type);
2068 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2069 }
2070 cond_inst->cond_update = GL_TRUE;
2071
2072 if_inst = emit(ir->condition, OPCODE_IF);
2073 if_inst->dst.cond_mask = COND_NE;
2074 } else {
2075 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2076 }
2077
2078 this->instructions.push_tail(if_inst);
2079
2080 visit_exec_list(&ir->then_instructions, this);
2081
2082 if (!ir->else_instructions.is_empty()) {
2083 emit(ir->condition, OPCODE_ELSE);
2084 visit_exec_list(&ir->else_instructions, this);
2085 }
2086
2087 emit(ir->condition, OPCODE_ENDIF);
2088 }
2089
2090 void
2091 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2092 {
2093 assert(!"Geometry shaders not supported.");
2094 }
2095
2096 void
2097 ir_to_mesa_visitor::visit(ir_end_primitive *)
2098 {
2099 assert(!"Geometry shaders not supported.");
2100 }
2101
2102 void
2103 ir_to_mesa_visitor::visit(ir_barrier *)
2104 {
2105 unreachable("GLSL barrier() not supported.");
2106 }
2107
2108 ir_to_mesa_visitor::ir_to_mesa_visitor()
2109 {
2110 result.file = PROGRAM_UNDEFINED;
2111 next_temp = 1;
2112 next_signature_id = 1;
2113 current_function = NULL;
2114 mem_ctx = ralloc_context(NULL);
2115 }
2116
2117 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2118 {
2119 ralloc_free(mem_ctx);
2120 }
2121
2122 static struct prog_src_register
2123 mesa_src_reg_from_ir_src_reg(src_reg reg)
2124 {
2125 struct prog_src_register mesa_reg;
2126
2127 mesa_reg.File = reg.file;
2128 assert(reg.index < (1 << INST_INDEX_BITS));
2129 mesa_reg.Index = reg.index;
2130 mesa_reg.Swizzle = reg.swizzle;
2131 mesa_reg.RelAddr = reg.reladdr != NULL;
2132 mesa_reg.Negate = reg.negate;
2133 mesa_reg.Abs = 0;
2134 mesa_reg.HasIndex2 = GL_FALSE;
2135 mesa_reg.RelAddr2 = 0;
2136 mesa_reg.Index2 = 0;
2137
2138 return mesa_reg;
2139 }
2140
2141 static void
2142 set_branchtargets(ir_to_mesa_visitor *v,
2143 struct prog_instruction *mesa_instructions,
2144 int num_instructions)
2145 {
2146 int if_count = 0, loop_count = 0;
2147 int *if_stack, *loop_stack;
2148 int if_stack_pos = 0, loop_stack_pos = 0;
2149 int i, j;
2150
2151 for (i = 0; i < num_instructions; i++) {
2152 switch (mesa_instructions[i].Opcode) {
2153 case OPCODE_IF:
2154 if_count++;
2155 break;
2156 case OPCODE_BGNLOOP:
2157 loop_count++;
2158 break;
2159 case OPCODE_BRK:
2160 case OPCODE_CONT:
2161 mesa_instructions[i].BranchTarget = -1;
2162 break;
2163 default:
2164 break;
2165 }
2166 }
2167
2168 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2169 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2170
2171 for (i = 0; i < num_instructions; i++) {
2172 switch (mesa_instructions[i].Opcode) {
2173 case OPCODE_IF:
2174 if_stack[if_stack_pos] = i;
2175 if_stack_pos++;
2176 break;
2177 case OPCODE_ELSE:
2178 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2179 if_stack[if_stack_pos - 1] = i;
2180 break;
2181 case OPCODE_ENDIF:
2182 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2183 if_stack_pos--;
2184 break;
2185 case OPCODE_BGNLOOP:
2186 loop_stack[loop_stack_pos] = i;
2187 loop_stack_pos++;
2188 break;
2189 case OPCODE_ENDLOOP:
2190 loop_stack_pos--;
2191 /* Rewrite any breaks/conts at this nesting level (haven't
2192 * already had a BranchTarget assigned) to point to the end
2193 * of the loop.
2194 */
2195 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2196 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2197 mesa_instructions[j].Opcode == OPCODE_CONT) {
2198 if (mesa_instructions[j].BranchTarget == -1) {
2199 mesa_instructions[j].BranchTarget = i;
2200 }
2201 }
2202 }
2203 /* The loop ends point at each other. */
2204 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2205 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2206 break;
2207 case OPCODE_CAL:
2208 foreach_in_list(function_entry, entry, &v->function_signatures) {
2209 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2210 mesa_instructions[i].BranchTarget = entry->inst;
2211 break;
2212 }
2213 }
2214 break;
2215 default:
2216 break;
2217 }
2218 }
2219 }
2220
2221 static void
2222 print_program(struct prog_instruction *mesa_instructions,
2223 ir_instruction **mesa_instruction_annotation,
2224 int num_instructions)
2225 {
2226 ir_instruction *last_ir = NULL;
2227 int i;
2228 int indent = 0;
2229
2230 for (i = 0; i < num_instructions; i++) {
2231 struct prog_instruction *mesa_inst = mesa_instructions + i;
2232 ir_instruction *ir = mesa_instruction_annotation[i];
2233
2234 fprintf(stdout, "%3d: ", i);
2235
2236 if (last_ir != ir && ir) {
2237 int j;
2238
2239 for (j = 0; j < indent; j++) {
2240 fprintf(stdout, " ");
2241 }
2242 ir->print();
2243 printf("\n");
2244 last_ir = ir;
2245
2246 fprintf(stdout, " "); /* line number spacing. */
2247 }
2248
2249 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2250 PROG_PRINT_DEBUG, NULL);
2251 }
2252 }
2253
2254 namespace {
2255
2256 class add_uniform_to_shader : public program_resource_visitor {
2257 public:
2258 add_uniform_to_shader(struct gl_shader_program *shader_program,
2259 struct gl_program_parameter_list *params,
2260 gl_shader_stage shader_type)
2261 : shader_program(shader_program), params(params), idx(-1),
2262 shader_type(shader_type)
2263 {
2264 /* empty */
2265 }
2266
2267 void process(ir_variable *var)
2268 {
2269 this->idx = -1;
2270 this->program_resource_visitor::process(var);
2271
2272 var->data.location = this->idx;
2273 }
2274
2275 private:
2276 virtual void visit_field(const glsl_type *type, const char *name,
2277 bool row_major);
2278
2279 struct gl_shader_program *shader_program;
2280 struct gl_program_parameter_list *params;
2281 int idx;
2282 gl_shader_stage shader_type;
2283 };
2284
2285 } /* anonymous namespace */
2286
2287 void
2288 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2289 bool row_major)
2290 {
2291 unsigned int size;
2292
2293 (void) row_major;
2294
2295 if (type->is_vector() || type->is_scalar()) {
2296 size = type->vector_elements;
2297 if (type->is_double())
2298 size *= 2;
2299 } else {
2300 size = type_size(type) * 4;
2301 }
2302
2303 gl_register_file file;
2304 if (type->without_array()->is_sampler()) {
2305 file = PROGRAM_SAMPLER;
2306 } else {
2307 file = PROGRAM_UNIFORM;
2308 }
2309
2310 int index = _mesa_lookup_parameter_index(params, -1, name);
2311 if (index < 0) {
2312 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2313 NULL, NULL);
2314
2315 /* Sampler uniform values are stored in prog->SamplerUnits,
2316 * and the entry in that array is selected by this index we
2317 * store in ParameterValues[].
2318 */
2319 if (file == PROGRAM_SAMPLER) {
2320 unsigned location;
2321 const bool found =
2322 this->shader_program->UniformHash->get(location,
2323 params->Parameters[index].Name);
2324 assert(found);
2325
2326 if (!found)
2327 return;
2328
2329 struct gl_uniform_storage *storage =
2330 &this->shader_program->UniformStorage[location];
2331
2332 assert(storage->type->is_sampler() &&
2333 storage->opaque[shader_type].active);
2334
2335 for (unsigned int j = 0; j < size / 4; j++)
2336 params->ParameterValues[index + j][0].f =
2337 storage->opaque[shader_type].index + j;
2338 }
2339 }
2340
2341 /* The first part of the uniform that's processed determines the base
2342 * location of the whole uniform (for structures).
2343 */
2344 if (this->idx < 0)
2345 this->idx = index;
2346 }
2347
2348 /**
2349 * Generate the program parameters list for the user uniforms in a shader
2350 *
2351 * \param shader_program Linked shader program. This is only used to
2352 * emit possible link errors to the info log.
2353 * \param sh Shader whose uniforms are to be processed.
2354 * \param params Parameter list to be filled in.
2355 */
2356 void
2357 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2358 *shader_program,
2359 struct gl_shader *sh,
2360 struct gl_program_parameter_list
2361 *params)
2362 {
2363 add_uniform_to_shader add(shader_program, params, sh->Stage);
2364
2365 foreach_in_list(ir_instruction, node, sh->ir) {
2366 ir_variable *var = node->as_variable();
2367
2368 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2369 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2370 continue;
2371
2372 add.process(var);
2373 }
2374 }
2375
2376 void
2377 _mesa_associate_uniform_storage(struct gl_context *ctx,
2378 struct gl_shader_program *shader_program,
2379 struct gl_program_parameter_list *params)
2380 {
2381 /* After adding each uniform to the parameter list, connect the storage for
2382 * the parameter with the tracking structure used by the API for the
2383 * uniform.
2384 */
2385 unsigned last_location = unsigned(~0);
2386 for (unsigned i = 0; i < params->NumParameters; i++) {
2387 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2388 continue;
2389
2390 unsigned location;
2391 const bool found =
2392 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2393 assert(found);
2394
2395 if (!found)
2396 continue;
2397
2398 struct gl_uniform_storage *storage =
2399 &shader_program->UniformStorage[location];
2400
2401 /* Do not associate any uniform storage to built-in uniforms */
2402 if (storage->builtin)
2403 continue;
2404
2405 if (location != last_location) {
2406 enum gl_uniform_driver_format format = uniform_native;
2407
2408 unsigned columns = 0;
2409 int dmul = 4 * sizeof(float);
2410 switch (storage->type->base_type) {
2411 case GLSL_TYPE_UINT:
2412 assert(ctx->Const.NativeIntegers);
2413 format = uniform_native;
2414 columns = 1;
2415 break;
2416 case GLSL_TYPE_INT:
2417 format =
2418 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2419 columns = 1;
2420 break;
2421
2422 case GLSL_TYPE_DOUBLE:
2423 if (storage->type->vector_elements > 2)
2424 dmul *= 2;
2425 /* fallthrough */
2426 case GLSL_TYPE_FLOAT:
2427 format = uniform_native;
2428 columns = storage->type->matrix_columns;
2429 break;
2430 case GLSL_TYPE_BOOL:
2431 format = uniform_native;
2432 columns = 1;
2433 break;
2434 case GLSL_TYPE_SAMPLER:
2435 case GLSL_TYPE_IMAGE:
2436 case GLSL_TYPE_SUBROUTINE:
2437 format = uniform_native;
2438 columns = 1;
2439 break;
2440 case GLSL_TYPE_ATOMIC_UINT:
2441 case GLSL_TYPE_ARRAY:
2442 case GLSL_TYPE_VOID:
2443 case GLSL_TYPE_STRUCT:
2444 case GLSL_TYPE_ERROR:
2445 case GLSL_TYPE_INTERFACE:
2446 assert(!"Should not get here.");
2447 break;
2448 }
2449
2450 _mesa_uniform_attach_driver_storage(storage,
2451 dmul * columns,
2452 dmul,
2453 format,
2454 &params->ParameterValues[i]);
2455
2456 /* After attaching the driver's storage to the uniform, propagate any
2457 * data from the linker's backing store. This will cause values from
2458 * initializers in the source code to be copied over.
2459 */
2460 _mesa_propagate_uniforms_to_driver_storage(storage,
2461 0,
2462 MAX2(1, storage->array_elements));
2463
2464 last_location = location;
2465 }
2466 }
2467 }
2468
2469 /*
2470 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2471 * channels for copy propagation and updates following instructions to
2472 * use the original versions.
2473 *
2474 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2475 * will occur. As an example, a TXP production before this pass:
2476 *
2477 * 0: MOV TEMP[1], INPUT[4].xyyy;
2478 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2479 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2480 *
2481 * and after:
2482 *
2483 * 0: MOV TEMP[1], INPUT[4].xyyy;
2484 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2485 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2486 *
2487 * which allows for dead code elimination on TEMP[1]'s writes.
2488 */
2489 void
2490 ir_to_mesa_visitor::copy_propagate(void)
2491 {
2492 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2493 ir_to_mesa_instruction *,
2494 this->next_temp * 4);
2495 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2496 int level = 0;
2497
2498 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2499 assert(inst->dst.file != PROGRAM_TEMPORARY
2500 || inst->dst.index < this->next_temp);
2501
2502 /* First, do any copy propagation possible into the src regs. */
2503 for (int r = 0; r < 3; r++) {
2504 ir_to_mesa_instruction *first = NULL;
2505 bool good = true;
2506 int acp_base = inst->src[r].index * 4;
2507
2508 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2509 inst->src[r].reladdr)
2510 continue;
2511
2512 /* See if we can find entries in the ACP consisting of MOVs
2513 * from the same src register for all the swizzled channels
2514 * of this src register reference.
2515 */
2516 for (int i = 0; i < 4; i++) {
2517 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2518 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2519
2520 if (!copy_chan) {
2521 good = false;
2522 break;
2523 }
2524
2525 assert(acp_level[acp_base + src_chan] <= level);
2526
2527 if (!first) {
2528 first = copy_chan;
2529 } else {
2530 if (first->src[0].file != copy_chan->src[0].file ||
2531 first->src[0].index != copy_chan->src[0].index) {
2532 good = false;
2533 break;
2534 }
2535 }
2536 }
2537
2538 if (good) {
2539 /* We've now validated that we can copy-propagate to
2540 * replace this src register reference. Do it.
2541 */
2542 inst->src[r].file = first->src[0].file;
2543 inst->src[r].index = first->src[0].index;
2544
2545 int swizzle = 0;
2546 for (int i = 0; i < 4; i++) {
2547 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2548 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2549 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2550 (3 * i));
2551 }
2552 inst->src[r].swizzle = swizzle;
2553 }
2554 }
2555
2556 switch (inst->op) {
2557 case OPCODE_BGNLOOP:
2558 case OPCODE_ENDLOOP:
2559 /* End of a basic block, clear the ACP entirely. */
2560 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2561 break;
2562
2563 case OPCODE_IF:
2564 ++level;
2565 break;
2566
2567 case OPCODE_ENDIF:
2568 case OPCODE_ELSE:
2569 /* Clear all channels written inside the block from the ACP, but
2570 * leaving those that were not touched.
2571 */
2572 for (int r = 0; r < this->next_temp; r++) {
2573 for (int c = 0; c < 4; c++) {
2574 if (!acp[4 * r + c])
2575 continue;
2576
2577 if (acp_level[4 * r + c] >= level)
2578 acp[4 * r + c] = NULL;
2579 }
2580 }
2581 if (inst->op == OPCODE_ENDIF)
2582 --level;
2583 break;
2584
2585 default:
2586 /* Continuing the block, clear any written channels from
2587 * the ACP.
2588 */
2589 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2590 /* Any temporary might be written, so no copy propagation
2591 * across this instruction.
2592 */
2593 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2594 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2595 inst->dst.reladdr) {
2596 /* Any output might be written, so no copy propagation
2597 * from outputs across this instruction.
2598 */
2599 for (int r = 0; r < this->next_temp; r++) {
2600 for (int c = 0; c < 4; c++) {
2601 if (!acp[4 * r + c])
2602 continue;
2603
2604 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2605 acp[4 * r + c] = NULL;
2606 }
2607 }
2608 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2609 inst->dst.file == PROGRAM_OUTPUT) {
2610 /* Clear where it's used as dst. */
2611 if (inst->dst.file == PROGRAM_TEMPORARY) {
2612 for (int c = 0; c < 4; c++) {
2613 if (inst->dst.writemask & (1 << c)) {
2614 acp[4 * inst->dst.index + c] = NULL;
2615 }
2616 }
2617 }
2618
2619 /* Clear where it's used as src. */
2620 for (int r = 0; r < this->next_temp; r++) {
2621 for (int c = 0; c < 4; c++) {
2622 if (!acp[4 * r + c])
2623 continue;
2624
2625 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2626
2627 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2628 acp[4 * r + c]->src[0].index == inst->dst.index &&
2629 inst->dst.writemask & (1 << src_chan))
2630 {
2631 acp[4 * r + c] = NULL;
2632 }
2633 }
2634 }
2635 }
2636 break;
2637 }
2638
2639 /* If this is a copy, add it to the ACP. */
2640 if (inst->op == OPCODE_MOV &&
2641 inst->dst.file == PROGRAM_TEMPORARY &&
2642 !(inst->dst.file == inst->src[0].file &&
2643 inst->dst.index == inst->src[0].index) &&
2644 !inst->dst.reladdr &&
2645 !inst->saturate &&
2646 !inst->src[0].reladdr &&
2647 !inst->src[0].negate) {
2648 for (int i = 0; i < 4; i++) {
2649 if (inst->dst.writemask & (1 << i)) {
2650 acp[4 * inst->dst.index + i] = inst;
2651 acp_level[4 * inst->dst.index + i] = level;
2652 }
2653 }
2654 }
2655 }
2656
2657 ralloc_free(acp_level);
2658 ralloc_free(acp);
2659 }
2660
2661
2662 /**
2663 * Convert a shader's GLSL IR into a Mesa gl_program.
2664 */
2665 static struct gl_program *
2666 get_mesa_program(struct gl_context *ctx,
2667 struct gl_shader_program *shader_program,
2668 struct gl_shader *shader)
2669 {
2670 ir_to_mesa_visitor v;
2671 struct prog_instruction *mesa_instructions, *mesa_inst;
2672 ir_instruction **mesa_instruction_annotation;
2673 int i;
2674 struct gl_program *prog;
2675 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2676 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2677 struct gl_shader_compiler_options *options =
2678 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2679
2680 validate_ir_tree(shader->ir);
2681
2682 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2683 if (!prog)
2684 return NULL;
2685 prog->Parameters = _mesa_new_parameter_list();
2686 v.ctx = ctx;
2687 v.prog = prog;
2688 v.shader_program = shader_program;
2689 v.options = options;
2690
2691 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2692 prog->Parameters);
2693
2694 /* Emit Mesa IR for main(). */
2695 visit_exec_list(shader->ir, &v);
2696 v.emit(NULL, OPCODE_END);
2697
2698 prog->NumTemporaries = v.next_temp;
2699
2700 unsigned num_instructions = v.instructions.length();
2701
2702 mesa_instructions =
2703 (struct prog_instruction *)calloc(num_instructions,
2704 sizeof(*mesa_instructions));
2705 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2706 num_instructions);
2707
2708 v.copy_propagate();
2709
2710 /* Convert ir_mesa_instructions into prog_instructions.
2711 */
2712 mesa_inst = mesa_instructions;
2713 i = 0;
2714 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2715 mesa_inst->Opcode = inst->op;
2716 mesa_inst->CondUpdate = inst->cond_update;
2717 if (inst->saturate)
2718 mesa_inst->Saturate = GL_TRUE;
2719 mesa_inst->DstReg.File = inst->dst.file;
2720 mesa_inst->DstReg.Index = inst->dst.index;
2721 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2722 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2723 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2724 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2725 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2726 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2727 mesa_inst->TexSrcUnit = inst->sampler;
2728 mesa_inst->TexSrcTarget = inst->tex_target;
2729 mesa_inst->TexShadow = inst->tex_shadow;
2730 mesa_instruction_annotation[i] = inst->ir;
2731
2732 /* Set IndirectRegisterFiles. */
2733 if (mesa_inst->DstReg.RelAddr)
2734 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2735
2736 /* Update program's bitmask of indirectly accessed register files */
2737 for (unsigned src = 0; src < 3; src++)
2738 if (mesa_inst->SrcReg[src].RelAddr)
2739 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2740
2741 switch (mesa_inst->Opcode) {
2742 case OPCODE_IF:
2743 if (options->MaxIfDepth == 0) {
2744 linker_warning(shader_program,
2745 "Couldn't flatten if-statement. "
2746 "This will likely result in software "
2747 "rasterization.\n");
2748 }
2749 break;
2750 case OPCODE_BGNLOOP:
2751 if (options->EmitNoLoops) {
2752 linker_warning(shader_program,
2753 "Couldn't unroll loop. "
2754 "This will likely result in software "
2755 "rasterization.\n");
2756 }
2757 break;
2758 case OPCODE_CONT:
2759 if (options->EmitNoCont) {
2760 linker_warning(shader_program,
2761 "Couldn't lower continue-statement. "
2762 "This will likely result in software "
2763 "rasterization.\n");
2764 }
2765 break;
2766 case OPCODE_ARL:
2767 prog->NumAddressRegs = 1;
2768 break;
2769 default:
2770 break;
2771 }
2772
2773 mesa_inst++;
2774 i++;
2775
2776 if (!shader_program->LinkStatus)
2777 break;
2778 }
2779
2780 if (!shader_program->LinkStatus) {
2781 goto fail_exit;
2782 }
2783
2784 set_branchtargets(&v, mesa_instructions, num_instructions);
2785
2786 if (ctx->_Shader->Flags & GLSL_DUMP) {
2787 fprintf(stderr, "\n");
2788 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2789 shader_program->Name);
2790 _mesa_print_ir(stderr, shader->ir, NULL);
2791 fprintf(stderr, "\n");
2792 fprintf(stderr, "\n");
2793 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2794 shader_program->Name);
2795 print_program(mesa_instructions, mesa_instruction_annotation,
2796 num_instructions);
2797 fflush(stderr);
2798 }
2799
2800 prog->Instructions = mesa_instructions;
2801 prog->NumInstructions = num_instructions;
2802
2803 /* Setting this to NULL prevents a possible double free in the fail_exit
2804 * path (far below).
2805 */
2806 mesa_instructions = NULL;
2807
2808 do_set_program_inouts(shader->ir, prog, shader->Stage);
2809
2810 prog->SamplersUsed = shader->active_samplers;
2811 prog->ShadowSamplers = shader->shadow_samplers;
2812 _mesa_update_shader_textures_used(shader_program, prog);
2813
2814 /* Set the gl_FragDepth layout. */
2815 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2816 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2817 fp->FragDepthLayout = shader_program->FragDepthLayout;
2818 }
2819
2820 _mesa_reference_program(ctx, &shader->Program, prog);
2821
2822 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2823 _mesa_optimize_program(ctx, prog);
2824 }
2825
2826 /* This has to be done last. Any operation that can cause
2827 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2828 * program constant) has to happen before creating this linkage.
2829 */
2830 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2831 if (!shader_program->LinkStatus) {
2832 goto fail_exit;
2833 }
2834
2835 return prog;
2836
2837 fail_exit:
2838 free(mesa_instructions);
2839 _mesa_reference_program(ctx, &shader->Program, NULL);
2840 return NULL;
2841 }
2842
2843 extern "C" {
2844
2845 /**
2846 * Link a shader.
2847 * Called via ctx->Driver.LinkShader()
2848 * This actually involves converting GLSL IR into Mesa gl_programs with
2849 * code lowering and other optimizations.
2850 */
2851 GLboolean
2852 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2853 {
2854 assert(prog->LinkStatus);
2855
2856 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2857 if (prog->_LinkedShaders[i] == NULL)
2858 continue;
2859
2860 bool progress;
2861 exec_list *ir = prog->_LinkedShaders[i]->ir;
2862 const struct gl_shader_compiler_options *options =
2863 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2864
2865 do {
2866 progress = false;
2867
2868 /* Lowering */
2869 do_mat_op_to_vec(ir);
2870 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2871 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2872 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2873
2874 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2875
2876 progress = do_common_optimization(ir, true, true,
2877 options, ctx->Const.NativeIntegers)
2878 || progress;
2879
2880 progress = lower_quadop_vector(ir, true) || progress;
2881
2882 if (options->MaxIfDepth == 0)
2883 progress = lower_discard(ir) || progress;
2884
2885 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2886
2887 if (options->EmitNoNoise)
2888 progress = lower_noise(ir) || progress;
2889
2890 /* If there are forms of indirect addressing that the driver
2891 * cannot handle, perform the lowering pass.
2892 */
2893 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2894 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2895 progress =
2896 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
2897 options->EmitNoIndirectInput,
2898 options->EmitNoIndirectOutput,
2899 options->EmitNoIndirectTemp,
2900 options->EmitNoIndirectUniform)
2901 || progress;
2902
2903 progress = do_vec_index_to_cond_assign(ir) || progress;
2904 progress = lower_vector_insert(ir, true) || progress;
2905 } while (progress);
2906
2907 validate_ir_tree(ir);
2908 }
2909
2910 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2911 struct gl_program *linked_prog;
2912
2913 if (prog->_LinkedShaders[i] == NULL)
2914 continue;
2915
2916 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2917
2918 if (linked_prog) {
2919 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2920
2921 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
2922 linked_prog);
2923 if (!ctx->Driver.ProgramStringNotify(ctx,
2924 _mesa_shader_stage_to_program(i),
2925 linked_prog)) {
2926 return GL_FALSE;
2927 }
2928 }
2929
2930 _mesa_reference_program(ctx, &linked_prog, NULL);
2931 }
2932
2933 return prog->LinkStatus;
2934 }
2935
2936 /**
2937 * Link a GLSL shader program. Called via glLinkProgram().
2938 */
2939 void
2940 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2941 {
2942 unsigned int i;
2943
2944 _mesa_clear_shader_program_data(prog);
2945
2946 prog->LinkStatus = GL_TRUE;
2947
2948 for (i = 0; i < prog->NumShaders; i++) {
2949 if (!prog->Shaders[i]->CompileStatus) {
2950 linker_error(prog, "linking with uncompiled shader");
2951 }
2952 }
2953
2954 if (prog->LinkStatus) {
2955 link_shaders(ctx, prog);
2956 }
2957
2958 if (prog->LinkStatus) {
2959 if (!ctx->Driver.LinkShader(ctx, prog)) {
2960 prog->LinkStatus = GL_FALSE;
2961 } else {
2962 build_program_resource_list(prog);
2963 }
2964 }
2965
2966 if (ctx->_Shader->Flags & GLSL_DUMP) {
2967 if (!prog->LinkStatus) {
2968 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
2969 }
2970
2971 if (prog->InfoLog && prog->InfoLog[0] != 0) {
2972 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
2973 fprintf(stderr, "%s\n", prog->InfoLog);
2974 }
2975 }
2976 }
2977
2978 } /* extern "C" */