Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/macros.h"
35 #include "main/mtypes.h"
36 #include "main/shaderapi.h"
37 #include "main/shaderobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "program/hash_table.h"
50 #include "program/prog_instruction.h"
51 #include "program/prog_optimize.h"
52 #include "program/prog_print.h"
53 #include "program/program.h"
54 #include "program/prog_parameter.h"
55
56
57 static int swizzle_for_size(int size);
58
59 namespace {
60
61 class src_reg;
62 class dst_reg;
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->reladdr = NULL;
109 }
110
111 dst_reg()
112 {
113 this->file = PROGRAM_UNDEFINED;
114 this->index = 0;
115 this->writemask = 0;
116 this->reladdr = NULL;
117 }
118
119 explicit dst_reg(src_reg reg);
120
121 gl_register_file file; /**< PROGRAM_* from Mesa */
122 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
123 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
124 /** Register index should be offset by the integer in this reg. */
125 src_reg *reladdr;
126 };
127
128 } /* anonymous namespace */
129
130 src_reg::src_reg(dst_reg reg)
131 {
132 this->file = reg.file;
133 this->index = reg.index;
134 this->swizzle = SWIZZLE_XYZW;
135 this->negate = 0;
136 this->reladdr = reg.reladdr;
137 }
138
139 dst_reg::dst_reg(src_reg reg)
140 {
141 this->file = reg.file;
142 this->index = reg.index;
143 this->writemask = WRITEMASK_XYZW;
144 this->reladdr = reg.reladdr;
145 }
146
147 namespace {
148
149 class ir_to_mesa_instruction : public exec_node {
150 public:
151 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
152
153 enum prog_opcode op;
154 dst_reg dst;
155 src_reg src[3];
156 /** Pointer to the ir source this tree came from for debugging */
157 ir_instruction *ir;
158 bool saturate;
159 int sampler; /**< sampler index */
160 int tex_target; /**< One of TEXTURE_*_INDEX */
161 GLboolean tex_shadow;
162 };
163
164 class variable_storage : public exec_node {
165 public:
166 variable_storage(ir_variable *var, gl_register_file file, int index)
167 : file(file), index(index), var(var)
168 {
169 /* empty */
170 }
171
172 gl_register_file file;
173 int index;
174 ir_variable *var; /* variable that maps to this, if any */
175 };
176
177 class function_entry : public exec_node {
178 public:
179 ir_function_signature *sig;
180
181 /**
182 * identifier of this function signature used by the program.
183 *
184 * At the point that Mesa instructions for function calls are
185 * generated, we don't know the address of the first instruction of
186 * the function body. So we make the BranchTarget that is called a
187 * small integer and rewrite them during set_branchtargets().
188 */
189 int sig_id;
190
191 /**
192 * Pointer to first instruction of the function body.
193 *
194 * Set during function body emits after main() is processed.
195 */
196 ir_to_mesa_instruction *bgn_inst;
197
198 /**
199 * Index of the first instruction of the function body in actual
200 * Mesa IR.
201 *
202 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
203 */
204 int inst;
205
206 /** Storage for the return value. */
207 src_reg return_reg;
208 };
209
210 class ir_to_mesa_visitor : public ir_visitor {
211 public:
212 ir_to_mesa_visitor();
213 ~ir_to_mesa_visitor();
214
215 function_entry *current_function;
216
217 struct gl_context *ctx;
218 struct gl_program *prog;
219 struct gl_shader_program *shader_program;
220 struct gl_shader_compiler_options *options;
221
222 int next_temp;
223
224 variable_storage *find_variable_storage(const ir_variable *var);
225
226 src_reg get_temp(const glsl_type *type);
227 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
228
229 src_reg src_reg_for_float(float val);
230
231 /**
232 * \name Visit methods
233 *
234 * As typical for the visitor pattern, there must be one \c visit method for
235 * each concrete subclass of \c ir_instruction. Virtual base classes within
236 * the hierarchy should not have \c visit methods.
237 */
238 /*@{*/
239 virtual void visit(ir_variable *);
240 virtual void visit(ir_loop *);
241 virtual void visit(ir_loop_jump *);
242 virtual void visit(ir_function_signature *);
243 virtual void visit(ir_function *);
244 virtual void visit(ir_expression *);
245 virtual void visit(ir_swizzle *);
246 virtual void visit(ir_dereference_variable *);
247 virtual void visit(ir_dereference_array *);
248 virtual void visit(ir_dereference_record *);
249 virtual void visit(ir_assignment *);
250 virtual void visit(ir_constant *);
251 virtual void visit(ir_call *);
252 virtual void visit(ir_return *);
253 virtual void visit(ir_discard *);
254 virtual void visit(ir_texture *);
255 virtual void visit(ir_if *);
256 virtual void visit(ir_emit_vertex *);
257 virtual void visit(ir_end_primitive *);
258 virtual void visit(ir_barrier *);
259 /*@}*/
260
261 src_reg result;
262
263 /** List of variable_storage */
264 exec_list variables;
265
266 /** List of function_entry */
267 exec_list function_signatures;
268 int next_signature_id;
269
270 /** List of ir_to_mesa_instruction */
271 exec_list instructions;
272
273 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
276 dst_reg dst, src_reg src0);
277
278 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
279 dst_reg dst, src_reg src0, src_reg src1);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst,
283 src_reg src0, src_reg src1, src_reg src2);
284
285 /**
286 * Emit the correct dot-product instruction for the type of arguments
287 */
288 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
289 dst_reg dst,
290 src_reg src0,
291 src_reg src1,
292 unsigned elements);
293
294 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
295 dst_reg dst, src_reg src0);
296
297 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
298 dst_reg dst, src_reg src0, src_reg src1);
299
300 bool try_emit_mad(ir_expression *ir,
301 int mul_operand);
302 bool try_emit_mad_for_and_not(ir_expression *ir,
303 int mul_operand);
304
305 void emit_swz(ir_expression *ir);
306
307 bool process_move_condition(ir_rvalue *ir);
308
309 void copy_propagate(void);
310
311 void *mem_ctx;
312 };
313
314 } /* anonymous namespace */
315
316 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
317
318 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
319
320 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
321
322 static int
323 swizzle_for_size(int size)
324 {
325 static const int size_swizzles[4] = {
326 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
327 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
328 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
329 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
330 };
331
332 assert((size >= 1) && (size <= 4));
333 return size_swizzles[size - 1];
334 }
335
336 ir_to_mesa_instruction *
337 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
338 dst_reg dst,
339 src_reg src0, src_reg src1, src_reg src2)
340 {
341 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
342 int num_reladdr = 0;
343
344 /* If we have to do relative addressing, we want to load the ARL
345 * reg directly for one of the regs, and preload the other reladdr
346 * sources into temps.
347 */
348 num_reladdr += dst.reladdr != NULL;
349 num_reladdr += src0.reladdr != NULL;
350 num_reladdr += src1.reladdr != NULL;
351 num_reladdr += src2.reladdr != NULL;
352
353 reladdr_to_temp(ir, &src2, &num_reladdr);
354 reladdr_to_temp(ir, &src1, &num_reladdr);
355 reladdr_to_temp(ir, &src0, &num_reladdr);
356
357 if (dst.reladdr) {
358 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
359 num_reladdr--;
360 }
361 assert(num_reladdr == 0);
362
363 inst->op = op;
364 inst->dst = dst;
365 inst->src[0] = src0;
366 inst->src[1] = src1;
367 inst->src[2] = src2;
368 inst->ir = ir;
369
370 this->instructions.push_tail(inst);
371
372 return inst;
373 }
374
375
376 ir_to_mesa_instruction *
377 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
378 dst_reg dst, src_reg src0, src_reg src1)
379 {
380 return emit(ir, op, dst, src0, src1, undef_src);
381 }
382
383 ir_to_mesa_instruction *
384 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
385 dst_reg dst, src_reg src0)
386 {
387 assert(dst.writemask != 0);
388 return emit(ir, op, dst, src0, undef_src, undef_src);
389 }
390
391 ir_to_mesa_instruction *
392 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
393 {
394 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
395 }
396
397 ir_to_mesa_instruction *
398 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
399 dst_reg dst, src_reg src0, src_reg src1,
400 unsigned elements)
401 {
402 static const enum prog_opcode dot_opcodes[] = {
403 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
404 };
405
406 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
407 }
408
409 /**
410 * Emits Mesa scalar opcodes to produce unique answers across channels.
411 *
412 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
413 * channel determines the result across all channels. So to do a vec4
414 * of this operation, we want to emit a scalar per source channel used
415 * to produce dest channels.
416 */
417 void
418 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
419 dst_reg dst,
420 src_reg orig_src0, src_reg orig_src1)
421 {
422 int i, j;
423 int done_mask = ~dst.writemask;
424
425 /* Mesa RCP is a scalar operation splatting results to all channels,
426 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
427 * dst channels.
428 */
429 for (i = 0; i < 4; i++) {
430 GLuint this_mask = (1 << i);
431 ir_to_mesa_instruction *inst;
432 src_reg src0 = orig_src0;
433 src_reg src1 = orig_src1;
434
435 if (done_mask & this_mask)
436 continue;
437
438 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
439 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
440 for (j = i + 1; j < 4; j++) {
441 /* If there is another enabled component in the destination that is
442 * derived from the same inputs, generate its value on this pass as
443 * well.
444 */
445 if (!(done_mask & (1 << j)) &&
446 GET_SWZ(src0.swizzle, j) == src0_swiz &&
447 GET_SWZ(src1.swizzle, j) == src1_swiz) {
448 this_mask |= (1 << j);
449 }
450 }
451 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
452 src0_swiz, src0_swiz);
453 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
454 src1_swiz, src1_swiz);
455
456 inst = emit(ir, op, dst, src0, src1);
457 inst->dst.writemask = this_mask;
458 done_mask |= this_mask;
459 }
460 }
461
462 void
463 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
464 dst_reg dst, src_reg src0)
465 {
466 src_reg undef = undef_src;
467
468 undef.swizzle = SWIZZLE_XXXX;
469
470 emit_scalar(ir, op, dst, src0, undef);
471 }
472
473 src_reg
474 ir_to_mesa_visitor::src_reg_for_float(float val)
475 {
476 src_reg src(PROGRAM_CONSTANT, -1, NULL);
477
478 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
479 (const gl_constant_value *)&val, 1, &src.swizzle);
480
481 return src;
482 }
483
484 static int
485 type_size(const struct glsl_type *type)
486 {
487 unsigned int i;
488 int size;
489
490 switch (type->base_type) {
491 case GLSL_TYPE_UINT:
492 case GLSL_TYPE_INT:
493 case GLSL_TYPE_FLOAT:
494 case GLSL_TYPE_BOOL:
495 if (type->is_matrix()) {
496 return type->matrix_columns;
497 } else {
498 /* Regardless of size of vector, it gets a vec4. This is bad
499 * packing for things like floats, but otherwise arrays become a
500 * mess. Hopefully a later pass over the code can pack scalars
501 * down if appropriate.
502 */
503 return 1;
504 }
505 break;
506 case GLSL_TYPE_DOUBLE:
507 if (type->is_matrix()) {
508 if (type->vector_elements > 2)
509 return type->matrix_columns * 2;
510 else
511 return type->matrix_columns;
512 } else {
513 if (type->vector_elements > 2)
514 return 2;
515 else
516 return 1;
517 }
518 break;
519 case GLSL_TYPE_ARRAY:
520 assert(type->length > 0);
521 return type_size(type->fields.array) * type->length;
522 case GLSL_TYPE_STRUCT:
523 size = 0;
524 for (i = 0; i < type->length; i++) {
525 size += type_size(type->fields.structure[i].type);
526 }
527 return size;
528 case GLSL_TYPE_SAMPLER:
529 case GLSL_TYPE_IMAGE:
530 case GLSL_TYPE_SUBROUTINE:
531 /* Samplers take up one slot in UNIFORMS[], but they're baked in
532 * at link time.
533 */
534 return 1;
535 case GLSL_TYPE_ATOMIC_UINT:
536 case GLSL_TYPE_VOID:
537 case GLSL_TYPE_ERROR:
538 case GLSL_TYPE_INTERFACE:
539 case GLSL_TYPE_FUNCTION:
540 assert(!"Invalid type in type_size");
541 break;
542 }
543
544 return 0;
545 }
546
547 /**
548 * In the initial pass of codegen, we assign temporary numbers to
549 * intermediate results. (not SSA -- variable assignments will reuse
550 * storage). Actual register allocation for the Mesa VM occurs in a
551 * pass over the Mesa IR later.
552 */
553 src_reg
554 ir_to_mesa_visitor::get_temp(const glsl_type *type)
555 {
556 src_reg src;
557
558 src.file = PROGRAM_TEMPORARY;
559 src.index = next_temp;
560 src.reladdr = NULL;
561 next_temp += type_size(type);
562
563 if (type->is_array() || type->is_record()) {
564 src.swizzle = SWIZZLE_NOOP;
565 } else {
566 src.swizzle = swizzle_for_size(type->vector_elements);
567 }
568 src.negate = 0;
569
570 return src;
571 }
572
573 variable_storage *
574 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
575 {
576 foreach_in_list(variable_storage, entry, &this->variables) {
577 if (entry->var == var)
578 return entry;
579 }
580
581 return NULL;
582 }
583
584 void
585 ir_to_mesa_visitor::visit(ir_variable *ir)
586 {
587 if (strcmp(ir->name, "gl_FragCoord") == 0) {
588 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
589
590 fp->OriginUpperLeft = ir->data.origin_upper_left;
591 fp->PixelCenterInteger = ir->data.pixel_center_integer;
592 }
593
594 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
595 unsigned int i;
596 const ir_state_slot *const slots = ir->get_state_slots();
597 assert(slots != NULL);
598
599 /* Check if this statevar's setup in the STATE file exactly
600 * matches how we'll want to reference it as a
601 * struct/array/whatever. If not, then we need to move it into
602 * temporary storage and hope that it'll get copy-propagated
603 * out.
604 */
605 for (i = 0; i < ir->get_num_state_slots(); i++) {
606 if (slots[i].swizzle != SWIZZLE_XYZW) {
607 break;
608 }
609 }
610
611 variable_storage *storage;
612 dst_reg dst;
613 if (i == ir->get_num_state_slots()) {
614 /* We'll set the index later. */
615 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
616 this->variables.push_tail(storage);
617
618 dst = undef_dst;
619 } else {
620 /* The variable_storage constructor allocates slots based on the size
621 * of the type. However, this had better match the number of state
622 * elements that we're going to copy into the new temporary.
623 */
624 assert((int) ir->get_num_state_slots() == type_size(ir->type));
625
626 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
627 this->next_temp);
628 this->variables.push_tail(storage);
629 this->next_temp += type_size(ir->type);
630
631 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
632 }
633
634
635 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
636 int index = _mesa_add_state_reference(this->prog->Parameters,
637 (gl_state_index *)slots[i].tokens);
638
639 if (storage->file == PROGRAM_STATE_VAR) {
640 if (storage->index == -1) {
641 storage->index = index;
642 } else {
643 assert(index == storage->index + (int)i);
644 }
645 } else {
646 src_reg src(PROGRAM_STATE_VAR, index, NULL);
647 src.swizzle = slots[i].swizzle;
648 emit(ir, OPCODE_MOV, dst, src);
649 /* even a float takes up a whole vec4 reg in a struct/array. */
650 dst.index++;
651 }
652 }
653
654 if (storage->file == PROGRAM_TEMPORARY &&
655 dst.index != storage->index + (int) ir->get_num_state_slots()) {
656 linker_error(this->shader_program,
657 "failed to load builtin uniform `%s' "
658 "(%d/%d regs loaded)\n",
659 ir->name, dst.index - storage->index,
660 type_size(ir->type));
661 }
662 }
663 }
664
665 void
666 ir_to_mesa_visitor::visit(ir_loop *ir)
667 {
668 emit(NULL, OPCODE_BGNLOOP);
669
670 visit_exec_list(&ir->body_instructions, this);
671
672 emit(NULL, OPCODE_ENDLOOP);
673 }
674
675 void
676 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
677 {
678 switch (ir->mode) {
679 case ir_loop_jump::jump_break:
680 emit(NULL, OPCODE_BRK);
681 break;
682 case ir_loop_jump::jump_continue:
683 emit(NULL, OPCODE_CONT);
684 break;
685 }
686 }
687
688
689 void
690 ir_to_mesa_visitor::visit(ir_function_signature *ir)
691 {
692 assert(0);
693 (void)ir;
694 }
695
696 void
697 ir_to_mesa_visitor::visit(ir_function *ir)
698 {
699 /* Ignore function bodies other than main() -- we shouldn't see calls to
700 * them since they should all be inlined before we get to ir_to_mesa.
701 */
702 if (strcmp(ir->name, "main") == 0) {
703 const ir_function_signature *sig;
704 exec_list empty;
705
706 sig = ir->matching_signature(NULL, &empty, false);
707
708 assert(sig);
709
710 foreach_in_list(ir_instruction, ir, &sig->body) {
711 ir->accept(this);
712 }
713 }
714 }
715
716 bool
717 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
718 {
719 int nonmul_operand = 1 - mul_operand;
720 src_reg a, b, c;
721
722 ir_expression *expr = ir->operands[mul_operand]->as_expression();
723 if (!expr || expr->operation != ir_binop_mul)
724 return false;
725
726 expr->operands[0]->accept(this);
727 a = this->result;
728 expr->operands[1]->accept(this);
729 b = this->result;
730 ir->operands[nonmul_operand]->accept(this);
731 c = this->result;
732
733 this->result = get_temp(ir->type);
734 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
735
736 return true;
737 }
738
739 /**
740 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
741 *
742 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
743 * implemented using multiplication, and logical-or is implemented using
744 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
745 * As result, the logical expression (a & !b) can be rewritten as:
746 *
747 * - a * !b
748 * - a * (1 - b)
749 * - (a * 1) - (a * b)
750 * - a + -(a * b)
751 * - a + (a * -b)
752 *
753 * This final expression can be implemented as a single MAD(a, -b, a)
754 * instruction.
755 */
756 bool
757 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
758 {
759 const int other_operand = 1 - try_operand;
760 src_reg a, b;
761
762 ir_expression *expr = ir->operands[try_operand]->as_expression();
763 if (!expr || expr->operation != ir_unop_logic_not)
764 return false;
765
766 ir->operands[other_operand]->accept(this);
767 a = this->result;
768 expr->operands[0]->accept(this);
769 b = this->result;
770
771 b.negate = ~b.negate;
772
773 this->result = get_temp(ir->type);
774 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
775
776 return true;
777 }
778
779 void
780 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
781 src_reg *reg, int *num_reladdr)
782 {
783 if (!reg->reladdr)
784 return;
785
786 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
787
788 if (*num_reladdr != 1) {
789 src_reg temp = get_temp(glsl_type::vec4_type);
790
791 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
792 *reg = temp;
793 }
794
795 (*num_reladdr)--;
796 }
797
798 void
799 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
800 {
801 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
802 * This means that each of the operands is either an immediate value of -1,
803 * 0, or 1, or is a component from one source register (possibly with
804 * negation).
805 */
806 uint8_t components[4] = { 0 };
807 bool negate[4] = { false };
808 ir_variable *var = NULL;
809
810 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
811 ir_rvalue *op = ir->operands[i];
812
813 assert(op->type->is_scalar());
814
815 while (op != NULL) {
816 switch (op->ir_type) {
817 case ir_type_constant: {
818
819 assert(op->type->is_scalar());
820
821 const ir_constant *const c = op->as_constant();
822 if (c->is_one()) {
823 components[i] = SWIZZLE_ONE;
824 } else if (c->is_zero()) {
825 components[i] = SWIZZLE_ZERO;
826 } else if (c->is_negative_one()) {
827 components[i] = SWIZZLE_ONE;
828 negate[i] = true;
829 } else {
830 assert(!"SWZ constant must be 0.0 or 1.0.");
831 }
832
833 op = NULL;
834 break;
835 }
836
837 case ir_type_dereference_variable: {
838 ir_dereference_variable *const deref =
839 (ir_dereference_variable *) op;
840
841 assert((var == NULL) || (deref->var == var));
842 components[i] = SWIZZLE_X;
843 var = deref->var;
844 op = NULL;
845 break;
846 }
847
848 case ir_type_expression: {
849 ir_expression *const expr = (ir_expression *) op;
850
851 assert(expr->operation == ir_unop_neg);
852 negate[i] = true;
853
854 op = expr->operands[0];
855 break;
856 }
857
858 case ir_type_swizzle: {
859 ir_swizzle *const swiz = (ir_swizzle *) op;
860
861 components[i] = swiz->mask.x;
862 op = swiz->val;
863 break;
864 }
865
866 default:
867 assert(!"Should not get here.");
868 return;
869 }
870 }
871 }
872
873 assert(var != NULL);
874
875 ir_dereference_variable *const deref =
876 new(mem_ctx) ir_dereference_variable(var);
877
878 this->result.file = PROGRAM_UNDEFINED;
879 deref->accept(this);
880 if (this->result.file == PROGRAM_UNDEFINED) {
881 printf("Failed to get tree for expression operand:\n");
882 deref->print();
883 printf("\n");
884 exit(1);
885 }
886
887 src_reg src;
888
889 src = this->result;
890 src.swizzle = MAKE_SWIZZLE4(components[0],
891 components[1],
892 components[2],
893 components[3]);
894 src.negate = ((unsigned(negate[0]) << 0)
895 | (unsigned(negate[1]) << 1)
896 | (unsigned(negate[2]) << 2)
897 | (unsigned(negate[3]) << 3));
898
899 /* Storage for our result. Ideally for an assignment we'd be using the
900 * actual storage for the result here, instead.
901 */
902 const src_reg result_src = get_temp(ir->type);
903 dst_reg result_dst = dst_reg(result_src);
904
905 /* Limit writes to the channels that will be used by result_src later.
906 * This does limit this temp's use as a temporary for multi-instruction
907 * sequences.
908 */
909 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
910
911 emit(ir, OPCODE_SWZ, result_dst, src);
912 this->result = result_src;
913 }
914
915 void
916 ir_to_mesa_visitor::visit(ir_expression *ir)
917 {
918 unsigned int operand;
919 src_reg op[ARRAY_SIZE(ir->operands)];
920 src_reg result_src;
921 dst_reg result_dst;
922
923 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
924 */
925 if (ir->operation == ir_binop_add) {
926 if (try_emit_mad(ir, 1))
927 return;
928 if (try_emit_mad(ir, 0))
929 return;
930 }
931
932 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
933 */
934 if (ir->operation == ir_binop_logic_and) {
935 if (try_emit_mad_for_and_not(ir, 1))
936 return;
937 if (try_emit_mad_for_and_not(ir, 0))
938 return;
939 }
940
941 if (ir->operation == ir_quadop_vector) {
942 this->emit_swz(ir);
943 return;
944 }
945
946 for (operand = 0; operand < ir->get_num_operands(); operand++) {
947 this->result.file = PROGRAM_UNDEFINED;
948 ir->operands[operand]->accept(this);
949 if (this->result.file == PROGRAM_UNDEFINED) {
950 printf("Failed to get tree for expression operand:\n");
951 ir->operands[operand]->print();
952 printf("\n");
953 exit(1);
954 }
955 op[operand] = this->result;
956
957 /* Matrix expression operands should have been broken down to vector
958 * operations already.
959 */
960 assert(!ir->operands[operand]->type->is_matrix());
961 }
962
963 int vector_elements = ir->operands[0]->type->vector_elements;
964 if (ir->operands[1]) {
965 vector_elements = MAX2(vector_elements,
966 ir->operands[1]->type->vector_elements);
967 }
968
969 this->result.file = PROGRAM_UNDEFINED;
970
971 /* Storage for our result. Ideally for an assignment we'd be using
972 * the actual storage for the result here, instead.
973 */
974 result_src = get_temp(ir->type);
975 /* convenience for the emit functions below. */
976 result_dst = dst_reg(result_src);
977 /* Limit writes to the channels that will be used by result_src later.
978 * This does limit this temp's use as a temporary for multi-instruction
979 * sequences.
980 */
981 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
982
983 switch (ir->operation) {
984 case ir_unop_logic_not:
985 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
986 * older GPUs implement SEQ using multiple instructions (i915 uses two
987 * SGE instructions and a MUL instruction). Since our logic values are
988 * 0.0 and 1.0, 1-x also implements !x.
989 */
990 op[0].negate = ~op[0].negate;
991 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
992 break;
993 case ir_unop_neg:
994 op[0].negate = ~op[0].negate;
995 result_src = op[0];
996 break;
997 case ir_unop_abs:
998 emit(ir, OPCODE_ABS, result_dst, op[0]);
999 break;
1000 case ir_unop_sign:
1001 emit(ir, OPCODE_SSG, result_dst, op[0]);
1002 break;
1003 case ir_unop_rcp:
1004 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1005 break;
1006
1007 case ir_unop_exp2:
1008 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1009 break;
1010 case ir_unop_exp:
1011 case ir_unop_log:
1012 assert(!"not reached: should be handled by ir_explog_to_explog2");
1013 break;
1014 case ir_unop_log2:
1015 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1016 break;
1017 case ir_unop_sin:
1018 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1019 break;
1020 case ir_unop_cos:
1021 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1022 break;
1023
1024 case ir_unop_dFdx:
1025 emit(ir, OPCODE_DDX, result_dst, op[0]);
1026 break;
1027 case ir_unop_dFdy:
1028 emit(ir, OPCODE_DDY, result_dst, op[0]);
1029 break;
1030
1031 case ir_unop_saturate: {
1032 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1033 result_dst, op[0]);
1034 inst->saturate = true;
1035 break;
1036 }
1037 case ir_unop_noise: {
1038 const enum prog_opcode opcode =
1039 prog_opcode(OPCODE_NOISE1
1040 + (ir->operands[0]->type->vector_elements) - 1);
1041 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1042
1043 emit(ir, opcode, result_dst, op[0]);
1044 break;
1045 }
1046
1047 case ir_binop_add:
1048 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1049 break;
1050 case ir_binop_sub:
1051 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1052 break;
1053
1054 case ir_binop_mul:
1055 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1056 break;
1057 case ir_binop_div:
1058 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1059 break;
1060 case ir_binop_mod:
1061 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1062 assert(ir->type->is_integer());
1063 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1064 break;
1065
1066 case ir_binop_less:
1067 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1068 break;
1069 case ir_binop_greater:
1070 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1071 break;
1072 case ir_binop_lequal:
1073 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1074 break;
1075 case ir_binop_gequal:
1076 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1077 break;
1078 case ir_binop_equal:
1079 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1080 break;
1081 case ir_binop_nequal:
1082 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1083 break;
1084 case ir_binop_all_equal:
1085 /* "==" operator producing a scalar boolean. */
1086 if (ir->operands[0]->type->is_vector() ||
1087 ir->operands[1]->type->is_vector()) {
1088 src_reg temp = get_temp(glsl_type::vec4_type);
1089 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1090
1091 /* After the dot-product, the value will be an integer on the
1092 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1093 */
1094 emit_dp(ir, result_dst, temp, temp, vector_elements);
1095
1096 /* Negating the result of the dot-product gives values on the range
1097 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1098 * achieved using SGE.
1099 */
1100 src_reg sge_src = result_src;
1101 sge_src.negate = ~sge_src.negate;
1102 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1103 } else {
1104 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1105 }
1106 break;
1107 case ir_binop_any_nequal:
1108 /* "!=" operator producing a scalar boolean. */
1109 if (ir->operands[0]->type->is_vector() ||
1110 ir->operands[1]->type->is_vector()) {
1111 src_reg temp = get_temp(glsl_type::vec4_type);
1112 if (ir->operands[0]->type->is_boolean() &&
1113 ir->operands[1]->as_constant() &&
1114 ir->operands[1]->as_constant()->is_zero()) {
1115 temp = op[0];
1116 } else {
1117 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1118 }
1119
1120 /* After the dot-product, the value will be an integer on the
1121 * range [0,4]. Zero stays zero, and positive values become 1.0.
1122 */
1123 ir_to_mesa_instruction *const dp =
1124 emit_dp(ir, result_dst, temp, temp, vector_elements);
1125 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1126 /* The clamping to [0,1] can be done for free in the fragment
1127 * shader with a saturate.
1128 */
1129 dp->saturate = true;
1130 } else {
1131 /* Negating the result of the dot-product gives values on the range
1132 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1133 * achieved using SLT.
1134 */
1135 src_reg slt_src = result_src;
1136 slt_src.negate = ~slt_src.negate;
1137 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1138 }
1139 } else {
1140 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1141 }
1142 break;
1143
1144 case ir_binop_logic_xor:
1145 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1146 break;
1147
1148 case ir_binop_logic_or: {
1149 /* After the addition, the value will be an integer on the
1150 * range [0,2]. Zero stays zero, and positive values become 1.0.
1151 */
1152 ir_to_mesa_instruction *add =
1153 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1154 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1155 /* The clamping to [0,1] can be done for free in the fragment
1156 * shader with a saturate.
1157 */
1158 add->saturate = true;
1159 } else {
1160 /* Negating the result of the addition gives values on the range
1161 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1162 * is achieved using SLT.
1163 */
1164 src_reg slt_src = result_src;
1165 slt_src.negate = ~slt_src.negate;
1166 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1167 }
1168 break;
1169 }
1170
1171 case ir_binop_logic_and:
1172 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1173 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1174 break;
1175
1176 case ir_binop_dot:
1177 assert(ir->operands[0]->type->is_vector());
1178 assert(ir->operands[0]->type == ir->operands[1]->type);
1179 emit_dp(ir, result_dst, op[0], op[1],
1180 ir->operands[0]->type->vector_elements);
1181 break;
1182
1183 case ir_unop_sqrt:
1184 /* sqrt(x) = x * rsq(x). */
1185 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1186 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1187 /* For incoming channels <= 0, set the result to 0. */
1188 op[0].negate = ~op[0].negate;
1189 emit(ir, OPCODE_CMP, result_dst,
1190 op[0], result_src, src_reg_for_float(0.0));
1191 break;
1192 case ir_unop_rsq:
1193 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1194 break;
1195 case ir_unop_i2f:
1196 case ir_unop_u2f:
1197 case ir_unop_b2f:
1198 case ir_unop_b2i:
1199 case ir_unop_i2u:
1200 case ir_unop_u2i:
1201 /* Mesa IR lacks types, ints are stored as truncated floats. */
1202 result_src = op[0];
1203 break;
1204 case ir_unop_f2i:
1205 case ir_unop_f2u:
1206 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1207 break;
1208 case ir_unop_f2b:
1209 case ir_unop_i2b:
1210 emit(ir, OPCODE_SNE, result_dst,
1211 op[0], src_reg_for_float(0.0));
1212 break;
1213 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1214 case ir_unop_bitcast_f2u:
1215 case ir_unop_bitcast_i2f:
1216 case ir_unop_bitcast_u2f:
1217 break;
1218 case ir_unop_trunc:
1219 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1220 break;
1221 case ir_unop_ceil:
1222 op[0].negate = ~op[0].negate;
1223 emit(ir, OPCODE_FLR, result_dst, op[0]);
1224 result_src.negate = ~result_src.negate;
1225 break;
1226 case ir_unop_floor:
1227 emit(ir, OPCODE_FLR, result_dst, op[0]);
1228 break;
1229 case ir_unop_fract:
1230 emit(ir, OPCODE_FRC, result_dst, op[0]);
1231 break;
1232 case ir_unop_pack_snorm_2x16:
1233 case ir_unop_pack_snorm_4x8:
1234 case ir_unop_pack_unorm_2x16:
1235 case ir_unop_pack_unorm_4x8:
1236 case ir_unop_pack_half_2x16:
1237 case ir_unop_pack_double_2x32:
1238 case ir_unop_unpack_snorm_2x16:
1239 case ir_unop_unpack_snorm_4x8:
1240 case ir_unop_unpack_unorm_2x16:
1241 case ir_unop_unpack_unorm_4x8:
1242 case ir_unop_unpack_half_2x16:
1243 case ir_unop_unpack_double_2x32:
1244 case ir_unop_bitfield_reverse:
1245 case ir_unop_bit_count:
1246 case ir_unop_find_msb:
1247 case ir_unop_find_lsb:
1248 case ir_unop_d2f:
1249 case ir_unop_f2d:
1250 case ir_unop_d2i:
1251 case ir_unop_i2d:
1252 case ir_unop_d2u:
1253 case ir_unop_u2d:
1254 case ir_unop_d2b:
1255 case ir_unop_frexp_sig:
1256 case ir_unop_frexp_exp:
1257 assert(!"not supported");
1258 break;
1259 case ir_binop_min:
1260 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1261 break;
1262 case ir_binop_max:
1263 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1264 break;
1265 case ir_binop_pow:
1266 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1267 break;
1268
1269 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1270 * hardware backends have no way to avoid Mesa IR generation
1271 * even if they don't use it, we need to emit "something" and
1272 * continue.
1273 */
1274 case ir_binop_lshift:
1275 case ir_binop_rshift:
1276 case ir_binop_bit_and:
1277 case ir_binop_bit_xor:
1278 case ir_binop_bit_or:
1279 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1280 break;
1281
1282 case ir_unop_bit_not:
1283 case ir_unop_round_even:
1284 emit(ir, OPCODE_MOV, result_dst, op[0]);
1285 break;
1286
1287 case ir_binop_ubo_load:
1288 assert(!"not supported");
1289 break;
1290
1291 case ir_triop_lrp:
1292 /* ir_triop_lrp operands are (x, y, a) while
1293 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1294 */
1295 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1296 break;
1297
1298 case ir_binop_vector_extract:
1299 case ir_triop_fma:
1300 case ir_triop_bitfield_extract:
1301 case ir_triop_vector_insert:
1302 case ir_quadop_bitfield_insert:
1303 case ir_binop_ldexp:
1304 case ir_triop_csel:
1305 case ir_binop_carry:
1306 case ir_binop_borrow:
1307 case ir_binop_imul_high:
1308 case ir_unop_interpolate_at_centroid:
1309 case ir_binop_interpolate_at_offset:
1310 case ir_binop_interpolate_at_sample:
1311 case ir_unop_dFdx_coarse:
1312 case ir_unop_dFdx_fine:
1313 case ir_unop_dFdy_coarse:
1314 case ir_unop_dFdy_fine:
1315 case ir_unop_subroutine_to_int:
1316 case ir_unop_get_buffer_size:
1317 assert(!"not supported");
1318 break;
1319
1320 case ir_unop_ssbo_unsized_array_length:
1321 case ir_quadop_vector:
1322 /* This operation should have already been handled.
1323 */
1324 assert(!"Should not get here.");
1325 break;
1326 }
1327
1328 this->result = result_src;
1329 }
1330
1331
1332 void
1333 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1334 {
1335 src_reg src;
1336 int i;
1337 int swizzle[4];
1338
1339 /* Note that this is only swizzles in expressions, not those on the left
1340 * hand side of an assignment, which do write masking. See ir_assignment
1341 * for that.
1342 */
1343
1344 ir->val->accept(this);
1345 src = this->result;
1346 assert(src.file != PROGRAM_UNDEFINED);
1347 assert(ir->type->vector_elements > 0);
1348
1349 for (i = 0; i < 4; i++) {
1350 if (i < ir->type->vector_elements) {
1351 switch (i) {
1352 case 0:
1353 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1354 break;
1355 case 1:
1356 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1357 break;
1358 case 2:
1359 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1360 break;
1361 case 3:
1362 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1363 break;
1364 }
1365 } else {
1366 /* If the type is smaller than a vec4, replicate the last
1367 * channel out.
1368 */
1369 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1370 }
1371 }
1372
1373 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1374
1375 this->result = src;
1376 }
1377
1378 void
1379 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1380 {
1381 variable_storage *entry = find_variable_storage(ir->var);
1382 ir_variable *var = ir->var;
1383
1384 if (!entry) {
1385 switch (var->data.mode) {
1386 case ir_var_uniform:
1387 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1388 var->data.param_index);
1389 this->variables.push_tail(entry);
1390 break;
1391 case ir_var_shader_in:
1392 /* The linker assigns locations for varyings and attributes,
1393 * including deprecated builtins (like gl_Color),
1394 * user-assigned generic attributes (glBindVertexLocation),
1395 * and user-defined varyings.
1396 */
1397 assert(var->data.location != -1);
1398 entry = new(mem_ctx) variable_storage(var,
1399 PROGRAM_INPUT,
1400 var->data.location);
1401 break;
1402 case ir_var_shader_out:
1403 assert(var->data.location != -1);
1404 entry = new(mem_ctx) variable_storage(var,
1405 PROGRAM_OUTPUT,
1406 var->data.location);
1407 break;
1408 case ir_var_system_value:
1409 entry = new(mem_ctx) variable_storage(var,
1410 PROGRAM_SYSTEM_VALUE,
1411 var->data.location);
1412 break;
1413 case ir_var_auto:
1414 case ir_var_temporary:
1415 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1416 this->next_temp);
1417 this->variables.push_tail(entry);
1418
1419 next_temp += type_size(var->type);
1420 break;
1421 }
1422
1423 if (!entry) {
1424 printf("Failed to make storage for %s\n", var->name);
1425 exit(1);
1426 }
1427 }
1428
1429 this->result = src_reg(entry->file, entry->index, var->type);
1430 }
1431
1432 void
1433 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1434 {
1435 ir_constant *index;
1436 src_reg src;
1437 int element_size = type_size(ir->type);
1438
1439 index = ir->array_index->constant_expression_value();
1440
1441 ir->array->accept(this);
1442 src = this->result;
1443
1444 if (index) {
1445 src.index += index->value.i[0] * element_size;
1446 } else {
1447 /* Variable index array dereference. It eats the "vec4" of the
1448 * base of the array and an index that offsets the Mesa register
1449 * index.
1450 */
1451 ir->array_index->accept(this);
1452
1453 src_reg index_reg;
1454
1455 if (element_size == 1) {
1456 index_reg = this->result;
1457 } else {
1458 index_reg = get_temp(glsl_type::float_type);
1459
1460 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1461 this->result, src_reg_for_float(element_size));
1462 }
1463
1464 /* If there was already a relative address register involved, add the
1465 * new and the old together to get the new offset.
1466 */
1467 if (src.reladdr != NULL) {
1468 src_reg accum_reg = get_temp(glsl_type::float_type);
1469
1470 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1471 index_reg, *src.reladdr);
1472
1473 index_reg = accum_reg;
1474 }
1475
1476 src.reladdr = ralloc(mem_ctx, src_reg);
1477 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1478 }
1479
1480 /* If the type is smaller than a vec4, replicate the last channel out. */
1481 if (ir->type->is_scalar() || ir->type->is_vector())
1482 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1483 else
1484 src.swizzle = SWIZZLE_NOOP;
1485
1486 this->result = src;
1487 }
1488
1489 void
1490 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1491 {
1492 unsigned int i;
1493 const glsl_type *struct_type = ir->record->type;
1494 int offset = 0;
1495
1496 ir->record->accept(this);
1497
1498 for (i = 0; i < struct_type->length; i++) {
1499 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1500 break;
1501 offset += type_size(struct_type->fields.structure[i].type);
1502 }
1503
1504 /* If the type is smaller than a vec4, replicate the last channel out. */
1505 if (ir->type->is_scalar() || ir->type->is_vector())
1506 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1507 else
1508 this->result.swizzle = SWIZZLE_NOOP;
1509
1510 this->result.index += offset;
1511 }
1512
1513 /**
1514 * We want to be careful in assignment setup to hit the actual storage
1515 * instead of potentially using a temporary like we might with the
1516 * ir_dereference handler.
1517 */
1518 static dst_reg
1519 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1520 {
1521 /* The LHS must be a dereference. If the LHS is a variable indexed array
1522 * access of a vector, it must be separated into a series conditional moves
1523 * before reaching this point (see ir_vec_index_to_cond_assign).
1524 */
1525 assert(ir->as_dereference());
1526 ir_dereference_array *deref_array = ir->as_dereference_array();
1527 if (deref_array) {
1528 assert(!deref_array->array->type->is_vector());
1529 }
1530
1531 /* Use the rvalue deref handler for the most part. We'll ignore
1532 * swizzles in it and write swizzles using writemask, though.
1533 */
1534 ir->accept(v);
1535 return dst_reg(v->result);
1536 }
1537
1538 /* Calculate the sampler index and also calculate the base uniform location
1539 * for struct members.
1540 */
1541 static void
1542 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1543 unsigned *offset, unsigned *array_elements,
1544 unsigned *location)
1545 {
1546 if (deref->ir_type == ir_type_dereference_variable)
1547 return;
1548
1549 switch (deref->ir_type) {
1550 case ir_type_dereference_array: {
1551 ir_dereference_array *deref_arr = deref->as_dereference_array();
1552 ir_constant *array_index =
1553 deref_arr->array_index->constant_expression_value();
1554
1555 if (!array_index) {
1556 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1557 * while GLSL 1.30 requires that the array indices be
1558 * constant integer expressions. We don't expect any driver
1559 * to actually work with a really variable array index, so
1560 * all that would work would be an unrolled loop counter that ends
1561 * up being constant above.
1562 */
1563 ralloc_strcat(&prog->InfoLog,
1564 "warning: Variable sampler array index unsupported.\n"
1565 "This feature of the language was removed in GLSL 1.20 "
1566 "and is unlikely to be supported for 1.10 in Mesa.\n");
1567 } else {
1568 *offset += array_index->value.u[0] * *array_elements;
1569 }
1570
1571 *array_elements *= deref_arr->array->type->length;
1572
1573 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1574 offset, array_elements, location);
1575 break;
1576 }
1577
1578 case ir_type_dereference_record: {
1579 ir_dereference_record *deref_record = deref->as_dereference_record();
1580 unsigned field_index =
1581 deref_record->record->type->field_index(deref_record->field);
1582 *location +=
1583 deref_record->record->type->record_location_offset(field_index);
1584 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1585 offset, array_elements, location);
1586 break;
1587 }
1588
1589 default:
1590 unreachable("Invalid deref type");
1591 break;
1592 }
1593 }
1594
1595 static int
1596 get_sampler_uniform_value(class ir_dereference *sampler,
1597 struct gl_shader_program *shader_program,
1598 const struct gl_program *prog)
1599 {
1600 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1601 ir_variable *var = sampler->variable_referenced();
1602 unsigned location = var->data.location;
1603 unsigned array_elements = 1;
1604 unsigned offset = 0;
1605
1606 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1607 &location);
1608
1609 assert(shader_program->UniformStorage[location].opaque[shader].active);
1610 return shader_program->UniformStorage[location].opaque[shader].index +
1611 offset;
1612 }
1613
1614 /**
1615 * Process the condition of a conditional assignment
1616 *
1617 * Examines the condition of a conditional assignment to generate the optimal
1618 * first operand of a \c CMP instruction. If the condition is a relational
1619 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1620 * used as the source for the \c CMP instruction. Otherwise the comparison
1621 * is processed to a boolean result, and the boolean result is used as the
1622 * operand to the CMP instruction.
1623 */
1624 bool
1625 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1626 {
1627 ir_rvalue *src_ir = ir;
1628 bool negate = true;
1629 bool switch_order = false;
1630
1631 ir_expression *const expr = ir->as_expression();
1632 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1633 bool zero_on_left = false;
1634
1635 if (expr->operands[0]->is_zero()) {
1636 src_ir = expr->operands[1];
1637 zero_on_left = true;
1638 } else if (expr->operands[1]->is_zero()) {
1639 src_ir = expr->operands[0];
1640 zero_on_left = false;
1641 }
1642
1643 /* a is - 0 + - 0 +
1644 * (a < 0) T F F ( a < 0) T F F
1645 * (0 < a) F F T (-a < 0) F F T
1646 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1647 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1648 * (a > 0) F F T (-a < 0) F F T
1649 * (0 > a) T F F ( a < 0) T F F
1650 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1651 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1652 *
1653 * Note that exchanging the order of 0 and 'a' in the comparison simply
1654 * means that the value of 'a' should be negated.
1655 */
1656 if (src_ir != ir) {
1657 switch (expr->operation) {
1658 case ir_binop_less:
1659 switch_order = false;
1660 negate = zero_on_left;
1661 break;
1662
1663 case ir_binop_greater:
1664 switch_order = false;
1665 negate = !zero_on_left;
1666 break;
1667
1668 case ir_binop_lequal:
1669 switch_order = true;
1670 negate = !zero_on_left;
1671 break;
1672
1673 case ir_binop_gequal:
1674 switch_order = true;
1675 negate = zero_on_left;
1676 break;
1677
1678 default:
1679 /* This isn't the right kind of comparison afterall, so make sure
1680 * the whole condition is visited.
1681 */
1682 src_ir = ir;
1683 break;
1684 }
1685 }
1686 }
1687
1688 src_ir->accept(this);
1689
1690 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1691 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1692 * choose which value OPCODE_CMP produces without an extra instruction
1693 * computing the condition.
1694 */
1695 if (negate)
1696 this->result.negate = ~this->result.negate;
1697
1698 return switch_order;
1699 }
1700
1701 void
1702 ir_to_mesa_visitor::visit(ir_assignment *ir)
1703 {
1704 dst_reg l;
1705 src_reg r;
1706 int i;
1707
1708 ir->rhs->accept(this);
1709 r = this->result;
1710
1711 l = get_assignment_lhs(ir->lhs, this);
1712
1713 /* FINISHME: This should really set to the correct maximal writemask for each
1714 * FINISHME: component written (in the loops below). This case can only
1715 * FINISHME: occur for matrices, arrays, and structures.
1716 */
1717 if (ir->write_mask == 0) {
1718 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1719 l.writemask = WRITEMASK_XYZW;
1720 } else if (ir->lhs->type->is_scalar()) {
1721 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1722 * FINISHME: W component of fragment shader output zero, work correctly.
1723 */
1724 l.writemask = WRITEMASK_XYZW;
1725 } else {
1726 int swizzles[4];
1727 int first_enabled_chan = 0;
1728 int rhs_chan = 0;
1729
1730 assert(ir->lhs->type->is_vector());
1731 l.writemask = ir->write_mask;
1732
1733 for (int i = 0; i < 4; i++) {
1734 if (l.writemask & (1 << i)) {
1735 first_enabled_chan = GET_SWZ(r.swizzle, i);
1736 break;
1737 }
1738 }
1739
1740 /* Swizzle a small RHS vector into the channels being written.
1741 *
1742 * glsl ir treats write_mask as dictating how many channels are
1743 * present on the RHS while Mesa IR treats write_mask as just
1744 * showing which channels of the vec4 RHS get written.
1745 */
1746 for (int i = 0; i < 4; i++) {
1747 if (l.writemask & (1 << i))
1748 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1749 else
1750 swizzles[i] = first_enabled_chan;
1751 }
1752 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1753 swizzles[2], swizzles[3]);
1754 }
1755
1756 assert(l.file != PROGRAM_UNDEFINED);
1757 assert(r.file != PROGRAM_UNDEFINED);
1758
1759 if (ir->condition) {
1760 const bool switch_order = this->process_move_condition(ir->condition);
1761 src_reg condition = this->result;
1762
1763 for (i = 0; i < type_size(ir->lhs->type); i++) {
1764 if (switch_order) {
1765 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1766 } else {
1767 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1768 }
1769
1770 l.index++;
1771 r.index++;
1772 }
1773 } else {
1774 for (i = 0; i < type_size(ir->lhs->type); i++) {
1775 emit(ir, OPCODE_MOV, l, r);
1776 l.index++;
1777 r.index++;
1778 }
1779 }
1780 }
1781
1782
1783 void
1784 ir_to_mesa_visitor::visit(ir_constant *ir)
1785 {
1786 src_reg src;
1787 GLfloat stack_vals[4] = { 0 };
1788 GLfloat *values = stack_vals;
1789 unsigned int i;
1790
1791 /* Unfortunately, 4 floats is all we can get into
1792 * _mesa_add_unnamed_constant. So, make a temp to store an
1793 * aggregate constant and move each constant value into it. If we
1794 * get lucky, copy propagation will eliminate the extra moves.
1795 */
1796
1797 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1798 src_reg temp_base = get_temp(ir->type);
1799 dst_reg temp = dst_reg(temp_base);
1800
1801 foreach_in_list(ir_constant, field_value, &ir->components) {
1802 int size = type_size(field_value->type);
1803
1804 assert(size > 0);
1805
1806 field_value->accept(this);
1807 src = this->result;
1808
1809 for (i = 0; i < (unsigned int)size; i++) {
1810 emit(ir, OPCODE_MOV, temp, src);
1811
1812 src.index++;
1813 temp.index++;
1814 }
1815 }
1816 this->result = temp_base;
1817 return;
1818 }
1819
1820 if (ir->type->is_array()) {
1821 src_reg temp_base = get_temp(ir->type);
1822 dst_reg temp = dst_reg(temp_base);
1823 int size = type_size(ir->type->fields.array);
1824
1825 assert(size > 0);
1826
1827 for (i = 0; i < ir->type->length; i++) {
1828 ir->array_elements[i]->accept(this);
1829 src = this->result;
1830 for (int j = 0; j < size; j++) {
1831 emit(ir, OPCODE_MOV, temp, src);
1832
1833 src.index++;
1834 temp.index++;
1835 }
1836 }
1837 this->result = temp_base;
1838 return;
1839 }
1840
1841 if (ir->type->is_matrix()) {
1842 src_reg mat = get_temp(ir->type);
1843 dst_reg mat_column = dst_reg(mat);
1844
1845 for (i = 0; i < ir->type->matrix_columns; i++) {
1846 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1847 values = &ir->value.f[i * ir->type->vector_elements];
1848
1849 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1850 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1851 (gl_constant_value *) values,
1852 ir->type->vector_elements,
1853 &src.swizzle);
1854 emit(ir, OPCODE_MOV, mat_column, src);
1855
1856 mat_column.index++;
1857 }
1858
1859 this->result = mat;
1860 return;
1861 }
1862
1863 src.file = PROGRAM_CONSTANT;
1864 switch (ir->type->base_type) {
1865 case GLSL_TYPE_FLOAT:
1866 values = &ir->value.f[0];
1867 break;
1868 case GLSL_TYPE_UINT:
1869 for (i = 0; i < ir->type->vector_elements; i++) {
1870 values[i] = ir->value.u[i];
1871 }
1872 break;
1873 case GLSL_TYPE_INT:
1874 for (i = 0; i < ir->type->vector_elements; i++) {
1875 values[i] = ir->value.i[i];
1876 }
1877 break;
1878 case GLSL_TYPE_BOOL:
1879 for (i = 0; i < ir->type->vector_elements; i++) {
1880 values[i] = ir->value.b[i];
1881 }
1882 break;
1883 default:
1884 assert(!"Non-float/uint/int/bool constant");
1885 }
1886
1887 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1888 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1889 (gl_constant_value *) values,
1890 ir->type->vector_elements,
1891 &this->result.swizzle);
1892 }
1893
1894 void
1895 ir_to_mesa_visitor::visit(ir_call *)
1896 {
1897 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1898 }
1899
1900 void
1901 ir_to_mesa_visitor::visit(ir_texture *ir)
1902 {
1903 src_reg result_src, coord, lod_info, projector, dx, dy;
1904 dst_reg result_dst, coord_dst;
1905 ir_to_mesa_instruction *inst = NULL;
1906 prog_opcode opcode = OPCODE_NOP;
1907
1908 if (ir->op == ir_txs)
1909 this->result = src_reg_for_float(0.0);
1910 else
1911 ir->coordinate->accept(this);
1912
1913 /* Put our coords in a temp. We'll need to modify them for shadow,
1914 * projection, or LOD, so the only case we'd use it as is is if
1915 * we're doing plain old texturing. Mesa IR optimization should
1916 * handle cleaning up our mess in that case.
1917 */
1918 coord = get_temp(glsl_type::vec4_type);
1919 coord_dst = dst_reg(coord);
1920 emit(ir, OPCODE_MOV, coord_dst, this->result);
1921
1922 if (ir->projector) {
1923 ir->projector->accept(this);
1924 projector = this->result;
1925 }
1926
1927 /* Storage for our result. Ideally for an assignment we'd be using
1928 * the actual storage for the result here, instead.
1929 */
1930 result_src = get_temp(glsl_type::vec4_type);
1931 result_dst = dst_reg(result_src);
1932
1933 switch (ir->op) {
1934 case ir_tex:
1935 case ir_txs:
1936 opcode = OPCODE_TEX;
1937 break;
1938 case ir_txb:
1939 opcode = OPCODE_TXB;
1940 ir->lod_info.bias->accept(this);
1941 lod_info = this->result;
1942 break;
1943 case ir_txf:
1944 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1945 case ir_txl:
1946 opcode = OPCODE_TXL;
1947 ir->lod_info.lod->accept(this);
1948 lod_info = this->result;
1949 break;
1950 case ir_txd:
1951 opcode = OPCODE_TXD;
1952 ir->lod_info.grad.dPdx->accept(this);
1953 dx = this->result;
1954 ir->lod_info.grad.dPdy->accept(this);
1955 dy = this->result;
1956 break;
1957 case ir_txf_ms:
1958 assert(!"Unexpected ir_txf_ms opcode");
1959 break;
1960 case ir_lod:
1961 assert(!"Unexpected ir_lod opcode");
1962 break;
1963 case ir_tg4:
1964 assert(!"Unexpected ir_tg4 opcode");
1965 break;
1966 case ir_query_levels:
1967 assert(!"Unexpected ir_query_levels opcode");
1968 break;
1969 case ir_samples_identical:
1970 unreachable("Unexpected ir_samples_identical opcode");
1971 case ir_texture_samples:
1972 unreachable("Unexpected ir_texture_samples opcode");
1973 }
1974
1975 const glsl_type *sampler_type = ir->sampler->type;
1976
1977 if (ir->projector) {
1978 if (opcode == OPCODE_TEX) {
1979 /* Slot the projector in as the last component of the coord. */
1980 coord_dst.writemask = WRITEMASK_W;
1981 emit(ir, OPCODE_MOV, coord_dst, projector);
1982 coord_dst.writemask = WRITEMASK_XYZW;
1983 opcode = OPCODE_TXP;
1984 } else {
1985 src_reg coord_w = coord;
1986 coord_w.swizzle = SWIZZLE_WWWW;
1987
1988 /* For the other TEX opcodes there's no projective version
1989 * since the last slot is taken up by lod info. Do the
1990 * projective divide now.
1991 */
1992 coord_dst.writemask = WRITEMASK_W;
1993 emit(ir, OPCODE_RCP, coord_dst, projector);
1994
1995 /* In the case where we have to project the coordinates "by hand,"
1996 * the shadow comparitor value must also be projected.
1997 */
1998 src_reg tmp_src = coord;
1999 if (ir->shadow_comparitor) {
2000 /* Slot the shadow value in as the second to last component of the
2001 * coord.
2002 */
2003 ir->shadow_comparitor->accept(this);
2004
2005 tmp_src = get_temp(glsl_type::vec4_type);
2006 dst_reg tmp_dst = dst_reg(tmp_src);
2007
2008 /* Projective division not allowed for array samplers. */
2009 assert(!sampler_type->sampler_array);
2010
2011 tmp_dst.writemask = WRITEMASK_Z;
2012 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2013
2014 tmp_dst.writemask = WRITEMASK_XY;
2015 emit(ir, OPCODE_MOV, tmp_dst, coord);
2016 }
2017
2018 coord_dst.writemask = WRITEMASK_XYZ;
2019 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2020
2021 coord_dst.writemask = WRITEMASK_XYZW;
2022 coord.swizzle = SWIZZLE_XYZW;
2023 }
2024 }
2025
2026 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2027 * comparitor was put in the correct place (and projected) by the code,
2028 * above, that handles by-hand projection.
2029 */
2030 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2031 /* Slot the shadow value in as the second to last component of the
2032 * coord.
2033 */
2034 ir->shadow_comparitor->accept(this);
2035
2036 /* XXX This will need to be updated for cubemap array samplers. */
2037 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2038 sampler_type->sampler_array) {
2039 coord_dst.writemask = WRITEMASK_W;
2040 } else {
2041 coord_dst.writemask = WRITEMASK_Z;
2042 }
2043
2044 emit(ir, OPCODE_MOV, coord_dst, this->result);
2045 coord_dst.writemask = WRITEMASK_XYZW;
2046 }
2047
2048 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2049 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2050 coord_dst.writemask = WRITEMASK_W;
2051 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2052 coord_dst.writemask = WRITEMASK_XYZW;
2053 }
2054
2055 if (opcode == OPCODE_TXD)
2056 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2057 else
2058 inst = emit(ir, opcode, result_dst, coord);
2059
2060 if (ir->shadow_comparitor)
2061 inst->tex_shadow = GL_TRUE;
2062
2063 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2064 prog);
2065
2066 switch (sampler_type->sampler_dimensionality) {
2067 case GLSL_SAMPLER_DIM_1D:
2068 inst->tex_target = (sampler_type->sampler_array)
2069 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2070 break;
2071 case GLSL_SAMPLER_DIM_2D:
2072 inst->tex_target = (sampler_type->sampler_array)
2073 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2074 break;
2075 case GLSL_SAMPLER_DIM_3D:
2076 inst->tex_target = TEXTURE_3D_INDEX;
2077 break;
2078 case GLSL_SAMPLER_DIM_CUBE:
2079 inst->tex_target = TEXTURE_CUBE_INDEX;
2080 break;
2081 case GLSL_SAMPLER_DIM_RECT:
2082 inst->tex_target = TEXTURE_RECT_INDEX;
2083 break;
2084 case GLSL_SAMPLER_DIM_BUF:
2085 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2086 break;
2087 case GLSL_SAMPLER_DIM_EXTERNAL:
2088 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2089 break;
2090 default:
2091 assert(!"Should not get here.");
2092 }
2093
2094 this->result = result_src;
2095 }
2096
2097 void
2098 ir_to_mesa_visitor::visit(ir_return *ir)
2099 {
2100 /* Non-void functions should have been inlined. We may still emit RETs
2101 * from main() unless the EmitNoMainReturn option is set.
2102 */
2103 assert(!ir->get_value());
2104 emit(ir, OPCODE_RET);
2105 }
2106
2107 void
2108 ir_to_mesa_visitor::visit(ir_discard *ir)
2109 {
2110 if (!ir->condition)
2111 ir->condition = new(mem_ctx) ir_constant(true);
2112
2113 ir->condition->accept(this);
2114 this->result.negate = ~this->result.negate;
2115 emit(ir, OPCODE_KIL, undef_dst, this->result);
2116 }
2117
2118 void
2119 ir_to_mesa_visitor::visit(ir_if *ir)
2120 {
2121 ir_to_mesa_instruction *if_inst;
2122
2123 ir->condition->accept(this);
2124 assert(this->result.file != PROGRAM_UNDEFINED);
2125
2126 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2127
2128 this->instructions.push_tail(if_inst);
2129
2130 visit_exec_list(&ir->then_instructions, this);
2131
2132 if (!ir->else_instructions.is_empty()) {
2133 emit(ir->condition, OPCODE_ELSE);
2134 visit_exec_list(&ir->else_instructions, this);
2135 }
2136
2137 emit(ir->condition, OPCODE_ENDIF);
2138 }
2139
2140 void
2141 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2142 {
2143 assert(!"Geometry shaders not supported.");
2144 }
2145
2146 void
2147 ir_to_mesa_visitor::visit(ir_end_primitive *)
2148 {
2149 assert(!"Geometry shaders not supported.");
2150 }
2151
2152 void
2153 ir_to_mesa_visitor::visit(ir_barrier *)
2154 {
2155 unreachable("GLSL barrier() not supported.");
2156 }
2157
2158 ir_to_mesa_visitor::ir_to_mesa_visitor()
2159 {
2160 result.file = PROGRAM_UNDEFINED;
2161 next_temp = 1;
2162 next_signature_id = 1;
2163 current_function = NULL;
2164 mem_ctx = ralloc_context(NULL);
2165 }
2166
2167 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2168 {
2169 ralloc_free(mem_ctx);
2170 }
2171
2172 static struct prog_src_register
2173 mesa_src_reg_from_ir_src_reg(src_reg reg)
2174 {
2175 struct prog_src_register mesa_reg;
2176
2177 mesa_reg.File = reg.file;
2178 assert(reg.index < (1 << INST_INDEX_BITS));
2179 mesa_reg.Index = reg.index;
2180 mesa_reg.Swizzle = reg.swizzle;
2181 mesa_reg.RelAddr = reg.reladdr != NULL;
2182 mesa_reg.Negate = reg.negate;
2183
2184 return mesa_reg;
2185 }
2186
2187 static void
2188 set_branchtargets(ir_to_mesa_visitor *v,
2189 struct prog_instruction *mesa_instructions,
2190 int num_instructions)
2191 {
2192 int if_count = 0, loop_count = 0;
2193 int *if_stack, *loop_stack;
2194 int if_stack_pos = 0, loop_stack_pos = 0;
2195 int i, j;
2196
2197 for (i = 0; i < num_instructions; i++) {
2198 switch (mesa_instructions[i].Opcode) {
2199 case OPCODE_IF:
2200 if_count++;
2201 break;
2202 case OPCODE_BGNLOOP:
2203 loop_count++;
2204 break;
2205 case OPCODE_BRK:
2206 case OPCODE_CONT:
2207 mesa_instructions[i].BranchTarget = -1;
2208 break;
2209 default:
2210 break;
2211 }
2212 }
2213
2214 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2215 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2216
2217 for (i = 0; i < num_instructions; i++) {
2218 switch (mesa_instructions[i].Opcode) {
2219 case OPCODE_IF:
2220 if_stack[if_stack_pos] = i;
2221 if_stack_pos++;
2222 break;
2223 case OPCODE_ELSE:
2224 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2225 if_stack[if_stack_pos - 1] = i;
2226 break;
2227 case OPCODE_ENDIF:
2228 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2229 if_stack_pos--;
2230 break;
2231 case OPCODE_BGNLOOP:
2232 loop_stack[loop_stack_pos] = i;
2233 loop_stack_pos++;
2234 break;
2235 case OPCODE_ENDLOOP:
2236 loop_stack_pos--;
2237 /* Rewrite any breaks/conts at this nesting level (haven't
2238 * already had a BranchTarget assigned) to point to the end
2239 * of the loop.
2240 */
2241 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2242 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2243 mesa_instructions[j].Opcode == OPCODE_CONT) {
2244 if (mesa_instructions[j].BranchTarget == -1) {
2245 mesa_instructions[j].BranchTarget = i;
2246 }
2247 }
2248 }
2249 /* The loop ends point at each other. */
2250 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2251 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2252 break;
2253 case OPCODE_CAL:
2254 foreach_in_list(function_entry, entry, &v->function_signatures) {
2255 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2256 mesa_instructions[i].BranchTarget = entry->inst;
2257 break;
2258 }
2259 }
2260 break;
2261 default:
2262 break;
2263 }
2264 }
2265 }
2266
2267 static void
2268 print_program(struct prog_instruction *mesa_instructions,
2269 ir_instruction **mesa_instruction_annotation,
2270 int num_instructions)
2271 {
2272 ir_instruction *last_ir = NULL;
2273 int i;
2274 int indent = 0;
2275
2276 for (i = 0; i < num_instructions; i++) {
2277 struct prog_instruction *mesa_inst = mesa_instructions + i;
2278 ir_instruction *ir = mesa_instruction_annotation[i];
2279
2280 fprintf(stdout, "%3d: ", i);
2281
2282 if (last_ir != ir && ir) {
2283 int j;
2284
2285 for (j = 0; j < indent; j++) {
2286 fprintf(stdout, " ");
2287 }
2288 ir->print();
2289 printf("\n");
2290 last_ir = ir;
2291
2292 fprintf(stdout, " "); /* line number spacing. */
2293 }
2294
2295 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2296 PROG_PRINT_DEBUG, NULL);
2297 }
2298 }
2299
2300 namespace {
2301
2302 class add_uniform_to_shader : public program_resource_visitor {
2303 public:
2304 add_uniform_to_shader(struct gl_shader_program *shader_program,
2305 struct gl_program_parameter_list *params,
2306 gl_shader_stage shader_type)
2307 : shader_program(shader_program), params(params), idx(-1),
2308 shader_type(shader_type)
2309 {
2310 /* empty */
2311 }
2312
2313 void process(ir_variable *var)
2314 {
2315 this->idx = -1;
2316 this->program_resource_visitor::process(var);
2317 var->data.param_index = this->idx;
2318 }
2319
2320 private:
2321 virtual void visit_field(const glsl_type *type, const char *name,
2322 bool row_major);
2323
2324 struct gl_shader_program *shader_program;
2325 struct gl_program_parameter_list *params;
2326 int idx;
2327 gl_shader_stage shader_type;
2328 };
2329
2330 } /* anonymous namespace */
2331
2332 void
2333 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2334 bool row_major)
2335 {
2336 unsigned int size;
2337
2338 (void) row_major;
2339
2340 /* atomics don't get real storage */
2341 if (type->contains_atomic())
2342 return;
2343
2344 if (type->is_vector() || type->is_scalar()) {
2345 size = type->vector_elements;
2346 if (type->is_double())
2347 size *= 2;
2348 } else {
2349 size = type_size(type) * 4;
2350 }
2351
2352 gl_register_file file;
2353 if (type->without_array()->is_sampler()) {
2354 file = PROGRAM_SAMPLER;
2355 } else {
2356 file = PROGRAM_UNIFORM;
2357 }
2358
2359 int index = _mesa_lookup_parameter_index(params, name);
2360 if (index < 0) {
2361 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2362 NULL, NULL);
2363
2364 /* Sampler uniform values are stored in prog->SamplerUnits,
2365 * and the entry in that array is selected by this index we
2366 * store in ParameterValues[].
2367 */
2368 if (file == PROGRAM_SAMPLER) {
2369 unsigned location;
2370 const bool found =
2371 this->shader_program->UniformHash->get(location,
2372 params->Parameters[index].Name);
2373 assert(found);
2374
2375 if (!found)
2376 return;
2377
2378 struct gl_uniform_storage *storage =
2379 &this->shader_program->UniformStorage[location];
2380
2381 assert(storage->type->is_sampler() &&
2382 storage->opaque[shader_type].active);
2383
2384 for (unsigned int j = 0; j < size / 4; j++)
2385 params->ParameterValues[index + j][0].f =
2386 storage->opaque[shader_type].index + j;
2387 }
2388 }
2389
2390 /* The first part of the uniform that's processed determines the base
2391 * location of the whole uniform (for structures).
2392 */
2393 if (this->idx < 0)
2394 this->idx = index;
2395 }
2396
2397 /**
2398 * Generate the program parameters list for the user uniforms in a shader
2399 *
2400 * \param shader_program Linked shader program. This is only used to
2401 * emit possible link errors to the info log.
2402 * \param sh Shader whose uniforms are to be processed.
2403 * \param params Parameter list to be filled in.
2404 */
2405 void
2406 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2407 *shader_program,
2408 struct gl_shader *sh,
2409 struct gl_program_parameter_list
2410 *params)
2411 {
2412 add_uniform_to_shader add(shader_program, params, sh->Stage);
2413
2414 foreach_in_list(ir_instruction, node, sh->ir) {
2415 ir_variable *var = node->as_variable();
2416
2417 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2418 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2419 continue;
2420
2421 add.process(var);
2422 }
2423 }
2424
2425 void
2426 _mesa_associate_uniform_storage(struct gl_context *ctx,
2427 struct gl_shader_program *shader_program,
2428 struct gl_program_parameter_list *params)
2429 {
2430 /* After adding each uniform to the parameter list, connect the storage for
2431 * the parameter with the tracking structure used by the API for the
2432 * uniform.
2433 */
2434 unsigned last_location = unsigned(~0);
2435 for (unsigned i = 0; i < params->NumParameters; i++) {
2436 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2437 continue;
2438
2439 unsigned location;
2440 const bool found =
2441 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2442 assert(found);
2443
2444 if (!found)
2445 continue;
2446
2447 struct gl_uniform_storage *storage =
2448 &shader_program->UniformStorage[location];
2449
2450 /* Do not associate any uniform storage to built-in uniforms */
2451 if (storage->builtin)
2452 continue;
2453
2454 if (location != last_location) {
2455 enum gl_uniform_driver_format format = uniform_native;
2456
2457 unsigned columns = 0;
2458 int dmul = 4 * sizeof(float);
2459 switch (storage->type->base_type) {
2460 case GLSL_TYPE_UINT:
2461 assert(ctx->Const.NativeIntegers);
2462 format = uniform_native;
2463 columns = 1;
2464 break;
2465 case GLSL_TYPE_INT:
2466 format =
2467 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2468 columns = 1;
2469 break;
2470
2471 case GLSL_TYPE_DOUBLE:
2472 if (storage->type->vector_elements > 2)
2473 dmul *= 2;
2474 /* fallthrough */
2475 case GLSL_TYPE_FLOAT:
2476 format = uniform_native;
2477 columns = storage->type->matrix_columns;
2478 break;
2479 case GLSL_TYPE_BOOL:
2480 format = uniform_native;
2481 columns = 1;
2482 break;
2483 case GLSL_TYPE_SAMPLER:
2484 case GLSL_TYPE_IMAGE:
2485 case GLSL_TYPE_SUBROUTINE:
2486 format = uniform_native;
2487 columns = 1;
2488 break;
2489 case GLSL_TYPE_ATOMIC_UINT:
2490 case GLSL_TYPE_ARRAY:
2491 case GLSL_TYPE_VOID:
2492 case GLSL_TYPE_STRUCT:
2493 case GLSL_TYPE_ERROR:
2494 case GLSL_TYPE_INTERFACE:
2495 case GLSL_TYPE_FUNCTION:
2496 assert(!"Should not get here.");
2497 break;
2498 }
2499
2500 _mesa_uniform_attach_driver_storage(storage,
2501 dmul * columns,
2502 dmul,
2503 format,
2504 &params->ParameterValues[i]);
2505
2506 /* After attaching the driver's storage to the uniform, propagate any
2507 * data from the linker's backing store. This will cause values from
2508 * initializers in the source code to be copied over.
2509 */
2510 _mesa_propagate_uniforms_to_driver_storage(storage,
2511 0,
2512 MAX2(1, storage->array_elements));
2513
2514 last_location = location;
2515 }
2516 }
2517 }
2518
2519 /*
2520 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2521 * channels for copy propagation and updates following instructions to
2522 * use the original versions.
2523 *
2524 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2525 * will occur. As an example, a TXP production before this pass:
2526 *
2527 * 0: MOV TEMP[1], INPUT[4].xyyy;
2528 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2529 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2530 *
2531 * and after:
2532 *
2533 * 0: MOV TEMP[1], INPUT[4].xyyy;
2534 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2535 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2536 *
2537 * which allows for dead code elimination on TEMP[1]'s writes.
2538 */
2539 void
2540 ir_to_mesa_visitor::copy_propagate(void)
2541 {
2542 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2543 ir_to_mesa_instruction *,
2544 this->next_temp * 4);
2545 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2546 int level = 0;
2547
2548 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2549 assert(inst->dst.file != PROGRAM_TEMPORARY
2550 || inst->dst.index < this->next_temp);
2551
2552 /* First, do any copy propagation possible into the src regs. */
2553 for (int r = 0; r < 3; r++) {
2554 ir_to_mesa_instruction *first = NULL;
2555 bool good = true;
2556 int acp_base = inst->src[r].index * 4;
2557
2558 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2559 inst->src[r].reladdr)
2560 continue;
2561
2562 /* See if we can find entries in the ACP consisting of MOVs
2563 * from the same src register for all the swizzled channels
2564 * of this src register reference.
2565 */
2566 for (int i = 0; i < 4; i++) {
2567 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2568 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2569
2570 if (!copy_chan) {
2571 good = false;
2572 break;
2573 }
2574
2575 assert(acp_level[acp_base + src_chan] <= level);
2576
2577 if (!first) {
2578 first = copy_chan;
2579 } else {
2580 if (first->src[0].file != copy_chan->src[0].file ||
2581 first->src[0].index != copy_chan->src[0].index) {
2582 good = false;
2583 break;
2584 }
2585 }
2586 }
2587
2588 if (good) {
2589 /* We've now validated that we can copy-propagate to
2590 * replace this src register reference. Do it.
2591 */
2592 inst->src[r].file = first->src[0].file;
2593 inst->src[r].index = first->src[0].index;
2594
2595 int swizzle = 0;
2596 for (int i = 0; i < 4; i++) {
2597 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2598 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2599 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2600 (3 * i));
2601 }
2602 inst->src[r].swizzle = swizzle;
2603 }
2604 }
2605
2606 switch (inst->op) {
2607 case OPCODE_BGNLOOP:
2608 case OPCODE_ENDLOOP:
2609 /* End of a basic block, clear the ACP entirely. */
2610 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2611 break;
2612
2613 case OPCODE_IF:
2614 ++level;
2615 break;
2616
2617 case OPCODE_ENDIF:
2618 case OPCODE_ELSE:
2619 /* Clear all channels written inside the block from the ACP, but
2620 * leaving those that were not touched.
2621 */
2622 for (int r = 0; r < this->next_temp; r++) {
2623 for (int c = 0; c < 4; c++) {
2624 if (!acp[4 * r + c])
2625 continue;
2626
2627 if (acp_level[4 * r + c] >= level)
2628 acp[4 * r + c] = NULL;
2629 }
2630 }
2631 if (inst->op == OPCODE_ENDIF)
2632 --level;
2633 break;
2634
2635 default:
2636 /* Continuing the block, clear any written channels from
2637 * the ACP.
2638 */
2639 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2640 /* Any temporary might be written, so no copy propagation
2641 * across this instruction.
2642 */
2643 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2644 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2645 inst->dst.reladdr) {
2646 /* Any output might be written, so no copy propagation
2647 * from outputs across this instruction.
2648 */
2649 for (int r = 0; r < this->next_temp; r++) {
2650 for (int c = 0; c < 4; c++) {
2651 if (!acp[4 * r + c])
2652 continue;
2653
2654 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2655 acp[4 * r + c] = NULL;
2656 }
2657 }
2658 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2659 inst->dst.file == PROGRAM_OUTPUT) {
2660 /* Clear where it's used as dst. */
2661 if (inst->dst.file == PROGRAM_TEMPORARY) {
2662 for (int c = 0; c < 4; c++) {
2663 if (inst->dst.writemask & (1 << c)) {
2664 acp[4 * inst->dst.index + c] = NULL;
2665 }
2666 }
2667 }
2668
2669 /* Clear where it's used as src. */
2670 for (int r = 0; r < this->next_temp; r++) {
2671 for (int c = 0; c < 4; c++) {
2672 if (!acp[4 * r + c])
2673 continue;
2674
2675 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2676
2677 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2678 acp[4 * r + c]->src[0].index == inst->dst.index &&
2679 inst->dst.writemask & (1 << src_chan))
2680 {
2681 acp[4 * r + c] = NULL;
2682 }
2683 }
2684 }
2685 }
2686 break;
2687 }
2688
2689 /* If this is a copy, add it to the ACP. */
2690 if (inst->op == OPCODE_MOV &&
2691 inst->dst.file == PROGRAM_TEMPORARY &&
2692 !(inst->dst.file == inst->src[0].file &&
2693 inst->dst.index == inst->src[0].index) &&
2694 !inst->dst.reladdr &&
2695 !inst->saturate &&
2696 !inst->src[0].reladdr &&
2697 !inst->src[0].negate) {
2698 for (int i = 0; i < 4; i++) {
2699 if (inst->dst.writemask & (1 << i)) {
2700 acp[4 * inst->dst.index + i] = inst;
2701 acp_level[4 * inst->dst.index + i] = level;
2702 }
2703 }
2704 }
2705 }
2706
2707 ralloc_free(acp_level);
2708 ralloc_free(acp);
2709 }
2710
2711
2712 /**
2713 * Convert a shader's GLSL IR into a Mesa gl_program.
2714 */
2715 static struct gl_program *
2716 get_mesa_program(struct gl_context *ctx,
2717 struct gl_shader_program *shader_program,
2718 struct gl_shader *shader)
2719 {
2720 ir_to_mesa_visitor v;
2721 struct prog_instruction *mesa_instructions, *mesa_inst;
2722 ir_instruction **mesa_instruction_annotation;
2723 int i;
2724 struct gl_program *prog;
2725 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2726 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2727 struct gl_shader_compiler_options *options =
2728 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2729
2730 validate_ir_tree(shader->ir);
2731
2732 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2733 if (!prog)
2734 return NULL;
2735 prog->Parameters = _mesa_new_parameter_list();
2736 v.ctx = ctx;
2737 v.prog = prog;
2738 v.shader_program = shader_program;
2739 v.options = options;
2740
2741 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2742 prog->Parameters);
2743
2744 /* Emit Mesa IR for main(). */
2745 visit_exec_list(shader->ir, &v);
2746 v.emit(NULL, OPCODE_END);
2747
2748 prog->NumTemporaries = v.next_temp;
2749
2750 unsigned num_instructions = v.instructions.length();
2751
2752 mesa_instructions =
2753 (struct prog_instruction *)calloc(num_instructions,
2754 sizeof(*mesa_instructions));
2755 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2756 num_instructions);
2757
2758 v.copy_propagate();
2759
2760 /* Convert ir_mesa_instructions into prog_instructions.
2761 */
2762 mesa_inst = mesa_instructions;
2763 i = 0;
2764 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2765 mesa_inst->Opcode = inst->op;
2766 if (inst->saturate)
2767 mesa_inst->Saturate = GL_TRUE;
2768 mesa_inst->DstReg.File = inst->dst.file;
2769 mesa_inst->DstReg.Index = inst->dst.index;
2770 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2771 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2772 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2773 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2774 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2775 mesa_inst->TexSrcUnit = inst->sampler;
2776 mesa_inst->TexSrcTarget = inst->tex_target;
2777 mesa_inst->TexShadow = inst->tex_shadow;
2778 mesa_instruction_annotation[i] = inst->ir;
2779
2780 /* Set IndirectRegisterFiles. */
2781 if (mesa_inst->DstReg.RelAddr)
2782 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2783
2784 /* Update program's bitmask of indirectly accessed register files */
2785 for (unsigned src = 0; src < 3; src++)
2786 if (mesa_inst->SrcReg[src].RelAddr)
2787 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2788
2789 switch (mesa_inst->Opcode) {
2790 case OPCODE_IF:
2791 if (options->MaxIfDepth == 0) {
2792 linker_warning(shader_program,
2793 "Couldn't flatten if-statement. "
2794 "This will likely result in software "
2795 "rasterization.\n");
2796 }
2797 break;
2798 case OPCODE_BGNLOOP:
2799 if (options->EmitNoLoops) {
2800 linker_warning(shader_program,
2801 "Couldn't unroll loop. "
2802 "This will likely result in software "
2803 "rasterization.\n");
2804 }
2805 break;
2806 case OPCODE_CONT:
2807 if (options->EmitNoCont) {
2808 linker_warning(shader_program,
2809 "Couldn't lower continue-statement. "
2810 "This will likely result in software "
2811 "rasterization.\n");
2812 }
2813 break;
2814 case OPCODE_ARL:
2815 prog->NumAddressRegs = 1;
2816 break;
2817 default:
2818 break;
2819 }
2820
2821 mesa_inst++;
2822 i++;
2823
2824 if (!shader_program->LinkStatus)
2825 break;
2826 }
2827
2828 if (!shader_program->LinkStatus) {
2829 goto fail_exit;
2830 }
2831
2832 set_branchtargets(&v, mesa_instructions, num_instructions);
2833
2834 if (ctx->_Shader->Flags & GLSL_DUMP) {
2835 fprintf(stderr, "\n");
2836 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2837 shader_program->Name);
2838 _mesa_print_ir(stderr, shader->ir, NULL);
2839 fprintf(stderr, "\n");
2840 fprintf(stderr, "\n");
2841 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2842 shader_program->Name);
2843 print_program(mesa_instructions, mesa_instruction_annotation,
2844 num_instructions);
2845 fflush(stderr);
2846 }
2847
2848 prog->Instructions = mesa_instructions;
2849 prog->NumInstructions = num_instructions;
2850
2851 /* Setting this to NULL prevents a possible double free in the fail_exit
2852 * path (far below).
2853 */
2854 mesa_instructions = NULL;
2855
2856 do_set_program_inouts(shader->ir, prog, shader->Stage);
2857
2858 prog->SamplersUsed = shader->active_samplers;
2859 prog->ShadowSamplers = shader->shadow_samplers;
2860 _mesa_update_shader_textures_used(shader_program, prog);
2861
2862 /* Set the gl_FragDepth layout. */
2863 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2864 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2865 fp->FragDepthLayout = shader_program->FragDepthLayout;
2866 }
2867
2868 _mesa_reference_program(ctx, &shader->Program, prog);
2869
2870 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2871 _mesa_optimize_program(ctx, prog);
2872 }
2873
2874 /* This has to be done last. Any operation that can cause
2875 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2876 * program constant) has to happen before creating this linkage.
2877 */
2878 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2879 if (!shader_program->LinkStatus) {
2880 goto fail_exit;
2881 }
2882
2883 return prog;
2884
2885 fail_exit:
2886 free(mesa_instructions);
2887 _mesa_reference_program(ctx, &shader->Program, NULL);
2888 return NULL;
2889 }
2890
2891 extern "C" {
2892
2893 /**
2894 * Link a shader.
2895 * Called via ctx->Driver.LinkShader()
2896 * This actually involves converting GLSL IR into Mesa gl_programs with
2897 * code lowering and other optimizations.
2898 */
2899 GLboolean
2900 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2901 {
2902 assert(prog->LinkStatus);
2903
2904 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2905 if (prog->_LinkedShaders[i] == NULL)
2906 continue;
2907
2908 bool progress;
2909 exec_list *ir = prog->_LinkedShaders[i]->ir;
2910 const struct gl_shader_compiler_options *options =
2911 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2912
2913 do {
2914 progress = false;
2915
2916 /* Lowering */
2917 do_mat_op_to_vec(ir);
2918 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2919 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2920 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2921
2922 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2923
2924 progress = do_common_optimization(ir, true, true,
2925 options, ctx->Const.NativeIntegers)
2926 || progress;
2927
2928 progress = lower_quadop_vector(ir, true) || progress;
2929
2930 if (options->MaxIfDepth == 0)
2931 progress = lower_discard(ir) || progress;
2932
2933 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2934
2935 if (options->EmitNoNoise)
2936 progress = lower_noise(ir) || progress;
2937
2938 /* If there are forms of indirect addressing that the driver
2939 * cannot handle, perform the lowering pass.
2940 */
2941 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2942 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2943 progress =
2944 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
2945 options->EmitNoIndirectInput,
2946 options->EmitNoIndirectOutput,
2947 options->EmitNoIndirectTemp,
2948 options->EmitNoIndirectUniform)
2949 || progress;
2950
2951 progress = do_vec_index_to_cond_assign(ir) || progress;
2952 progress = lower_vector_insert(ir, true) || progress;
2953 } while (progress);
2954
2955 validate_ir_tree(ir);
2956 }
2957
2958 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2959 struct gl_program *linked_prog;
2960
2961 if (prog->_LinkedShaders[i] == NULL)
2962 continue;
2963
2964 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2965
2966 if (linked_prog) {
2967 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2968
2969 if (!ctx->Driver.ProgramStringNotify(ctx,
2970 _mesa_shader_stage_to_program(i),
2971 linked_prog)) {
2972 return GL_FALSE;
2973 }
2974 }
2975
2976 _mesa_reference_program(ctx, &linked_prog, NULL);
2977 }
2978
2979 build_program_resource_list(prog);
2980 return prog->LinkStatus;
2981 }
2982
2983 /**
2984 * Link a GLSL shader program. Called via glLinkProgram().
2985 */
2986 void
2987 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2988 {
2989 unsigned int i;
2990
2991 _mesa_clear_shader_program_data(prog);
2992
2993 prog->LinkStatus = GL_TRUE;
2994
2995 for (i = 0; i < prog->NumShaders; i++) {
2996 if (!prog->Shaders[i]->CompileStatus) {
2997 linker_error(prog, "linking with uncompiled shader");
2998 }
2999 }
3000
3001 if (prog->LinkStatus) {
3002 link_shaders(ctx, prog);
3003 }
3004
3005 if (prog->LinkStatus) {
3006 if (!ctx->Driver.LinkShader(ctx, prog)) {
3007 prog->LinkStatus = GL_FALSE;
3008 }
3009 }
3010
3011 if (ctx->_Shader->Flags & GLSL_DUMP) {
3012 if (!prog->LinkStatus) {
3013 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3014 }
3015
3016 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3017 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3018 fprintf(stderr, "%s\n", prog->InfoLog);
3019 }
3020 }
3021 }
3022
3023 } /* extern "C" */