glsl: pass UseSTD430AsDefaultPacking to where it will be used
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/macros.h"
35 #include "main/mtypes.h"
36 #include "main/shaderapi.h"
37 #include "main/shaderobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "program/prog_instruction.h"
51 #include "program/prog_optimize.h"
52 #include "program/prog_print.h"
53 #include "program/program.h"
54 #include "program/prog_parameter.h"
55 #include "util/string_to_uint_map.h"
56
57
58 static int swizzle_for_size(int size);
59
60 namespace {
61
62 class src_reg;
63 class dst_reg;
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 /** Register index should be offset by the integer in this reg. */
126 src_reg *reladdr;
127 };
128
129 } /* anonymous namespace */
130
131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->reladdr = reg.reladdr;
146 }
147
148 namespace {
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154 enum prog_opcode op;
155 dst_reg dst;
156 src_reg src[3];
157 /** Pointer to the ir source this tree came from for debugging */
158 ir_instruction *ir;
159 bool saturate;
160 int sampler; /**< sampler index */
161 int tex_target; /**< One of TEXTURE_*_INDEX */
162 GLboolean tex_shadow;
163 };
164
165 class variable_storage : public exec_node {
166 public:
167 variable_storage(ir_variable *var, gl_register_file file, int index)
168 : file(file), index(index), var(var)
169 {
170 /* empty */
171 }
172
173 gl_register_file file;
174 int index;
175 ir_variable *var; /* variable that maps to this, if any */
176 };
177
178 class function_entry : public exec_node {
179 public:
180 ir_function_signature *sig;
181
182 /**
183 * identifier of this function signature used by the program.
184 *
185 * At the point that Mesa instructions for function calls are
186 * generated, we don't know the address of the first instruction of
187 * the function body. So we make the BranchTarget that is called a
188 * small integer and rewrite them during set_branchtargets().
189 */
190 int sig_id;
191
192 /**
193 * Pointer to first instruction of the function body.
194 *
195 * Set during function body emits after main() is processed.
196 */
197 ir_to_mesa_instruction *bgn_inst;
198
199 /**
200 * Index of the first instruction of the function body in actual
201 * Mesa IR.
202 *
203 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204 */
205 int inst;
206
207 /** Storage for the return value. */
208 src_reg return_reg;
209 };
210
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213 ir_to_mesa_visitor();
214 ~ir_to_mesa_visitor();
215
216 function_entry *current_function;
217
218 struct gl_context *ctx;
219 struct gl_program *prog;
220 struct gl_shader_program *shader_program;
221 struct gl_shader_compiler_options *options;
222
223 int next_temp;
224
225 variable_storage *find_variable_storage(const ir_variable *var);
226
227 src_reg get_temp(const glsl_type *type);
228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230 src_reg src_reg_for_float(float val);
231
232 /**
233 * \name Visit methods
234 *
235 * As typical for the visitor pattern, there must be one \c visit method for
236 * each concrete subclass of \c ir_instruction. Virtual base classes within
237 * the hierarchy should not have \c visit methods.
238 */
239 /*@{*/
240 virtual void visit(ir_variable *);
241 virtual void visit(ir_loop *);
242 virtual void visit(ir_loop_jump *);
243 virtual void visit(ir_function_signature *);
244 virtual void visit(ir_function *);
245 virtual void visit(ir_expression *);
246 virtual void visit(ir_swizzle *);
247 virtual void visit(ir_dereference_variable *);
248 virtual void visit(ir_dereference_array *);
249 virtual void visit(ir_dereference_record *);
250 virtual void visit(ir_assignment *);
251 virtual void visit(ir_constant *);
252 virtual void visit(ir_call *);
253 virtual void visit(ir_return *);
254 virtual void visit(ir_discard *);
255 virtual void visit(ir_texture *);
256 virtual void visit(ir_if *);
257 virtual void visit(ir_emit_vertex *);
258 virtual void visit(ir_end_primitive *);
259 virtual void visit(ir_barrier *);
260 /*@}*/
261
262 src_reg result;
263
264 /** List of variable_storage */
265 exec_list variables;
266
267 /** List of function_entry */
268 exec_list function_signatures;
269 int next_signature_id;
270
271 /** List of ir_to_mesa_instruction */
272 exec_list instructions;
273
274 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
275
276 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
277 dst_reg dst, src_reg src0);
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
280 dst_reg dst, src_reg src0, src_reg src1);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst,
284 src_reg src0, src_reg src1, src_reg src2);
285
286 /**
287 * Emit the correct dot-product instruction for the type of arguments
288 */
289 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
290 dst_reg dst,
291 src_reg src0,
292 src_reg src1,
293 unsigned elements);
294
295 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
296 dst_reg dst, src_reg src0);
297
298 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
299 dst_reg dst, src_reg src0, src_reg src1);
300
301 bool try_emit_mad(ir_expression *ir,
302 int mul_operand);
303 bool try_emit_mad_for_and_not(ir_expression *ir,
304 int mul_operand);
305
306 void emit_swz(ir_expression *ir);
307
308 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
309 dst_reg dst,
310 const src_reg &src0, const src_reg &src1);
311
312 inline void emit_sne(ir_expression *ir, dst_reg dst,
313 const src_reg &src0, const src_reg &src1)
314 {
315 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
316 }
317
318 inline void emit_seq(ir_expression *ir, dst_reg dst,
319 const src_reg &src0, const src_reg &src1)
320 {
321 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
322 }
323
324 bool process_move_condition(ir_rvalue *ir);
325
326 void copy_propagate(void);
327
328 void *mem_ctx;
329 };
330
331 } /* anonymous namespace */
332
333 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
334
335 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
336
337 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
338
339 static int
340 swizzle_for_size(int size)
341 {
342 static const int size_swizzles[4] = {
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
347 };
348
349 assert((size >= 1) && (size <= 4));
350 return size_swizzles[size - 1];
351 }
352
353 ir_to_mesa_instruction *
354 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
355 dst_reg dst,
356 src_reg src0, src_reg src1, src_reg src2)
357 {
358 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
359 int num_reladdr = 0;
360
361 /* If we have to do relative addressing, we want to load the ARL
362 * reg directly for one of the regs, and preload the other reladdr
363 * sources into temps.
364 */
365 num_reladdr += dst.reladdr != NULL;
366 num_reladdr += src0.reladdr != NULL;
367 num_reladdr += src1.reladdr != NULL;
368 num_reladdr += src2.reladdr != NULL;
369
370 reladdr_to_temp(ir, &src2, &num_reladdr);
371 reladdr_to_temp(ir, &src1, &num_reladdr);
372 reladdr_to_temp(ir, &src0, &num_reladdr);
373
374 if (dst.reladdr) {
375 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
376 num_reladdr--;
377 }
378 assert(num_reladdr == 0);
379
380 inst->op = op;
381 inst->dst = dst;
382 inst->src[0] = src0;
383 inst->src[1] = src1;
384 inst->src[2] = src2;
385 inst->ir = ir;
386
387 this->instructions.push_tail(inst);
388
389 return inst;
390 }
391
392
393 ir_to_mesa_instruction *
394 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
395 dst_reg dst, src_reg src0, src_reg src1)
396 {
397 return emit(ir, op, dst, src0, src1, undef_src);
398 }
399
400 ir_to_mesa_instruction *
401 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
402 dst_reg dst, src_reg src0)
403 {
404 assert(dst.writemask != 0);
405 return emit(ir, op, dst, src0, undef_src, undef_src);
406 }
407
408 ir_to_mesa_instruction *
409 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
410 {
411 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
412 }
413
414 ir_to_mesa_instruction *
415 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
416 dst_reg dst, src_reg src0, src_reg src1,
417 unsigned elements)
418 {
419 static const enum prog_opcode dot_opcodes[] = {
420 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
421 };
422
423 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
424 }
425
426 /**
427 * Emits Mesa scalar opcodes to produce unique answers across channels.
428 *
429 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
430 * channel determines the result across all channels. So to do a vec4
431 * of this operation, we want to emit a scalar per source channel used
432 * to produce dest channels.
433 */
434 void
435 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
436 dst_reg dst,
437 src_reg orig_src0, src_reg orig_src1)
438 {
439 int i, j;
440 int done_mask = ~dst.writemask;
441
442 /* Mesa RCP is a scalar operation splatting results to all channels,
443 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
444 * dst channels.
445 */
446 for (i = 0; i < 4; i++) {
447 GLuint this_mask = (1 << i);
448 ir_to_mesa_instruction *inst;
449 src_reg src0 = orig_src0;
450 src_reg src1 = orig_src1;
451
452 if (done_mask & this_mask)
453 continue;
454
455 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
456 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
457 for (j = i + 1; j < 4; j++) {
458 /* If there is another enabled component in the destination that is
459 * derived from the same inputs, generate its value on this pass as
460 * well.
461 */
462 if (!(done_mask & (1 << j)) &&
463 GET_SWZ(src0.swizzle, j) == src0_swiz &&
464 GET_SWZ(src1.swizzle, j) == src1_swiz) {
465 this_mask |= (1 << j);
466 }
467 }
468 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
469 src0_swiz, src0_swiz);
470 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
471 src1_swiz, src1_swiz);
472
473 inst = emit(ir, op, dst, src0, src1);
474 inst->dst.writemask = this_mask;
475 done_mask |= this_mask;
476 }
477 }
478
479 void
480 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
481 dst_reg dst, src_reg src0)
482 {
483 src_reg undef = undef_src;
484
485 undef.swizzle = SWIZZLE_XXXX;
486
487 emit_scalar(ir, op, dst, src0, undef);
488 }
489
490 src_reg
491 ir_to_mesa_visitor::src_reg_for_float(float val)
492 {
493 src_reg src(PROGRAM_CONSTANT, -1, NULL);
494
495 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
496 (const gl_constant_value *)&val, 1, &src.swizzle);
497
498 return src;
499 }
500
501 static int
502 storage_type_size(const struct glsl_type *type, bool bindless)
503 {
504 unsigned int i;
505 int size;
506
507 switch (type->base_type) {
508 case GLSL_TYPE_UINT:
509 case GLSL_TYPE_INT:
510 case GLSL_TYPE_FLOAT:
511 case GLSL_TYPE_BOOL:
512 if (type->is_matrix()) {
513 return type->matrix_columns;
514 } else {
515 /* Regardless of size of vector, it gets a vec4. This is bad
516 * packing for things like floats, but otherwise arrays become a
517 * mess. Hopefully a later pass over the code can pack scalars
518 * down if appropriate.
519 */
520 return 1;
521 }
522 break;
523 case GLSL_TYPE_DOUBLE:
524 if (type->is_matrix()) {
525 if (type->vector_elements > 2)
526 return type->matrix_columns * 2;
527 else
528 return type->matrix_columns;
529 } else {
530 if (type->vector_elements > 2)
531 return 2;
532 else
533 return 1;
534 }
535 break;
536 case GLSL_TYPE_UINT64:
537 case GLSL_TYPE_INT64:
538 if (type->vector_elements > 2)
539 return 2;
540 else
541 return 1;
542 case GLSL_TYPE_ARRAY:
543 assert(type->length > 0);
544 return storage_type_size(type->fields.array, bindless) * type->length;
545 case GLSL_TYPE_STRUCT:
546 size = 0;
547 for (i = 0; i < type->length; i++) {
548 size += storage_type_size(type->fields.structure[i].type, bindless);
549 }
550 return size;
551 case GLSL_TYPE_SAMPLER:
552 case GLSL_TYPE_IMAGE:
553 if (!bindless)
554 return 0;
555 /* fall through */
556 case GLSL_TYPE_SUBROUTINE:
557 return 1;
558 case GLSL_TYPE_ATOMIC_UINT:
559 case GLSL_TYPE_VOID:
560 case GLSL_TYPE_ERROR:
561 case GLSL_TYPE_INTERFACE:
562 case GLSL_TYPE_FUNCTION:
563 assert(!"Invalid type in type_size");
564 break;
565 }
566
567 return 0;
568 }
569
570 static int
571 type_size(const struct glsl_type *type)
572 {
573 return storage_type_size(type, false);
574 }
575
576 /**
577 * In the initial pass of codegen, we assign temporary numbers to
578 * intermediate results. (not SSA -- variable assignments will reuse
579 * storage). Actual register allocation for the Mesa VM occurs in a
580 * pass over the Mesa IR later.
581 */
582 src_reg
583 ir_to_mesa_visitor::get_temp(const glsl_type *type)
584 {
585 src_reg src;
586
587 src.file = PROGRAM_TEMPORARY;
588 src.index = next_temp;
589 src.reladdr = NULL;
590 next_temp += type_size(type);
591
592 if (type->is_array() || type->is_record()) {
593 src.swizzle = SWIZZLE_NOOP;
594 } else {
595 src.swizzle = swizzle_for_size(type->vector_elements);
596 }
597 src.negate = 0;
598
599 return src;
600 }
601
602 variable_storage *
603 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
604 {
605 foreach_in_list(variable_storage, entry, &this->variables) {
606 if (entry->var == var)
607 return entry;
608 }
609
610 return NULL;
611 }
612
613 void
614 ir_to_mesa_visitor::visit(ir_variable *ir)
615 {
616 if (strcmp(ir->name, "gl_FragCoord") == 0) {
617 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
618 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
619 }
620
621 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
622 unsigned int i;
623 const ir_state_slot *const slots = ir->get_state_slots();
624 assert(slots != NULL);
625
626 /* Check if this statevar's setup in the STATE file exactly
627 * matches how we'll want to reference it as a
628 * struct/array/whatever. If not, then we need to move it into
629 * temporary storage and hope that it'll get copy-propagated
630 * out.
631 */
632 for (i = 0; i < ir->get_num_state_slots(); i++) {
633 if (slots[i].swizzle != SWIZZLE_XYZW) {
634 break;
635 }
636 }
637
638 variable_storage *storage;
639 dst_reg dst;
640 if (i == ir->get_num_state_slots()) {
641 /* We'll set the index later. */
642 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
643 this->variables.push_tail(storage);
644
645 dst = undef_dst;
646 } else {
647 /* The variable_storage constructor allocates slots based on the size
648 * of the type. However, this had better match the number of state
649 * elements that we're going to copy into the new temporary.
650 */
651 assert((int) ir->get_num_state_slots() == type_size(ir->type));
652
653 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
654 this->next_temp);
655 this->variables.push_tail(storage);
656 this->next_temp += type_size(ir->type);
657
658 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
659 }
660
661
662 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
663 int index = _mesa_add_state_reference(this->prog->Parameters,
664 (gl_state_index *)slots[i].tokens);
665
666 if (storage->file == PROGRAM_STATE_VAR) {
667 if (storage->index == -1) {
668 storage->index = index;
669 } else {
670 assert(index == storage->index + (int)i);
671 }
672 } else {
673 src_reg src(PROGRAM_STATE_VAR, index, NULL);
674 src.swizzle = slots[i].swizzle;
675 emit(ir, OPCODE_MOV, dst, src);
676 /* even a float takes up a whole vec4 reg in a struct/array. */
677 dst.index++;
678 }
679 }
680
681 if (storage->file == PROGRAM_TEMPORARY &&
682 dst.index != storage->index + (int) ir->get_num_state_slots()) {
683 linker_error(this->shader_program,
684 "failed to load builtin uniform `%s' "
685 "(%d/%d regs loaded)\n",
686 ir->name, dst.index - storage->index,
687 type_size(ir->type));
688 }
689 }
690 }
691
692 void
693 ir_to_mesa_visitor::visit(ir_loop *ir)
694 {
695 emit(NULL, OPCODE_BGNLOOP);
696
697 visit_exec_list(&ir->body_instructions, this);
698
699 emit(NULL, OPCODE_ENDLOOP);
700 }
701
702 void
703 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
704 {
705 switch (ir->mode) {
706 case ir_loop_jump::jump_break:
707 emit(NULL, OPCODE_BRK);
708 break;
709 case ir_loop_jump::jump_continue:
710 emit(NULL, OPCODE_CONT);
711 break;
712 }
713 }
714
715
716 void
717 ir_to_mesa_visitor::visit(ir_function_signature *ir)
718 {
719 assert(0);
720 (void)ir;
721 }
722
723 void
724 ir_to_mesa_visitor::visit(ir_function *ir)
725 {
726 /* Ignore function bodies other than main() -- we shouldn't see calls to
727 * them since they should all be inlined before we get to ir_to_mesa.
728 */
729 if (strcmp(ir->name, "main") == 0) {
730 const ir_function_signature *sig;
731 exec_list empty;
732
733 sig = ir->matching_signature(NULL, &empty, false);
734
735 assert(sig);
736
737 foreach_in_list(ir_instruction, ir, &sig->body) {
738 ir->accept(this);
739 }
740 }
741 }
742
743 bool
744 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
745 {
746 int nonmul_operand = 1 - mul_operand;
747 src_reg a, b, c;
748
749 ir_expression *expr = ir->operands[mul_operand]->as_expression();
750 if (!expr || expr->operation != ir_binop_mul)
751 return false;
752
753 expr->operands[0]->accept(this);
754 a = this->result;
755 expr->operands[1]->accept(this);
756 b = this->result;
757 ir->operands[nonmul_operand]->accept(this);
758 c = this->result;
759
760 this->result = get_temp(ir->type);
761 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
762
763 return true;
764 }
765
766 /**
767 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
768 *
769 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
770 * implemented using multiplication, and logical-or is implemented using
771 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
772 * As result, the logical expression (a & !b) can be rewritten as:
773 *
774 * - a * !b
775 * - a * (1 - b)
776 * - (a * 1) - (a * b)
777 * - a + -(a * b)
778 * - a + (a * -b)
779 *
780 * This final expression can be implemented as a single MAD(a, -b, a)
781 * instruction.
782 */
783 bool
784 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
785 {
786 const int other_operand = 1 - try_operand;
787 src_reg a, b;
788
789 ir_expression *expr = ir->operands[try_operand]->as_expression();
790 if (!expr || expr->operation != ir_unop_logic_not)
791 return false;
792
793 ir->operands[other_operand]->accept(this);
794 a = this->result;
795 expr->operands[0]->accept(this);
796 b = this->result;
797
798 b.negate = ~b.negate;
799
800 this->result = get_temp(ir->type);
801 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
802
803 return true;
804 }
805
806 void
807 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
808 src_reg *reg, int *num_reladdr)
809 {
810 if (!reg->reladdr)
811 return;
812
813 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
814
815 if (*num_reladdr != 1) {
816 src_reg temp = get_temp(glsl_type::vec4_type);
817
818 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
819 *reg = temp;
820 }
821
822 (*num_reladdr)--;
823 }
824
825 void
826 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
827 {
828 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
829 * This means that each of the operands is either an immediate value of -1,
830 * 0, or 1, or is a component from one source register (possibly with
831 * negation).
832 */
833 uint8_t components[4] = { 0 };
834 bool negate[4] = { false };
835 ir_variable *var = NULL;
836
837 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
838 ir_rvalue *op = ir->operands[i];
839
840 assert(op->type->is_scalar());
841
842 while (op != NULL) {
843 switch (op->ir_type) {
844 case ir_type_constant: {
845
846 assert(op->type->is_scalar());
847
848 const ir_constant *const c = op->as_constant();
849 if (c->is_one()) {
850 components[i] = SWIZZLE_ONE;
851 } else if (c->is_zero()) {
852 components[i] = SWIZZLE_ZERO;
853 } else if (c->is_negative_one()) {
854 components[i] = SWIZZLE_ONE;
855 negate[i] = true;
856 } else {
857 assert(!"SWZ constant must be 0.0 or 1.0.");
858 }
859
860 op = NULL;
861 break;
862 }
863
864 case ir_type_dereference_variable: {
865 ir_dereference_variable *const deref =
866 (ir_dereference_variable *) op;
867
868 assert((var == NULL) || (deref->var == var));
869 components[i] = SWIZZLE_X;
870 var = deref->var;
871 op = NULL;
872 break;
873 }
874
875 case ir_type_expression: {
876 ir_expression *const expr = (ir_expression *) op;
877
878 assert(expr->operation == ir_unop_neg);
879 negate[i] = true;
880
881 op = expr->operands[0];
882 break;
883 }
884
885 case ir_type_swizzle: {
886 ir_swizzle *const swiz = (ir_swizzle *) op;
887
888 components[i] = swiz->mask.x;
889 op = swiz->val;
890 break;
891 }
892
893 default:
894 assert(!"Should not get here.");
895 return;
896 }
897 }
898 }
899
900 assert(var != NULL);
901
902 ir_dereference_variable *const deref =
903 new(mem_ctx) ir_dereference_variable(var);
904
905 this->result.file = PROGRAM_UNDEFINED;
906 deref->accept(this);
907 if (this->result.file == PROGRAM_UNDEFINED) {
908 printf("Failed to get tree for expression operand:\n");
909 deref->print();
910 printf("\n");
911 exit(1);
912 }
913
914 src_reg src;
915
916 src = this->result;
917 src.swizzle = MAKE_SWIZZLE4(components[0],
918 components[1],
919 components[2],
920 components[3]);
921 src.negate = ((unsigned(negate[0]) << 0)
922 | (unsigned(negate[1]) << 1)
923 | (unsigned(negate[2]) << 2)
924 | (unsigned(negate[3]) << 3));
925
926 /* Storage for our result. Ideally for an assignment we'd be using the
927 * actual storage for the result here, instead.
928 */
929 const src_reg result_src = get_temp(ir->type);
930 dst_reg result_dst = dst_reg(result_src);
931
932 /* Limit writes to the channels that will be used by result_src later.
933 * This does limit this temp's use as a temporary for multi-instruction
934 * sequences.
935 */
936 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
937
938 emit(ir, OPCODE_SWZ, result_dst, src);
939 this->result = result_src;
940 }
941
942 void
943 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
944 enum prog_opcode op,
945 dst_reg dst,
946 const src_reg &src0,
947 const src_reg &src1)
948 {
949 src_reg difference;
950 src_reg abs_difference = get_temp(glsl_type::vec4_type);
951 const src_reg zero = src_reg_for_float(0.0);
952
953 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
954 * consumes the generated IR is pretty dumb, take special care when one
955 * of the operands is zero.
956 *
957 * Similarly, x != y is equivalent to -abs(x-y) < 0.
958 */
959 if (src0.file == zero.file &&
960 src0.index == zero.index &&
961 src0.swizzle == zero.swizzle) {
962 difference = src1;
963 } else if (src1.file == zero.file &&
964 src1.index == zero.index &&
965 src1.swizzle == zero.swizzle) {
966 difference = src0;
967 } else {
968 difference = get_temp(glsl_type::vec4_type);
969
970 src_reg tmp_src = src0;
971 tmp_src.negate = ~tmp_src.negate;
972
973 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
974 }
975
976 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
977
978 abs_difference.negate = ~abs_difference.negate;
979 emit(ir, op, dst, abs_difference, zero);
980 }
981
982 void
983 ir_to_mesa_visitor::visit(ir_expression *ir)
984 {
985 unsigned int operand;
986 src_reg op[ARRAY_SIZE(ir->operands)];
987 src_reg result_src;
988 dst_reg result_dst;
989
990 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
991 */
992 if (ir->operation == ir_binop_add) {
993 if (try_emit_mad(ir, 1))
994 return;
995 if (try_emit_mad(ir, 0))
996 return;
997 }
998
999 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1000 */
1001 if (ir->operation == ir_binop_logic_and) {
1002 if (try_emit_mad_for_and_not(ir, 1))
1003 return;
1004 if (try_emit_mad_for_and_not(ir, 0))
1005 return;
1006 }
1007
1008 if (ir->operation == ir_quadop_vector) {
1009 this->emit_swz(ir);
1010 return;
1011 }
1012
1013 for (operand = 0; operand < ir->num_operands; operand++) {
1014 this->result.file = PROGRAM_UNDEFINED;
1015 ir->operands[operand]->accept(this);
1016 if (this->result.file == PROGRAM_UNDEFINED) {
1017 printf("Failed to get tree for expression operand:\n");
1018 ir->operands[operand]->print();
1019 printf("\n");
1020 exit(1);
1021 }
1022 op[operand] = this->result;
1023
1024 /* Matrix expression operands should have been broken down to vector
1025 * operations already.
1026 */
1027 assert(!ir->operands[operand]->type->is_matrix());
1028 }
1029
1030 int vector_elements = ir->operands[0]->type->vector_elements;
1031 if (ir->operands[1]) {
1032 vector_elements = MAX2(vector_elements,
1033 ir->operands[1]->type->vector_elements);
1034 }
1035
1036 this->result.file = PROGRAM_UNDEFINED;
1037
1038 /* Storage for our result. Ideally for an assignment we'd be using
1039 * the actual storage for the result here, instead.
1040 */
1041 result_src = get_temp(ir->type);
1042 /* convenience for the emit functions below. */
1043 result_dst = dst_reg(result_src);
1044 /* Limit writes to the channels that will be used by result_src later.
1045 * This does limit this temp's use as a temporary for multi-instruction
1046 * sequences.
1047 */
1048 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1049
1050 switch (ir->operation) {
1051 case ir_unop_logic_not:
1052 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1053 * older GPUs implement SEQ using multiple instructions (i915 uses two
1054 * SGE instructions and a MUL instruction). Since our logic values are
1055 * 0.0 and 1.0, 1-x also implements !x.
1056 */
1057 op[0].negate = ~op[0].negate;
1058 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1059 break;
1060 case ir_unop_neg:
1061 op[0].negate = ~op[0].negate;
1062 result_src = op[0];
1063 break;
1064 case ir_unop_abs:
1065 emit(ir, OPCODE_ABS, result_dst, op[0]);
1066 break;
1067 case ir_unop_sign:
1068 emit(ir, OPCODE_SSG, result_dst, op[0]);
1069 break;
1070 case ir_unop_rcp:
1071 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1072 break;
1073
1074 case ir_unop_exp2:
1075 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1076 break;
1077 case ir_unop_exp:
1078 assert(!"not reached: should be handled by exp_to_exp2");
1079 break;
1080 case ir_unop_log:
1081 assert(!"not reached: should be handled by log_to_log2");
1082 break;
1083 case ir_unop_log2:
1084 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1085 break;
1086 case ir_unop_sin:
1087 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1088 break;
1089 case ir_unop_cos:
1090 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1091 break;
1092
1093 case ir_unop_dFdx:
1094 emit(ir, OPCODE_DDX, result_dst, op[0]);
1095 break;
1096 case ir_unop_dFdy:
1097 emit(ir, OPCODE_DDY, result_dst, op[0]);
1098 break;
1099
1100 case ir_unop_saturate: {
1101 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1102 result_dst, op[0]);
1103 inst->saturate = true;
1104 break;
1105 }
1106 case ir_unop_noise: {
1107 const enum prog_opcode opcode =
1108 prog_opcode(OPCODE_NOISE1
1109 + (ir->operands[0]->type->vector_elements) - 1);
1110 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1111
1112 emit(ir, opcode, result_dst, op[0]);
1113 break;
1114 }
1115
1116 case ir_binop_add:
1117 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1118 break;
1119 case ir_binop_sub:
1120 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1121 break;
1122
1123 case ir_binop_mul:
1124 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1125 break;
1126 case ir_binop_div:
1127 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1128 break;
1129 case ir_binop_mod:
1130 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1131 assert(ir->type->is_integer());
1132 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1133 break;
1134
1135 case ir_binop_less:
1136 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1137 break;
1138 case ir_binop_greater:
1139 /* Negating the operands (as opposed to switching the order of the
1140 * operands) produces the correct result when both are +/-Inf.
1141 */
1142 op[0].negate = ~op[0].negate;
1143 op[1].negate = ~op[1].negate;
1144 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1145 break;
1146 case ir_binop_lequal:
1147 /* Negating the operands (as opposed to switching the order of the
1148 * operands) produces the correct result when both are +/-Inf.
1149 */
1150 op[0].negate = ~op[0].negate;
1151 op[1].negate = ~op[1].negate;
1152 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1153 break;
1154 case ir_binop_gequal:
1155 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1156 break;
1157 case ir_binop_equal:
1158 emit_seq(ir, result_dst, op[0], op[1]);
1159 break;
1160 case ir_binop_nequal:
1161 emit_sne(ir, result_dst, op[0], op[1]);
1162 break;
1163 case ir_binop_all_equal:
1164 /* "==" operator producing a scalar boolean. */
1165 if (ir->operands[0]->type->is_vector() ||
1166 ir->operands[1]->type->is_vector()) {
1167 src_reg temp = get_temp(glsl_type::vec4_type);
1168 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1169
1170 /* After the dot-product, the value will be an integer on the
1171 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1172 */
1173 emit_dp(ir, result_dst, temp, temp, vector_elements);
1174
1175 /* Negating the result of the dot-product gives values on the range
1176 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1177 * achieved using SGE.
1178 */
1179 src_reg sge_src = result_src;
1180 sge_src.negate = ~sge_src.negate;
1181 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1182 } else {
1183 emit_seq(ir, result_dst, op[0], op[1]);
1184 }
1185 break;
1186 case ir_binop_any_nequal:
1187 /* "!=" operator producing a scalar boolean. */
1188 if (ir->operands[0]->type->is_vector() ||
1189 ir->operands[1]->type->is_vector()) {
1190 src_reg temp = get_temp(glsl_type::vec4_type);
1191 if (ir->operands[0]->type->is_boolean() &&
1192 ir->operands[1]->as_constant() &&
1193 ir->operands[1]->as_constant()->is_zero()) {
1194 temp = op[0];
1195 } else {
1196 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1197 }
1198
1199 /* After the dot-product, the value will be an integer on the
1200 * range [0,4]. Zero stays zero, and positive values become 1.0.
1201 */
1202 ir_to_mesa_instruction *const dp =
1203 emit_dp(ir, result_dst, temp, temp, vector_elements);
1204 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1205 /* The clamping to [0,1] can be done for free in the fragment
1206 * shader with a saturate.
1207 */
1208 dp->saturate = true;
1209 } else {
1210 /* Negating the result of the dot-product gives values on the range
1211 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1212 * achieved using SLT.
1213 */
1214 src_reg slt_src = result_src;
1215 slt_src.negate = ~slt_src.negate;
1216 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1217 }
1218 } else {
1219 emit_sne(ir, result_dst, op[0], op[1]);
1220 }
1221 break;
1222
1223 case ir_binop_logic_xor:
1224 emit_sne(ir, result_dst, op[0], op[1]);
1225 break;
1226
1227 case ir_binop_logic_or: {
1228 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1229 /* After the addition, the value will be an integer on the
1230 * range [0,2]. Zero stays zero, and positive values become 1.0.
1231 */
1232 ir_to_mesa_instruction *add =
1233 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1234 add->saturate = true;
1235 } else {
1236 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1237 * value is 1.0, the result of the logcal-or should be 1.0. If both
1238 * values are 0.0, the result should be 0.0. This is exactly what
1239 * MAX does.
1240 */
1241 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1242 }
1243 break;
1244 }
1245
1246 case ir_binop_logic_and:
1247 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1248 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1249 break;
1250
1251 case ir_binop_dot:
1252 assert(ir->operands[0]->type->is_vector());
1253 assert(ir->operands[0]->type == ir->operands[1]->type);
1254 emit_dp(ir, result_dst, op[0], op[1],
1255 ir->operands[0]->type->vector_elements);
1256 break;
1257
1258 case ir_unop_sqrt:
1259 /* sqrt(x) = x * rsq(x). */
1260 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1261 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1262 /* For incoming channels <= 0, set the result to 0. */
1263 op[0].negate = ~op[0].negate;
1264 emit(ir, OPCODE_CMP, result_dst,
1265 op[0], result_src, src_reg_for_float(0.0));
1266 break;
1267 case ir_unop_rsq:
1268 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1269 break;
1270 case ir_unop_i2f:
1271 case ir_unop_u2f:
1272 case ir_unop_b2f:
1273 case ir_unop_b2i:
1274 case ir_unop_i2u:
1275 case ir_unop_u2i:
1276 /* Mesa IR lacks types, ints are stored as truncated floats. */
1277 result_src = op[0];
1278 break;
1279 case ir_unop_f2i:
1280 case ir_unop_f2u:
1281 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1282 break;
1283 case ir_unop_f2b:
1284 case ir_unop_i2b:
1285 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1286 break;
1287 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1288 case ir_unop_bitcast_f2u:
1289 case ir_unop_bitcast_i2f:
1290 case ir_unop_bitcast_u2f:
1291 break;
1292 case ir_unop_trunc:
1293 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1294 break;
1295 case ir_unop_ceil:
1296 op[0].negate = ~op[0].negate;
1297 emit(ir, OPCODE_FLR, result_dst, op[0]);
1298 result_src.negate = ~result_src.negate;
1299 break;
1300 case ir_unop_floor:
1301 emit(ir, OPCODE_FLR, result_dst, op[0]);
1302 break;
1303 case ir_unop_fract:
1304 emit(ir, OPCODE_FRC, result_dst, op[0]);
1305 break;
1306 case ir_unop_pack_snorm_2x16:
1307 case ir_unop_pack_snorm_4x8:
1308 case ir_unop_pack_unorm_2x16:
1309 case ir_unop_pack_unorm_4x8:
1310 case ir_unop_pack_half_2x16:
1311 case ir_unop_pack_double_2x32:
1312 case ir_unop_unpack_snorm_2x16:
1313 case ir_unop_unpack_snorm_4x8:
1314 case ir_unop_unpack_unorm_2x16:
1315 case ir_unop_unpack_unorm_4x8:
1316 case ir_unop_unpack_half_2x16:
1317 case ir_unop_unpack_double_2x32:
1318 case ir_unop_bitfield_reverse:
1319 case ir_unop_bit_count:
1320 case ir_unop_find_msb:
1321 case ir_unop_find_lsb:
1322 case ir_unop_d2f:
1323 case ir_unop_f2d:
1324 case ir_unop_d2i:
1325 case ir_unop_i2d:
1326 case ir_unop_d2u:
1327 case ir_unop_u2d:
1328 case ir_unop_d2b:
1329 case ir_unop_frexp_sig:
1330 case ir_unop_frexp_exp:
1331 assert(!"not supported");
1332 break;
1333 case ir_binop_min:
1334 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1335 break;
1336 case ir_binop_max:
1337 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1338 break;
1339 case ir_binop_pow:
1340 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1341 break;
1342
1343 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1344 * hardware backends have no way to avoid Mesa IR generation
1345 * even if they don't use it, we need to emit "something" and
1346 * continue.
1347 */
1348 case ir_binop_lshift:
1349 case ir_binop_rshift:
1350 case ir_binop_bit_and:
1351 case ir_binop_bit_xor:
1352 case ir_binop_bit_or:
1353 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1354 break;
1355
1356 case ir_unop_bit_not:
1357 case ir_unop_round_even:
1358 emit(ir, OPCODE_MOV, result_dst, op[0]);
1359 break;
1360
1361 case ir_binop_ubo_load:
1362 assert(!"not supported");
1363 break;
1364
1365 case ir_triop_lrp:
1366 /* ir_triop_lrp operands are (x, y, a) while
1367 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1368 */
1369 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1370 break;
1371
1372 case ir_triop_csel:
1373 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1374 * selects src1 if src0 is < 0, src2 otherwise.
1375 */
1376 op[0].negate = ~op[0].negate;
1377 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1378 break;
1379
1380 case ir_binop_vector_extract:
1381 case ir_triop_fma:
1382 case ir_triop_bitfield_extract:
1383 case ir_triop_vector_insert:
1384 case ir_quadop_bitfield_insert:
1385 case ir_binop_ldexp:
1386 case ir_binop_carry:
1387 case ir_binop_borrow:
1388 case ir_binop_imul_high:
1389 case ir_unop_interpolate_at_centroid:
1390 case ir_binop_interpolate_at_offset:
1391 case ir_binop_interpolate_at_sample:
1392 case ir_unop_dFdx_coarse:
1393 case ir_unop_dFdx_fine:
1394 case ir_unop_dFdy_coarse:
1395 case ir_unop_dFdy_fine:
1396 case ir_unop_subroutine_to_int:
1397 case ir_unop_get_buffer_size:
1398 case ir_unop_bitcast_u642d:
1399 case ir_unop_bitcast_i642d:
1400 case ir_unop_bitcast_d2u64:
1401 case ir_unop_bitcast_d2i64:
1402 case ir_unop_i642i:
1403 case ir_unop_u642i:
1404 case ir_unop_i642u:
1405 case ir_unop_u642u:
1406 case ir_unop_i642b:
1407 case ir_unop_i642f:
1408 case ir_unop_u642f:
1409 case ir_unop_i642d:
1410 case ir_unop_u642d:
1411 case ir_unop_i2i64:
1412 case ir_unop_u2i64:
1413 case ir_unop_b2i64:
1414 case ir_unop_f2i64:
1415 case ir_unop_d2i64:
1416 case ir_unop_i2u64:
1417 case ir_unop_u2u64:
1418 case ir_unop_f2u64:
1419 case ir_unop_d2u64:
1420 case ir_unop_u642i64:
1421 case ir_unop_i642u64:
1422 case ir_unop_pack_int_2x32:
1423 case ir_unop_unpack_int_2x32:
1424 case ir_unop_pack_uint_2x32:
1425 case ir_unop_unpack_uint_2x32:
1426 case ir_unop_pack_sampler_2x32:
1427 case ir_unop_unpack_sampler_2x32:
1428 case ir_unop_pack_image_2x32:
1429 case ir_unop_unpack_image_2x32:
1430 assert(!"not supported");
1431 break;
1432
1433 case ir_unop_ssbo_unsized_array_length:
1434 case ir_quadop_vector:
1435 /* This operation should have already been handled.
1436 */
1437 assert(!"Should not get here.");
1438 break;
1439 }
1440
1441 this->result = result_src;
1442 }
1443
1444
1445 void
1446 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1447 {
1448 src_reg src;
1449 int i;
1450 int swizzle[4];
1451
1452 /* Note that this is only swizzles in expressions, not those on the left
1453 * hand side of an assignment, which do write masking. See ir_assignment
1454 * for that.
1455 */
1456
1457 ir->val->accept(this);
1458 src = this->result;
1459 assert(src.file != PROGRAM_UNDEFINED);
1460 assert(ir->type->vector_elements > 0);
1461
1462 for (i = 0; i < 4; i++) {
1463 if (i < ir->type->vector_elements) {
1464 switch (i) {
1465 case 0:
1466 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1467 break;
1468 case 1:
1469 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1470 break;
1471 case 2:
1472 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1473 break;
1474 case 3:
1475 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1476 break;
1477 }
1478 } else {
1479 /* If the type is smaller than a vec4, replicate the last
1480 * channel out.
1481 */
1482 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1483 }
1484 }
1485
1486 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1487
1488 this->result = src;
1489 }
1490
1491 void
1492 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1493 {
1494 variable_storage *entry = find_variable_storage(ir->var);
1495 ir_variable *var = ir->var;
1496
1497 if (!entry) {
1498 switch (var->data.mode) {
1499 case ir_var_uniform:
1500 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1501 var->data.param_index);
1502 this->variables.push_tail(entry);
1503 break;
1504 case ir_var_shader_in:
1505 /* The linker assigns locations for varyings and attributes,
1506 * including deprecated builtins (like gl_Color),
1507 * user-assigned generic attributes (glBindVertexLocation),
1508 * and user-defined varyings.
1509 */
1510 assert(var->data.location != -1);
1511 entry = new(mem_ctx) variable_storage(var,
1512 PROGRAM_INPUT,
1513 var->data.location);
1514 break;
1515 case ir_var_shader_out:
1516 assert(var->data.location != -1);
1517 entry = new(mem_ctx) variable_storage(var,
1518 PROGRAM_OUTPUT,
1519 var->data.location);
1520 break;
1521 case ir_var_system_value:
1522 entry = new(mem_ctx) variable_storage(var,
1523 PROGRAM_SYSTEM_VALUE,
1524 var->data.location);
1525 break;
1526 case ir_var_auto:
1527 case ir_var_temporary:
1528 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1529 this->next_temp);
1530 this->variables.push_tail(entry);
1531
1532 next_temp += type_size(var->type);
1533 break;
1534 }
1535
1536 if (!entry) {
1537 printf("Failed to make storage for %s\n", var->name);
1538 exit(1);
1539 }
1540 }
1541
1542 this->result = src_reg(entry->file, entry->index, var->type);
1543 }
1544
1545 void
1546 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1547 {
1548 ir_constant *index;
1549 src_reg src;
1550 int element_size = type_size(ir->type);
1551
1552 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1553
1554 ir->array->accept(this);
1555 src = this->result;
1556
1557 if (index) {
1558 src.index += index->value.i[0] * element_size;
1559 } else {
1560 /* Variable index array dereference. It eats the "vec4" of the
1561 * base of the array and an index that offsets the Mesa register
1562 * index.
1563 */
1564 ir->array_index->accept(this);
1565
1566 src_reg index_reg;
1567
1568 if (element_size == 1) {
1569 index_reg = this->result;
1570 } else {
1571 index_reg = get_temp(glsl_type::float_type);
1572
1573 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1574 this->result, src_reg_for_float(element_size));
1575 }
1576
1577 /* If there was already a relative address register involved, add the
1578 * new and the old together to get the new offset.
1579 */
1580 if (src.reladdr != NULL) {
1581 src_reg accum_reg = get_temp(glsl_type::float_type);
1582
1583 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1584 index_reg, *src.reladdr);
1585
1586 index_reg = accum_reg;
1587 }
1588
1589 src.reladdr = ralloc(mem_ctx, src_reg);
1590 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1591 }
1592
1593 /* If the type is smaller than a vec4, replicate the last channel out. */
1594 if (ir->type->is_scalar() || ir->type->is_vector())
1595 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1596 else
1597 src.swizzle = SWIZZLE_NOOP;
1598
1599 this->result = src;
1600 }
1601
1602 void
1603 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1604 {
1605 unsigned int i;
1606 const glsl_type *struct_type = ir->record->type;
1607 int offset = 0;
1608
1609 ir->record->accept(this);
1610
1611 assert(ir->field_idx >= 0);
1612 for (i = 0; i < struct_type->length; i++) {
1613 if (i == (unsigned) ir->field_idx)
1614 break;
1615 offset += type_size(struct_type->fields.structure[i].type);
1616 }
1617
1618 /* If the type is smaller than a vec4, replicate the last channel out. */
1619 if (ir->type->is_scalar() || ir->type->is_vector())
1620 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1621 else
1622 this->result.swizzle = SWIZZLE_NOOP;
1623
1624 this->result.index += offset;
1625 }
1626
1627 /**
1628 * We want to be careful in assignment setup to hit the actual storage
1629 * instead of potentially using a temporary like we might with the
1630 * ir_dereference handler.
1631 */
1632 static dst_reg
1633 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1634 {
1635 /* The LHS must be a dereference. If the LHS is a variable indexed array
1636 * access of a vector, it must be separated into a series conditional moves
1637 * before reaching this point (see ir_vec_index_to_cond_assign).
1638 */
1639 assert(ir->as_dereference());
1640 ir_dereference_array *deref_array = ir->as_dereference_array();
1641 if (deref_array) {
1642 assert(!deref_array->array->type->is_vector());
1643 }
1644
1645 /* Use the rvalue deref handler for the most part. We'll ignore
1646 * swizzles in it and write swizzles using writemask, though.
1647 */
1648 ir->accept(v);
1649 return dst_reg(v->result);
1650 }
1651
1652 /* Calculate the sampler index and also calculate the base uniform location
1653 * for struct members.
1654 */
1655 static void
1656 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1657 unsigned *offset, unsigned *array_elements,
1658 unsigned *location)
1659 {
1660 if (deref->ir_type == ir_type_dereference_variable)
1661 return;
1662
1663 switch (deref->ir_type) {
1664 case ir_type_dereference_array: {
1665 ir_dereference_array *deref_arr = deref->as_dereference_array();
1666
1667 void *mem_ctx = ralloc_parent(deref_arr);
1668 ir_constant *array_index =
1669 deref_arr->array_index->constant_expression_value(mem_ctx);
1670
1671 if (!array_index) {
1672 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1673 * while GLSL 1.30 requires that the array indices be
1674 * constant integer expressions. We don't expect any driver
1675 * to actually work with a really variable array index, so
1676 * all that would work would be an unrolled loop counter that ends
1677 * up being constant above.
1678 */
1679 ralloc_strcat(&prog->data->InfoLog,
1680 "warning: Variable sampler array index unsupported.\n"
1681 "This feature of the language was removed in GLSL 1.20 "
1682 "and is unlikely to be supported for 1.10 in Mesa.\n");
1683 } else {
1684 *offset += array_index->value.u[0] * *array_elements;
1685 }
1686
1687 *array_elements *= deref_arr->array->type->length;
1688
1689 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1690 offset, array_elements, location);
1691 break;
1692 }
1693
1694 case ir_type_dereference_record: {
1695 ir_dereference_record *deref_record = deref->as_dereference_record();
1696 unsigned field_index = deref_record->field_idx;
1697 *location +=
1698 deref_record->record->type->record_location_offset(field_index);
1699 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1700 offset, array_elements, location);
1701 break;
1702 }
1703
1704 default:
1705 unreachable("Invalid deref type");
1706 break;
1707 }
1708 }
1709
1710 static int
1711 get_sampler_uniform_value(class ir_dereference *sampler,
1712 struct gl_shader_program *shader_program,
1713 const struct gl_program *prog)
1714 {
1715 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1716 ir_variable *var = sampler->variable_referenced();
1717 unsigned location = var->data.location;
1718 unsigned array_elements = 1;
1719 unsigned offset = 0;
1720
1721 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1722 &location);
1723
1724 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1725 return shader_program->data->UniformStorage[location].opaque[shader].index +
1726 offset;
1727 }
1728
1729 /**
1730 * Process the condition of a conditional assignment
1731 *
1732 * Examines the condition of a conditional assignment to generate the optimal
1733 * first operand of a \c CMP instruction. If the condition is a relational
1734 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1735 * used as the source for the \c CMP instruction. Otherwise the comparison
1736 * is processed to a boolean result, and the boolean result is used as the
1737 * operand to the CMP instruction.
1738 */
1739 bool
1740 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1741 {
1742 ir_rvalue *src_ir = ir;
1743 bool negate = true;
1744 bool switch_order = false;
1745
1746 ir_expression *const expr = ir->as_expression();
1747 if ((expr != NULL) && (expr->num_operands == 2)) {
1748 bool zero_on_left = false;
1749
1750 if (expr->operands[0]->is_zero()) {
1751 src_ir = expr->operands[1];
1752 zero_on_left = true;
1753 } else if (expr->operands[1]->is_zero()) {
1754 src_ir = expr->operands[0];
1755 zero_on_left = false;
1756 }
1757
1758 /* a is - 0 + - 0 +
1759 * (a < 0) T F F ( a < 0) T F F
1760 * (0 < a) F F T (-a < 0) F F T
1761 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1762 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1763 * (a > 0) F F T (-a < 0) F F T
1764 * (0 > a) T F F ( a < 0) T F F
1765 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1766 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1767 *
1768 * Note that exchanging the order of 0 and 'a' in the comparison simply
1769 * means that the value of 'a' should be negated.
1770 */
1771 if (src_ir != ir) {
1772 switch (expr->operation) {
1773 case ir_binop_less:
1774 switch_order = false;
1775 negate = zero_on_left;
1776 break;
1777
1778 case ir_binop_greater:
1779 switch_order = false;
1780 negate = !zero_on_left;
1781 break;
1782
1783 case ir_binop_lequal:
1784 switch_order = true;
1785 negate = !zero_on_left;
1786 break;
1787
1788 case ir_binop_gequal:
1789 switch_order = true;
1790 negate = zero_on_left;
1791 break;
1792
1793 default:
1794 /* This isn't the right kind of comparison afterall, so make sure
1795 * the whole condition is visited.
1796 */
1797 src_ir = ir;
1798 break;
1799 }
1800 }
1801 }
1802
1803 src_ir->accept(this);
1804
1805 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1806 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1807 * choose which value OPCODE_CMP produces without an extra instruction
1808 * computing the condition.
1809 */
1810 if (negate)
1811 this->result.negate = ~this->result.negate;
1812
1813 return switch_order;
1814 }
1815
1816 void
1817 ir_to_mesa_visitor::visit(ir_assignment *ir)
1818 {
1819 dst_reg l;
1820 src_reg r;
1821 int i;
1822
1823 ir->rhs->accept(this);
1824 r = this->result;
1825
1826 l = get_assignment_lhs(ir->lhs, this);
1827
1828 /* FINISHME: This should really set to the correct maximal writemask for each
1829 * FINISHME: component written (in the loops below). This case can only
1830 * FINISHME: occur for matrices, arrays, and structures.
1831 */
1832 if (ir->write_mask == 0) {
1833 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1834 l.writemask = WRITEMASK_XYZW;
1835 } else if (ir->lhs->type->is_scalar()) {
1836 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1837 * FINISHME: W component of fragment shader output zero, work correctly.
1838 */
1839 l.writemask = WRITEMASK_XYZW;
1840 } else {
1841 int swizzles[4];
1842 int first_enabled_chan = 0;
1843 int rhs_chan = 0;
1844
1845 assert(ir->lhs->type->is_vector());
1846 l.writemask = ir->write_mask;
1847
1848 for (int i = 0; i < 4; i++) {
1849 if (l.writemask & (1 << i)) {
1850 first_enabled_chan = GET_SWZ(r.swizzle, i);
1851 break;
1852 }
1853 }
1854
1855 /* Swizzle a small RHS vector into the channels being written.
1856 *
1857 * glsl ir treats write_mask as dictating how many channels are
1858 * present on the RHS while Mesa IR treats write_mask as just
1859 * showing which channels of the vec4 RHS get written.
1860 */
1861 for (int i = 0; i < 4; i++) {
1862 if (l.writemask & (1 << i))
1863 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1864 else
1865 swizzles[i] = first_enabled_chan;
1866 }
1867 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1868 swizzles[2], swizzles[3]);
1869 }
1870
1871 assert(l.file != PROGRAM_UNDEFINED);
1872 assert(r.file != PROGRAM_UNDEFINED);
1873
1874 if (ir->condition) {
1875 const bool switch_order = this->process_move_condition(ir->condition);
1876 src_reg condition = this->result;
1877
1878 for (i = 0; i < type_size(ir->lhs->type); i++) {
1879 if (switch_order) {
1880 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1881 } else {
1882 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1883 }
1884
1885 l.index++;
1886 r.index++;
1887 }
1888 } else {
1889 for (i = 0; i < type_size(ir->lhs->type); i++) {
1890 emit(ir, OPCODE_MOV, l, r);
1891 l.index++;
1892 r.index++;
1893 }
1894 }
1895 }
1896
1897
1898 void
1899 ir_to_mesa_visitor::visit(ir_constant *ir)
1900 {
1901 src_reg src;
1902 GLfloat stack_vals[4] = { 0 };
1903 GLfloat *values = stack_vals;
1904 unsigned int i;
1905
1906 /* Unfortunately, 4 floats is all we can get into
1907 * _mesa_add_unnamed_constant. So, make a temp to store an
1908 * aggregate constant and move each constant value into it. If we
1909 * get lucky, copy propagation will eliminate the extra moves.
1910 */
1911
1912 if (ir->type->is_record()) {
1913 src_reg temp_base = get_temp(ir->type);
1914 dst_reg temp = dst_reg(temp_base);
1915
1916 foreach_in_list(ir_constant, field_value, &ir->components) {
1917 int size = type_size(field_value->type);
1918
1919 assert(size > 0);
1920
1921 field_value->accept(this);
1922 src = this->result;
1923
1924 for (i = 0; i < (unsigned int)size; i++) {
1925 emit(ir, OPCODE_MOV, temp, src);
1926
1927 src.index++;
1928 temp.index++;
1929 }
1930 }
1931 this->result = temp_base;
1932 return;
1933 }
1934
1935 if (ir->type->is_array()) {
1936 src_reg temp_base = get_temp(ir->type);
1937 dst_reg temp = dst_reg(temp_base);
1938 int size = type_size(ir->type->fields.array);
1939
1940 assert(size > 0);
1941
1942 for (i = 0; i < ir->type->length; i++) {
1943 ir->array_elements[i]->accept(this);
1944 src = this->result;
1945 for (int j = 0; j < size; j++) {
1946 emit(ir, OPCODE_MOV, temp, src);
1947
1948 src.index++;
1949 temp.index++;
1950 }
1951 }
1952 this->result = temp_base;
1953 return;
1954 }
1955
1956 if (ir->type->is_matrix()) {
1957 src_reg mat = get_temp(ir->type);
1958 dst_reg mat_column = dst_reg(mat);
1959
1960 for (i = 0; i < ir->type->matrix_columns; i++) {
1961 assert(ir->type->is_float());
1962 values = &ir->value.f[i * ir->type->vector_elements];
1963
1964 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1965 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1966 (gl_constant_value *) values,
1967 ir->type->vector_elements,
1968 &src.swizzle);
1969 emit(ir, OPCODE_MOV, mat_column, src);
1970
1971 mat_column.index++;
1972 }
1973
1974 this->result = mat;
1975 return;
1976 }
1977
1978 src.file = PROGRAM_CONSTANT;
1979 switch (ir->type->base_type) {
1980 case GLSL_TYPE_FLOAT:
1981 values = &ir->value.f[0];
1982 break;
1983 case GLSL_TYPE_UINT:
1984 for (i = 0; i < ir->type->vector_elements; i++) {
1985 values[i] = ir->value.u[i];
1986 }
1987 break;
1988 case GLSL_TYPE_INT:
1989 for (i = 0; i < ir->type->vector_elements; i++) {
1990 values[i] = ir->value.i[i];
1991 }
1992 break;
1993 case GLSL_TYPE_BOOL:
1994 for (i = 0; i < ir->type->vector_elements; i++) {
1995 values[i] = ir->value.b[i];
1996 }
1997 break;
1998 default:
1999 assert(!"Non-float/uint/int/bool constant");
2000 }
2001
2002 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
2003 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
2004 (gl_constant_value *) values,
2005 ir->type->vector_elements,
2006 &this->result.swizzle);
2007 }
2008
2009 void
2010 ir_to_mesa_visitor::visit(ir_call *)
2011 {
2012 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
2013 }
2014
2015 void
2016 ir_to_mesa_visitor::visit(ir_texture *ir)
2017 {
2018 src_reg result_src, coord, lod_info, projector, dx, dy;
2019 dst_reg result_dst, coord_dst;
2020 ir_to_mesa_instruction *inst = NULL;
2021 prog_opcode opcode = OPCODE_NOP;
2022
2023 if (ir->op == ir_txs)
2024 this->result = src_reg_for_float(0.0);
2025 else
2026 ir->coordinate->accept(this);
2027
2028 /* Put our coords in a temp. We'll need to modify them for shadow,
2029 * projection, or LOD, so the only case we'd use it as-is is if
2030 * we're doing plain old texturing. Mesa IR optimization should
2031 * handle cleaning up our mess in that case.
2032 */
2033 coord = get_temp(glsl_type::vec4_type);
2034 coord_dst = dst_reg(coord);
2035 emit(ir, OPCODE_MOV, coord_dst, this->result);
2036
2037 if (ir->projector) {
2038 ir->projector->accept(this);
2039 projector = this->result;
2040 }
2041
2042 /* Storage for our result. Ideally for an assignment we'd be using
2043 * the actual storage for the result here, instead.
2044 */
2045 result_src = get_temp(glsl_type::vec4_type);
2046 result_dst = dst_reg(result_src);
2047
2048 switch (ir->op) {
2049 case ir_tex:
2050 case ir_txs:
2051 opcode = OPCODE_TEX;
2052 break;
2053 case ir_txb:
2054 opcode = OPCODE_TXB;
2055 ir->lod_info.bias->accept(this);
2056 lod_info = this->result;
2057 break;
2058 case ir_txf:
2059 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2060 case ir_txl:
2061 opcode = OPCODE_TXL;
2062 ir->lod_info.lod->accept(this);
2063 lod_info = this->result;
2064 break;
2065 case ir_txd:
2066 opcode = OPCODE_TXD;
2067 ir->lod_info.grad.dPdx->accept(this);
2068 dx = this->result;
2069 ir->lod_info.grad.dPdy->accept(this);
2070 dy = this->result;
2071 break;
2072 case ir_txf_ms:
2073 assert(!"Unexpected ir_txf_ms opcode");
2074 break;
2075 case ir_lod:
2076 assert(!"Unexpected ir_lod opcode");
2077 break;
2078 case ir_tg4:
2079 assert(!"Unexpected ir_tg4 opcode");
2080 break;
2081 case ir_query_levels:
2082 assert(!"Unexpected ir_query_levels opcode");
2083 break;
2084 case ir_samples_identical:
2085 unreachable("Unexpected ir_samples_identical opcode");
2086 case ir_texture_samples:
2087 unreachable("Unexpected ir_texture_samples opcode");
2088 }
2089
2090 const glsl_type *sampler_type = ir->sampler->type;
2091
2092 if (ir->projector) {
2093 if (opcode == OPCODE_TEX) {
2094 /* Slot the projector in as the last component of the coord. */
2095 coord_dst.writemask = WRITEMASK_W;
2096 emit(ir, OPCODE_MOV, coord_dst, projector);
2097 coord_dst.writemask = WRITEMASK_XYZW;
2098 opcode = OPCODE_TXP;
2099 } else {
2100 src_reg coord_w = coord;
2101 coord_w.swizzle = SWIZZLE_WWWW;
2102
2103 /* For the other TEX opcodes there's no projective version
2104 * since the last slot is taken up by lod info. Do the
2105 * projective divide now.
2106 */
2107 coord_dst.writemask = WRITEMASK_W;
2108 emit(ir, OPCODE_RCP, coord_dst, projector);
2109
2110 /* In the case where we have to project the coordinates "by hand,"
2111 * the shadow comparator value must also be projected.
2112 */
2113 src_reg tmp_src = coord;
2114 if (ir->shadow_comparator) {
2115 /* Slot the shadow value in as the second to last component of the
2116 * coord.
2117 */
2118 ir->shadow_comparator->accept(this);
2119
2120 tmp_src = get_temp(glsl_type::vec4_type);
2121 dst_reg tmp_dst = dst_reg(tmp_src);
2122
2123 /* Projective division not allowed for array samplers. */
2124 assert(!sampler_type->sampler_array);
2125
2126 tmp_dst.writemask = WRITEMASK_Z;
2127 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2128
2129 tmp_dst.writemask = WRITEMASK_XY;
2130 emit(ir, OPCODE_MOV, tmp_dst, coord);
2131 }
2132
2133 coord_dst.writemask = WRITEMASK_XYZ;
2134 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2135
2136 coord_dst.writemask = WRITEMASK_XYZW;
2137 coord.swizzle = SWIZZLE_XYZW;
2138 }
2139 }
2140
2141 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2142 * comparator was put in the correct place (and projected) by the code,
2143 * above, that handles by-hand projection.
2144 */
2145 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2146 /* Slot the shadow value in as the second to last component of the
2147 * coord.
2148 */
2149 ir->shadow_comparator->accept(this);
2150
2151 /* XXX This will need to be updated for cubemap array samplers. */
2152 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2153 sampler_type->sampler_array) {
2154 coord_dst.writemask = WRITEMASK_W;
2155 } else {
2156 coord_dst.writemask = WRITEMASK_Z;
2157 }
2158
2159 emit(ir, OPCODE_MOV, coord_dst, this->result);
2160 coord_dst.writemask = WRITEMASK_XYZW;
2161 }
2162
2163 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2164 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2165 coord_dst.writemask = WRITEMASK_W;
2166 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2167 coord_dst.writemask = WRITEMASK_XYZW;
2168 }
2169
2170 if (opcode == OPCODE_TXD)
2171 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2172 else
2173 inst = emit(ir, opcode, result_dst, coord);
2174
2175 if (ir->shadow_comparator)
2176 inst->tex_shadow = GL_TRUE;
2177
2178 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2179 prog);
2180
2181 switch (sampler_type->sampler_dimensionality) {
2182 case GLSL_SAMPLER_DIM_1D:
2183 inst->tex_target = (sampler_type->sampler_array)
2184 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2185 break;
2186 case GLSL_SAMPLER_DIM_2D:
2187 inst->tex_target = (sampler_type->sampler_array)
2188 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2189 break;
2190 case GLSL_SAMPLER_DIM_3D:
2191 inst->tex_target = TEXTURE_3D_INDEX;
2192 break;
2193 case GLSL_SAMPLER_DIM_CUBE:
2194 inst->tex_target = TEXTURE_CUBE_INDEX;
2195 break;
2196 case GLSL_SAMPLER_DIM_RECT:
2197 inst->tex_target = TEXTURE_RECT_INDEX;
2198 break;
2199 case GLSL_SAMPLER_DIM_BUF:
2200 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2201 break;
2202 case GLSL_SAMPLER_DIM_EXTERNAL:
2203 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2204 break;
2205 default:
2206 assert(!"Should not get here.");
2207 }
2208
2209 this->result = result_src;
2210 }
2211
2212 void
2213 ir_to_mesa_visitor::visit(ir_return *ir)
2214 {
2215 /* Non-void functions should have been inlined. We may still emit RETs
2216 * from main() unless the EmitNoMainReturn option is set.
2217 */
2218 assert(!ir->get_value());
2219 emit(ir, OPCODE_RET);
2220 }
2221
2222 void
2223 ir_to_mesa_visitor::visit(ir_discard *ir)
2224 {
2225 if (!ir->condition)
2226 ir->condition = new(mem_ctx) ir_constant(true);
2227
2228 ir->condition->accept(this);
2229 this->result.negate = ~this->result.negate;
2230 emit(ir, OPCODE_KIL, undef_dst, this->result);
2231 }
2232
2233 void
2234 ir_to_mesa_visitor::visit(ir_if *ir)
2235 {
2236 ir_to_mesa_instruction *if_inst;
2237
2238 ir->condition->accept(this);
2239 assert(this->result.file != PROGRAM_UNDEFINED);
2240
2241 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2242
2243 this->instructions.push_tail(if_inst);
2244
2245 visit_exec_list(&ir->then_instructions, this);
2246
2247 if (!ir->else_instructions.is_empty()) {
2248 emit(ir->condition, OPCODE_ELSE);
2249 visit_exec_list(&ir->else_instructions, this);
2250 }
2251
2252 emit(ir->condition, OPCODE_ENDIF);
2253 }
2254
2255 void
2256 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2257 {
2258 assert(!"Geometry shaders not supported.");
2259 }
2260
2261 void
2262 ir_to_mesa_visitor::visit(ir_end_primitive *)
2263 {
2264 assert(!"Geometry shaders not supported.");
2265 }
2266
2267 void
2268 ir_to_mesa_visitor::visit(ir_barrier *)
2269 {
2270 unreachable("GLSL barrier() not supported.");
2271 }
2272
2273 ir_to_mesa_visitor::ir_to_mesa_visitor()
2274 {
2275 result.file = PROGRAM_UNDEFINED;
2276 next_temp = 1;
2277 next_signature_id = 1;
2278 current_function = NULL;
2279 mem_ctx = ralloc_context(NULL);
2280 }
2281
2282 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2283 {
2284 ralloc_free(mem_ctx);
2285 }
2286
2287 static struct prog_src_register
2288 mesa_src_reg_from_ir_src_reg(src_reg reg)
2289 {
2290 struct prog_src_register mesa_reg;
2291
2292 mesa_reg.File = reg.file;
2293 assert(reg.index < (1 << INST_INDEX_BITS));
2294 mesa_reg.Index = reg.index;
2295 mesa_reg.Swizzle = reg.swizzle;
2296 mesa_reg.RelAddr = reg.reladdr != NULL;
2297 mesa_reg.Negate = reg.negate;
2298
2299 return mesa_reg;
2300 }
2301
2302 static void
2303 set_branchtargets(ir_to_mesa_visitor *v,
2304 struct prog_instruction *mesa_instructions,
2305 int num_instructions)
2306 {
2307 int if_count = 0, loop_count = 0;
2308 int *if_stack, *loop_stack;
2309 int if_stack_pos = 0, loop_stack_pos = 0;
2310 int i, j;
2311
2312 for (i = 0; i < num_instructions; i++) {
2313 switch (mesa_instructions[i].Opcode) {
2314 case OPCODE_IF:
2315 if_count++;
2316 break;
2317 case OPCODE_BGNLOOP:
2318 loop_count++;
2319 break;
2320 case OPCODE_BRK:
2321 case OPCODE_CONT:
2322 mesa_instructions[i].BranchTarget = -1;
2323 break;
2324 default:
2325 break;
2326 }
2327 }
2328
2329 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2330 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2331
2332 for (i = 0; i < num_instructions; i++) {
2333 switch (mesa_instructions[i].Opcode) {
2334 case OPCODE_IF:
2335 if_stack[if_stack_pos] = i;
2336 if_stack_pos++;
2337 break;
2338 case OPCODE_ELSE:
2339 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2340 if_stack[if_stack_pos - 1] = i;
2341 break;
2342 case OPCODE_ENDIF:
2343 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2344 if_stack_pos--;
2345 break;
2346 case OPCODE_BGNLOOP:
2347 loop_stack[loop_stack_pos] = i;
2348 loop_stack_pos++;
2349 break;
2350 case OPCODE_ENDLOOP:
2351 loop_stack_pos--;
2352 /* Rewrite any breaks/conts at this nesting level (haven't
2353 * already had a BranchTarget assigned) to point to the end
2354 * of the loop.
2355 */
2356 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2357 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2358 mesa_instructions[j].Opcode == OPCODE_CONT) {
2359 if (mesa_instructions[j].BranchTarget == -1) {
2360 mesa_instructions[j].BranchTarget = i;
2361 }
2362 }
2363 }
2364 /* The loop ends point at each other. */
2365 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2366 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2367 break;
2368 case OPCODE_CAL:
2369 foreach_in_list(function_entry, entry, &v->function_signatures) {
2370 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2371 mesa_instructions[i].BranchTarget = entry->inst;
2372 break;
2373 }
2374 }
2375 break;
2376 default:
2377 break;
2378 }
2379 }
2380 }
2381
2382 static void
2383 print_program(struct prog_instruction *mesa_instructions,
2384 ir_instruction **mesa_instruction_annotation,
2385 int num_instructions)
2386 {
2387 ir_instruction *last_ir = NULL;
2388 int i;
2389 int indent = 0;
2390
2391 for (i = 0; i < num_instructions; i++) {
2392 struct prog_instruction *mesa_inst = mesa_instructions + i;
2393 ir_instruction *ir = mesa_instruction_annotation[i];
2394
2395 fprintf(stdout, "%3d: ", i);
2396
2397 if (last_ir != ir && ir) {
2398 int j;
2399
2400 for (j = 0; j < indent; j++) {
2401 fprintf(stdout, " ");
2402 }
2403 ir->print();
2404 printf("\n");
2405 last_ir = ir;
2406
2407 fprintf(stdout, " "); /* line number spacing. */
2408 }
2409
2410 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2411 PROG_PRINT_DEBUG, NULL);
2412 }
2413 }
2414
2415 namespace {
2416
2417 class add_uniform_to_shader : public program_resource_visitor {
2418 public:
2419 add_uniform_to_shader(struct gl_shader_program *shader_program,
2420 struct gl_program_parameter_list *params)
2421 : ctx(ctx), params(params), idx(-1)
2422 {
2423 /* empty */
2424 }
2425
2426 void process(ir_variable *var)
2427 {
2428 this->idx = -1;
2429 this->var = var;
2430 this->program_resource_visitor::process(var,
2431 ctx->Const.UseSTD430AsDefaultPacking);
2432 var->data.param_index = this->idx;
2433 }
2434
2435 private:
2436 virtual void visit_field(const glsl_type *type, const char *name,
2437 bool row_major, const glsl_type *record_type,
2438 const enum glsl_interface_packing packing,
2439 bool last_field);
2440
2441 struct gl_context *ctx;
2442 struct gl_program_parameter_list *params;
2443 int idx;
2444 ir_variable *var;
2445 };
2446
2447 } /* anonymous namespace */
2448
2449 void
2450 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2451 bool /* row_major */,
2452 const glsl_type * /* record_type */,
2453 const enum glsl_interface_packing,
2454 bool /* last_field */)
2455 {
2456 /* opaque types don't use storage in the param list unless they are
2457 * bindless samplers or images.
2458 */
2459 if (type->contains_opaque() && !var->data.bindless)
2460 return;
2461
2462 assert(_mesa_lookup_parameter_index(params, name) < 0);
2463
2464 unsigned size = storage_type_size(type, var->data.bindless) * 4;
2465
2466 int index = _mesa_add_parameter(params, PROGRAM_UNIFORM, name, size,
2467 type->gl_type, NULL, NULL);
2468
2469 /* The first part of the uniform that's processed determines the base
2470 * location of the whole uniform (for structures).
2471 */
2472 if (this->idx < 0)
2473 this->idx = index;
2474 }
2475
2476 /**
2477 * Generate the program parameters list for the user uniforms in a shader
2478 *
2479 * \param shader_program Linked shader program. This is only used to
2480 * emit possible link errors to the info log.
2481 * \param sh Shader whose uniforms are to be processed.
2482 * \param params Parameter list to be filled in.
2483 */
2484 void
2485 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2486 *shader_program,
2487 struct gl_linked_shader *sh,
2488 struct gl_program_parameter_list
2489 *params)
2490 {
2491 add_uniform_to_shader add(shader_program, params);
2492
2493 foreach_in_list(ir_instruction, node, sh->ir) {
2494 ir_variable *var = node->as_variable();
2495
2496 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2497 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2498 continue;
2499
2500 add.process(var);
2501 }
2502 }
2503
2504 void
2505 _mesa_associate_uniform_storage(struct gl_context *ctx,
2506 struct gl_shader_program *shader_program,
2507 struct gl_program *prog,
2508 bool propagate_to_storage)
2509 {
2510 struct gl_program_parameter_list *params = prog->Parameters;
2511 gl_shader_stage shader_type = prog->info.stage;
2512
2513 /* After adding each uniform to the parameter list, connect the storage for
2514 * the parameter with the tracking structure used by the API for the
2515 * uniform.
2516 */
2517 unsigned last_location = unsigned(~0);
2518 for (unsigned i = 0; i < params->NumParameters; i++) {
2519 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2520 continue;
2521
2522 unsigned location;
2523 const bool found =
2524 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2525 assert(found);
2526
2527 if (!found)
2528 continue;
2529
2530 struct gl_uniform_storage *storage =
2531 &shader_program->data->UniformStorage[location];
2532
2533 /* Do not associate any uniform storage to built-in uniforms */
2534 if (storage->builtin)
2535 continue;
2536
2537 if (location != last_location) {
2538 enum gl_uniform_driver_format format = uniform_native;
2539 unsigned columns = 0;
2540 int dmul = 4 * sizeof(float);
2541
2542 switch (storage->type->base_type) {
2543 case GLSL_TYPE_UINT64:
2544 if (storage->type->vector_elements > 2)
2545 dmul *= 2;
2546 /* fallthrough */
2547 case GLSL_TYPE_UINT:
2548 assert(ctx->Const.NativeIntegers);
2549 format = uniform_native;
2550 columns = 1;
2551 break;
2552 case GLSL_TYPE_INT64:
2553 if (storage->type->vector_elements > 2)
2554 dmul *= 2;
2555 /* fallthrough */
2556 case GLSL_TYPE_INT:
2557 format =
2558 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2559 columns = 1;
2560 break;
2561 case GLSL_TYPE_DOUBLE:
2562 if (storage->type->vector_elements > 2)
2563 dmul *= 2;
2564 /* fallthrough */
2565 case GLSL_TYPE_FLOAT:
2566 format = uniform_native;
2567 columns = storage->type->matrix_columns;
2568 break;
2569 case GLSL_TYPE_BOOL:
2570 format = uniform_native;
2571 columns = 1;
2572 break;
2573 case GLSL_TYPE_SAMPLER:
2574 case GLSL_TYPE_IMAGE:
2575 case GLSL_TYPE_SUBROUTINE:
2576 format = uniform_native;
2577 columns = 1;
2578 break;
2579 case GLSL_TYPE_ATOMIC_UINT:
2580 case GLSL_TYPE_ARRAY:
2581 case GLSL_TYPE_VOID:
2582 case GLSL_TYPE_STRUCT:
2583 case GLSL_TYPE_ERROR:
2584 case GLSL_TYPE_INTERFACE:
2585 case GLSL_TYPE_FUNCTION:
2586 assert(!"Should not get here.");
2587 break;
2588 }
2589
2590 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2591 format,
2592 &params->ParameterValues[i]);
2593
2594 /* When a bindless sampler/image is bound to a texture/image unit, we
2595 * have to overwrite the constant value by the resident handle
2596 * directly in the constant buffer before the next draw. One solution
2597 * is to keep track a pointer to the base of the data.
2598 */
2599 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2600 prog->sh.NumBindlessImages)) {
2601 unsigned array_elements = MAX2(1, storage->array_elements);
2602
2603 for (unsigned j = 0; j < array_elements; ++j) {
2604 unsigned unit = storage->opaque[shader_type].index + j;
2605
2606 if (storage->type->without_array()->is_sampler()) {
2607 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2608 prog->sh.BindlessSamplers[unit].data =
2609 &params->ParameterValues[i] + j;
2610 } else if (storage->type->without_array()->is_image()) {
2611 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2612 prog->sh.BindlessImages[unit].data =
2613 &params->ParameterValues[i] + j;
2614 }
2615 }
2616 }
2617
2618 /* After attaching the driver's storage to the uniform, propagate any
2619 * data from the linker's backing store. This will cause values from
2620 * initializers in the source code to be copied over.
2621 */
2622 if (propagate_to_storage) {
2623 unsigned array_elements = MAX2(1, storage->array_elements);
2624 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2625 array_elements);
2626 }
2627
2628 last_location = location;
2629 }
2630 }
2631 }
2632
2633 /*
2634 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2635 * channels for copy propagation and updates following instructions to
2636 * use the original versions.
2637 *
2638 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2639 * will occur. As an example, a TXP production before this pass:
2640 *
2641 * 0: MOV TEMP[1], INPUT[4].xyyy;
2642 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2643 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2644 *
2645 * and after:
2646 *
2647 * 0: MOV TEMP[1], INPUT[4].xyyy;
2648 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2649 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2650 *
2651 * which allows for dead code elimination on TEMP[1]'s writes.
2652 */
2653 void
2654 ir_to_mesa_visitor::copy_propagate(void)
2655 {
2656 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2657 ir_to_mesa_instruction *,
2658 this->next_temp * 4);
2659 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2660 int level = 0;
2661
2662 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2663 assert(inst->dst.file != PROGRAM_TEMPORARY
2664 || inst->dst.index < this->next_temp);
2665
2666 /* First, do any copy propagation possible into the src regs. */
2667 for (int r = 0; r < 3; r++) {
2668 ir_to_mesa_instruction *first = NULL;
2669 bool good = true;
2670 int acp_base = inst->src[r].index * 4;
2671
2672 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2673 inst->src[r].reladdr)
2674 continue;
2675
2676 /* See if we can find entries in the ACP consisting of MOVs
2677 * from the same src register for all the swizzled channels
2678 * of this src register reference.
2679 */
2680 for (int i = 0; i < 4; i++) {
2681 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2682 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2683
2684 if (!copy_chan) {
2685 good = false;
2686 break;
2687 }
2688
2689 assert(acp_level[acp_base + src_chan] <= level);
2690
2691 if (!first) {
2692 first = copy_chan;
2693 } else {
2694 if (first->src[0].file != copy_chan->src[0].file ||
2695 first->src[0].index != copy_chan->src[0].index) {
2696 good = false;
2697 break;
2698 }
2699 }
2700 }
2701
2702 if (good) {
2703 /* We've now validated that we can copy-propagate to
2704 * replace this src register reference. Do it.
2705 */
2706 inst->src[r].file = first->src[0].file;
2707 inst->src[r].index = first->src[0].index;
2708
2709 int swizzle = 0;
2710 for (int i = 0; i < 4; i++) {
2711 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2712 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2713 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2714 (3 * i));
2715 }
2716 inst->src[r].swizzle = swizzle;
2717 }
2718 }
2719
2720 switch (inst->op) {
2721 case OPCODE_BGNLOOP:
2722 case OPCODE_ENDLOOP:
2723 /* End of a basic block, clear the ACP entirely. */
2724 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2725 break;
2726
2727 case OPCODE_IF:
2728 ++level;
2729 break;
2730
2731 case OPCODE_ENDIF:
2732 case OPCODE_ELSE:
2733 /* Clear all channels written inside the block from the ACP, but
2734 * leaving those that were not touched.
2735 */
2736 for (int r = 0; r < this->next_temp; r++) {
2737 for (int c = 0; c < 4; c++) {
2738 if (!acp[4 * r + c])
2739 continue;
2740
2741 if (acp_level[4 * r + c] >= level)
2742 acp[4 * r + c] = NULL;
2743 }
2744 }
2745 if (inst->op == OPCODE_ENDIF)
2746 --level;
2747 break;
2748
2749 default:
2750 /* Continuing the block, clear any written channels from
2751 * the ACP.
2752 */
2753 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2754 /* Any temporary might be written, so no copy propagation
2755 * across this instruction.
2756 */
2757 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2758 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2759 inst->dst.reladdr) {
2760 /* Any output might be written, so no copy propagation
2761 * from outputs across this instruction.
2762 */
2763 for (int r = 0; r < this->next_temp; r++) {
2764 for (int c = 0; c < 4; c++) {
2765 if (!acp[4 * r + c])
2766 continue;
2767
2768 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2769 acp[4 * r + c] = NULL;
2770 }
2771 }
2772 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2773 inst->dst.file == PROGRAM_OUTPUT) {
2774 /* Clear where it's used as dst. */
2775 if (inst->dst.file == PROGRAM_TEMPORARY) {
2776 for (int c = 0; c < 4; c++) {
2777 if (inst->dst.writemask & (1 << c)) {
2778 acp[4 * inst->dst.index + c] = NULL;
2779 }
2780 }
2781 }
2782
2783 /* Clear where it's used as src. */
2784 for (int r = 0; r < this->next_temp; r++) {
2785 for (int c = 0; c < 4; c++) {
2786 if (!acp[4 * r + c])
2787 continue;
2788
2789 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2790
2791 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2792 acp[4 * r + c]->src[0].index == inst->dst.index &&
2793 inst->dst.writemask & (1 << src_chan))
2794 {
2795 acp[4 * r + c] = NULL;
2796 }
2797 }
2798 }
2799 }
2800 break;
2801 }
2802
2803 /* If this is a copy, add it to the ACP. */
2804 if (inst->op == OPCODE_MOV &&
2805 inst->dst.file == PROGRAM_TEMPORARY &&
2806 !(inst->dst.file == inst->src[0].file &&
2807 inst->dst.index == inst->src[0].index) &&
2808 !inst->dst.reladdr &&
2809 !inst->saturate &&
2810 !inst->src[0].reladdr &&
2811 !inst->src[0].negate) {
2812 for (int i = 0; i < 4; i++) {
2813 if (inst->dst.writemask & (1 << i)) {
2814 acp[4 * inst->dst.index + i] = inst;
2815 acp_level[4 * inst->dst.index + i] = level;
2816 }
2817 }
2818 }
2819 }
2820
2821 ralloc_free(acp_level);
2822 ralloc_free(acp);
2823 }
2824
2825
2826 /**
2827 * Convert a shader's GLSL IR into a Mesa gl_program.
2828 */
2829 static struct gl_program *
2830 get_mesa_program(struct gl_context *ctx,
2831 struct gl_shader_program *shader_program,
2832 struct gl_linked_shader *shader)
2833 {
2834 ir_to_mesa_visitor v;
2835 struct prog_instruction *mesa_instructions, *mesa_inst;
2836 ir_instruction **mesa_instruction_annotation;
2837 int i;
2838 struct gl_program *prog;
2839 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2840 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2841 struct gl_shader_compiler_options *options =
2842 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2843
2844 validate_ir_tree(shader->ir);
2845
2846 prog = shader->Program;
2847 prog->Parameters = _mesa_new_parameter_list();
2848 v.ctx = ctx;
2849 v.prog = prog;
2850 v.shader_program = shader_program;
2851 v.options = options;
2852
2853 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2854 prog->Parameters);
2855
2856 /* Emit Mesa IR for main(). */
2857 visit_exec_list(shader->ir, &v);
2858 v.emit(NULL, OPCODE_END);
2859
2860 prog->arb.NumTemporaries = v.next_temp;
2861
2862 unsigned num_instructions = v.instructions.length();
2863
2864 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2865 num_instructions);
2866 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2867 num_instructions);
2868
2869 v.copy_propagate();
2870
2871 /* Convert ir_mesa_instructions into prog_instructions.
2872 */
2873 mesa_inst = mesa_instructions;
2874 i = 0;
2875 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2876 mesa_inst->Opcode = inst->op;
2877 if (inst->saturate)
2878 mesa_inst->Saturate = GL_TRUE;
2879 mesa_inst->DstReg.File = inst->dst.file;
2880 mesa_inst->DstReg.Index = inst->dst.index;
2881 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2882 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2883 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2884 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2885 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2886 mesa_inst->TexSrcUnit = inst->sampler;
2887 mesa_inst->TexSrcTarget = inst->tex_target;
2888 mesa_inst->TexShadow = inst->tex_shadow;
2889 mesa_instruction_annotation[i] = inst->ir;
2890
2891 /* Set IndirectRegisterFiles. */
2892 if (mesa_inst->DstReg.RelAddr)
2893 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2894
2895 /* Update program's bitmask of indirectly accessed register files */
2896 for (unsigned src = 0; src < 3; src++)
2897 if (mesa_inst->SrcReg[src].RelAddr)
2898 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2899
2900 switch (mesa_inst->Opcode) {
2901 case OPCODE_IF:
2902 if (options->MaxIfDepth == 0) {
2903 linker_warning(shader_program,
2904 "Couldn't flatten if-statement. "
2905 "This will likely result in software "
2906 "rasterization.\n");
2907 }
2908 break;
2909 case OPCODE_BGNLOOP:
2910 if (options->EmitNoLoops) {
2911 linker_warning(shader_program,
2912 "Couldn't unroll loop. "
2913 "This will likely result in software "
2914 "rasterization.\n");
2915 }
2916 break;
2917 case OPCODE_CONT:
2918 if (options->EmitNoCont) {
2919 linker_warning(shader_program,
2920 "Couldn't lower continue-statement. "
2921 "This will likely result in software "
2922 "rasterization.\n");
2923 }
2924 break;
2925 case OPCODE_ARL:
2926 prog->arb.NumAddressRegs = 1;
2927 break;
2928 default:
2929 break;
2930 }
2931
2932 mesa_inst++;
2933 i++;
2934
2935 if (!shader_program->data->LinkStatus)
2936 break;
2937 }
2938
2939 if (!shader_program->data->LinkStatus) {
2940 goto fail_exit;
2941 }
2942
2943 set_branchtargets(&v, mesa_instructions, num_instructions);
2944
2945 if (ctx->_Shader->Flags & GLSL_DUMP) {
2946 fprintf(stderr, "\n");
2947 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2948 shader_program->Name);
2949 _mesa_print_ir(stderr, shader->ir, NULL);
2950 fprintf(stderr, "\n");
2951 fprintf(stderr, "\n");
2952 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2953 shader_program->Name);
2954 print_program(mesa_instructions, mesa_instruction_annotation,
2955 num_instructions);
2956 fflush(stderr);
2957 }
2958
2959 prog->arb.Instructions = mesa_instructions;
2960 prog->arb.NumInstructions = num_instructions;
2961
2962 /* Setting this to NULL prevents a possible double free in the fail_exit
2963 * path (far below).
2964 */
2965 mesa_instructions = NULL;
2966
2967 do_set_program_inouts(shader->ir, prog, shader->Stage);
2968
2969 prog->ShadowSamplers = shader->shadow_samplers;
2970 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2971 _mesa_update_shader_textures_used(shader_program, prog);
2972
2973 /* Set the gl_FragDepth layout. */
2974 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2975 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2976 }
2977
2978 _mesa_optimize_program(ctx, prog, prog);
2979
2980 /* This has to be done last. Any operation that can cause
2981 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2982 * program constant) has to happen before creating this linkage.
2983 */
2984 _mesa_associate_uniform_storage(ctx, shader_program, prog, true);
2985 if (!shader_program->data->LinkStatus) {
2986 goto fail_exit;
2987 }
2988
2989 return prog;
2990
2991 fail_exit:
2992 ralloc_free(mesa_instructions);
2993 _mesa_reference_program(ctx, &shader->Program, NULL);
2994 return NULL;
2995 }
2996
2997 extern "C" {
2998
2999 /**
3000 * Link a shader.
3001 * Called via ctx->Driver.LinkShader()
3002 * This actually involves converting GLSL IR into Mesa gl_programs with
3003 * code lowering and other optimizations.
3004 */
3005 GLboolean
3006 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3007 {
3008 assert(prog->data->LinkStatus);
3009
3010 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3011 if (prog->_LinkedShaders[i] == NULL)
3012 continue;
3013
3014 bool progress;
3015 exec_list *ir = prog->_LinkedShaders[i]->ir;
3016 const struct gl_shader_compiler_options *options =
3017 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3018
3019 do {
3020 progress = false;
3021
3022 /* Lowering */
3023 do_mat_op_to_vec(ir);
3024 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3025 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3026 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3027
3028 progress = do_common_optimization(ir, true, true,
3029 options, ctx->Const.NativeIntegers)
3030 || progress;
3031
3032 progress = lower_quadop_vector(ir, true) || progress;
3033
3034 if (options->MaxIfDepth == 0)
3035 progress = lower_discard(ir) || progress;
3036
3037 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3038 options->MaxIfDepth) || progress;
3039
3040 progress = lower_noise(ir) || progress;
3041
3042 /* If there are forms of indirect addressing that the driver
3043 * cannot handle, perform the lowering pass.
3044 */
3045 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3046 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3047 progress =
3048 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3049 options->EmitNoIndirectInput,
3050 options->EmitNoIndirectOutput,
3051 options->EmitNoIndirectTemp,
3052 options->EmitNoIndirectUniform)
3053 || progress;
3054
3055 progress = do_vec_index_to_cond_assign(ir) || progress;
3056 progress = lower_vector_insert(ir, true) || progress;
3057 } while (progress);
3058
3059 validate_ir_tree(ir);
3060 }
3061
3062 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3063 struct gl_program *linked_prog;
3064
3065 if (prog->_LinkedShaders[i] == NULL)
3066 continue;
3067
3068 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3069
3070 if (linked_prog) {
3071 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3072
3073 if (!ctx->Driver.ProgramStringNotify(ctx,
3074 _mesa_shader_stage_to_program(i),
3075 linked_prog)) {
3076 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3077 NULL);
3078 return GL_FALSE;
3079 }
3080 }
3081 }
3082
3083 build_program_resource_list(ctx, prog);
3084 return prog->data->LinkStatus;
3085 }
3086
3087 /**
3088 * Link a GLSL shader program. Called via glLinkProgram().
3089 */
3090 void
3091 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3092 {
3093 unsigned int i;
3094
3095 _mesa_clear_shader_program_data(ctx, prog);
3096
3097 prog->data->LinkStatus = linking_success;
3098
3099 for (i = 0; i < prog->NumShaders; i++) {
3100 if (!prog->Shaders[i]->CompileStatus) {
3101 linker_error(prog, "linking with uncompiled shader");
3102 }
3103 }
3104
3105 if (prog->data->LinkStatus) {
3106 link_shaders(ctx, prog);
3107 }
3108
3109 if (prog->data->LinkStatus) {
3110 /* Reset sampler validated to true, validation happens via the
3111 * LinkShader call below.
3112 */
3113 prog->SamplersValidated = GL_TRUE;
3114
3115 if (!ctx->Driver.LinkShader(ctx, prog)) {
3116 prog->data->LinkStatus = linking_failure;
3117 }
3118 }
3119
3120 /* Return early if we are loading the shader from on-disk cache */
3121 if (prog->data->LinkStatus == linking_skipped)
3122 return;
3123
3124 if (ctx->_Shader->Flags & GLSL_DUMP) {
3125 if (!prog->data->LinkStatus) {
3126 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3127 }
3128
3129 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3130 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3131 fprintf(stderr, "%s\n", prog->data->InfoLog);
3132 }
3133 }
3134
3135 #ifdef ENABLE_SHADER_CACHE
3136 if (prog->data->LinkStatus)
3137 shader_cache_write_program_metadata(ctx, prog);
3138 #endif
3139 }
3140
3141 } /* extern "C" */