mesa/program: Don't copy propagate from swizzles.
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_print_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "ir_uniform.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44 #include "linker.h"
45
46 #include "main/mtypes.h"
47 #include "main/shaderobj.h"
48 #include "program/hash_table.h"
49
50 extern "C" {
51 #include "main/shaderapi.h"
52 #include "main/uniforms.h"
53 #include "program/prog_instruction.h"
54 #include "program/prog_optimize.h"
55 #include "program/prog_print.h"
56 #include "program/program.h"
57 #include "program/prog_parameter.h"
58 #include "program/sampler.h"
59 }
60
61 class src_reg;
62 class dst_reg;
63
64 static int swizzle_for_size(int size);
65
66 /**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70 class src_reg {
71 public:
72 src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->reladdr = NULL;
82 }
83
84 src_reg()
85 {
86 this->file = PROGRAM_UNDEFINED;
87 this->index = 0;
88 this->swizzle = 0;
89 this->negate = 0;
90 this->reladdr = NULL;
91 }
92
93 explicit src_reg(dst_reg reg);
94
95 gl_register_file file; /**< PROGRAM_* from Mesa */
96 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
97 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98 int negate; /**< NEGATE_XYZW mask from mesa */
99 /** Register index should be offset by the integer in this reg. */
100 src_reg *reladdr;
101 };
102
103 class dst_reg {
104 public:
105 dst_reg(gl_register_file file, int writemask)
106 {
107 this->file = file;
108 this->index = 0;
109 this->writemask = writemask;
110 this->cond_mask = COND_TR;
111 this->reladdr = NULL;
112 }
113
114 dst_reg()
115 {
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->writemask = 0;
119 this->cond_mask = COND_TR;
120 this->reladdr = NULL;
121 }
122
123 explicit dst_reg(src_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
127 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128 GLuint cond_mask:4;
129 /** Register index should be offset by the integer in this reg. */
130 src_reg *reladdr;
131 };
132
133 src_reg::src_reg(dst_reg reg)
134 {
135 this->file = reg.file;
136 this->index = reg.index;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = reg.reladdr;
140 }
141
142 dst_reg::dst_reg(src_reg reg)
143 {
144 this->file = reg.file;
145 this->index = reg.index;
146 this->writemask = WRITEMASK_XYZW;
147 this->cond_mask = COND_TR;
148 this->reladdr = reg.reladdr;
149 }
150
151 class ir_to_mesa_instruction : public exec_node {
152 public:
153 /* Callers of this ralloc-based new need not call delete. It's
154 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
155 static void* operator new(size_t size, void *ctx)
156 {
157 void *node;
158
159 node = rzalloc_size(ctx, size);
160 assert(node != NULL);
161
162 return node;
163 }
164
165 enum prog_opcode op;
166 dst_reg dst;
167 src_reg src[3];
168 /** Pointer to the ir source this tree came from for debugging */
169 ir_instruction *ir;
170 GLboolean cond_update;
171 bool saturate;
172 int sampler; /**< sampler index */
173 int tex_target; /**< One of TEXTURE_*_INDEX */
174 GLboolean tex_shadow;
175 };
176
177 class variable_storage : public exec_node {
178 public:
179 variable_storage(ir_variable *var, gl_register_file file, int index)
180 : file(file), index(index), var(var)
181 {
182 /* empty */
183 }
184
185 gl_register_file file;
186 int index;
187 ir_variable *var; /* variable that maps to this, if any */
188 };
189
190 class function_entry : public exec_node {
191 public:
192 ir_function_signature *sig;
193
194 /**
195 * identifier of this function signature used by the program.
196 *
197 * At the point that Mesa instructions for function calls are
198 * generated, we don't know the address of the first instruction of
199 * the function body. So we make the BranchTarget that is called a
200 * small integer and rewrite them during set_branchtargets().
201 */
202 int sig_id;
203
204 /**
205 * Pointer to first instruction of the function body.
206 *
207 * Set during function body emits after main() is processed.
208 */
209 ir_to_mesa_instruction *bgn_inst;
210
211 /**
212 * Index of the first instruction of the function body in actual
213 * Mesa IR.
214 *
215 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
216 */
217 int inst;
218
219 /** Storage for the return value. */
220 src_reg return_reg;
221 };
222
223 class ir_to_mesa_visitor : public ir_visitor {
224 public:
225 ir_to_mesa_visitor();
226 ~ir_to_mesa_visitor();
227
228 function_entry *current_function;
229
230 struct gl_context *ctx;
231 struct gl_program *prog;
232 struct gl_shader_program *shader_program;
233 struct gl_shader_compiler_options *options;
234
235 int next_temp;
236
237 variable_storage *find_variable_storage(ir_variable *var);
238
239 src_reg get_temp(const glsl_type *type);
240 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
241
242 src_reg src_reg_for_float(float val);
243
244 /**
245 * \name Visit methods
246 *
247 * As typical for the visitor pattern, there must be one \c visit method for
248 * each concrete subclass of \c ir_instruction. Virtual base classes within
249 * the hierarchy should not have \c visit methods.
250 */
251 /*@{*/
252 virtual void visit(ir_variable *);
253 virtual void visit(ir_loop *);
254 virtual void visit(ir_loop_jump *);
255 virtual void visit(ir_function_signature *);
256 virtual void visit(ir_function *);
257 virtual void visit(ir_expression *);
258 virtual void visit(ir_swizzle *);
259 virtual void visit(ir_dereference_variable *);
260 virtual void visit(ir_dereference_array *);
261 virtual void visit(ir_dereference_record *);
262 virtual void visit(ir_assignment *);
263 virtual void visit(ir_constant *);
264 virtual void visit(ir_call *);
265 virtual void visit(ir_return *);
266 virtual void visit(ir_discard *);
267 virtual void visit(ir_texture *);
268 virtual void visit(ir_if *);
269 /*@}*/
270
271 src_reg result;
272
273 /** List of variable_storage */
274 exec_list variables;
275
276 /** List of function_entry */
277 exec_list function_signatures;
278 int next_signature_id;
279
280 /** List of ir_to_mesa_instruction */
281 exec_list instructions;
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286 dst_reg dst, src_reg src0);
287
288 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
289 dst_reg dst, src_reg src0, src_reg src1);
290
291 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
292 dst_reg dst,
293 src_reg src0, src_reg src1, src_reg src2);
294
295 /**
296 * Emit the correct dot-product instruction for the type of arguments
297 */
298 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
299 dst_reg dst,
300 src_reg src0,
301 src_reg src1,
302 unsigned elements);
303
304 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
305 dst_reg dst, src_reg src0);
306
307 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
308 dst_reg dst, src_reg src0, src_reg src1);
309
310 void emit_scs(ir_instruction *ir, enum prog_opcode op,
311 dst_reg dst, const src_reg &src);
312
313 bool try_emit_mad(ir_expression *ir,
314 int mul_operand);
315 bool try_emit_mad_for_and_not(ir_expression *ir,
316 int mul_operand);
317 bool try_emit_sat(ir_expression *ir);
318
319 void emit_swz(ir_expression *ir);
320
321 bool process_move_condition(ir_rvalue *ir);
322
323 void copy_propagate(void);
324
325 void *mem_ctx;
326 };
327
328 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
329
330 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
331
332 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
333
334 static int
335 swizzle_for_size(int size)
336 {
337 static const int size_swizzles[4] = {
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
339 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
340 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
341 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
342 };
343
344 assert((size >= 1) && (size <= 4));
345 return size_swizzles[size - 1];
346 }
347
348 ir_to_mesa_instruction *
349 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
350 dst_reg dst,
351 src_reg src0, src_reg src1, src_reg src2)
352 {
353 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
354 int num_reladdr = 0;
355
356 /* If we have to do relative addressing, we want to load the ARL
357 * reg directly for one of the regs, and preload the other reladdr
358 * sources into temps.
359 */
360 num_reladdr += dst.reladdr != NULL;
361 num_reladdr += src0.reladdr != NULL;
362 num_reladdr += src1.reladdr != NULL;
363 num_reladdr += src2.reladdr != NULL;
364
365 reladdr_to_temp(ir, &src2, &num_reladdr);
366 reladdr_to_temp(ir, &src1, &num_reladdr);
367 reladdr_to_temp(ir, &src0, &num_reladdr);
368
369 if (dst.reladdr) {
370 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
371 num_reladdr--;
372 }
373 assert(num_reladdr == 0);
374
375 inst->op = op;
376 inst->dst = dst;
377 inst->src[0] = src0;
378 inst->src[1] = src1;
379 inst->src[2] = src2;
380 inst->ir = ir;
381
382 this->instructions.push_tail(inst);
383
384 return inst;
385 }
386
387
388 ir_to_mesa_instruction *
389 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
390 dst_reg dst, src_reg src0, src_reg src1)
391 {
392 return emit(ir, op, dst, src0, src1, undef_src);
393 }
394
395 ir_to_mesa_instruction *
396 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
397 dst_reg dst, src_reg src0)
398 {
399 assert(dst.writemask != 0);
400 return emit(ir, op, dst, src0, undef_src, undef_src);
401 }
402
403 ir_to_mesa_instruction *
404 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
405 {
406 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
407 }
408
409 ir_to_mesa_instruction *
410 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
411 dst_reg dst, src_reg src0, src_reg src1,
412 unsigned elements)
413 {
414 static const gl_inst_opcode dot_opcodes[] = {
415 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
416 };
417
418 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
419 }
420
421 /**
422 * Emits Mesa scalar opcodes to produce unique answers across channels.
423 *
424 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
425 * channel determines the result across all channels. So to do a vec4
426 * of this operation, we want to emit a scalar per source channel used
427 * to produce dest channels.
428 */
429 void
430 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
431 dst_reg dst,
432 src_reg orig_src0, src_reg orig_src1)
433 {
434 int i, j;
435 int done_mask = ~dst.writemask;
436
437 /* Mesa RCP is a scalar operation splatting results to all channels,
438 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
439 * dst channels.
440 */
441 for (i = 0; i < 4; i++) {
442 GLuint this_mask = (1 << i);
443 ir_to_mesa_instruction *inst;
444 src_reg src0 = orig_src0;
445 src_reg src1 = orig_src1;
446
447 if (done_mask & this_mask)
448 continue;
449
450 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
451 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
452 for (j = i + 1; j < 4; j++) {
453 /* If there is another enabled component in the destination that is
454 * derived from the same inputs, generate its value on this pass as
455 * well.
456 */
457 if (!(done_mask & (1 << j)) &&
458 GET_SWZ(src0.swizzle, j) == src0_swiz &&
459 GET_SWZ(src1.swizzle, j) == src1_swiz) {
460 this_mask |= (1 << j);
461 }
462 }
463 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
464 src0_swiz, src0_swiz);
465 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
466 src1_swiz, src1_swiz);
467
468 inst = emit(ir, op, dst, src0, src1);
469 inst->dst.writemask = this_mask;
470 done_mask |= this_mask;
471 }
472 }
473
474 void
475 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
476 dst_reg dst, src_reg src0)
477 {
478 src_reg undef = undef_src;
479
480 undef.swizzle = SWIZZLE_XXXX;
481
482 emit_scalar(ir, op, dst, src0, undef);
483 }
484
485 /**
486 * Emit an OPCODE_SCS instruction
487 *
488 * The \c SCS opcode functions a bit differently than the other Mesa (or
489 * ARB_fragment_program) opcodes. Instead of splatting its result across all
490 * four components of the destination, it writes one value to the \c x
491 * component and another value to the \c y component.
492 *
493 * \param ir IR instruction being processed
494 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
495 * value is desired.
496 * \param dst Destination register
497 * \param src Source register
498 */
499 void
500 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
501 dst_reg dst,
502 const src_reg &src)
503 {
504 /* Vertex programs cannot use the SCS opcode.
505 */
506 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
507 emit_scalar(ir, op, dst, src);
508 return;
509 }
510
511 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
512 const unsigned scs_mask = (1U << component);
513 int done_mask = ~dst.writemask;
514 src_reg tmp;
515
516 assert(op == OPCODE_SIN || op == OPCODE_COS);
517
518 /* If there are compnents in the destination that differ from the component
519 * that will be written by the SCS instrution, we'll need a temporary.
520 */
521 if (scs_mask != unsigned(dst.writemask)) {
522 tmp = get_temp(glsl_type::vec4_type);
523 }
524
525 for (unsigned i = 0; i < 4; i++) {
526 unsigned this_mask = (1U << i);
527 src_reg src0 = src;
528
529 if ((done_mask & this_mask) != 0)
530 continue;
531
532 /* The source swizzle specified which component of the source generates
533 * sine / cosine for the current component in the destination. The SCS
534 * instruction requires that this value be swizzle to the X component.
535 * Replace the current swizzle with a swizzle that puts the source in
536 * the X component.
537 */
538 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
539
540 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
541 src0_swiz, src0_swiz);
542 for (unsigned j = i + 1; j < 4; j++) {
543 /* If there is another enabled component in the destination that is
544 * derived from the same inputs, generate its value on this pass as
545 * well.
546 */
547 if (!(done_mask & (1 << j)) &&
548 GET_SWZ(src0.swizzle, j) == src0_swiz) {
549 this_mask |= (1 << j);
550 }
551 }
552
553 if (this_mask != scs_mask) {
554 ir_to_mesa_instruction *inst;
555 dst_reg tmp_dst = dst_reg(tmp);
556
557 /* Emit the SCS instruction.
558 */
559 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
560 inst->dst.writemask = scs_mask;
561
562 /* Move the result of the SCS instruction to the desired location in
563 * the destination.
564 */
565 tmp.swizzle = MAKE_SWIZZLE4(component, component,
566 component, component);
567 inst = emit(ir, OPCODE_SCS, dst, tmp);
568 inst->dst.writemask = this_mask;
569 } else {
570 /* Emit the SCS instruction to write directly to the destination.
571 */
572 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
573 inst->dst.writemask = scs_mask;
574 }
575
576 done_mask |= this_mask;
577 }
578 }
579
580 src_reg
581 ir_to_mesa_visitor::src_reg_for_float(float val)
582 {
583 src_reg src(PROGRAM_CONSTANT, -1, NULL);
584
585 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
586 (const gl_constant_value *)&val, 1, &src.swizzle);
587
588 return src;
589 }
590
591 static int
592 type_size(const struct glsl_type *type)
593 {
594 unsigned int i;
595 int size;
596
597 switch (type->base_type) {
598 case GLSL_TYPE_UINT:
599 case GLSL_TYPE_INT:
600 case GLSL_TYPE_FLOAT:
601 case GLSL_TYPE_BOOL:
602 if (type->is_matrix()) {
603 return type->matrix_columns;
604 } else {
605 /* Regardless of size of vector, it gets a vec4. This is bad
606 * packing for things like floats, but otherwise arrays become a
607 * mess. Hopefully a later pass over the code can pack scalars
608 * down if appropriate.
609 */
610 return 1;
611 }
612 case GLSL_TYPE_ARRAY:
613 assert(type->length > 0);
614 return type_size(type->fields.array) * type->length;
615 case GLSL_TYPE_STRUCT:
616 size = 0;
617 for (i = 0; i < type->length; i++) {
618 size += type_size(type->fields.structure[i].type);
619 }
620 return size;
621 case GLSL_TYPE_SAMPLER:
622 /* Samplers take up one slot in UNIFORMS[], but they're baked in
623 * at link time.
624 */
625 return 1;
626 case GLSL_TYPE_VOID:
627 case GLSL_TYPE_ERROR:
628 case GLSL_TYPE_INTERFACE:
629 assert(!"Invalid type in type_size");
630 break;
631 }
632
633 return 0;
634 }
635
636 /**
637 * In the initial pass of codegen, we assign temporary numbers to
638 * intermediate results. (not SSA -- variable assignments will reuse
639 * storage). Actual register allocation for the Mesa VM occurs in a
640 * pass over the Mesa IR later.
641 */
642 src_reg
643 ir_to_mesa_visitor::get_temp(const glsl_type *type)
644 {
645 src_reg src;
646
647 src.file = PROGRAM_TEMPORARY;
648 src.index = next_temp;
649 src.reladdr = NULL;
650 next_temp += type_size(type);
651
652 if (type->is_array() || type->is_record()) {
653 src.swizzle = SWIZZLE_NOOP;
654 } else {
655 src.swizzle = swizzle_for_size(type->vector_elements);
656 }
657 src.negate = 0;
658
659 return src;
660 }
661
662 variable_storage *
663 ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
664 {
665
666 variable_storage *entry;
667
668 foreach_iter(exec_list_iterator, iter, this->variables) {
669 entry = (variable_storage *)iter.get();
670
671 if (entry->var == var)
672 return entry;
673 }
674
675 return NULL;
676 }
677
678 void
679 ir_to_mesa_visitor::visit(ir_variable *ir)
680 {
681 if (strcmp(ir->name, "gl_FragCoord") == 0) {
682 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
683
684 fp->OriginUpperLeft = ir->origin_upper_left;
685 fp->PixelCenterInteger = ir->pixel_center_integer;
686 }
687
688 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
689 unsigned int i;
690 const ir_state_slot *const slots = ir->state_slots;
691 assert(ir->state_slots != NULL);
692
693 /* Check if this statevar's setup in the STATE file exactly
694 * matches how we'll want to reference it as a
695 * struct/array/whatever. If not, then we need to move it into
696 * temporary storage and hope that it'll get copy-propagated
697 * out.
698 */
699 for (i = 0; i < ir->num_state_slots; i++) {
700 if (slots[i].swizzle != SWIZZLE_XYZW) {
701 break;
702 }
703 }
704
705 variable_storage *storage;
706 dst_reg dst;
707 if (i == ir->num_state_slots) {
708 /* We'll set the index later. */
709 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
710 this->variables.push_tail(storage);
711
712 dst = undef_dst;
713 } else {
714 /* The variable_storage constructor allocates slots based on the size
715 * of the type. However, this had better match the number of state
716 * elements that we're going to copy into the new temporary.
717 */
718 assert((int) ir->num_state_slots == type_size(ir->type));
719
720 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
721 this->next_temp);
722 this->variables.push_tail(storage);
723 this->next_temp += type_size(ir->type);
724
725 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
726 }
727
728
729 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
730 int index = _mesa_add_state_reference(this->prog->Parameters,
731 (gl_state_index *)slots[i].tokens);
732
733 if (storage->file == PROGRAM_STATE_VAR) {
734 if (storage->index == -1) {
735 storage->index = index;
736 } else {
737 assert(index == storage->index + (int)i);
738 }
739 } else {
740 src_reg src(PROGRAM_STATE_VAR, index, NULL);
741 src.swizzle = slots[i].swizzle;
742 emit(ir, OPCODE_MOV, dst, src);
743 /* even a float takes up a whole vec4 reg in a struct/array. */
744 dst.index++;
745 }
746 }
747
748 if (storage->file == PROGRAM_TEMPORARY &&
749 dst.index != storage->index + (int) ir->num_state_slots) {
750 linker_error(this->shader_program,
751 "failed to load builtin uniform `%s' "
752 "(%d/%d regs loaded)\n",
753 ir->name, dst.index - storage->index,
754 type_size(ir->type));
755 }
756 }
757 }
758
759 void
760 ir_to_mesa_visitor::visit(ir_loop *ir)
761 {
762 ir_dereference_variable *counter = NULL;
763
764 if (ir->counter != NULL)
765 counter = new(mem_ctx) ir_dereference_variable(ir->counter);
766
767 if (ir->from != NULL) {
768 assert(ir->counter != NULL);
769
770 ir_assignment *a =
771 new(mem_ctx) ir_assignment(counter, ir->from, NULL);
772
773 a->accept(this);
774 }
775
776 emit(NULL, OPCODE_BGNLOOP);
777
778 if (ir->to) {
779 ir_expression *e =
780 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
781 counter, ir->to);
782 ir_if *if_stmt = new(mem_ctx) ir_if(e);
783
784 ir_loop_jump *brk =
785 new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
786
787 if_stmt->then_instructions.push_tail(brk);
788
789 if_stmt->accept(this);
790 }
791
792 visit_exec_list(&ir->body_instructions, this);
793
794 if (ir->increment) {
795 ir_expression *e =
796 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
797 counter, ir->increment);
798
799 ir_assignment *a =
800 new(mem_ctx) ir_assignment(counter, e, NULL);
801
802 a->accept(this);
803 }
804
805 emit(NULL, OPCODE_ENDLOOP);
806 }
807
808 void
809 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
810 {
811 switch (ir->mode) {
812 case ir_loop_jump::jump_break:
813 emit(NULL, OPCODE_BRK);
814 break;
815 case ir_loop_jump::jump_continue:
816 emit(NULL, OPCODE_CONT);
817 break;
818 }
819 }
820
821
822 void
823 ir_to_mesa_visitor::visit(ir_function_signature *ir)
824 {
825 assert(0);
826 (void)ir;
827 }
828
829 void
830 ir_to_mesa_visitor::visit(ir_function *ir)
831 {
832 /* Ignore function bodies other than main() -- we shouldn't see calls to
833 * them since they should all be inlined before we get to ir_to_mesa.
834 */
835 if (strcmp(ir->name, "main") == 0) {
836 const ir_function_signature *sig;
837 exec_list empty;
838
839 sig = ir->matching_signature(&empty);
840
841 assert(sig);
842
843 foreach_iter(exec_list_iterator, iter, sig->body) {
844 ir_instruction *ir = (ir_instruction *)iter.get();
845
846 ir->accept(this);
847 }
848 }
849 }
850
851 bool
852 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
853 {
854 int nonmul_operand = 1 - mul_operand;
855 src_reg a, b, c;
856
857 ir_expression *expr = ir->operands[mul_operand]->as_expression();
858 if (!expr || expr->operation != ir_binop_mul)
859 return false;
860
861 expr->operands[0]->accept(this);
862 a = this->result;
863 expr->operands[1]->accept(this);
864 b = this->result;
865 ir->operands[nonmul_operand]->accept(this);
866 c = this->result;
867
868 this->result = get_temp(ir->type);
869 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
870
871 return true;
872 }
873
874 /**
875 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
876 *
877 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
878 * implemented using multiplication, and logical-or is implemented using
879 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
880 * As result, the logical expression (a & !b) can be rewritten as:
881 *
882 * - a * !b
883 * - a * (1 - b)
884 * - (a * 1) - (a * b)
885 * - a + -(a * b)
886 * - a + (a * -b)
887 *
888 * This final expression can be implemented as a single MAD(a, -b, a)
889 * instruction.
890 */
891 bool
892 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
893 {
894 const int other_operand = 1 - try_operand;
895 src_reg a, b;
896
897 ir_expression *expr = ir->operands[try_operand]->as_expression();
898 if (!expr || expr->operation != ir_unop_logic_not)
899 return false;
900
901 ir->operands[other_operand]->accept(this);
902 a = this->result;
903 expr->operands[0]->accept(this);
904 b = this->result;
905
906 b.negate = ~b.negate;
907
908 this->result = get_temp(ir->type);
909 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
910
911 return true;
912 }
913
914 bool
915 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
916 {
917 /* Saturates were only introduced to vertex programs in
918 * NV_vertex_program3, so don't give them to drivers in the VP.
919 */
920 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
921 return false;
922
923 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
924 if (!sat_src)
925 return false;
926
927 sat_src->accept(this);
928 src_reg src = this->result;
929
930 /* If we generated an expression instruction into a temporary in
931 * processing the saturate's operand, apply the saturate to that
932 * instruction. Otherwise, generate a MOV to do the saturate.
933 *
934 * Note that we have to be careful to only do this optimization if
935 * the instruction in question was what generated src->result. For
936 * example, ir_dereference_array might generate a MUL instruction
937 * to create the reladdr, and return us a src reg using that
938 * reladdr. That MUL result is not the value we're trying to
939 * saturate.
940 */
941 ir_expression *sat_src_expr = sat_src->as_expression();
942 ir_to_mesa_instruction *new_inst;
943 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
944 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
945 sat_src_expr->operation == ir_binop_add ||
946 sat_src_expr->operation == ir_binop_dot)) {
947 new_inst->saturate = true;
948 } else {
949 this->result = get_temp(ir->type);
950 ir_to_mesa_instruction *inst;
951 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
952 inst->saturate = true;
953 }
954
955 return true;
956 }
957
958 void
959 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
960 src_reg *reg, int *num_reladdr)
961 {
962 if (!reg->reladdr)
963 return;
964
965 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
966
967 if (*num_reladdr != 1) {
968 src_reg temp = get_temp(glsl_type::vec4_type);
969
970 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
971 *reg = temp;
972 }
973
974 (*num_reladdr)--;
975 }
976
977 void
978 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
979 {
980 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
981 * This means that each of the operands is either an immediate value of -1,
982 * 0, or 1, or is a component from one source register (possibly with
983 * negation).
984 */
985 uint8_t components[4] = { 0 };
986 bool negate[4] = { false };
987 ir_variable *var = NULL;
988
989 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
990 ir_rvalue *op = ir->operands[i];
991
992 assert(op->type->is_scalar());
993
994 while (op != NULL) {
995 switch (op->ir_type) {
996 case ir_type_constant: {
997
998 assert(op->type->is_scalar());
999
1000 const ir_constant *const c = op->as_constant();
1001 if (c->is_one()) {
1002 components[i] = SWIZZLE_ONE;
1003 } else if (c->is_zero()) {
1004 components[i] = SWIZZLE_ZERO;
1005 } else if (c->is_negative_one()) {
1006 components[i] = SWIZZLE_ONE;
1007 negate[i] = true;
1008 } else {
1009 assert(!"SWZ constant must be 0.0 or 1.0.");
1010 }
1011
1012 op = NULL;
1013 break;
1014 }
1015
1016 case ir_type_dereference_variable: {
1017 ir_dereference_variable *const deref =
1018 (ir_dereference_variable *) op;
1019
1020 assert((var == NULL) || (deref->var == var));
1021 components[i] = SWIZZLE_X;
1022 var = deref->var;
1023 op = NULL;
1024 break;
1025 }
1026
1027 case ir_type_expression: {
1028 ir_expression *const expr = (ir_expression *) op;
1029
1030 assert(expr->operation == ir_unop_neg);
1031 negate[i] = true;
1032
1033 op = expr->operands[0];
1034 break;
1035 }
1036
1037 case ir_type_swizzle: {
1038 ir_swizzle *const swiz = (ir_swizzle *) op;
1039
1040 components[i] = swiz->mask.x;
1041 op = swiz->val;
1042 break;
1043 }
1044
1045 default:
1046 assert(!"Should not get here.");
1047 return;
1048 }
1049 }
1050 }
1051
1052 assert(var != NULL);
1053
1054 ir_dereference_variable *const deref =
1055 new(mem_ctx) ir_dereference_variable(var);
1056
1057 this->result.file = PROGRAM_UNDEFINED;
1058 deref->accept(this);
1059 if (this->result.file == PROGRAM_UNDEFINED) {
1060 ir_print_visitor v;
1061 printf("Failed to get tree for expression operand:\n");
1062 deref->accept(&v);
1063 exit(1);
1064 }
1065
1066 src_reg src;
1067
1068 src = this->result;
1069 src.swizzle = MAKE_SWIZZLE4(components[0],
1070 components[1],
1071 components[2],
1072 components[3]);
1073 src.negate = ((unsigned(negate[0]) << 0)
1074 | (unsigned(negate[1]) << 1)
1075 | (unsigned(negate[2]) << 2)
1076 | (unsigned(negate[3]) << 3));
1077
1078 /* Storage for our result. Ideally for an assignment we'd be using the
1079 * actual storage for the result here, instead.
1080 */
1081 const src_reg result_src = get_temp(ir->type);
1082 dst_reg result_dst = dst_reg(result_src);
1083
1084 /* Limit writes to the channels that will be used by result_src later.
1085 * This does limit this temp's use as a temporary for multi-instruction
1086 * sequences.
1087 */
1088 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1089
1090 emit(ir, OPCODE_SWZ, result_dst, src);
1091 this->result = result_src;
1092 }
1093
1094 void
1095 ir_to_mesa_visitor::visit(ir_expression *ir)
1096 {
1097 unsigned int operand;
1098 src_reg op[Elements(ir->operands)];
1099 src_reg result_src;
1100 dst_reg result_dst;
1101
1102 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1103 */
1104 if (ir->operation == ir_binop_add) {
1105 if (try_emit_mad(ir, 1))
1106 return;
1107 if (try_emit_mad(ir, 0))
1108 return;
1109 }
1110
1111 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1112 */
1113 if (ir->operation == ir_binop_logic_and) {
1114 if (try_emit_mad_for_and_not(ir, 1))
1115 return;
1116 if (try_emit_mad_for_and_not(ir, 0))
1117 return;
1118 }
1119
1120 if (try_emit_sat(ir))
1121 return;
1122
1123 if (ir->operation == ir_quadop_vector) {
1124 this->emit_swz(ir);
1125 return;
1126 }
1127
1128 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1129 this->result.file = PROGRAM_UNDEFINED;
1130 ir->operands[operand]->accept(this);
1131 if (this->result.file == PROGRAM_UNDEFINED) {
1132 ir_print_visitor v;
1133 printf("Failed to get tree for expression operand:\n");
1134 ir->operands[operand]->accept(&v);
1135 exit(1);
1136 }
1137 op[operand] = this->result;
1138
1139 /* Matrix expression operands should have been broken down to vector
1140 * operations already.
1141 */
1142 assert(!ir->operands[operand]->type->is_matrix());
1143 }
1144
1145 int vector_elements = ir->operands[0]->type->vector_elements;
1146 if (ir->operands[1]) {
1147 vector_elements = MAX2(vector_elements,
1148 ir->operands[1]->type->vector_elements);
1149 }
1150
1151 this->result.file = PROGRAM_UNDEFINED;
1152
1153 /* Storage for our result. Ideally for an assignment we'd be using
1154 * the actual storage for the result here, instead.
1155 */
1156 result_src = get_temp(ir->type);
1157 /* convenience for the emit functions below. */
1158 result_dst = dst_reg(result_src);
1159 /* Limit writes to the channels that will be used by result_src later.
1160 * This does limit this temp's use as a temporary for multi-instruction
1161 * sequences.
1162 */
1163 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1164
1165 switch (ir->operation) {
1166 case ir_unop_logic_not:
1167 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1168 * older GPUs implement SEQ using multiple instructions (i915 uses two
1169 * SGE instructions and a MUL instruction). Since our logic values are
1170 * 0.0 and 1.0, 1-x also implements !x.
1171 */
1172 op[0].negate = ~op[0].negate;
1173 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1174 break;
1175 case ir_unop_neg:
1176 op[0].negate = ~op[0].negate;
1177 result_src = op[0];
1178 break;
1179 case ir_unop_abs:
1180 emit(ir, OPCODE_ABS, result_dst, op[0]);
1181 break;
1182 case ir_unop_sign:
1183 emit(ir, OPCODE_SSG, result_dst, op[0]);
1184 break;
1185 case ir_unop_rcp:
1186 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1187 break;
1188
1189 case ir_unop_exp2:
1190 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1191 break;
1192 case ir_unop_exp:
1193 case ir_unop_log:
1194 assert(!"not reached: should be handled by ir_explog_to_explog2");
1195 break;
1196 case ir_unop_log2:
1197 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1198 break;
1199 case ir_unop_sin:
1200 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1201 break;
1202 case ir_unop_cos:
1203 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1204 break;
1205 case ir_unop_sin_reduced:
1206 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1207 break;
1208 case ir_unop_cos_reduced:
1209 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1210 break;
1211
1212 case ir_unop_dFdx:
1213 emit(ir, OPCODE_DDX, result_dst, op[0]);
1214 break;
1215 case ir_unop_dFdy:
1216 emit(ir, OPCODE_DDY, result_dst, op[0]);
1217 break;
1218
1219 case ir_unop_noise: {
1220 const enum prog_opcode opcode =
1221 prog_opcode(OPCODE_NOISE1
1222 + (ir->operands[0]->type->vector_elements) - 1);
1223 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1224
1225 emit(ir, opcode, result_dst, op[0]);
1226 break;
1227 }
1228
1229 case ir_binop_add:
1230 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1231 break;
1232 case ir_binop_sub:
1233 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1234 break;
1235
1236 case ir_binop_mul:
1237 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1238 break;
1239 case ir_binop_div:
1240 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1241 break;
1242 case ir_binop_mod:
1243 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1244 assert(ir->type->is_integer());
1245 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1246 break;
1247
1248 case ir_binop_less:
1249 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1250 break;
1251 case ir_binop_greater:
1252 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1253 break;
1254 case ir_binop_lequal:
1255 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1256 break;
1257 case ir_binop_gequal:
1258 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1259 break;
1260 case ir_binop_equal:
1261 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1262 break;
1263 case ir_binop_nequal:
1264 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1265 break;
1266 case ir_binop_all_equal:
1267 /* "==" operator producing a scalar boolean. */
1268 if (ir->operands[0]->type->is_vector() ||
1269 ir->operands[1]->type->is_vector()) {
1270 src_reg temp = get_temp(glsl_type::vec4_type);
1271 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1272
1273 /* After the dot-product, the value will be an integer on the
1274 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1275 */
1276 emit_dp(ir, result_dst, temp, temp, vector_elements);
1277
1278 /* Negating the result of the dot-product gives values on the range
1279 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1280 * achieved using SGE.
1281 */
1282 src_reg sge_src = result_src;
1283 sge_src.negate = ~sge_src.negate;
1284 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1285 } else {
1286 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1287 }
1288 break;
1289 case ir_binop_any_nequal:
1290 /* "!=" operator producing a scalar boolean. */
1291 if (ir->operands[0]->type->is_vector() ||
1292 ir->operands[1]->type->is_vector()) {
1293 src_reg temp = get_temp(glsl_type::vec4_type);
1294 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1295
1296 /* After the dot-product, the value will be an integer on the
1297 * range [0,4]. Zero stays zero, and positive values become 1.0.
1298 */
1299 ir_to_mesa_instruction *const dp =
1300 emit_dp(ir, result_dst, temp, temp, vector_elements);
1301 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1302 /* The clamping to [0,1] can be done for free in the fragment
1303 * shader with a saturate.
1304 */
1305 dp->saturate = true;
1306 } else {
1307 /* Negating the result of the dot-product gives values on the range
1308 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1309 * achieved using SLT.
1310 */
1311 src_reg slt_src = result_src;
1312 slt_src.negate = ~slt_src.negate;
1313 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1314 }
1315 } else {
1316 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1317 }
1318 break;
1319
1320 case ir_unop_any: {
1321 assert(ir->operands[0]->type->is_vector());
1322
1323 /* After the dot-product, the value will be an integer on the
1324 * range [0,4]. Zero stays zero, and positive values become 1.0.
1325 */
1326 ir_to_mesa_instruction *const dp =
1327 emit_dp(ir, result_dst, op[0], op[0],
1328 ir->operands[0]->type->vector_elements);
1329 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1330 /* The clamping to [0,1] can be done for free in the fragment
1331 * shader with a saturate.
1332 */
1333 dp->saturate = true;
1334 } else {
1335 /* Negating the result of the dot-product gives values on the range
1336 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1337 * is achieved using SLT.
1338 */
1339 src_reg slt_src = result_src;
1340 slt_src.negate = ~slt_src.negate;
1341 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1342 }
1343 break;
1344 }
1345
1346 case ir_binop_logic_xor:
1347 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1348 break;
1349
1350 case ir_binop_logic_or: {
1351 /* After the addition, the value will be an integer on the
1352 * range [0,2]. Zero stays zero, and positive values become 1.0.
1353 */
1354 ir_to_mesa_instruction *add =
1355 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1356 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1357 /* The clamping to [0,1] can be done for free in the fragment
1358 * shader with a saturate.
1359 */
1360 add->saturate = true;
1361 } else {
1362 /* Negating the result of the addition gives values on the range
1363 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1364 * is achieved using SLT.
1365 */
1366 src_reg slt_src = result_src;
1367 slt_src.negate = ~slt_src.negate;
1368 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1369 }
1370 break;
1371 }
1372
1373 case ir_binop_logic_and:
1374 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1375 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1376 break;
1377
1378 case ir_binop_dot:
1379 assert(ir->operands[0]->type->is_vector());
1380 assert(ir->operands[0]->type == ir->operands[1]->type);
1381 emit_dp(ir, result_dst, op[0], op[1],
1382 ir->operands[0]->type->vector_elements);
1383 break;
1384
1385 case ir_unop_sqrt:
1386 /* sqrt(x) = x * rsq(x). */
1387 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1388 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1389 /* For incoming channels <= 0, set the result to 0. */
1390 op[0].negate = ~op[0].negate;
1391 emit(ir, OPCODE_CMP, result_dst,
1392 op[0], result_src, src_reg_for_float(0.0));
1393 break;
1394 case ir_unop_rsq:
1395 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1396 break;
1397 case ir_unop_i2f:
1398 case ir_unop_u2f:
1399 case ir_unop_b2f:
1400 case ir_unop_b2i:
1401 case ir_unop_i2u:
1402 case ir_unop_u2i:
1403 /* Mesa IR lacks types, ints are stored as truncated floats. */
1404 result_src = op[0];
1405 break;
1406 case ir_unop_f2i:
1407 case ir_unop_f2u:
1408 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1409 break;
1410 case ir_unop_f2b:
1411 case ir_unop_i2b:
1412 emit(ir, OPCODE_SNE, result_dst,
1413 op[0], src_reg_for_float(0.0));
1414 break;
1415 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1416 case ir_unop_bitcast_f2u:
1417 case ir_unop_bitcast_i2f:
1418 case ir_unop_bitcast_u2f:
1419 break;
1420 case ir_unop_trunc:
1421 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1422 break;
1423 case ir_unop_ceil:
1424 op[0].negate = ~op[0].negate;
1425 emit(ir, OPCODE_FLR, result_dst, op[0]);
1426 result_src.negate = ~result_src.negate;
1427 break;
1428 case ir_unop_floor:
1429 emit(ir, OPCODE_FLR, result_dst, op[0]);
1430 break;
1431 case ir_unop_fract:
1432 emit(ir, OPCODE_FRC, result_dst, op[0]);
1433 break;
1434 case ir_unop_pack_snorm_2x16:
1435 case ir_unop_pack_snorm_4x8:
1436 case ir_unop_pack_unorm_2x16:
1437 case ir_unop_pack_unorm_4x8:
1438 case ir_unop_pack_half_2x16:
1439 case ir_unop_unpack_snorm_2x16:
1440 case ir_unop_unpack_snorm_4x8:
1441 case ir_unop_unpack_unorm_2x16:
1442 case ir_unop_unpack_unorm_4x8:
1443 case ir_unop_unpack_half_2x16:
1444 case ir_unop_unpack_half_2x16_split_x:
1445 case ir_unop_unpack_half_2x16_split_y:
1446 case ir_binop_pack_half_2x16_split:
1447 case ir_unop_bitfield_reverse:
1448 case ir_unop_bit_count:
1449 case ir_unop_find_msb:
1450 case ir_unop_find_lsb:
1451 assert(!"not supported");
1452 break;
1453 case ir_binop_min:
1454 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1455 break;
1456 case ir_binop_max:
1457 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1458 break;
1459 case ir_binop_pow:
1460 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1461 break;
1462
1463 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1464 * hardware backends have no way to avoid Mesa IR generation
1465 * even if they don't use it, we need to emit "something" and
1466 * continue.
1467 */
1468 case ir_binop_lshift:
1469 case ir_binop_rshift:
1470 case ir_binop_bit_and:
1471 case ir_binop_bit_xor:
1472 case ir_binop_bit_or:
1473 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1474 break;
1475
1476 case ir_unop_bit_not:
1477 case ir_unop_round_even:
1478 emit(ir, OPCODE_MOV, result_dst, op[0]);
1479 break;
1480
1481 case ir_binop_ubo_load:
1482 assert(!"not supported");
1483 break;
1484
1485 case ir_triop_lrp:
1486 /* ir_triop_lrp operands are (x, y, a) while
1487 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1488 */
1489 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1490 break;
1491
1492 case ir_binop_bfm:
1493 case ir_triop_bfi:
1494 case ir_triop_bitfield_extract:
1495 case ir_quadop_bitfield_insert:
1496 assert(!"not supported");
1497 break;
1498
1499 case ir_quadop_vector:
1500 /* This operation should have already been handled.
1501 */
1502 assert(!"Should not get here.");
1503 break;
1504 }
1505
1506 this->result = result_src;
1507 }
1508
1509
1510 void
1511 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1512 {
1513 src_reg src;
1514 int i;
1515 int swizzle[4];
1516
1517 /* Note that this is only swizzles in expressions, not those on the left
1518 * hand side of an assignment, which do write masking. See ir_assignment
1519 * for that.
1520 */
1521
1522 ir->val->accept(this);
1523 src = this->result;
1524 assert(src.file != PROGRAM_UNDEFINED);
1525
1526 for (i = 0; i < 4; i++) {
1527 if (i < ir->type->vector_elements) {
1528 switch (i) {
1529 case 0:
1530 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1531 break;
1532 case 1:
1533 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1534 break;
1535 case 2:
1536 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1537 break;
1538 case 3:
1539 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1540 break;
1541 }
1542 } else {
1543 /* If the type is smaller than a vec4, replicate the last
1544 * channel out.
1545 */
1546 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1547 }
1548 }
1549
1550 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1551
1552 this->result = src;
1553 }
1554
1555 void
1556 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1557 {
1558 variable_storage *entry = find_variable_storage(ir->var);
1559 ir_variable *var = ir->var;
1560
1561 if (!entry) {
1562 switch (var->mode) {
1563 case ir_var_uniform:
1564 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1565 var->location);
1566 this->variables.push_tail(entry);
1567 break;
1568 case ir_var_shader_in:
1569 /* The linker assigns locations for varyings and attributes,
1570 * including deprecated builtins (like gl_Color),
1571 * user-assigned generic attributes (glBindVertexLocation),
1572 * and user-defined varyings.
1573 */
1574 assert(var->location != -1);
1575 entry = new(mem_ctx) variable_storage(var,
1576 PROGRAM_INPUT,
1577 var->location);
1578 break;
1579 case ir_var_shader_out:
1580 assert(var->location != -1);
1581 entry = new(mem_ctx) variable_storage(var,
1582 PROGRAM_OUTPUT,
1583 var->location);
1584 break;
1585 case ir_var_system_value:
1586 entry = new(mem_ctx) variable_storage(var,
1587 PROGRAM_SYSTEM_VALUE,
1588 var->location);
1589 break;
1590 case ir_var_auto:
1591 case ir_var_temporary:
1592 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1593 this->next_temp);
1594 this->variables.push_tail(entry);
1595
1596 next_temp += type_size(var->type);
1597 break;
1598 }
1599
1600 if (!entry) {
1601 printf("Failed to make storage for %s\n", var->name);
1602 exit(1);
1603 }
1604 }
1605
1606 this->result = src_reg(entry->file, entry->index, var->type);
1607 }
1608
1609 void
1610 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1611 {
1612 ir_constant *index;
1613 src_reg src;
1614 int element_size = type_size(ir->type);
1615
1616 index = ir->array_index->constant_expression_value();
1617
1618 ir->array->accept(this);
1619 src = this->result;
1620
1621 if (index) {
1622 src.index += index->value.i[0] * element_size;
1623 } else {
1624 /* Variable index array dereference. It eats the "vec4" of the
1625 * base of the array and an index that offsets the Mesa register
1626 * index.
1627 */
1628 ir->array_index->accept(this);
1629
1630 src_reg index_reg;
1631
1632 if (element_size == 1) {
1633 index_reg = this->result;
1634 } else {
1635 index_reg = get_temp(glsl_type::float_type);
1636
1637 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1638 this->result, src_reg_for_float(element_size));
1639 }
1640
1641 /* If there was already a relative address register involved, add the
1642 * new and the old together to get the new offset.
1643 */
1644 if (src.reladdr != NULL) {
1645 src_reg accum_reg = get_temp(glsl_type::float_type);
1646
1647 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1648 index_reg, *src.reladdr);
1649
1650 index_reg = accum_reg;
1651 }
1652
1653 src.reladdr = ralloc(mem_ctx, src_reg);
1654 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1655 }
1656
1657 /* If the type is smaller than a vec4, replicate the last channel out. */
1658 if (ir->type->is_scalar() || ir->type->is_vector())
1659 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1660 else
1661 src.swizzle = SWIZZLE_NOOP;
1662
1663 this->result = src;
1664 }
1665
1666 void
1667 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1668 {
1669 unsigned int i;
1670 const glsl_type *struct_type = ir->record->type;
1671 int offset = 0;
1672
1673 ir->record->accept(this);
1674
1675 for (i = 0; i < struct_type->length; i++) {
1676 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1677 break;
1678 offset += type_size(struct_type->fields.structure[i].type);
1679 }
1680
1681 /* If the type is smaller than a vec4, replicate the last channel out. */
1682 if (ir->type->is_scalar() || ir->type->is_vector())
1683 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1684 else
1685 this->result.swizzle = SWIZZLE_NOOP;
1686
1687 this->result.index += offset;
1688 }
1689
1690 /**
1691 * We want to be careful in assignment setup to hit the actual storage
1692 * instead of potentially using a temporary like we might with the
1693 * ir_dereference handler.
1694 */
1695 static dst_reg
1696 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1697 {
1698 /* The LHS must be a dereference. If the LHS is a variable indexed array
1699 * access of a vector, it must be separated into a series conditional moves
1700 * before reaching this point (see ir_vec_index_to_cond_assign).
1701 */
1702 assert(ir->as_dereference());
1703 ir_dereference_array *deref_array = ir->as_dereference_array();
1704 if (deref_array) {
1705 assert(!deref_array->array->type->is_vector());
1706 }
1707
1708 /* Use the rvalue deref handler for the most part. We'll ignore
1709 * swizzles in it and write swizzles using writemask, though.
1710 */
1711 ir->accept(v);
1712 return dst_reg(v->result);
1713 }
1714
1715 /**
1716 * Process the condition of a conditional assignment
1717 *
1718 * Examines the condition of a conditional assignment to generate the optimal
1719 * first operand of a \c CMP instruction. If the condition is a relational
1720 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1721 * used as the source for the \c CMP instruction. Otherwise the comparison
1722 * is processed to a boolean result, and the boolean result is used as the
1723 * operand to the CMP instruction.
1724 */
1725 bool
1726 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1727 {
1728 ir_rvalue *src_ir = ir;
1729 bool negate = true;
1730 bool switch_order = false;
1731
1732 ir_expression *const expr = ir->as_expression();
1733 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1734 bool zero_on_left = false;
1735
1736 if (expr->operands[0]->is_zero()) {
1737 src_ir = expr->operands[1];
1738 zero_on_left = true;
1739 } else if (expr->operands[1]->is_zero()) {
1740 src_ir = expr->operands[0];
1741 zero_on_left = false;
1742 }
1743
1744 /* a is - 0 + - 0 +
1745 * (a < 0) T F F ( a < 0) T F F
1746 * (0 < a) F F T (-a < 0) F F T
1747 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1748 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1749 * (a > 0) F F T (-a < 0) F F T
1750 * (0 > a) T F F ( a < 0) T F F
1751 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1752 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1753 *
1754 * Note that exchanging the order of 0 and 'a' in the comparison simply
1755 * means that the value of 'a' should be negated.
1756 */
1757 if (src_ir != ir) {
1758 switch (expr->operation) {
1759 case ir_binop_less:
1760 switch_order = false;
1761 negate = zero_on_left;
1762 break;
1763
1764 case ir_binop_greater:
1765 switch_order = false;
1766 negate = !zero_on_left;
1767 break;
1768
1769 case ir_binop_lequal:
1770 switch_order = true;
1771 negate = !zero_on_left;
1772 break;
1773
1774 case ir_binop_gequal:
1775 switch_order = true;
1776 negate = zero_on_left;
1777 break;
1778
1779 default:
1780 /* This isn't the right kind of comparison afterall, so make sure
1781 * the whole condition is visited.
1782 */
1783 src_ir = ir;
1784 break;
1785 }
1786 }
1787 }
1788
1789 src_ir->accept(this);
1790
1791 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1792 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1793 * choose which value OPCODE_CMP produces without an extra instruction
1794 * computing the condition.
1795 */
1796 if (negate)
1797 this->result.negate = ~this->result.negate;
1798
1799 return switch_order;
1800 }
1801
1802 void
1803 ir_to_mesa_visitor::visit(ir_assignment *ir)
1804 {
1805 dst_reg l;
1806 src_reg r;
1807 int i;
1808
1809 ir->rhs->accept(this);
1810 r = this->result;
1811
1812 l = get_assignment_lhs(ir->lhs, this);
1813
1814 /* FINISHME: This should really set to the correct maximal writemask for each
1815 * FINISHME: component written (in the loops below). This case can only
1816 * FINISHME: occur for matrices, arrays, and structures.
1817 */
1818 if (ir->write_mask == 0) {
1819 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1820 l.writemask = WRITEMASK_XYZW;
1821 } else if (ir->lhs->type->is_scalar()) {
1822 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1823 * FINISHME: W component of fragment shader output zero, work correctly.
1824 */
1825 l.writemask = WRITEMASK_XYZW;
1826 } else {
1827 int swizzles[4];
1828 int first_enabled_chan = 0;
1829 int rhs_chan = 0;
1830
1831 assert(ir->lhs->type->is_vector());
1832 l.writemask = ir->write_mask;
1833
1834 for (int i = 0; i < 4; i++) {
1835 if (l.writemask & (1 << i)) {
1836 first_enabled_chan = GET_SWZ(r.swizzle, i);
1837 break;
1838 }
1839 }
1840
1841 /* Swizzle a small RHS vector into the channels being written.
1842 *
1843 * glsl ir treats write_mask as dictating how many channels are
1844 * present on the RHS while Mesa IR treats write_mask as just
1845 * showing which channels of the vec4 RHS get written.
1846 */
1847 for (int i = 0; i < 4; i++) {
1848 if (l.writemask & (1 << i))
1849 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1850 else
1851 swizzles[i] = first_enabled_chan;
1852 }
1853 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1854 swizzles[2], swizzles[3]);
1855 }
1856
1857 assert(l.file != PROGRAM_UNDEFINED);
1858 assert(r.file != PROGRAM_UNDEFINED);
1859
1860 if (ir->condition) {
1861 const bool switch_order = this->process_move_condition(ir->condition);
1862 src_reg condition = this->result;
1863
1864 for (i = 0; i < type_size(ir->lhs->type); i++) {
1865 if (switch_order) {
1866 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1867 } else {
1868 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1869 }
1870
1871 l.index++;
1872 r.index++;
1873 }
1874 } else {
1875 for (i = 0; i < type_size(ir->lhs->type); i++) {
1876 emit(ir, OPCODE_MOV, l, r);
1877 l.index++;
1878 r.index++;
1879 }
1880 }
1881 }
1882
1883
1884 void
1885 ir_to_mesa_visitor::visit(ir_constant *ir)
1886 {
1887 src_reg src;
1888 GLfloat stack_vals[4] = { 0 };
1889 GLfloat *values = stack_vals;
1890 unsigned int i;
1891
1892 /* Unfortunately, 4 floats is all we can get into
1893 * _mesa_add_unnamed_constant. So, make a temp to store an
1894 * aggregate constant and move each constant value into it. If we
1895 * get lucky, copy propagation will eliminate the extra moves.
1896 */
1897
1898 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1899 src_reg temp_base = get_temp(ir->type);
1900 dst_reg temp = dst_reg(temp_base);
1901
1902 foreach_iter(exec_list_iterator, iter, ir->components) {
1903 ir_constant *field_value = (ir_constant *)iter.get();
1904 int size = type_size(field_value->type);
1905
1906 assert(size > 0);
1907
1908 field_value->accept(this);
1909 src = this->result;
1910
1911 for (i = 0; i < (unsigned int)size; i++) {
1912 emit(ir, OPCODE_MOV, temp, src);
1913
1914 src.index++;
1915 temp.index++;
1916 }
1917 }
1918 this->result = temp_base;
1919 return;
1920 }
1921
1922 if (ir->type->is_array()) {
1923 src_reg temp_base = get_temp(ir->type);
1924 dst_reg temp = dst_reg(temp_base);
1925 int size = type_size(ir->type->fields.array);
1926
1927 assert(size > 0);
1928
1929 for (i = 0; i < ir->type->length; i++) {
1930 ir->array_elements[i]->accept(this);
1931 src = this->result;
1932 for (int j = 0; j < size; j++) {
1933 emit(ir, OPCODE_MOV, temp, src);
1934
1935 src.index++;
1936 temp.index++;
1937 }
1938 }
1939 this->result = temp_base;
1940 return;
1941 }
1942
1943 if (ir->type->is_matrix()) {
1944 src_reg mat = get_temp(ir->type);
1945 dst_reg mat_column = dst_reg(mat);
1946
1947 for (i = 0; i < ir->type->matrix_columns; i++) {
1948 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1949 values = &ir->value.f[i * ir->type->vector_elements];
1950
1951 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1952 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1953 (gl_constant_value *) values,
1954 ir->type->vector_elements,
1955 &src.swizzle);
1956 emit(ir, OPCODE_MOV, mat_column, src);
1957
1958 mat_column.index++;
1959 }
1960
1961 this->result = mat;
1962 return;
1963 }
1964
1965 src.file = PROGRAM_CONSTANT;
1966 switch (ir->type->base_type) {
1967 case GLSL_TYPE_FLOAT:
1968 values = &ir->value.f[0];
1969 break;
1970 case GLSL_TYPE_UINT:
1971 for (i = 0; i < ir->type->vector_elements; i++) {
1972 values[i] = ir->value.u[i];
1973 }
1974 break;
1975 case GLSL_TYPE_INT:
1976 for (i = 0; i < ir->type->vector_elements; i++) {
1977 values[i] = ir->value.i[i];
1978 }
1979 break;
1980 case GLSL_TYPE_BOOL:
1981 for (i = 0; i < ir->type->vector_elements; i++) {
1982 values[i] = ir->value.b[i];
1983 }
1984 break;
1985 default:
1986 assert(!"Non-float/uint/int/bool constant");
1987 }
1988
1989 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1990 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1991 (gl_constant_value *) values,
1992 ir->type->vector_elements,
1993 &this->result.swizzle);
1994 }
1995
1996 void
1997 ir_to_mesa_visitor::visit(ir_call *ir)
1998 {
1999 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
2000 }
2001
2002 void
2003 ir_to_mesa_visitor::visit(ir_texture *ir)
2004 {
2005 src_reg result_src, coord, lod_info, projector, dx, dy;
2006 dst_reg result_dst, coord_dst;
2007 ir_to_mesa_instruction *inst = NULL;
2008 prog_opcode opcode = OPCODE_NOP;
2009
2010 if (ir->op == ir_txs)
2011 this->result = src_reg_for_float(0.0);
2012 else
2013 ir->coordinate->accept(this);
2014
2015 /* Put our coords in a temp. We'll need to modify them for shadow,
2016 * projection, or LOD, so the only case we'd use it as is is if
2017 * we're doing plain old texturing. Mesa IR optimization should
2018 * handle cleaning up our mess in that case.
2019 */
2020 coord = get_temp(glsl_type::vec4_type);
2021 coord_dst = dst_reg(coord);
2022 emit(ir, OPCODE_MOV, coord_dst, this->result);
2023
2024 if (ir->projector) {
2025 ir->projector->accept(this);
2026 projector = this->result;
2027 }
2028
2029 /* Storage for our result. Ideally for an assignment we'd be using
2030 * the actual storage for the result here, instead.
2031 */
2032 result_src = get_temp(glsl_type::vec4_type);
2033 result_dst = dst_reg(result_src);
2034
2035 switch (ir->op) {
2036 case ir_tex:
2037 case ir_txs:
2038 opcode = OPCODE_TEX;
2039 break;
2040 case ir_txb:
2041 opcode = OPCODE_TXB;
2042 ir->lod_info.bias->accept(this);
2043 lod_info = this->result;
2044 break;
2045 case ir_txf:
2046 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2047 case ir_txl:
2048 opcode = OPCODE_TXL;
2049 ir->lod_info.lod->accept(this);
2050 lod_info = this->result;
2051 break;
2052 case ir_txd:
2053 opcode = OPCODE_TXD;
2054 ir->lod_info.grad.dPdx->accept(this);
2055 dx = this->result;
2056 ir->lod_info.grad.dPdy->accept(this);
2057 dy = this->result;
2058 break;
2059 case ir_txf_ms:
2060 assert(!"Unexpected ir_txf_ms opcode");
2061 break;
2062 case ir_lod:
2063 assert(!"Unexpected ir_lod opcode");
2064 break;
2065 }
2066
2067 const glsl_type *sampler_type = ir->sampler->type;
2068
2069 if (ir->projector) {
2070 if (opcode == OPCODE_TEX) {
2071 /* Slot the projector in as the last component of the coord. */
2072 coord_dst.writemask = WRITEMASK_W;
2073 emit(ir, OPCODE_MOV, coord_dst, projector);
2074 coord_dst.writemask = WRITEMASK_XYZW;
2075 opcode = OPCODE_TXP;
2076 } else {
2077 src_reg coord_w = coord;
2078 coord_w.swizzle = SWIZZLE_WWWW;
2079
2080 /* For the other TEX opcodes there's no projective version
2081 * since the last slot is taken up by lod info. Do the
2082 * projective divide now.
2083 */
2084 coord_dst.writemask = WRITEMASK_W;
2085 emit(ir, OPCODE_RCP, coord_dst, projector);
2086
2087 /* In the case where we have to project the coordinates "by hand,"
2088 * the shadow comparitor value must also be projected.
2089 */
2090 src_reg tmp_src = coord;
2091 if (ir->shadow_comparitor) {
2092 /* Slot the shadow value in as the second to last component of the
2093 * coord.
2094 */
2095 ir->shadow_comparitor->accept(this);
2096
2097 tmp_src = get_temp(glsl_type::vec4_type);
2098 dst_reg tmp_dst = dst_reg(tmp_src);
2099
2100 /* Projective division not allowed for array samplers. */
2101 assert(!sampler_type->sampler_array);
2102
2103 tmp_dst.writemask = WRITEMASK_Z;
2104 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2105
2106 tmp_dst.writemask = WRITEMASK_XY;
2107 emit(ir, OPCODE_MOV, tmp_dst, coord);
2108 }
2109
2110 coord_dst.writemask = WRITEMASK_XYZ;
2111 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2112
2113 coord_dst.writemask = WRITEMASK_XYZW;
2114 coord.swizzle = SWIZZLE_XYZW;
2115 }
2116 }
2117
2118 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2119 * comparitor was put in the correct place (and projected) by the code,
2120 * above, that handles by-hand projection.
2121 */
2122 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2123 /* Slot the shadow value in as the second to last component of the
2124 * coord.
2125 */
2126 ir->shadow_comparitor->accept(this);
2127
2128 /* XXX This will need to be updated for cubemap array samplers. */
2129 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2130 sampler_type->sampler_array) {
2131 coord_dst.writemask = WRITEMASK_W;
2132 } else {
2133 coord_dst.writemask = WRITEMASK_Z;
2134 }
2135
2136 emit(ir, OPCODE_MOV, coord_dst, this->result);
2137 coord_dst.writemask = WRITEMASK_XYZW;
2138 }
2139
2140 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2141 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2142 coord_dst.writemask = WRITEMASK_W;
2143 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2144 coord_dst.writemask = WRITEMASK_XYZW;
2145 }
2146
2147 if (opcode == OPCODE_TXD)
2148 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2149 else
2150 inst = emit(ir, opcode, result_dst, coord);
2151
2152 if (ir->shadow_comparitor)
2153 inst->tex_shadow = GL_TRUE;
2154
2155 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2156 this->shader_program,
2157 this->prog);
2158
2159 switch (sampler_type->sampler_dimensionality) {
2160 case GLSL_SAMPLER_DIM_1D:
2161 inst->tex_target = (sampler_type->sampler_array)
2162 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2163 break;
2164 case GLSL_SAMPLER_DIM_2D:
2165 inst->tex_target = (sampler_type->sampler_array)
2166 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2167 break;
2168 case GLSL_SAMPLER_DIM_3D:
2169 inst->tex_target = TEXTURE_3D_INDEX;
2170 break;
2171 case GLSL_SAMPLER_DIM_CUBE:
2172 inst->tex_target = TEXTURE_CUBE_INDEX;
2173 break;
2174 case GLSL_SAMPLER_DIM_RECT:
2175 inst->tex_target = TEXTURE_RECT_INDEX;
2176 break;
2177 case GLSL_SAMPLER_DIM_BUF:
2178 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2179 break;
2180 case GLSL_SAMPLER_DIM_EXTERNAL:
2181 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2182 break;
2183 default:
2184 assert(!"Should not get here.");
2185 }
2186
2187 this->result = result_src;
2188 }
2189
2190 void
2191 ir_to_mesa_visitor::visit(ir_return *ir)
2192 {
2193 /* Non-void functions should have been inlined. We may still emit RETs
2194 * from main() unless the EmitNoMainReturn option is set.
2195 */
2196 assert(!ir->get_value());
2197 emit(ir, OPCODE_RET);
2198 }
2199
2200 void
2201 ir_to_mesa_visitor::visit(ir_discard *ir)
2202 {
2203 if (ir->condition) {
2204 ir->condition->accept(this);
2205 this->result.negate = ~this->result.negate;
2206 emit(ir, OPCODE_KIL, undef_dst, this->result);
2207 } else {
2208 emit(ir, OPCODE_KIL_NV);
2209 }
2210 }
2211
2212 void
2213 ir_to_mesa_visitor::visit(ir_if *ir)
2214 {
2215 ir_to_mesa_instruction *cond_inst, *if_inst;
2216 ir_to_mesa_instruction *prev_inst;
2217
2218 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2219
2220 ir->condition->accept(this);
2221 assert(this->result.file != PROGRAM_UNDEFINED);
2222
2223 if (this->options->EmitCondCodes) {
2224 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2225
2226 /* See if we actually generated any instruction for generating
2227 * the condition. If not, then cook up a move to a temp so we
2228 * have something to set cond_update on.
2229 */
2230 if (cond_inst == prev_inst) {
2231 src_reg temp = get_temp(glsl_type::bool_type);
2232 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2233 }
2234 cond_inst->cond_update = GL_TRUE;
2235
2236 if_inst = emit(ir->condition, OPCODE_IF);
2237 if_inst->dst.cond_mask = COND_NE;
2238 } else {
2239 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2240 }
2241
2242 this->instructions.push_tail(if_inst);
2243
2244 visit_exec_list(&ir->then_instructions, this);
2245
2246 if (!ir->else_instructions.is_empty()) {
2247 emit(ir->condition, OPCODE_ELSE);
2248 visit_exec_list(&ir->else_instructions, this);
2249 }
2250
2251 if_inst = emit(ir->condition, OPCODE_ENDIF);
2252 }
2253
2254 ir_to_mesa_visitor::ir_to_mesa_visitor()
2255 {
2256 result.file = PROGRAM_UNDEFINED;
2257 next_temp = 1;
2258 next_signature_id = 1;
2259 current_function = NULL;
2260 mem_ctx = ralloc_context(NULL);
2261 }
2262
2263 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2264 {
2265 ralloc_free(mem_ctx);
2266 }
2267
2268 static struct prog_src_register
2269 mesa_src_reg_from_ir_src_reg(src_reg reg)
2270 {
2271 struct prog_src_register mesa_reg;
2272
2273 mesa_reg.File = reg.file;
2274 assert(reg.index < (1 << INST_INDEX_BITS));
2275 mesa_reg.Index = reg.index;
2276 mesa_reg.Swizzle = reg.swizzle;
2277 mesa_reg.RelAddr = reg.reladdr != NULL;
2278 mesa_reg.Negate = reg.negate;
2279 mesa_reg.Abs = 0;
2280 mesa_reg.HasIndex2 = GL_FALSE;
2281 mesa_reg.RelAddr2 = 0;
2282 mesa_reg.Index2 = 0;
2283
2284 return mesa_reg;
2285 }
2286
2287 static void
2288 set_branchtargets(ir_to_mesa_visitor *v,
2289 struct prog_instruction *mesa_instructions,
2290 int num_instructions)
2291 {
2292 int if_count = 0, loop_count = 0;
2293 int *if_stack, *loop_stack;
2294 int if_stack_pos = 0, loop_stack_pos = 0;
2295 int i, j;
2296
2297 for (i = 0; i < num_instructions; i++) {
2298 switch (mesa_instructions[i].Opcode) {
2299 case OPCODE_IF:
2300 if_count++;
2301 break;
2302 case OPCODE_BGNLOOP:
2303 loop_count++;
2304 break;
2305 case OPCODE_BRK:
2306 case OPCODE_CONT:
2307 mesa_instructions[i].BranchTarget = -1;
2308 break;
2309 default:
2310 break;
2311 }
2312 }
2313
2314 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2315 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2316
2317 for (i = 0; i < num_instructions; i++) {
2318 switch (mesa_instructions[i].Opcode) {
2319 case OPCODE_IF:
2320 if_stack[if_stack_pos] = i;
2321 if_stack_pos++;
2322 break;
2323 case OPCODE_ELSE:
2324 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2325 if_stack[if_stack_pos - 1] = i;
2326 break;
2327 case OPCODE_ENDIF:
2328 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2329 if_stack_pos--;
2330 break;
2331 case OPCODE_BGNLOOP:
2332 loop_stack[loop_stack_pos] = i;
2333 loop_stack_pos++;
2334 break;
2335 case OPCODE_ENDLOOP:
2336 loop_stack_pos--;
2337 /* Rewrite any breaks/conts at this nesting level (haven't
2338 * already had a BranchTarget assigned) to point to the end
2339 * of the loop.
2340 */
2341 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2342 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2343 mesa_instructions[j].Opcode == OPCODE_CONT) {
2344 if (mesa_instructions[j].BranchTarget == -1) {
2345 mesa_instructions[j].BranchTarget = i;
2346 }
2347 }
2348 }
2349 /* The loop ends point at each other. */
2350 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2351 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2352 break;
2353 case OPCODE_CAL:
2354 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2355 function_entry *entry = (function_entry *)iter.get();
2356
2357 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2358 mesa_instructions[i].BranchTarget = entry->inst;
2359 break;
2360 }
2361 }
2362 break;
2363 default:
2364 break;
2365 }
2366 }
2367 }
2368
2369 static void
2370 print_program(struct prog_instruction *mesa_instructions,
2371 ir_instruction **mesa_instruction_annotation,
2372 int num_instructions)
2373 {
2374 ir_instruction *last_ir = NULL;
2375 int i;
2376 int indent = 0;
2377
2378 for (i = 0; i < num_instructions; i++) {
2379 struct prog_instruction *mesa_inst = mesa_instructions + i;
2380 ir_instruction *ir = mesa_instruction_annotation[i];
2381
2382 fprintf(stdout, "%3d: ", i);
2383
2384 if (last_ir != ir && ir) {
2385 int j;
2386
2387 for (j = 0; j < indent; j++) {
2388 fprintf(stdout, " ");
2389 }
2390 ir->print();
2391 printf("\n");
2392 last_ir = ir;
2393
2394 fprintf(stdout, " "); /* line number spacing. */
2395 }
2396
2397 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2398 PROG_PRINT_DEBUG, NULL);
2399 }
2400 }
2401
2402 class add_uniform_to_shader : public program_resource_visitor {
2403 public:
2404 add_uniform_to_shader(struct gl_shader_program *shader_program,
2405 struct gl_program_parameter_list *params)
2406 : shader_program(shader_program), params(params), idx(-1)
2407 {
2408 /* empty */
2409 }
2410
2411 void process(ir_variable *var)
2412 {
2413 this->idx = -1;
2414 this->program_resource_visitor::process(var);
2415
2416 var->location = this->idx;
2417 }
2418
2419 private:
2420 virtual void visit_field(const glsl_type *type, const char *name,
2421 bool row_major);
2422
2423 struct gl_shader_program *shader_program;
2424 struct gl_program_parameter_list *params;
2425 int idx;
2426 };
2427
2428 void
2429 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2430 bool row_major)
2431 {
2432 unsigned int size;
2433
2434 (void) row_major;
2435
2436 if (type->is_vector() || type->is_scalar()) {
2437 size = type->vector_elements;
2438 } else {
2439 size = type_size(type) * 4;
2440 }
2441
2442 gl_register_file file;
2443 if (type->is_sampler() ||
2444 (type->is_array() && type->fields.array->is_sampler())) {
2445 file = PROGRAM_SAMPLER;
2446 } else {
2447 file = PROGRAM_UNIFORM;
2448 }
2449
2450 int index = _mesa_lookup_parameter_index(params, -1, name);
2451 if (index < 0) {
2452 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2453 NULL, NULL);
2454
2455 /* Sampler uniform values are stored in prog->SamplerUnits,
2456 * and the entry in that array is selected by this index we
2457 * store in ParameterValues[].
2458 */
2459 if (file == PROGRAM_SAMPLER) {
2460 unsigned location;
2461 const bool found =
2462 this->shader_program->UniformHash->get(location,
2463 params->Parameters[index].Name);
2464 assert(found);
2465
2466 if (!found)
2467 return;
2468
2469 struct gl_uniform_storage *storage =
2470 &this->shader_program->UniformStorage[location];
2471
2472 for (unsigned int j = 0; j < size / 4; j++)
2473 params->ParameterValues[index + j][0].f = storage->sampler + j;
2474 }
2475 }
2476
2477 /* The first part of the uniform that's processed determines the base
2478 * location of the whole uniform (for structures).
2479 */
2480 if (this->idx < 0)
2481 this->idx = index;
2482 }
2483
2484 /**
2485 * Generate the program parameters list for the user uniforms in a shader
2486 *
2487 * \param shader_program Linked shader program. This is only used to
2488 * emit possible link errors to the info log.
2489 * \param sh Shader whose uniforms are to be processed.
2490 * \param params Parameter list to be filled in.
2491 */
2492 void
2493 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2494 *shader_program,
2495 struct gl_shader *sh,
2496 struct gl_program_parameter_list
2497 *params)
2498 {
2499 add_uniform_to_shader add(shader_program, params);
2500
2501 foreach_list(node, sh->ir) {
2502 ir_variable *var = ((ir_instruction *) node)->as_variable();
2503
2504 if ((var == NULL) || (var->mode != ir_var_uniform)
2505 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2506 continue;
2507
2508 add.process(var);
2509 }
2510 }
2511
2512 void
2513 _mesa_associate_uniform_storage(struct gl_context *ctx,
2514 struct gl_shader_program *shader_program,
2515 struct gl_program_parameter_list *params)
2516 {
2517 /* After adding each uniform to the parameter list, connect the storage for
2518 * the parameter with the tracking structure used by the API for the
2519 * uniform.
2520 */
2521 unsigned last_location = unsigned(~0);
2522 for (unsigned i = 0; i < params->NumParameters; i++) {
2523 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2524 continue;
2525
2526 unsigned location;
2527 const bool found =
2528 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2529 assert(found);
2530
2531 if (!found)
2532 continue;
2533
2534 if (location != last_location) {
2535 struct gl_uniform_storage *storage =
2536 &shader_program->UniformStorage[location];
2537 enum gl_uniform_driver_format format = uniform_native;
2538
2539 unsigned columns = 0;
2540 switch (storage->type->base_type) {
2541 case GLSL_TYPE_UINT:
2542 assert(ctx->Const.NativeIntegers);
2543 format = uniform_native;
2544 columns = 1;
2545 break;
2546 case GLSL_TYPE_INT:
2547 format =
2548 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2549 columns = 1;
2550 break;
2551 case GLSL_TYPE_FLOAT:
2552 format = uniform_native;
2553 columns = storage->type->matrix_columns;
2554 break;
2555 case GLSL_TYPE_BOOL:
2556 if (ctx->Const.NativeIntegers) {
2557 format = (ctx->Const.UniformBooleanTrue == 1)
2558 ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2559 } else {
2560 format = uniform_bool_float;
2561 }
2562 columns = 1;
2563 break;
2564 case GLSL_TYPE_SAMPLER:
2565 format = uniform_native;
2566 columns = 1;
2567 break;
2568 case GLSL_TYPE_ARRAY:
2569 case GLSL_TYPE_VOID:
2570 case GLSL_TYPE_STRUCT:
2571 case GLSL_TYPE_ERROR:
2572 case GLSL_TYPE_INTERFACE:
2573 assert(!"Should not get here.");
2574 break;
2575 }
2576
2577 _mesa_uniform_attach_driver_storage(storage,
2578 4 * sizeof(float) * columns,
2579 4 * sizeof(float),
2580 format,
2581 &params->ParameterValues[i]);
2582
2583 /* After attaching the driver's storage to the uniform, propagate any
2584 * data from the linker's backing store. This will cause values from
2585 * initializers in the source code to be copied over.
2586 */
2587 _mesa_propagate_uniforms_to_driver_storage(storage,
2588 0,
2589 MAX2(1, storage->array_elements));
2590
2591 last_location = location;
2592 }
2593 }
2594 }
2595
2596 /*
2597 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2598 * channels for copy propagation and updates following instructions to
2599 * use the original versions.
2600 *
2601 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2602 * will occur. As an example, a TXP production before this pass:
2603 *
2604 * 0: MOV TEMP[1], INPUT[4].xyyy;
2605 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2606 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2607 *
2608 * and after:
2609 *
2610 * 0: MOV TEMP[1], INPUT[4].xyyy;
2611 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2612 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2613 *
2614 * which allows for dead code elimination on TEMP[1]'s writes.
2615 */
2616 void
2617 ir_to_mesa_visitor::copy_propagate(void)
2618 {
2619 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2620 ir_to_mesa_instruction *,
2621 this->next_temp * 4);
2622 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2623 int level = 0;
2624
2625 foreach_iter(exec_list_iterator, iter, this->instructions) {
2626 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2627
2628 assert(inst->dst.file != PROGRAM_TEMPORARY
2629 || inst->dst.index < this->next_temp);
2630
2631 /* First, do any copy propagation possible into the src regs. */
2632 for (int r = 0; r < 3; r++) {
2633 ir_to_mesa_instruction *first = NULL;
2634 bool good = true;
2635 int acp_base = inst->src[r].index * 4;
2636
2637 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2638 inst->src[r].reladdr)
2639 continue;
2640
2641 /* See if we can find entries in the ACP consisting of MOVs
2642 * from the same src register for all the swizzled channels
2643 * of this src register reference.
2644 */
2645 for (int i = 0; i < 4; i++) {
2646 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2647 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2648
2649 if (!copy_chan) {
2650 good = false;
2651 break;
2652 }
2653
2654 assert(acp_level[acp_base + src_chan] <= level);
2655
2656 if (!first) {
2657 first = copy_chan;
2658 } else {
2659 if (first->src[0].file != copy_chan->src[0].file ||
2660 first->src[0].index != copy_chan->src[0].index) {
2661 good = false;
2662 break;
2663 }
2664 }
2665 }
2666
2667 if (good) {
2668 /* We've now validated that we can copy-propagate to
2669 * replace this src register reference. Do it.
2670 */
2671 inst->src[r].file = first->src[0].file;
2672 inst->src[r].index = first->src[0].index;
2673
2674 int swizzle = 0;
2675 for (int i = 0; i < 4; i++) {
2676 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2677 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2678 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2679 (3 * i));
2680 }
2681 inst->src[r].swizzle = swizzle;
2682 }
2683 }
2684
2685 switch (inst->op) {
2686 case OPCODE_BGNLOOP:
2687 case OPCODE_ENDLOOP:
2688 /* End of a basic block, clear the ACP entirely. */
2689 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2690 break;
2691
2692 case OPCODE_IF:
2693 ++level;
2694 break;
2695
2696 case OPCODE_ENDIF:
2697 case OPCODE_ELSE:
2698 /* Clear all channels written inside the block from the ACP, but
2699 * leaving those that were not touched.
2700 */
2701 for (int r = 0; r < this->next_temp; r++) {
2702 for (int c = 0; c < 4; c++) {
2703 if (!acp[4 * r + c])
2704 continue;
2705
2706 if (acp_level[4 * r + c] >= level)
2707 acp[4 * r + c] = NULL;
2708 }
2709 }
2710 if (inst->op == OPCODE_ENDIF)
2711 --level;
2712 break;
2713
2714 default:
2715 /* Continuing the block, clear any written channels from
2716 * the ACP.
2717 */
2718 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2719 /* Any temporary might be written, so no copy propagation
2720 * across this instruction.
2721 */
2722 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2723 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2724 inst->dst.reladdr) {
2725 /* Any output might be written, so no copy propagation
2726 * from outputs across this instruction.
2727 */
2728 for (int r = 0; r < this->next_temp; r++) {
2729 for (int c = 0; c < 4; c++) {
2730 if (!acp[4 * r + c])
2731 continue;
2732
2733 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2734 acp[4 * r + c] = NULL;
2735 }
2736 }
2737 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2738 inst->dst.file == PROGRAM_OUTPUT) {
2739 /* Clear where it's used as dst. */
2740 if (inst->dst.file == PROGRAM_TEMPORARY) {
2741 for (int c = 0; c < 4; c++) {
2742 if (inst->dst.writemask & (1 << c)) {
2743 acp[4 * inst->dst.index + c] = NULL;
2744 }
2745 }
2746 }
2747
2748 /* Clear where it's used as src. */
2749 for (int r = 0; r < this->next_temp; r++) {
2750 for (int c = 0; c < 4; c++) {
2751 if (!acp[4 * r + c])
2752 continue;
2753
2754 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2755
2756 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2757 acp[4 * r + c]->src[0].index == inst->dst.index &&
2758 inst->dst.writemask & (1 << src_chan))
2759 {
2760 acp[4 * r + c] = NULL;
2761 }
2762 }
2763 }
2764 }
2765 break;
2766 }
2767
2768 /* If this is a copy, add it to the ACP. */
2769 if (inst->op == OPCODE_MOV &&
2770 inst->dst.file == PROGRAM_TEMPORARY &&
2771 !(inst->dst.file == inst->src[0].file &&
2772 inst->dst.index == inst->src[0].index) &&
2773 !inst->dst.reladdr &&
2774 !inst->saturate &&
2775 !inst->src[0].reladdr &&
2776 !inst->src[0].negate) {
2777 for (int i = 0; i < 4; i++) {
2778 if (inst->dst.writemask & (1 << i)) {
2779 acp[4 * inst->dst.index + i] = inst;
2780 acp_level[4 * inst->dst.index + i] = level;
2781 }
2782 }
2783 }
2784 }
2785
2786 ralloc_free(acp_level);
2787 ralloc_free(acp);
2788 }
2789
2790
2791 /**
2792 * Convert a shader's GLSL IR into a Mesa gl_program.
2793 */
2794 static struct gl_program *
2795 get_mesa_program(struct gl_context *ctx,
2796 struct gl_shader_program *shader_program,
2797 struct gl_shader *shader)
2798 {
2799 ir_to_mesa_visitor v;
2800 struct prog_instruction *mesa_instructions, *mesa_inst;
2801 ir_instruction **mesa_instruction_annotation;
2802 int i;
2803 struct gl_program *prog;
2804 GLenum target;
2805 const char *target_string;
2806 struct gl_shader_compiler_options *options =
2807 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2808
2809 switch (shader->Type) {
2810 case GL_VERTEX_SHADER:
2811 target = GL_VERTEX_PROGRAM_ARB;
2812 target_string = "vertex";
2813 break;
2814 case GL_FRAGMENT_SHADER:
2815 target = GL_FRAGMENT_PROGRAM_ARB;
2816 target_string = "fragment";
2817 break;
2818 case GL_GEOMETRY_SHADER:
2819 target = GL_GEOMETRY_PROGRAM_NV;
2820 target_string = "geometry";
2821 break;
2822 default:
2823 assert(!"should not be reached");
2824 return NULL;
2825 }
2826
2827 validate_ir_tree(shader->ir);
2828
2829 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2830 if (!prog)
2831 return NULL;
2832 prog->Parameters = _mesa_new_parameter_list();
2833 v.ctx = ctx;
2834 v.prog = prog;
2835 v.shader_program = shader_program;
2836 v.options = options;
2837
2838 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2839 prog->Parameters);
2840
2841 /* Emit Mesa IR for main(). */
2842 visit_exec_list(shader->ir, &v);
2843 v.emit(NULL, OPCODE_END);
2844
2845 prog->NumTemporaries = v.next_temp;
2846
2847 int num_instructions = 0;
2848 foreach_iter(exec_list_iterator, iter, v.instructions) {
2849 num_instructions++;
2850 }
2851
2852 mesa_instructions =
2853 (struct prog_instruction *)calloc(num_instructions,
2854 sizeof(*mesa_instructions));
2855 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2856 num_instructions);
2857
2858 v.copy_propagate();
2859
2860 /* Convert ir_mesa_instructions into prog_instructions.
2861 */
2862 mesa_inst = mesa_instructions;
2863 i = 0;
2864 foreach_iter(exec_list_iterator, iter, v.instructions) {
2865 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2866
2867 mesa_inst->Opcode = inst->op;
2868 mesa_inst->CondUpdate = inst->cond_update;
2869 if (inst->saturate)
2870 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2871 mesa_inst->DstReg.File = inst->dst.file;
2872 mesa_inst->DstReg.Index = inst->dst.index;
2873 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2874 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2875 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2876 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2877 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2878 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2879 mesa_inst->TexSrcUnit = inst->sampler;
2880 mesa_inst->TexSrcTarget = inst->tex_target;
2881 mesa_inst->TexShadow = inst->tex_shadow;
2882 mesa_instruction_annotation[i] = inst->ir;
2883
2884 /* Set IndirectRegisterFiles. */
2885 if (mesa_inst->DstReg.RelAddr)
2886 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2887
2888 /* Update program's bitmask of indirectly accessed register files */
2889 for (unsigned src = 0; src < 3; src++)
2890 if (mesa_inst->SrcReg[src].RelAddr)
2891 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2892
2893 switch (mesa_inst->Opcode) {
2894 case OPCODE_IF:
2895 if (options->MaxIfDepth == 0) {
2896 linker_warning(shader_program,
2897 "Couldn't flatten if-statement. "
2898 "This will likely result in software "
2899 "rasterization.\n");
2900 }
2901 break;
2902 case OPCODE_BGNLOOP:
2903 if (options->EmitNoLoops) {
2904 linker_warning(shader_program,
2905 "Couldn't unroll loop. "
2906 "This will likely result in software "
2907 "rasterization.\n");
2908 }
2909 break;
2910 case OPCODE_CONT:
2911 if (options->EmitNoCont) {
2912 linker_warning(shader_program,
2913 "Couldn't lower continue-statement. "
2914 "This will likely result in software "
2915 "rasterization.\n");
2916 }
2917 break;
2918 case OPCODE_ARL:
2919 prog->NumAddressRegs = 1;
2920 break;
2921 default:
2922 break;
2923 }
2924
2925 mesa_inst++;
2926 i++;
2927
2928 if (!shader_program->LinkStatus)
2929 break;
2930 }
2931
2932 if (!shader_program->LinkStatus) {
2933 goto fail_exit;
2934 }
2935
2936 set_branchtargets(&v, mesa_instructions, num_instructions);
2937
2938 if (ctx->Shader.Flags & GLSL_DUMP) {
2939 printf("\n");
2940 printf("GLSL IR for linked %s program %d:\n", target_string,
2941 shader_program->Name);
2942 _mesa_print_ir(shader->ir, NULL);
2943 printf("\n");
2944 printf("\n");
2945 printf("Mesa IR for linked %s program %d:\n", target_string,
2946 shader_program->Name);
2947 print_program(mesa_instructions, mesa_instruction_annotation,
2948 num_instructions);
2949 }
2950
2951 prog->Instructions = mesa_instructions;
2952 prog->NumInstructions = num_instructions;
2953
2954 /* Setting this to NULL prevents a possible double free in the fail_exit
2955 * path (far below).
2956 */
2957 mesa_instructions = NULL;
2958
2959 do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
2960
2961 prog->SamplersUsed = shader->active_samplers;
2962 prog->ShadowSamplers = shader->shadow_samplers;
2963 _mesa_update_shader_textures_used(shader_program, prog);
2964
2965 /* Set the gl_FragDepth layout. */
2966 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2967 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2968 fp->FragDepthLayout = shader_program->FragDepthLayout;
2969 }
2970
2971 _mesa_reference_program(ctx, &shader->Program, prog);
2972
2973 if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
2974 _mesa_optimize_program(ctx, prog);
2975 }
2976
2977 /* This has to be done last. Any operation that can cause
2978 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2979 * program constant) has to happen before creating this linkage.
2980 */
2981 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2982 if (!shader_program->LinkStatus) {
2983 goto fail_exit;
2984 }
2985
2986 return prog;
2987
2988 fail_exit:
2989 free(mesa_instructions);
2990 _mesa_reference_program(ctx, &shader->Program, NULL);
2991 return NULL;
2992 }
2993
2994 extern "C" {
2995
2996 /**
2997 * Link a shader.
2998 * Called via ctx->Driver.LinkShader()
2999 * This actually involves converting GLSL IR into Mesa gl_programs with
3000 * code lowering and other optimizations.
3001 */
3002 GLboolean
3003 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3004 {
3005 assert(prog->LinkStatus);
3006
3007 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3008 if (prog->_LinkedShaders[i] == NULL)
3009 continue;
3010
3011 bool progress;
3012 exec_list *ir = prog->_LinkedShaders[i]->ir;
3013 const struct gl_shader_compiler_options *options =
3014 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
3015
3016 do {
3017 progress = false;
3018
3019 /* Lowering */
3020 do_mat_op_to_vec(ir);
3021 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3022 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3023 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3024
3025 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3026
3027 progress = do_common_optimization(ir, true, true,
3028 options->MaxUnrollIterations)
3029 || progress;
3030
3031 progress = lower_quadop_vector(ir, true) || progress;
3032
3033 if (options->MaxIfDepth == 0)
3034 progress = lower_discard(ir) || progress;
3035
3036 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3037
3038 if (options->EmitNoNoise)
3039 progress = lower_noise(ir) || progress;
3040
3041 /* If there are forms of indirect addressing that the driver
3042 * cannot handle, perform the lowering pass.
3043 */
3044 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3045 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3046 progress =
3047 lower_variable_index_to_cond_assign(ir,
3048 options->EmitNoIndirectInput,
3049 options->EmitNoIndirectOutput,
3050 options->EmitNoIndirectTemp,
3051 options->EmitNoIndirectUniform)
3052 || progress;
3053
3054 progress = do_vec_index_to_cond_assign(ir) || progress;
3055 } while (progress);
3056
3057 validate_ir_tree(ir);
3058 }
3059
3060 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3061 struct gl_program *linked_prog;
3062
3063 if (prog->_LinkedShaders[i] == NULL)
3064 continue;
3065
3066 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3067
3068 if (linked_prog) {
3069 static const GLenum targets[] = {
3070 GL_VERTEX_PROGRAM_ARB,
3071 GL_FRAGMENT_PROGRAM_ARB,
3072 GL_GEOMETRY_PROGRAM_NV
3073 };
3074
3075 if (i == MESA_SHADER_VERTEX) {
3076 ((struct gl_vertex_program *)linked_prog)->UsesClipDistance
3077 = prog->Vert.UsesClipDistance;
3078 }
3079
3080 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3081 linked_prog);
3082 if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
3083 return GL_FALSE;
3084 }
3085 }
3086
3087 _mesa_reference_program(ctx, &linked_prog, NULL);
3088 }
3089
3090 return prog->LinkStatus;
3091 }
3092
3093
3094 /**
3095 * Compile a GLSL shader. Called via glCompileShader().
3096 */
3097 void
3098 _mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
3099 {
3100 struct _mesa_glsl_parse_state *state =
3101 new(shader) _mesa_glsl_parse_state(ctx, shader->Type, shader);
3102
3103 const char *source = shader->Source;
3104 /* Check if the user called glCompileShader without first calling
3105 * glShaderSource. This should fail to compile, but not raise a GL_ERROR.
3106 */
3107 if (source == NULL) {
3108 shader->CompileStatus = GL_FALSE;
3109 return;
3110 }
3111
3112 state->error = glcpp_preprocess(state, &source, &state->info_log,
3113 &ctx->Extensions, ctx);
3114
3115 if (ctx->Shader.Flags & GLSL_DUMP) {
3116 printf("GLSL source for %s shader %d:\n",
3117 _mesa_glsl_shader_target_name(state->target), shader->Name);
3118 printf("%s\n", shader->Source);
3119 }
3120
3121 if (!state->error) {
3122 _mesa_glsl_lexer_ctor(state, source);
3123 _mesa_glsl_parse(state);
3124 _mesa_glsl_lexer_dtor(state);
3125 }
3126
3127 ralloc_free(shader->ir);
3128 shader->ir = new(shader) exec_list;
3129 if (!state->error && !state->translation_unit.is_empty())
3130 _mesa_ast_to_hir(shader->ir, state);
3131
3132 if (!state->error && !shader->ir->is_empty()) {
3133 validate_ir_tree(shader->ir);
3134
3135 /* Do some optimization at compile time to reduce shader IR size
3136 * and reduce later work if the same shader is linked multiple times
3137 */
3138 while (do_common_optimization(shader->ir, false, false, 32))
3139 ;
3140
3141 validate_ir_tree(shader->ir);
3142 }
3143
3144 shader->symbols = state->symbols;
3145
3146 shader->CompileStatus = !state->error;
3147 shader->InfoLog = state->info_log;
3148 shader->Version = state->language_version;
3149 memcpy(shader->builtins_to_link, state->builtins_to_link,
3150 sizeof(shader->builtins_to_link[0]) * state->num_builtins_to_link);
3151 shader->num_builtins_to_link = state->num_builtins_to_link;
3152
3153 if (ctx->Shader.Flags & GLSL_LOG) {
3154 _mesa_write_shader_to_file(shader);
3155 }
3156
3157 if (ctx->Shader.Flags & GLSL_DUMP) {
3158 if (shader->CompileStatus) {
3159 printf("GLSL IR for shader %d:\n", shader->Name);
3160 _mesa_print_ir(shader->ir, NULL);
3161 printf("\n\n");
3162 } else {
3163 printf("GLSL shader %d failed to compile.\n", shader->Name);
3164 }
3165 if (shader->InfoLog && shader->InfoLog[0] != 0) {
3166 printf("GLSL shader %d info log:\n", shader->Name);
3167 printf("%s\n", shader->InfoLog);
3168 }
3169 }
3170
3171 if (shader->UniformBlocks)
3172 ralloc_free(shader->UniformBlocks);
3173 shader->NumUniformBlocks = state->num_uniform_blocks;
3174 shader->UniformBlocks = state->uniform_blocks;
3175 ralloc_steal(shader, shader->UniformBlocks);
3176
3177 /* Retain any live IR, but trash the rest. */
3178 reparent_ir(shader->ir, shader->ir);
3179
3180 ralloc_free(state);
3181 }
3182
3183
3184 /**
3185 * Link a GLSL shader program. Called via glLinkProgram().
3186 */
3187 void
3188 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3189 {
3190 unsigned int i;
3191
3192 _mesa_clear_shader_program_data(ctx, prog);
3193
3194 prog->LinkStatus = GL_TRUE;
3195
3196 for (i = 0; i < prog->NumShaders; i++) {
3197 if (!prog->Shaders[i]->CompileStatus) {
3198 linker_error(prog, "linking with uncompiled shader");
3199 prog->LinkStatus = GL_FALSE;
3200 }
3201 }
3202
3203 if (prog->LinkStatus) {
3204 link_shaders(ctx, prog);
3205 }
3206
3207 if (prog->LinkStatus) {
3208 if (!ctx->Driver.LinkShader(ctx, prog)) {
3209 prog->LinkStatus = GL_FALSE;
3210 }
3211 }
3212
3213 if (ctx->Shader.Flags & GLSL_DUMP) {
3214 if (!prog->LinkStatus) {
3215 printf("GLSL shader program %d failed to link\n", prog->Name);
3216 }
3217
3218 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3219 printf("GLSL shader program %d info log:\n", prog->Name);
3220 printf("%s\n", prog->InfoLog);
3221 }
3222 }
3223 }
3224
3225 } /* extern "C" */