program: Replace gl_inst_opcode with enum prog_opcode.
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderapi.h"
47 #include "main/shaderobj.h"
48 #include "main/uniforms.h"
49
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58
59 static int swizzle_for_size(int size);
60
61 namespace {
62
63 class src_reg;
64 class dst_reg;
65
66 /**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70 class src_reg {
71 public:
72 src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->reladdr = NULL;
82 }
83
84 src_reg()
85 {
86 this->file = PROGRAM_UNDEFINED;
87 this->index = 0;
88 this->swizzle = 0;
89 this->negate = 0;
90 this->reladdr = NULL;
91 }
92
93 explicit src_reg(dst_reg reg);
94
95 gl_register_file file; /**< PROGRAM_* from Mesa */
96 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
97 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98 int negate; /**< NEGATE_XYZW mask from mesa */
99 /** Register index should be offset by the integer in this reg. */
100 src_reg *reladdr;
101 };
102
103 class dst_reg {
104 public:
105 dst_reg(gl_register_file file, int writemask)
106 {
107 this->file = file;
108 this->index = 0;
109 this->writemask = writemask;
110 this->cond_mask = COND_TR;
111 this->reladdr = NULL;
112 }
113
114 dst_reg()
115 {
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->writemask = 0;
119 this->cond_mask = COND_TR;
120 this->reladdr = NULL;
121 }
122
123 explicit dst_reg(src_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
127 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128 GLuint cond_mask:4;
129 /** Register index should be offset by the integer in this reg. */
130 src_reg *reladdr;
131 };
132
133 } /* anonymous namespace */
134
135 src_reg::src_reg(dst_reg reg)
136 {
137 this->file = reg.file;
138 this->index = reg.index;
139 this->swizzle = SWIZZLE_XYZW;
140 this->negate = 0;
141 this->reladdr = reg.reladdr;
142 }
143
144 dst_reg::dst_reg(src_reg reg)
145 {
146 this->file = reg.file;
147 this->index = reg.index;
148 this->writemask = WRITEMASK_XYZW;
149 this->cond_mask = COND_TR;
150 this->reladdr = reg.reladdr;
151 }
152
153 namespace {
154
155 class ir_to_mesa_instruction : public exec_node {
156 public:
157 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
158
159 enum prog_opcode op;
160 dst_reg dst;
161 src_reg src[3];
162 /** Pointer to the ir source this tree came from for debugging */
163 ir_instruction *ir;
164 GLboolean cond_update;
165 bool saturate;
166 int sampler; /**< sampler index */
167 int tex_target; /**< One of TEXTURE_*_INDEX */
168 GLboolean tex_shadow;
169 };
170
171 class variable_storage : public exec_node {
172 public:
173 variable_storage(ir_variable *var, gl_register_file file, int index)
174 : file(file), index(index), var(var)
175 {
176 /* empty */
177 }
178
179 gl_register_file file;
180 int index;
181 ir_variable *var; /* variable that maps to this, if any */
182 };
183
184 class function_entry : public exec_node {
185 public:
186 ir_function_signature *sig;
187
188 /**
189 * identifier of this function signature used by the program.
190 *
191 * At the point that Mesa instructions for function calls are
192 * generated, we don't know the address of the first instruction of
193 * the function body. So we make the BranchTarget that is called a
194 * small integer and rewrite them during set_branchtargets().
195 */
196 int sig_id;
197
198 /**
199 * Pointer to first instruction of the function body.
200 *
201 * Set during function body emits after main() is processed.
202 */
203 ir_to_mesa_instruction *bgn_inst;
204
205 /**
206 * Index of the first instruction of the function body in actual
207 * Mesa IR.
208 *
209 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
210 */
211 int inst;
212
213 /** Storage for the return value. */
214 src_reg return_reg;
215 };
216
217 class ir_to_mesa_visitor : public ir_visitor {
218 public:
219 ir_to_mesa_visitor();
220 ~ir_to_mesa_visitor();
221
222 function_entry *current_function;
223
224 struct gl_context *ctx;
225 struct gl_program *prog;
226 struct gl_shader_program *shader_program;
227 struct gl_shader_compiler_options *options;
228
229 int next_temp;
230
231 variable_storage *find_variable_storage(const ir_variable *var);
232
233 src_reg get_temp(const glsl_type *type);
234 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
235
236 src_reg src_reg_for_float(float val);
237
238 /**
239 * \name Visit methods
240 *
241 * As typical for the visitor pattern, there must be one \c visit method for
242 * each concrete subclass of \c ir_instruction. Virtual base classes within
243 * the hierarchy should not have \c visit methods.
244 */
245 /*@{*/
246 virtual void visit(ir_variable *);
247 virtual void visit(ir_loop *);
248 virtual void visit(ir_loop_jump *);
249 virtual void visit(ir_function_signature *);
250 virtual void visit(ir_function *);
251 virtual void visit(ir_expression *);
252 virtual void visit(ir_swizzle *);
253 virtual void visit(ir_dereference_variable *);
254 virtual void visit(ir_dereference_array *);
255 virtual void visit(ir_dereference_record *);
256 virtual void visit(ir_assignment *);
257 virtual void visit(ir_constant *);
258 virtual void visit(ir_call *);
259 virtual void visit(ir_return *);
260 virtual void visit(ir_discard *);
261 virtual void visit(ir_texture *);
262 virtual void visit(ir_if *);
263 virtual void visit(ir_emit_vertex *);
264 virtual void visit(ir_end_primitive *);
265 /*@}*/
266
267 src_reg result;
268
269 /** List of variable_storage */
270 exec_list variables;
271
272 /** List of function_entry */
273 exec_list function_signatures;
274 int next_signature_id;
275
276 /** List of ir_to_mesa_instruction */
277 exec_list instructions;
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst, src_reg src0);
283
284 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
285 dst_reg dst, src_reg src0, src_reg src1);
286
287 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
288 dst_reg dst,
289 src_reg src0, src_reg src1, src_reg src2);
290
291 /**
292 * Emit the correct dot-product instruction for the type of arguments
293 */
294 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
295 dst_reg dst,
296 src_reg src0,
297 src_reg src1,
298 unsigned elements);
299
300 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
301 dst_reg dst, src_reg src0);
302
303 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
304 dst_reg dst, src_reg src0, src_reg src1);
305
306 bool try_emit_mad(ir_expression *ir,
307 int mul_operand);
308 bool try_emit_mad_for_and_not(ir_expression *ir,
309 int mul_operand);
310
311 void emit_swz(ir_expression *ir);
312
313 bool process_move_condition(ir_rvalue *ir);
314
315 void copy_propagate(void);
316
317 void *mem_ctx;
318 };
319
320 } /* anonymous namespace */
321
322 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
323
324 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
325
326 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
327
328 static int
329 swizzle_for_size(int size)
330 {
331 static const int size_swizzles[4] = {
332 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
333 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
334 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
335 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
336 };
337
338 assert((size >= 1) && (size <= 4));
339 return size_swizzles[size - 1];
340 }
341
342 ir_to_mesa_instruction *
343 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
344 dst_reg dst,
345 src_reg src0, src_reg src1, src_reg src2)
346 {
347 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
348 int num_reladdr = 0;
349
350 /* If we have to do relative addressing, we want to load the ARL
351 * reg directly for one of the regs, and preload the other reladdr
352 * sources into temps.
353 */
354 num_reladdr += dst.reladdr != NULL;
355 num_reladdr += src0.reladdr != NULL;
356 num_reladdr += src1.reladdr != NULL;
357 num_reladdr += src2.reladdr != NULL;
358
359 reladdr_to_temp(ir, &src2, &num_reladdr);
360 reladdr_to_temp(ir, &src1, &num_reladdr);
361 reladdr_to_temp(ir, &src0, &num_reladdr);
362
363 if (dst.reladdr) {
364 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
365 num_reladdr--;
366 }
367 assert(num_reladdr == 0);
368
369 inst->op = op;
370 inst->dst = dst;
371 inst->src[0] = src0;
372 inst->src[1] = src1;
373 inst->src[2] = src2;
374 inst->ir = ir;
375
376 this->instructions.push_tail(inst);
377
378 return inst;
379 }
380
381
382 ir_to_mesa_instruction *
383 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
384 dst_reg dst, src_reg src0, src_reg src1)
385 {
386 return emit(ir, op, dst, src0, src1, undef_src);
387 }
388
389 ir_to_mesa_instruction *
390 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
391 dst_reg dst, src_reg src0)
392 {
393 assert(dst.writemask != 0);
394 return emit(ir, op, dst, src0, undef_src, undef_src);
395 }
396
397 ir_to_mesa_instruction *
398 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
399 {
400 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
401 }
402
403 ir_to_mesa_instruction *
404 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
405 dst_reg dst, src_reg src0, src_reg src1,
406 unsigned elements)
407 {
408 static const enum prog_opcode dot_opcodes[] = {
409 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
410 };
411
412 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
413 }
414
415 /**
416 * Emits Mesa scalar opcodes to produce unique answers across channels.
417 *
418 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
419 * channel determines the result across all channels. So to do a vec4
420 * of this operation, we want to emit a scalar per source channel used
421 * to produce dest channels.
422 */
423 void
424 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
425 dst_reg dst,
426 src_reg orig_src0, src_reg orig_src1)
427 {
428 int i, j;
429 int done_mask = ~dst.writemask;
430
431 /* Mesa RCP is a scalar operation splatting results to all channels,
432 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
433 * dst channels.
434 */
435 for (i = 0; i < 4; i++) {
436 GLuint this_mask = (1 << i);
437 ir_to_mesa_instruction *inst;
438 src_reg src0 = orig_src0;
439 src_reg src1 = orig_src1;
440
441 if (done_mask & this_mask)
442 continue;
443
444 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
445 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
446 for (j = i + 1; j < 4; j++) {
447 /* If there is another enabled component in the destination that is
448 * derived from the same inputs, generate its value on this pass as
449 * well.
450 */
451 if (!(done_mask & (1 << j)) &&
452 GET_SWZ(src0.swizzle, j) == src0_swiz &&
453 GET_SWZ(src1.swizzle, j) == src1_swiz) {
454 this_mask |= (1 << j);
455 }
456 }
457 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
458 src0_swiz, src0_swiz);
459 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
460 src1_swiz, src1_swiz);
461
462 inst = emit(ir, op, dst, src0, src1);
463 inst->dst.writemask = this_mask;
464 done_mask |= this_mask;
465 }
466 }
467
468 void
469 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
470 dst_reg dst, src_reg src0)
471 {
472 src_reg undef = undef_src;
473
474 undef.swizzle = SWIZZLE_XXXX;
475
476 emit_scalar(ir, op, dst, src0, undef);
477 }
478
479 src_reg
480 ir_to_mesa_visitor::src_reg_for_float(float val)
481 {
482 src_reg src(PROGRAM_CONSTANT, -1, NULL);
483
484 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
485 (const gl_constant_value *)&val, 1, &src.swizzle);
486
487 return src;
488 }
489
490 static int
491 type_size(const struct glsl_type *type)
492 {
493 unsigned int i;
494 int size;
495
496 switch (type->base_type) {
497 case GLSL_TYPE_UINT:
498 case GLSL_TYPE_INT:
499 case GLSL_TYPE_FLOAT:
500 case GLSL_TYPE_BOOL:
501 if (type->is_matrix()) {
502 return type->matrix_columns;
503 } else {
504 /* Regardless of size of vector, it gets a vec4. This is bad
505 * packing for things like floats, but otherwise arrays become a
506 * mess. Hopefully a later pass over the code can pack scalars
507 * down if appropriate.
508 */
509 return 1;
510 }
511 break;
512 case GLSL_TYPE_DOUBLE:
513 if (type->is_matrix()) {
514 if (type->vector_elements > 2)
515 return type->matrix_columns * 2;
516 else
517 return type->matrix_columns;
518 } else {
519 if (type->vector_elements > 2)
520 return 2;
521 else
522 return 1;
523 }
524 break;
525 case GLSL_TYPE_ARRAY:
526 assert(type->length > 0);
527 return type_size(type->fields.array) * type->length;
528 case GLSL_TYPE_STRUCT:
529 size = 0;
530 for (i = 0; i < type->length; i++) {
531 size += type_size(type->fields.structure[i].type);
532 }
533 return size;
534 case GLSL_TYPE_SAMPLER:
535 case GLSL_TYPE_IMAGE:
536 /* Samplers take up one slot in UNIFORMS[], but they're baked in
537 * at link time.
538 */
539 return 1;
540 case GLSL_TYPE_ATOMIC_UINT:
541 case GLSL_TYPE_VOID:
542 case GLSL_TYPE_ERROR:
543 case GLSL_TYPE_INTERFACE:
544 assert(!"Invalid type in type_size");
545 break;
546 }
547
548 return 0;
549 }
550
551 /**
552 * In the initial pass of codegen, we assign temporary numbers to
553 * intermediate results. (not SSA -- variable assignments will reuse
554 * storage). Actual register allocation for the Mesa VM occurs in a
555 * pass over the Mesa IR later.
556 */
557 src_reg
558 ir_to_mesa_visitor::get_temp(const glsl_type *type)
559 {
560 src_reg src;
561
562 src.file = PROGRAM_TEMPORARY;
563 src.index = next_temp;
564 src.reladdr = NULL;
565 next_temp += type_size(type);
566
567 if (type->is_array() || type->is_record()) {
568 src.swizzle = SWIZZLE_NOOP;
569 } else {
570 src.swizzle = swizzle_for_size(type->vector_elements);
571 }
572 src.negate = 0;
573
574 return src;
575 }
576
577 variable_storage *
578 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
579 {
580 foreach_in_list(variable_storage, entry, &this->variables) {
581 if (entry->var == var)
582 return entry;
583 }
584
585 return NULL;
586 }
587
588 void
589 ir_to_mesa_visitor::visit(ir_variable *ir)
590 {
591 if (strcmp(ir->name, "gl_FragCoord") == 0) {
592 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
593
594 fp->OriginUpperLeft = ir->data.origin_upper_left;
595 fp->PixelCenterInteger = ir->data.pixel_center_integer;
596 }
597
598 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
599 unsigned int i;
600 const ir_state_slot *const slots = ir->get_state_slots();
601 assert(slots != NULL);
602
603 /* Check if this statevar's setup in the STATE file exactly
604 * matches how we'll want to reference it as a
605 * struct/array/whatever. If not, then we need to move it into
606 * temporary storage and hope that it'll get copy-propagated
607 * out.
608 */
609 for (i = 0; i < ir->get_num_state_slots(); i++) {
610 if (slots[i].swizzle != SWIZZLE_XYZW) {
611 break;
612 }
613 }
614
615 variable_storage *storage;
616 dst_reg dst;
617 if (i == ir->get_num_state_slots()) {
618 /* We'll set the index later. */
619 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
620 this->variables.push_tail(storage);
621
622 dst = undef_dst;
623 } else {
624 /* The variable_storage constructor allocates slots based on the size
625 * of the type. However, this had better match the number of state
626 * elements that we're going to copy into the new temporary.
627 */
628 assert((int) ir->get_num_state_slots() == type_size(ir->type));
629
630 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
631 this->next_temp);
632 this->variables.push_tail(storage);
633 this->next_temp += type_size(ir->type);
634
635 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
636 }
637
638
639 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
640 int index = _mesa_add_state_reference(this->prog->Parameters,
641 (gl_state_index *)slots[i].tokens);
642
643 if (storage->file == PROGRAM_STATE_VAR) {
644 if (storage->index == -1) {
645 storage->index = index;
646 } else {
647 assert(index == storage->index + (int)i);
648 }
649 } else {
650 src_reg src(PROGRAM_STATE_VAR, index, NULL);
651 src.swizzle = slots[i].swizzle;
652 emit(ir, OPCODE_MOV, dst, src);
653 /* even a float takes up a whole vec4 reg in a struct/array. */
654 dst.index++;
655 }
656 }
657
658 if (storage->file == PROGRAM_TEMPORARY &&
659 dst.index != storage->index + (int) ir->get_num_state_slots()) {
660 linker_error(this->shader_program,
661 "failed to load builtin uniform `%s' "
662 "(%d/%d regs loaded)\n",
663 ir->name, dst.index - storage->index,
664 type_size(ir->type));
665 }
666 }
667 }
668
669 void
670 ir_to_mesa_visitor::visit(ir_loop *ir)
671 {
672 emit(NULL, OPCODE_BGNLOOP);
673
674 visit_exec_list(&ir->body_instructions, this);
675
676 emit(NULL, OPCODE_ENDLOOP);
677 }
678
679 void
680 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
681 {
682 switch (ir->mode) {
683 case ir_loop_jump::jump_break:
684 emit(NULL, OPCODE_BRK);
685 break;
686 case ir_loop_jump::jump_continue:
687 emit(NULL, OPCODE_CONT);
688 break;
689 }
690 }
691
692
693 void
694 ir_to_mesa_visitor::visit(ir_function_signature *ir)
695 {
696 assert(0);
697 (void)ir;
698 }
699
700 void
701 ir_to_mesa_visitor::visit(ir_function *ir)
702 {
703 /* Ignore function bodies other than main() -- we shouldn't see calls to
704 * them since they should all be inlined before we get to ir_to_mesa.
705 */
706 if (strcmp(ir->name, "main") == 0) {
707 const ir_function_signature *sig;
708 exec_list empty;
709
710 sig = ir->matching_signature(NULL, &empty, false);
711
712 assert(sig);
713
714 foreach_in_list(ir_instruction, ir, &sig->body) {
715 ir->accept(this);
716 }
717 }
718 }
719
720 bool
721 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
722 {
723 int nonmul_operand = 1 - mul_operand;
724 src_reg a, b, c;
725
726 ir_expression *expr = ir->operands[mul_operand]->as_expression();
727 if (!expr || expr->operation != ir_binop_mul)
728 return false;
729
730 expr->operands[0]->accept(this);
731 a = this->result;
732 expr->operands[1]->accept(this);
733 b = this->result;
734 ir->operands[nonmul_operand]->accept(this);
735 c = this->result;
736
737 this->result = get_temp(ir->type);
738 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
739
740 return true;
741 }
742
743 /**
744 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
745 *
746 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
747 * implemented using multiplication, and logical-or is implemented using
748 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
749 * As result, the logical expression (a & !b) can be rewritten as:
750 *
751 * - a * !b
752 * - a * (1 - b)
753 * - (a * 1) - (a * b)
754 * - a + -(a * b)
755 * - a + (a * -b)
756 *
757 * This final expression can be implemented as a single MAD(a, -b, a)
758 * instruction.
759 */
760 bool
761 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
762 {
763 const int other_operand = 1 - try_operand;
764 src_reg a, b;
765
766 ir_expression *expr = ir->operands[try_operand]->as_expression();
767 if (!expr || expr->operation != ir_unop_logic_not)
768 return false;
769
770 ir->operands[other_operand]->accept(this);
771 a = this->result;
772 expr->operands[0]->accept(this);
773 b = this->result;
774
775 b.negate = ~b.negate;
776
777 this->result = get_temp(ir->type);
778 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
779
780 return true;
781 }
782
783 void
784 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
785 src_reg *reg, int *num_reladdr)
786 {
787 if (!reg->reladdr)
788 return;
789
790 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
791
792 if (*num_reladdr != 1) {
793 src_reg temp = get_temp(glsl_type::vec4_type);
794
795 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
796 *reg = temp;
797 }
798
799 (*num_reladdr)--;
800 }
801
802 void
803 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
804 {
805 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
806 * This means that each of the operands is either an immediate value of -1,
807 * 0, or 1, or is a component from one source register (possibly with
808 * negation).
809 */
810 uint8_t components[4] = { 0 };
811 bool negate[4] = { false };
812 ir_variable *var = NULL;
813
814 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
815 ir_rvalue *op = ir->operands[i];
816
817 assert(op->type->is_scalar());
818
819 while (op != NULL) {
820 switch (op->ir_type) {
821 case ir_type_constant: {
822
823 assert(op->type->is_scalar());
824
825 const ir_constant *const c = op->as_constant();
826 if (c->is_one()) {
827 components[i] = SWIZZLE_ONE;
828 } else if (c->is_zero()) {
829 components[i] = SWIZZLE_ZERO;
830 } else if (c->is_negative_one()) {
831 components[i] = SWIZZLE_ONE;
832 negate[i] = true;
833 } else {
834 assert(!"SWZ constant must be 0.0 or 1.0.");
835 }
836
837 op = NULL;
838 break;
839 }
840
841 case ir_type_dereference_variable: {
842 ir_dereference_variable *const deref =
843 (ir_dereference_variable *) op;
844
845 assert((var == NULL) || (deref->var == var));
846 components[i] = SWIZZLE_X;
847 var = deref->var;
848 op = NULL;
849 break;
850 }
851
852 case ir_type_expression: {
853 ir_expression *const expr = (ir_expression *) op;
854
855 assert(expr->operation == ir_unop_neg);
856 negate[i] = true;
857
858 op = expr->operands[0];
859 break;
860 }
861
862 case ir_type_swizzle: {
863 ir_swizzle *const swiz = (ir_swizzle *) op;
864
865 components[i] = swiz->mask.x;
866 op = swiz->val;
867 break;
868 }
869
870 default:
871 assert(!"Should not get here.");
872 return;
873 }
874 }
875 }
876
877 assert(var != NULL);
878
879 ir_dereference_variable *const deref =
880 new(mem_ctx) ir_dereference_variable(var);
881
882 this->result.file = PROGRAM_UNDEFINED;
883 deref->accept(this);
884 if (this->result.file == PROGRAM_UNDEFINED) {
885 printf("Failed to get tree for expression operand:\n");
886 deref->print();
887 printf("\n");
888 exit(1);
889 }
890
891 src_reg src;
892
893 src = this->result;
894 src.swizzle = MAKE_SWIZZLE4(components[0],
895 components[1],
896 components[2],
897 components[3]);
898 src.negate = ((unsigned(negate[0]) << 0)
899 | (unsigned(negate[1]) << 1)
900 | (unsigned(negate[2]) << 2)
901 | (unsigned(negate[3]) << 3));
902
903 /* Storage for our result. Ideally for an assignment we'd be using the
904 * actual storage for the result here, instead.
905 */
906 const src_reg result_src = get_temp(ir->type);
907 dst_reg result_dst = dst_reg(result_src);
908
909 /* Limit writes to the channels that will be used by result_src later.
910 * This does limit this temp's use as a temporary for multi-instruction
911 * sequences.
912 */
913 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
914
915 emit(ir, OPCODE_SWZ, result_dst, src);
916 this->result = result_src;
917 }
918
919 void
920 ir_to_mesa_visitor::visit(ir_expression *ir)
921 {
922 unsigned int operand;
923 src_reg op[ARRAY_SIZE(ir->operands)];
924 src_reg result_src;
925 dst_reg result_dst;
926
927 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
928 */
929 if (ir->operation == ir_binop_add) {
930 if (try_emit_mad(ir, 1))
931 return;
932 if (try_emit_mad(ir, 0))
933 return;
934 }
935
936 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
937 */
938 if (ir->operation == ir_binop_logic_and) {
939 if (try_emit_mad_for_and_not(ir, 1))
940 return;
941 if (try_emit_mad_for_and_not(ir, 0))
942 return;
943 }
944
945 if (ir->operation == ir_quadop_vector) {
946 this->emit_swz(ir);
947 return;
948 }
949
950 for (operand = 0; operand < ir->get_num_operands(); operand++) {
951 this->result.file = PROGRAM_UNDEFINED;
952 ir->operands[operand]->accept(this);
953 if (this->result.file == PROGRAM_UNDEFINED) {
954 printf("Failed to get tree for expression operand:\n");
955 ir->operands[operand]->print();
956 printf("\n");
957 exit(1);
958 }
959 op[operand] = this->result;
960
961 /* Matrix expression operands should have been broken down to vector
962 * operations already.
963 */
964 assert(!ir->operands[operand]->type->is_matrix());
965 }
966
967 int vector_elements = ir->operands[0]->type->vector_elements;
968 if (ir->operands[1]) {
969 vector_elements = MAX2(vector_elements,
970 ir->operands[1]->type->vector_elements);
971 }
972
973 this->result.file = PROGRAM_UNDEFINED;
974
975 /* Storage for our result. Ideally for an assignment we'd be using
976 * the actual storage for the result here, instead.
977 */
978 result_src = get_temp(ir->type);
979 /* convenience for the emit functions below. */
980 result_dst = dst_reg(result_src);
981 /* Limit writes to the channels that will be used by result_src later.
982 * This does limit this temp's use as a temporary for multi-instruction
983 * sequences.
984 */
985 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
986
987 switch (ir->operation) {
988 case ir_unop_logic_not:
989 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
990 * older GPUs implement SEQ using multiple instructions (i915 uses two
991 * SGE instructions and a MUL instruction). Since our logic values are
992 * 0.0 and 1.0, 1-x also implements !x.
993 */
994 op[0].negate = ~op[0].negate;
995 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
996 break;
997 case ir_unop_neg:
998 op[0].negate = ~op[0].negate;
999 result_src = op[0];
1000 break;
1001 case ir_unop_abs:
1002 emit(ir, OPCODE_ABS, result_dst, op[0]);
1003 break;
1004 case ir_unop_sign:
1005 emit(ir, OPCODE_SSG, result_dst, op[0]);
1006 break;
1007 case ir_unop_rcp:
1008 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1009 break;
1010
1011 case ir_unop_exp2:
1012 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1013 break;
1014 case ir_unop_exp:
1015 case ir_unop_log:
1016 assert(!"not reached: should be handled by ir_explog_to_explog2");
1017 break;
1018 case ir_unop_log2:
1019 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1020 break;
1021 case ir_unop_sin:
1022 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1023 break;
1024 case ir_unop_cos:
1025 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1026 break;
1027
1028 case ir_unop_dFdx:
1029 emit(ir, OPCODE_DDX, result_dst, op[0]);
1030 break;
1031 case ir_unop_dFdy:
1032 emit(ir, OPCODE_DDY, result_dst, op[0]);
1033 break;
1034
1035 case ir_unop_saturate: {
1036 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1037 result_dst, op[0]);
1038 inst->saturate = true;
1039 break;
1040 }
1041 case ir_unop_noise: {
1042 const enum prog_opcode opcode =
1043 prog_opcode(OPCODE_NOISE1
1044 + (ir->operands[0]->type->vector_elements) - 1);
1045 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1046
1047 emit(ir, opcode, result_dst, op[0]);
1048 break;
1049 }
1050
1051 case ir_binop_add:
1052 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1053 break;
1054 case ir_binop_sub:
1055 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1056 break;
1057
1058 case ir_binop_mul:
1059 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1060 break;
1061 case ir_binop_div:
1062 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1063 break;
1064 case ir_binop_mod:
1065 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1066 assert(ir->type->is_integer());
1067 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1068 break;
1069
1070 case ir_binop_less:
1071 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1072 break;
1073 case ir_binop_greater:
1074 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1075 break;
1076 case ir_binop_lequal:
1077 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1078 break;
1079 case ir_binop_gequal:
1080 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1081 break;
1082 case ir_binop_equal:
1083 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1084 break;
1085 case ir_binop_nequal:
1086 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1087 break;
1088 case ir_binop_all_equal:
1089 /* "==" operator producing a scalar boolean. */
1090 if (ir->operands[0]->type->is_vector() ||
1091 ir->operands[1]->type->is_vector()) {
1092 src_reg temp = get_temp(glsl_type::vec4_type);
1093 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1094
1095 /* After the dot-product, the value will be an integer on the
1096 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1097 */
1098 emit_dp(ir, result_dst, temp, temp, vector_elements);
1099
1100 /* Negating the result of the dot-product gives values on the range
1101 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1102 * achieved using SGE.
1103 */
1104 src_reg sge_src = result_src;
1105 sge_src.negate = ~sge_src.negate;
1106 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1107 } else {
1108 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1109 }
1110 break;
1111 case ir_binop_any_nequal:
1112 /* "!=" operator producing a scalar boolean. */
1113 if (ir->operands[0]->type->is_vector() ||
1114 ir->operands[1]->type->is_vector()) {
1115 src_reg temp = get_temp(glsl_type::vec4_type);
1116 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1117
1118 /* After the dot-product, the value will be an integer on the
1119 * range [0,4]. Zero stays zero, and positive values become 1.0.
1120 */
1121 ir_to_mesa_instruction *const dp =
1122 emit_dp(ir, result_dst, temp, temp, vector_elements);
1123 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1124 /* The clamping to [0,1] can be done for free in the fragment
1125 * shader with a saturate.
1126 */
1127 dp->saturate = true;
1128 } else {
1129 /* Negating the result of the dot-product gives values on the range
1130 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1131 * achieved using SLT.
1132 */
1133 src_reg slt_src = result_src;
1134 slt_src.negate = ~slt_src.negate;
1135 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1136 }
1137 } else {
1138 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1139 }
1140 break;
1141
1142 case ir_unop_any: {
1143 assert(ir->operands[0]->type->is_vector());
1144
1145 /* After the dot-product, the value will be an integer on the
1146 * range [0,4]. Zero stays zero, and positive values become 1.0.
1147 */
1148 ir_to_mesa_instruction *const dp =
1149 emit_dp(ir, result_dst, op[0], op[0],
1150 ir->operands[0]->type->vector_elements);
1151 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1152 /* The clamping to [0,1] can be done for free in the fragment
1153 * shader with a saturate.
1154 */
1155 dp->saturate = true;
1156 } else {
1157 /* Negating the result of the dot-product gives values on the range
1158 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1159 * is achieved using SLT.
1160 */
1161 src_reg slt_src = result_src;
1162 slt_src.negate = ~slt_src.negate;
1163 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1164 }
1165 break;
1166 }
1167
1168 case ir_binop_logic_xor:
1169 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1170 break;
1171
1172 case ir_binop_logic_or: {
1173 /* After the addition, the value will be an integer on the
1174 * range [0,2]. Zero stays zero, and positive values become 1.0.
1175 */
1176 ir_to_mesa_instruction *add =
1177 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1178 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1179 /* The clamping to [0,1] can be done for free in the fragment
1180 * shader with a saturate.
1181 */
1182 add->saturate = true;
1183 } else {
1184 /* Negating the result of the addition gives values on the range
1185 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1186 * is achieved using SLT.
1187 */
1188 src_reg slt_src = result_src;
1189 slt_src.negate = ~slt_src.negate;
1190 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1191 }
1192 break;
1193 }
1194
1195 case ir_binop_logic_and:
1196 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1197 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1198 break;
1199
1200 case ir_binop_dot:
1201 assert(ir->operands[0]->type->is_vector());
1202 assert(ir->operands[0]->type == ir->operands[1]->type);
1203 emit_dp(ir, result_dst, op[0], op[1],
1204 ir->operands[0]->type->vector_elements);
1205 break;
1206
1207 case ir_unop_sqrt:
1208 /* sqrt(x) = x * rsq(x). */
1209 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1210 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1211 /* For incoming channels <= 0, set the result to 0. */
1212 op[0].negate = ~op[0].negate;
1213 emit(ir, OPCODE_CMP, result_dst,
1214 op[0], result_src, src_reg_for_float(0.0));
1215 break;
1216 case ir_unop_rsq:
1217 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1218 break;
1219 case ir_unop_i2f:
1220 case ir_unop_u2f:
1221 case ir_unop_b2f:
1222 case ir_unop_b2i:
1223 case ir_unop_i2u:
1224 case ir_unop_u2i:
1225 /* Mesa IR lacks types, ints are stored as truncated floats. */
1226 result_src = op[0];
1227 break;
1228 case ir_unop_f2i:
1229 case ir_unop_f2u:
1230 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1231 break;
1232 case ir_unop_f2b:
1233 case ir_unop_i2b:
1234 emit(ir, OPCODE_SNE, result_dst,
1235 op[0], src_reg_for_float(0.0));
1236 break;
1237 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1238 case ir_unop_bitcast_f2u:
1239 case ir_unop_bitcast_i2f:
1240 case ir_unop_bitcast_u2f:
1241 break;
1242 case ir_unop_trunc:
1243 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1244 break;
1245 case ir_unop_ceil:
1246 op[0].negate = ~op[0].negate;
1247 emit(ir, OPCODE_FLR, result_dst, op[0]);
1248 result_src.negate = ~result_src.negate;
1249 break;
1250 case ir_unop_floor:
1251 emit(ir, OPCODE_FLR, result_dst, op[0]);
1252 break;
1253 case ir_unop_fract:
1254 emit(ir, OPCODE_FRC, result_dst, op[0]);
1255 break;
1256 case ir_unop_pack_snorm_2x16:
1257 case ir_unop_pack_snorm_4x8:
1258 case ir_unop_pack_unorm_2x16:
1259 case ir_unop_pack_unorm_4x8:
1260 case ir_unop_pack_half_2x16:
1261 case ir_unop_pack_double_2x32:
1262 case ir_unop_unpack_snorm_2x16:
1263 case ir_unop_unpack_snorm_4x8:
1264 case ir_unop_unpack_unorm_2x16:
1265 case ir_unop_unpack_unorm_4x8:
1266 case ir_unop_unpack_half_2x16:
1267 case ir_unop_unpack_half_2x16_split_x:
1268 case ir_unop_unpack_half_2x16_split_y:
1269 case ir_unop_unpack_double_2x32:
1270 case ir_binop_pack_half_2x16_split:
1271 case ir_unop_bitfield_reverse:
1272 case ir_unop_bit_count:
1273 case ir_unop_find_msb:
1274 case ir_unop_find_lsb:
1275 case ir_unop_d2f:
1276 case ir_unop_f2d:
1277 case ir_unop_d2i:
1278 case ir_unop_i2d:
1279 case ir_unop_d2u:
1280 case ir_unop_u2d:
1281 case ir_unop_d2b:
1282 case ir_unop_frexp_sig:
1283 case ir_unop_frexp_exp:
1284 assert(!"not supported");
1285 break;
1286 case ir_binop_min:
1287 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1288 break;
1289 case ir_binop_max:
1290 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1291 break;
1292 case ir_binop_pow:
1293 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1294 break;
1295
1296 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1297 * hardware backends have no way to avoid Mesa IR generation
1298 * even if they don't use it, we need to emit "something" and
1299 * continue.
1300 */
1301 case ir_binop_lshift:
1302 case ir_binop_rshift:
1303 case ir_binop_bit_and:
1304 case ir_binop_bit_xor:
1305 case ir_binop_bit_or:
1306 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1307 break;
1308
1309 case ir_unop_bit_not:
1310 case ir_unop_round_even:
1311 emit(ir, OPCODE_MOV, result_dst, op[0]);
1312 break;
1313
1314 case ir_binop_ubo_load:
1315 assert(!"not supported");
1316 break;
1317
1318 case ir_triop_lrp:
1319 /* ir_triop_lrp operands are (x, y, a) while
1320 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1321 */
1322 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1323 break;
1324
1325 case ir_binop_vector_extract:
1326 case ir_binop_bfm:
1327 case ir_triop_fma:
1328 case ir_triop_bfi:
1329 case ir_triop_bitfield_extract:
1330 case ir_triop_vector_insert:
1331 case ir_quadop_bitfield_insert:
1332 case ir_binop_ldexp:
1333 case ir_triop_csel:
1334 case ir_binop_carry:
1335 case ir_binop_borrow:
1336 case ir_binop_imul_high:
1337 case ir_unop_interpolate_at_centroid:
1338 case ir_binop_interpolate_at_offset:
1339 case ir_binop_interpolate_at_sample:
1340 case ir_unop_dFdx_coarse:
1341 case ir_unop_dFdx_fine:
1342 case ir_unop_dFdy_coarse:
1343 case ir_unop_dFdy_fine:
1344 assert(!"not supported");
1345 break;
1346
1347 case ir_quadop_vector:
1348 /* This operation should have already been handled.
1349 */
1350 assert(!"Should not get here.");
1351 break;
1352 }
1353
1354 this->result = result_src;
1355 }
1356
1357
1358 void
1359 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1360 {
1361 src_reg src;
1362 int i;
1363 int swizzle[4];
1364
1365 /* Note that this is only swizzles in expressions, not those on the left
1366 * hand side of an assignment, which do write masking. See ir_assignment
1367 * for that.
1368 */
1369
1370 ir->val->accept(this);
1371 src = this->result;
1372 assert(src.file != PROGRAM_UNDEFINED);
1373 assert(ir->type->vector_elements > 0);
1374
1375 for (i = 0; i < 4; i++) {
1376 if (i < ir->type->vector_elements) {
1377 switch (i) {
1378 case 0:
1379 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1380 break;
1381 case 1:
1382 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1383 break;
1384 case 2:
1385 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1386 break;
1387 case 3:
1388 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1389 break;
1390 }
1391 } else {
1392 /* If the type is smaller than a vec4, replicate the last
1393 * channel out.
1394 */
1395 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1396 }
1397 }
1398
1399 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1400
1401 this->result = src;
1402 }
1403
1404 void
1405 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1406 {
1407 variable_storage *entry = find_variable_storage(ir->var);
1408 ir_variable *var = ir->var;
1409
1410 if (!entry) {
1411 switch (var->data.mode) {
1412 case ir_var_uniform:
1413 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1414 var->data.location);
1415 this->variables.push_tail(entry);
1416 break;
1417 case ir_var_shader_in:
1418 /* The linker assigns locations for varyings and attributes,
1419 * including deprecated builtins (like gl_Color),
1420 * user-assigned generic attributes (glBindVertexLocation),
1421 * and user-defined varyings.
1422 */
1423 assert(var->data.location != -1);
1424 entry = new(mem_ctx) variable_storage(var,
1425 PROGRAM_INPUT,
1426 var->data.location);
1427 break;
1428 case ir_var_shader_out:
1429 assert(var->data.location != -1);
1430 entry = new(mem_ctx) variable_storage(var,
1431 PROGRAM_OUTPUT,
1432 var->data.location);
1433 break;
1434 case ir_var_system_value:
1435 entry = new(mem_ctx) variable_storage(var,
1436 PROGRAM_SYSTEM_VALUE,
1437 var->data.location);
1438 break;
1439 case ir_var_auto:
1440 case ir_var_temporary:
1441 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1442 this->next_temp);
1443 this->variables.push_tail(entry);
1444
1445 next_temp += type_size(var->type);
1446 break;
1447 }
1448
1449 if (!entry) {
1450 printf("Failed to make storage for %s\n", var->name);
1451 exit(1);
1452 }
1453 }
1454
1455 this->result = src_reg(entry->file, entry->index, var->type);
1456 }
1457
1458 void
1459 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1460 {
1461 ir_constant *index;
1462 src_reg src;
1463 int element_size = type_size(ir->type);
1464
1465 index = ir->array_index->constant_expression_value();
1466
1467 ir->array->accept(this);
1468 src = this->result;
1469
1470 if (index) {
1471 src.index += index->value.i[0] * element_size;
1472 } else {
1473 /* Variable index array dereference. It eats the "vec4" of the
1474 * base of the array and an index that offsets the Mesa register
1475 * index.
1476 */
1477 ir->array_index->accept(this);
1478
1479 src_reg index_reg;
1480
1481 if (element_size == 1) {
1482 index_reg = this->result;
1483 } else {
1484 index_reg = get_temp(glsl_type::float_type);
1485
1486 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1487 this->result, src_reg_for_float(element_size));
1488 }
1489
1490 /* If there was already a relative address register involved, add the
1491 * new and the old together to get the new offset.
1492 */
1493 if (src.reladdr != NULL) {
1494 src_reg accum_reg = get_temp(glsl_type::float_type);
1495
1496 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1497 index_reg, *src.reladdr);
1498
1499 index_reg = accum_reg;
1500 }
1501
1502 src.reladdr = ralloc(mem_ctx, src_reg);
1503 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1504 }
1505
1506 /* If the type is smaller than a vec4, replicate the last channel out. */
1507 if (ir->type->is_scalar() || ir->type->is_vector())
1508 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1509 else
1510 src.swizzle = SWIZZLE_NOOP;
1511
1512 this->result = src;
1513 }
1514
1515 void
1516 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1517 {
1518 unsigned int i;
1519 const glsl_type *struct_type = ir->record->type;
1520 int offset = 0;
1521
1522 ir->record->accept(this);
1523
1524 for (i = 0; i < struct_type->length; i++) {
1525 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1526 break;
1527 offset += type_size(struct_type->fields.structure[i].type);
1528 }
1529
1530 /* If the type is smaller than a vec4, replicate the last channel out. */
1531 if (ir->type->is_scalar() || ir->type->is_vector())
1532 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1533 else
1534 this->result.swizzle = SWIZZLE_NOOP;
1535
1536 this->result.index += offset;
1537 }
1538
1539 /**
1540 * We want to be careful in assignment setup to hit the actual storage
1541 * instead of potentially using a temporary like we might with the
1542 * ir_dereference handler.
1543 */
1544 static dst_reg
1545 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1546 {
1547 /* The LHS must be a dereference. If the LHS is a variable indexed array
1548 * access of a vector, it must be separated into a series conditional moves
1549 * before reaching this point (see ir_vec_index_to_cond_assign).
1550 */
1551 assert(ir->as_dereference());
1552 ir_dereference_array *deref_array = ir->as_dereference_array();
1553 if (deref_array) {
1554 assert(!deref_array->array->type->is_vector());
1555 }
1556
1557 /* Use the rvalue deref handler for the most part. We'll ignore
1558 * swizzles in it and write swizzles using writemask, though.
1559 */
1560 ir->accept(v);
1561 return dst_reg(v->result);
1562 }
1563
1564 /**
1565 * Process the condition of a conditional assignment
1566 *
1567 * Examines the condition of a conditional assignment to generate the optimal
1568 * first operand of a \c CMP instruction. If the condition is a relational
1569 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1570 * used as the source for the \c CMP instruction. Otherwise the comparison
1571 * is processed to a boolean result, and the boolean result is used as the
1572 * operand to the CMP instruction.
1573 */
1574 bool
1575 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1576 {
1577 ir_rvalue *src_ir = ir;
1578 bool negate = true;
1579 bool switch_order = false;
1580
1581 ir_expression *const expr = ir->as_expression();
1582 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1583 bool zero_on_left = false;
1584
1585 if (expr->operands[0]->is_zero()) {
1586 src_ir = expr->operands[1];
1587 zero_on_left = true;
1588 } else if (expr->operands[1]->is_zero()) {
1589 src_ir = expr->operands[0];
1590 zero_on_left = false;
1591 }
1592
1593 /* a is - 0 + - 0 +
1594 * (a < 0) T F F ( a < 0) T F F
1595 * (0 < a) F F T (-a < 0) F F T
1596 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1597 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1598 * (a > 0) F F T (-a < 0) F F T
1599 * (0 > a) T F F ( a < 0) T F F
1600 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1601 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1602 *
1603 * Note that exchanging the order of 0 and 'a' in the comparison simply
1604 * means that the value of 'a' should be negated.
1605 */
1606 if (src_ir != ir) {
1607 switch (expr->operation) {
1608 case ir_binop_less:
1609 switch_order = false;
1610 negate = zero_on_left;
1611 break;
1612
1613 case ir_binop_greater:
1614 switch_order = false;
1615 negate = !zero_on_left;
1616 break;
1617
1618 case ir_binop_lequal:
1619 switch_order = true;
1620 negate = !zero_on_left;
1621 break;
1622
1623 case ir_binop_gequal:
1624 switch_order = true;
1625 negate = zero_on_left;
1626 break;
1627
1628 default:
1629 /* This isn't the right kind of comparison afterall, so make sure
1630 * the whole condition is visited.
1631 */
1632 src_ir = ir;
1633 break;
1634 }
1635 }
1636 }
1637
1638 src_ir->accept(this);
1639
1640 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1641 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1642 * choose which value OPCODE_CMP produces without an extra instruction
1643 * computing the condition.
1644 */
1645 if (negate)
1646 this->result.negate = ~this->result.negate;
1647
1648 return switch_order;
1649 }
1650
1651 void
1652 ir_to_mesa_visitor::visit(ir_assignment *ir)
1653 {
1654 dst_reg l;
1655 src_reg r;
1656 int i;
1657
1658 ir->rhs->accept(this);
1659 r = this->result;
1660
1661 l = get_assignment_lhs(ir->lhs, this);
1662
1663 /* FINISHME: This should really set to the correct maximal writemask for each
1664 * FINISHME: component written (in the loops below). This case can only
1665 * FINISHME: occur for matrices, arrays, and structures.
1666 */
1667 if (ir->write_mask == 0) {
1668 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1669 l.writemask = WRITEMASK_XYZW;
1670 } else if (ir->lhs->type->is_scalar()) {
1671 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1672 * FINISHME: W component of fragment shader output zero, work correctly.
1673 */
1674 l.writemask = WRITEMASK_XYZW;
1675 } else {
1676 int swizzles[4];
1677 int first_enabled_chan = 0;
1678 int rhs_chan = 0;
1679
1680 assert(ir->lhs->type->is_vector());
1681 l.writemask = ir->write_mask;
1682
1683 for (int i = 0; i < 4; i++) {
1684 if (l.writemask & (1 << i)) {
1685 first_enabled_chan = GET_SWZ(r.swizzle, i);
1686 break;
1687 }
1688 }
1689
1690 /* Swizzle a small RHS vector into the channels being written.
1691 *
1692 * glsl ir treats write_mask as dictating how many channels are
1693 * present on the RHS while Mesa IR treats write_mask as just
1694 * showing which channels of the vec4 RHS get written.
1695 */
1696 for (int i = 0; i < 4; i++) {
1697 if (l.writemask & (1 << i))
1698 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1699 else
1700 swizzles[i] = first_enabled_chan;
1701 }
1702 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1703 swizzles[2], swizzles[3]);
1704 }
1705
1706 assert(l.file != PROGRAM_UNDEFINED);
1707 assert(r.file != PROGRAM_UNDEFINED);
1708
1709 if (ir->condition) {
1710 const bool switch_order = this->process_move_condition(ir->condition);
1711 src_reg condition = this->result;
1712
1713 for (i = 0; i < type_size(ir->lhs->type); i++) {
1714 if (switch_order) {
1715 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1716 } else {
1717 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1718 }
1719
1720 l.index++;
1721 r.index++;
1722 }
1723 } else {
1724 for (i = 0; i < type_size(ir->lhs->type); i++) {
1725 emit(ir, OPCODE_MOV, l, r);
1726 l.index++;
1727 r.index++;
1728 }
1729 }
1730 }
1731
1732
1733 void
1734 ir_to_mesa_visitor::visit(ir_constant *ir)
1735 {
1736 src_reg src;
1737 GLfloat stack_vals[4] = { 0 };
1738 GLfloat *values = stack_vals;
1739 unsigned int i;
1740
1741 /* Unfortunately, 4 floats is all we can get into
1742 * _mesa_add_unnamed_constant. So, make a temp to store an
1743 * aggregate constant and move each constant value into it. If we
1744 * get lucky, copy propagation will eliminate the extra moves.
1745 */
1746
1747 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1748 src_reg temp_base = get_temp(ir->type);
1749 dst_reg temp = dst_reg(temp_base);
1750
1751 foreach_in_list(ir_constant, field_value, &ir->components) {
1752 int size = type_size(field_value->type);
1753
1754 assert(size > 0);
1755
1756 field_value->accept(this);
1757 src = this->result;
1758
1759 for (i = 0; i < (unsigned int)size; i++) {
1760 emit(ir, OPCODE_MOV, temp, src);
1761
1762 src.index++;
1763 temp.index++;
1764 }
1765 }
1766 this->result = temp_base;
1767 return;
1768 }
1769
1770 if (ir->type->is_array()) {
1771 src_reg temp_base = get_temp(ir->type);
1772 dst_reg temp = dst_reg(temp_base);
1773 int size = type_size(ir->type->fields.array);
1774
1775 assert(size > 0);
1776
1777 for (i = 0; i < ir->type->length; i++) {
1778 ir->array_elements[i]->accept(this);
1779 src = this->result;
1780 for (int j = 0; j < size; j++) {
1781 emit(ir, OPCODE_MOV, temp, src);
1782
1783 src.index++;
1784 temp.index++;
1785 }
1786 }
1787 this->result = temp_base;
1788 return;
1789 }
1790
1791 if (ir->type->is_matrix()) {
1792 src_reg mat = get_temp(ir->type);
1793 dst_reg mat_column = dst_reg(mat);
1794
1795 for (i = 0; i < ir->type->matrix_columns; i++) {
1796 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1797 values = &ir->value.f[i * ir->type->vector_elements];
1798
1799 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1800 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1801 (gl_constant_value *) values,
1802 ir->type->vector_elements,
1803 &src.swizzle);
1804 emit(ir, OPCODE_MOV, mat_column, src);
1805
1806 mat_column.index++;
1807 }
1808
1809 this->result = mat;
1810 return;
1811 }
1812
1813 src.file = PROGRAM_CONSTANT;
1814 switch (ir->type->base_type) {
1815 case GLSL_TYPE_FLOAT:
1816 values = &ir->value.f[0];
1817 break;
1818 case GLSL_TYPE_UINT:
1819 for (i = 0; i < ir->type->vector_elements; i++) {
1820 values[i] = ir->value.u[i];
1821 }
1822 break;
1823 case GLSL_TYPE_INT:
1824 for (i = 0; i < ir->type->vector_elements; i++) {
1825 values[i] = ir->value.i[i];
1826 }
1827 break;
1828 case GLSL_TYPE_BOOL:
1829 for (i = 0; i < ir->type->vector_elements; i++) {
1830 values[i] = ir->value.b[i];
1831 }
1832 break;
1833 default:
1834 assert(!"Non-float/uint/int/bool constant");
1835 }
1836
1837 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1838 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1839 (gl_constant_value *) values,
1840 ir->type->vector_elements,
1841 &this->result.swizzle);
1842 }
1843
1844 void
1845 ir_to_mesa_visitor::visit(ir_call *)
1846 {
1847 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1848 }
1849
1850 void
1851 ir_to_mesa_visitor::visit(ir_texture *ir)
1852 {
1853 src_reg result_src, coord, lod_info, projector, dx, dy;
1854 dst_reg result_dst, coord_dst;
1855 ir_to_mesa_instruction *inst = NULL;
1856 prog_opcode opcode = OPCODE_NOP;
1857
1858 if (ir->op == ir_txs)
1859 this->result = src_reg_for_float(0.0);
1860 else
1861 ir->coordinate->accept(this);
1862
1863 /* Put our coords in a temp. We'll need to modify them for shadow,
1864 * projection, or LOD, so the only case we'd use it as is is if
1865 * we're doing plain old texturing. Mesa IR optimization should
1866 * handle cleaning up our mess in that case.
1867 */
1868 coord = get_temp(glsl_type::vec4_type);
1869 coord_dst = dst_reg(coord);
1870 emit(ir, OPCODE_MOV, coord_dst, this->result);
1871
1872 if (ir->projector) {
1873 ir->projector->accept(this);
1874 projector = this->result;
1875 }
1876
1877 /* Storage for our result. Ideally for an assignment we'd be using
1878 * the actual storage for the result here, instead.
1879 */
1880 result_src = get_temp(glsl_type::vec4_type);
1881 result_dst = dst_reg(result_src);
1882
1883 switch (ir->op) {
1884 case ir_tex:
1885 case ir_txs:
1886 opcode = OPCODE_TEX;
1887 break;
1888 case ir_txb:
1889 opcode = OPCODE_TXB;
1890 ir->lod_info.bias->accept(this);
1891 lod_info = this->result;
1892 break;
1893 case ir_txf:
1894 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1895 case ir_txl:
1896 opcode = OPCODE_TXL;
1897 ir->lod_info.lod->accept(this);
1898 lod_info = this->result;
1899 break;
1900 case ir_txd:
1901 opcode = OPCODE_TXD;
1902 ir->lod_info.grad.dPdx->accept(this);
1903 dx = this->result;
1904 ir->lod_info.grad.dPdy->accept(this);
1905 dy = this->result;
1906 break;
1907 case ir_txf_ms:
1908 assert(!"Unexpected ir_txf_ms opcode");
1909 break;
1910 case ir_lod:
1911 assert(!"Unexpected ir_lod opcode");
1912 break;
1913 case ir_tg4:
1914 assert(!"Unexpected ir_tg4 opcode");
1915 break;
1916 case ir_query_levels:
1917 assert(!"Unexpected ir_query_levels opcode");
1918 break;
1919 }
1920
1921 const glsl_type *sampler_type = ir->sampler->type;
1922
1923 if (ir->projector) {
1924 if (opcode == OPCODE_TEX) {
1925 /* Slot the projector in as the last component of the coord. */
1926 coord_dst.writemask = WRITEMASK_W;
1927 emit(ir, OPCODE_MOV, coord_dst, projector);
1928 coord_dst.writemask = WRITEMASK_XYZW;
1929 opcode = OPCODE_TXP;
1930 } else {
1931 src_reg coord_w = coord;
1932 coord_w.swizzle = SWIZZLE_WWWW;
1933
1934 /* For the other TEX opcodes there's no projective version
1935 * since the last slot is taken up by lod info. Do the
1936 * projective divide now.
1937 */
1938 coord_dst.writemask = WRITEMASK_W;
1939 emit(ir, OPCODE_RCP, coord_dst, projector);
1940
1941 /* In the case where we have to project the coordinates "by hand,"
1942 * the shadow comparitor value must also be projected.
1943 */
1944 src_reg tmp_src = coord;
1945 if (ir->shadow_comparitor) {
1946 /* Slot the shadow value in as the second to last component of the
1947 * coord.
1948 */
1949 ir->shadow_comparitor->accept(this);
1950
1951 tmp_src = get_temp(glsl_type::vec4_type);
1952 dst_reg tmp_dst = dst_reg(tmp_src);
1953
1954 /* Projective division not allowed for array samplers. */
1955 assert(!sampler_type->sampler_array);
1956
1957 tmp_dst.writemask = WRITEMASK_Z;
1958 emit(ir, OPCODE_MOV, tmp_dst, this->result);
1959
1960 tmp_dst.writemask = WRITEMASK_XY;
1961 emit(ir, OPCODE_MOV, tmp_dst, coord);
1962 }
1963
1964 coord_dst.writemask = WRITEMASK_XYZ;
1965 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
1966
1967 coord_dst.writemask = WRITEMASK_XYZW;
1968 coord.swizzle = SWIZZLE_XYZW;
1969 }
1970 }
1971
1972 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
1973 * comparitor was put in the correct place (and projected) by the code,
1974 * above, that handles by-hand projection.
1975 */
1976 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
1977 /* Slot the shadow value in as the second to last component of the
1978 * coord.
1979 */
1980 ir->shadow_comparitor->accept(this);
1981
1982 /* XXX This will need to be updated for cubemap array samplers. */
1983 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
1984 sampler_type->sampler_array) {
1985 coord_dst.writemask = WRITEMASK_W;
1986 } else {
1987 coord_dst.writemask = WRITEMASK_Z;
1988 }
1989
1990 emit(ir, OPCODE_MOV, coord_dst, this->result);
1991 coord_dst.writemask = WRITEMASK_XYZW;
1992 }
1993
1994 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
1995 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
1996 coord_dst.writemask = WRITEMASK_W;
1997 emit(ir, OPCODE_MOV, coord_dst, lod_info);
1998 coord_dst.writemask = WRITEMASK_XYZW;
1999 }
2000
2001 if (opcode == OPCODE_TXD)
2002 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2003 else
2004 inst = emit(ir, opcode, result_dst, coord);
2005
2006 if (ir->shadow_comparitor)
2007 inst->tex_shadow = GL_TRUE;
2008
2009 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2010 this->shader_program,
2011 this->prog);
2012
2013 switch (sampler_type->sampler_dimensionality) {
2014 case GLSL_SAMPLER_DIM_1D:
2015 inst->tex_target = (sampler_type->sampler_array)
2016 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2017 break;
2018 case GLSL_SAMPLER_DIM_2D:
2019 inst->tex_target = (sampler_type->sampler_array)
2020 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2021 break;
2022 case GLSL_SAMPLER_DIM_3D:
2023 inst->tex_target = TEXTURE_3D_INDEX;
2024 break;
2025 case GLSL_SAMPLER_DIM_CUBE:
2026 inst->tex_target = TEXTURE_CUBE_INDEX;
2027 break;
2028 case GLSL_SAMPLER_DIM_RECT:
2029 inst->tex_target = TEXTURE_RECT_INDEX;
2030 break;
2031 case GLSL_SAMPLER_DIM_BUF:
2032 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2033 break;
2034 case GLSL_SAMPLER_DIM_EXTERNAL:
2035 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2036 break;
2037 default:
2038 assert(!"Should not get here.");
2039 }
2040
2041 this->result = result_src;
2042 }
2043
2044 void
2045 ir_to_mesa_visitor::visit(ir_return *ir)
2046 {
2047 /* Non-void functions should have been inlined. We may still emit RETs
2048 * from main() unless the EmitNoMainReturn option is set.
2049 */
2050 assert(!ir->get_value());
2051 emit(ir, OPCODE_RET);
2052 }
2053
2054 void
2055 ir_to_mesa_visitor::visit(ir_discard *ir)
2056 {
2057 if (ir->condition) {
2058 ir->condition->accept(this);
2059 this->result.negate = ~this->result.negate;
2060 emit(ir, OPCODE_KIL, undef_dst, this->result);
2061 } else {
2062 emit(ir, OPCODE_KIL_NV);
2063 }
2064 }
2065
2066 void
2067 ir_to_mesa_visitor::visit(ir_if *ir)
2068 {
2069 ir_to_mesa_instruction *cond_inst, *if_inst;
2070 ir_to_mesa_instruction *prev_inst;
2071
2072 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2073
2074 ir->condition->accept(this);
2075 assert(this->result.file != PROGRAM_UNDEFINED);
2076
2077 if (this->options->EmitCondCodes) {
2078 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2079
2080 /* See if we actually generated any instruction for generating
2081 * the condition. If not, then cook up a move to a temp so we
2082 * have something to set cond_update on.
2083 */
2084 if (cond_inst == prev_inst) {
2085 src_reg temp = get_temp(glsl_type::bool_type);
2086 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2087 }
2088 cond_inst->cond_update = GL_TRUE;
2089
2090 if_inst = emit(ir->condition, OPCODE_IF);
2091 if_inst->dst.cond_mask = COND_NE;
2092 } else {
2093 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2094 }
2095
2096 this->instructions.push_tail(if_inst);
2097
2098 visit_exec_list(&ir->then_instructions, this);
2099
2100 if (!ir->else_instructions.is_empty()) {
2101 emit(ir->condition, OPCODE_ELSE);
2102 visit_exec_list(&ir->else_instructions, this);
2103 }
2104
2105 emit(ir->condition, OPCODE_ENDIF);
2106 }
2107
2108 void
2109 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2110 {
2111 assert(!"Geometry shaders not supported.");
2112 }
2113
2114 void
2115 ir_to_mesa_visitor::visit(ir_end_primitive *)
2116 {
2117 assert(!"Geometry shaders not supported.");
2118 }
2119
2120 ir_to_mesa_visitor::ir_to_mesa_visitor()
2121 {
2122 result.file = PROGRAM_UNDEFINED;
2123 next_temp = 1;
2124 next_signature_id = 1;
2125 current_function = NULL;
2126 mem_ctx = ralloc_context(NULL);
2127 }
2128
2129 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2130 {
2131 ralloc_free(mem_ctx);
2132 }
2133
2134 static struct prog_src_register
2135 mesa_src_reg_from_ir_src_reg(src_reg reg)
2136 {
2137 struct prog_src_register mesa_reg;
2138
2139 mesa_reg.File = reg.file;
2140 assert(reg.index < (1 << INST_INDEX_BITS));
2141 mesa_reg.Index = reg.index;
2142 mesa_reg.Swizzle = reg.swizzle;
2143 mesa_reg.RelAddr = reg.reladdr != NULL;
2144 mesa_reg.Negate = reg.negate;
2145 mesa_reg.Abs = 0;
2146 mesa_reg.HasIndex2 = GL_FALSE;
2147 mesa_reg.RelAddr2 = 0;
2148 mesa_reg.Index2 = 0;
2149
2150 return mesa_reg;
2151 }
2152
2153 static void
2154 set_branchtargets(ir_to_mesa_visitor *v,
2155 struct prog_instruction *mesa_instructions,
2156 int num_instructions)
2157 {
2158 int if_count = 0, loop_count = 0;
2159 int *if_stack, *loop_stack;
2160 int if_stack_pos = 0, loop_stack_pos = 0;
2161 int i, j;
2162
2163 for (i = 0; i < num_instructions; i++) {
2164 switch (mesa_instructions[i].Opcode) {
2165 case OPCODE_IF:
2166 if_count++;
2167 break;
2168 case OPCODE_BGNLOOP:
2169 loop_count++;
2170 break;
2171 case OPCODE_BRK:
2172 case OPCODE_CONT:
2173 mesa_instructions[i].BranchTarget = -1;
2174 break;
2175 default:
2176 break;
2177 }
2178 }
2179
2180 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2181 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2182
2183 for (i = 0; i < num_instructions; i++) {
2184 switch (mesa_instructions[i].Opcode) {
2185 case OPCODE_IF:
2186 if_stack[if_stack_pos] = i;
2187 if_stack_pos++;
2188 break;
2189 case OPCODE_ELSE:
2190 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2191 if_stack[if_stack_pos - 1] = i;
2192 break;
2193 case OPCODE_ENDIF:
2194 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2195 if_stack_pos--;
2196 break;
2197 case OPCODE_BGNLOOP:
2198 loop_stack[loop_stack_pos] = i;
2199 loop_stack_pos++;
2200 break;
2201 case OPCODE_ENDLOOP:
2202 loop_stack_pos--;
2203 /* Rewrite any breaks/conts at this nesting level (haven't
2204 * already had a BranchTarget assigned) to point to the end
2205 * of the loop.
2206 */
2207 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2208 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2209 mesa_instructions[j].Opcode == OPCODE_CONT) {
2210 if (mesa_instructions[j].BranchTarget == -1) {
2211 mesa_instructions[j].BranchTarget = i;
2212 }
2213 }
2214 }
2215 /* The loop ends point at each other. */
2216 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2217 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2218 break;
2219 case OPCODE_CAL:
2220 foreach_in_list(function_entry, entry, &v->function_signatures) {
2221 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2222 mesa_instructions[i].BranchTarget = entry->inst;
2223 break;
2224 }
2225 }
2226 break;
2227 default:
2228 break;
2229 }
2230 }
2231 }
2232
2233 static void
2234 print_program(struct prog_instruction *mesa_instructions,
2235 ir_instruction **mesa_instruction_annotation,
2236 int num_instructions)
2237 {
2238 ir_instruction *last_ir = NULL;
2239 int i;
2240 int indent = 0;
2241
2242 for (i = 0; i < num_instructions; i++) {
2243 struct prog_instruction *mesa_inst = mesa_instructions + i;
2244 ir_instruction *ir = mesa_instruction_annotation[i];
2245
2246 fprintf(stdout, "%3d: ", i);
2247
2248 if (last_ir != ir && ir) {
2249 int j;
2250
2251 for (j = 0; j < indent; j++) {
2252 fprintf(stdout, " ");
2253 }
2254 ir->print();
2255 printf("\n");
2256 last_ir = ir;
2257
2258 fprintf(stdout, " "); /* line number spacing. */
2259 }
2260
2261 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2262 PROG_PRINT_DEBUG, NULL);
2263 }
2264 }
2265
2266 namespace {
2267
2268 class add_uniform_to_shader : public program_resource_visitor {
2269 public:
2270 add_uniform_to_shader(struct gl_shader_program *shader_program,
2271 struct gl_program_parameter_list *params,
2272 gl_shader_stage shader_type)
2273 : shader_program(shader_program), params(params), idx(-1),
2274 shader_type(shader_type)
2275 {
2276 /* empty */
2277 }
2278
2279 void process(ir_variable *var)
2280 {
2281 this->idx = -1;
2282 this->program_resource_visitor::process(var);
2283
2284 var->data.location = this->idx;
2285 }
2286
2287 private:
2288 virtual void visit_field(const glsl_type *type, const char *name,
2289 bool row_major);
2290
2291 struct gl_shader_program *shader_program;
2292 struct gl_program_parameter_list *params;
2293 int idx;
2294 gl_shader_stage shader_type;
2295 };
2296
2297 } /* anonymous namespace */
2298
2299 void
2300 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2301 bool row_major)
2302 {
2303 unsigned int size;
2304
2305 (void) row_major;
2306
2307 if (type->is_vector() || type->is_scalar()) {
2308 size = type->vector_elements;
2309 if (type->is_double())
2310 size *= 2;
2311 } else {
2312 size = type_size(type) * 4;
2313 }
2314
2315 gl_register_file file;
2316 if (type->without_array()->is_sampler()) {
2317 file = PROGRAM_SAMPLER;
2318 } else {
2319 file = PROGRAM_UNIFORM;
2320 }
2321
2322 int index = _mesa_lookup_parameter_index(params, -1, name);
2323 if (index < 0) {
2324 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2325 NULL, NULL);
2326
2327 /* Sampler uniform values are stored in prog->SamplerUnits,
2328 * and the entry in that array is selected by this index we
2329 * store in ParameterValues[].
2330 */
2331 if (file == PROGRAM_SAMPLER) {
2332 unsigned location;
2333 const bool found =
2334 this->shader_program->UniformHash->get(location,
2335 params->Parameters[index].Name);
2336 assert(found);
2337
2338 if (!found)
2339 return;
2340
2341 struct gl_uniform_storage *storage =
2342 &this->shader_program->UniformStorage[location];
2343
2344 assert(storage->sampler[shader_type].active);
2345
2346 for (unsigned int j = 0; j < size / 4; j++)
2347 params->ParameterValues[index + j][0].f =
2348 storage->sampler[shader_type].index + j;
2349 }
2350 }
2351
2352 /* The first part of the uniform that's processed determines the base
2353 * location of the whole uniform (for structures).
2354 */
2355 if (this->idx < 0)
2356 this->idx = index;
2357 }
2358
2359 /**
2360 * Generate the program parameters list for the user uniforms in a shader
2361 *
2362 * \param shader_program Linked shader program. This is only used to
2363 * emit possible link errors to the info log.
2364 * \param sh Shader whose uniforms are to be processed.
2365 * \param params Parameter list to be filled in.
2366 */
2367 void
2368 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2369 *shader_program,
2370 struct gl_shader *sh,
2371 struct gl_program_parameter_list
2372 *params)
2373 {
2374 add_uniform_to_shader add(shader_program, params, sh->Stage);
2375
2376 foreach_in_list(ir_instruction, node, sh->ir) {
2377 ir_variable *var = node->as_variable();
2378
2379 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2380 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2381 continue;
2382
2383 add.process(var);
2384 }
2385 }
2386
2387 void
2388 _mesa_associate_uniform_storage(struct gl_context *ctx,
2389 struct gl_shader_program *shader_program,
2390 struct gl_program_parameter_list *params)
2391 {
2392 /* After adding each uniform to the parameter list, connect the storage for
2393 * the parameter with the tracking structure used by the API for the
2394 * uniform.
2395 */
2396 unsigned last_location = unsigned(~0);
2397 for (unsigned i = 0; i < params->NumParameters; i++) {
2398 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2399 continue;
2400
2401 unsigned location;
2402 const bool found =
2403 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2404 assert(found);
2405
2406 if (!found)
2407 continue;
2408
2409 if (location != last_location) {
2410 struct gl_uniform_storage *storage =
2411 &shader_program->UniformStorage[location];
2412 enum gl_uniform_driver_format format = uniform_native;
2413
2414 unsigned columns = 0;
2415 int dmul = 4 * sizeof(float);
2416 switch (storage->type->base_type) {
2417 case GLSL_TYPE_UINT:
2418 assert(ctx->Const.NativeIntegers);
2419 format = uniform_native;
2420 columns = 1;
2421 break;
2422 case GLSL_TYPE_INT:
2423 format =
2424 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2425 columns = 1;
2426 break;
2427
2428 case GLSL_TYPE_DOUBLE:
2429 if (storage->type->vector_elements > 2)
2430 dmul *= 2;
2431 /* fallthrough */
2432 case GLSL_TYPE_FLOAT:
2433 format = uniform_native;
2434 columns = storage->type->matrix_columns;
2435 break;
2436 case GLSL_TYPE_BOOL:
2437 format = uniform_native;
2438 columns = 1;
2439 break;
2440 case GLSL_TYPE_SAMPLER:
2441 case GLSL_TYPE_IMAGE:
2442 format = uniform_native;
2443 columns = 1;
2444 break;
2445 case GLSL_TYPE_ATOMIC_UINT:
2446 case GLSL_TYPE_ARRAY:
2447 case GLSL_TYPE_VOID:
2448 case GLSL_TYPE_STRUCT:
2449 case GLSL_TYPE_ERROR:
2450 case GLSL_TYPE_INTERFACE:
2451 assert(!"Should not get here.");
2452 break;
2453 }
2454
2455 _mesa_uniform_attach_driver_storage(storage,
2456 dmul * columns,
2457 dmul,
2458 format,
2459 &params->ParameterValues[i]);
2460
2461 /* After attaching the driver's storage to the uniform, propagate any
2462 * data from the linker's backing store. This will cause values from
2463 * initializers in the source code to be copied over.
2464 */
2465 _mesa_propagate_uniforms_to_driver_storage(storage,
2466 0,
2467 MAX2(1, storage->array_elements));
2468
2469 last_location = location;
2470 }
2471 }
2472 }
2473
2474 /*
2475 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2476 * channels for copy propagation and updates following instructions to
2477 * use the original versions.
2478 *
2479 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2480 * will occur. As an example, a TXP production before this pass:
2481 *
2482 * 0: MOV TEMP[1], INPUT[4].xyyy;
2483 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2484 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2485 *
2486 * and after:
2487 *
2488 * 0: MOV TEMP[1], INPUT[4].xyyy;
2489 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2490 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2491 *
2492 * which allows for dead code elimination on TEMP[1]'s writes.
2493 */
2494 void
2495 ir_to_mesa_visitor::copy_propagate(void)
2496 {
2497 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2498 ir_to_mesa_instruction *,
2499 this->next_temp * 4);
2500 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2501 int level = 0;
2502
2503 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2504 assert(inst->dst.file != PROGRAM_TEMPORARY
2505 || inst->dst.index < this->next_temp);
2506
2507 /* First, do any copy propagation possible into the src regs. */
2508 for (int r = 0; r < 3; r++) {
2509 ir_to_mesa_instruction *first = NULL;
2510 bool good = true;
2511 int acp_base = inst->src[r].index * 4;
2512
2513 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2514 inst->src[r].reladdr)
2515 continue;
2516
2517 /* See if we can find entries in the ACP consisting of MOVs
2518 * from the same src register for all the swizzled channels
2519 * of this src register reference.
2520 */
2521 for (int i = 0; i < 4; i++) {
2522 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2523 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2524
2525 if (!copy_chan) {
2526 good = false;
2527 break;
2528 }
2529
2530 assert(acp_level[acp_base + src_chan] <= level);
2531
2532 if (!first) {
2533 first = copy_chan;
2534 } else {
2535 if (first->src[0].file != copy_chan->src[0].file ||
2536 first->src[0].index != copy_chan->src[0].index) {
2537 good = false;
2538 break;
2539 }
2540 }
2541 }
2542
2543 if (good) {
2544 /* We've now validated that we can copy-propagate to
2545 * replace this src register reference. Do it.
2546 */
2547 inst->src[r].file = first->src[0].file;
2548 inst->src[r].index = first->src[0].index;
2549
2550 int swizzle = 0;
2551 for (int i = 0; i < 4; i++) {
2552 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2553 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2554 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2555 (3 * i));
2556 }
2557 inst->src[r].swizzle = swizzle;
2558 }
2559 }
2560
2561 switch (inst->op) {
2562 case OPCODE_BGNLOOP:
2563 case OPCODE_ENDLOOP:
2564 /* End of a basic block, clear the ACP entirely. */
2565 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2566 break;
2567
2568 case OPCODE_IF:
2569 ++level;
2570 break;
2571
2572 case OPCODE_ENDIF:
2573 case OPCODE_ELSE:
2574 /* Clear all channels written inside the block from the ACP, but
2575 * leaving those that were not touched.
2576 */
2577 for (int r = 0; r < this->next_temp; r++) {
2578 for (int c = 0; c < 4; c++) {
2579 if (!acp[4 * r + c])
2580 continue;
2581
2582 if (acp_level[4 * r + c] >= level)
2583 acp[4 * r + c] = NULL;
2584 }
2585 }
2586 if (inst->op == OPCODE_ENDIF)
2587 --level;
2588 break;
2589
2590 default:
2591 /* Continuing the block, clear any written channels from
2592 * the ACP.
2593 */
2594 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2595 /* Any temporary might be written, so no copy propagation
2596 * across this instruction.
2597 */
2598 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2599 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2600 inst->dst.reladdr) {
2601 /* Any output might be written, so no copy propagation
2602 * from outputs across this instruction.
2603 */
2604 for (int r = 0; r < this->next_temp; r++) {
2605 for (int c = 0; c < 4; c++) {
2606 if (!acp[4 * r + c])
2607 continue;
2608
2609 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2610 acp[4 * r + c] = NULL;
2611 }
2612 }
2613 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2614 inst->dst.file == PROGRAM_OUTPUT) {
2615 /* Clear where it's used as dst. */
2616 if (inst->dst.file == PROGRAM_TEMPORARY) {
2617 for (int c = 0; c < 4; c++) {
2618 if (inst->dst.writemask & (1 << c)) {
2619 acp[4 * inst->dst.index + c] = NULL;
2620 }
2621 }
2622 }
2623
2624 /* Clear where it's used as src. */
2625 for (int r = 0; r < this->next_temp; r++) {
2626 for (int c = 0; c < 4; c++) {
2627 if (!acp[4 * r + c])
2628 continue;
2629
2630 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2631
2632 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2633 acp[4 * r + c]->src[0].index == inst->dst.index &&
2634 inst->dst.writemask & (1 << src_chan))
2635 {
2636 acp[4 * r + c] = NULL;
2637 }
2638 }
2639 }
2640 }
2641 break;
2642 }
2643
2644 /* If this is a copy, add it to the ACP. */
2645 if (inst->op == OPCODE_MOV &&
2646 inst->dst.file == PROGRAM_TEMPORARY &&
2647 !(inst->dst.file == inst->src[0].file &&
2648 inst->dst.index == inst->src[0].index) &&
2649 !inst->dst.reladdr &&
2650 !inst->saturate &&
2651 !inst->src[0].reladdr &&
2652 !inst->src[0].negate) {
2653 for (int i = 0; i < 4; i++) {
2654 if (inst->dst.writemask & (1 << i)) {
2655 acp[4 * inst->dst.index + i] = inst;
2656 acp_level[4 * inst->dst.index + i] = level;
2657 }
2658 }
2659 }
2660 }
2661
2662 ralloc_free(acp_level);
2663 ralloc_free(acp);
2664 }
2665
2666
2667 /**
2668 * Convert a shader's GLSL IR into a Mesa gl_program.
2669 */
2670 static struct gl_program *
2671 get_mesa_program(struct gl_context *ctx,
2672 struct gl_shader_program *shader_program,
2673 struct gl_shader *shader)
2674 {
2675 ir_to_mesa_visitor v;
2676 struct prog_instruction *mesa_instructions, *mesa_inst;
2677 ir_instruction **mesa_instruction_annotation;
2678 int i;
2679 struct gl_program *prog;
2680 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2681 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2682 struct gl_shader_compiler_options *options =
2683 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2684
2685 validate_ir_tree(shader->ir);
2686
2687 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2688 if (!prog)
2689 return NULL;
2690 prog->Parameters = _mesa_new_parameter_list();
2691 v.ctx = ctx;
2692 v.prog = prog;
2693 v.shader_program = shader_program;
2694 v.options = options;
2695
2696 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2697 prog->Parameters);
2698
2699 /* Emit Mesa IR for main(). */
2700 visit_exec_list(shader->ir, &v);
2701 v.emit(NULL, OPCODE_END);
2702
2703 prog->NumTemporaries = v.next_temp;
2704
2705 unsigned num_instructions = v.instructions.length();
2706
2707 mesa_instructions =
2708 (struct prog_instruction *)calloc(num_instructions,
2709 sizeof(*mesa_instructions));
2710 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2711 num_instructions);
2712
2713 v.copy_propagate();
2714
2715 /* Convert ir_mesa_instructions into prog_instructions.
2716 */
2717 mesa_inst = mesa_instructions;
2718 i = 0;
2719 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2720 mesa_inst->Opcode = inst->op;
2721 mesa_inst->CondUpdate = inst->cond_update;
2722 if (inst->saturate)
2723 mesa_inst->Saturate = GL_TRUE;
2724 mesa_inst->DstReg.File = inst->dst.file;
2725 mesa_inst->DstReg.Index = inst->dst.index;
2726 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2727 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2728 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2729 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2730 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2731 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2732 mesa_inst->TexSrcUnit = inst->sampler;
2733 mesa_inst->TexSrcTarget = inst->tex_target;
2734 mesa_inst->TexShadow = inst->tex_shadow;
2735 mesa_instruction_annotation[i] = inst->ir;
2736
2737 /* Set IndirectRegisterFiles. */
2738 if (mesa_inst->DstReg.RelAddr)
2739 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2740
2741 /* Update program's bitmask of indirectly accessed register files */
2742 for (unsigned src = 0; src < 3; src++)
2743 if (mesa_inst->SrcReg[src].RelAddr)
2744 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2745
2746 switch (mesa_inst->Opcode) {
2747 case OPCODE_IF:
2748 if (options->MaxIfDepth == 0) {
2749 linker_warning(shader_program,
2750 "Couldn't flatten if-statement. "
2751 "This will likely result in software "
2752 "rasterization.\n");
2753 }
2754 break;
2755 case OPCODE_BGNLOOP:
2756 if (options->EmitNoLoops) {
2757 linker_warning(shader_program,
2758 "Couldn't unroll loop. "
2759 "This will likely result in software "
2760 "rasterization.\n");
2761 }
2762 break;
2763 case OPCODE_CONT:
2764 if (options->EmitNoCont) {
2765 linker_warning(shader_program,
2766 "Couldn't lower continue-statement. "
2767 "This will likely result in software "
2768 "rasterization.\n");
2769 }
2770 break;
2771 case OPCODE_ARL:
2772 prog->NumAddressRegs = 1;
2773 break;
2774 default:
2775 break;
2776 }
2777
2778 mesa_inst++;
2779 i++;
2780
2781 if (!shader_program->LinkStatus)
2782 break;
2783 }
2784
2785 if (!shader_program->LinkStatus) {
2786 goto fail_exit;
2787 }
2788
2789 set_branchtargets(&v, mesa_instructions, num_instructions);
2790
2791 if (ctx->_Shader->Flags & GLSL_DUMP) {
2792 fprintf(stderr, "\n");
2793 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2794 shader_program->Name);
2795 _mesa_print_ir(stderr, shader->ir, NULL);
2796 fprintf(stderr, "\n");
2797 fprintf(stderr, "\n");
2798 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2799 shader_program->Name);
2800 print_program(mesa_instructions, mesa_instruction_annotation,
2801 num_instructions);
2802 fflush(stderr);
2803 }
2804
2805 prog->Instructions = mesa_instructions;
2806 prog->NumInstructions = num_instructions;
2807
2808 /* Setting this to NULL prevents a possible double free in the fail_exit
2809 * path (far below).
2810 */
2811 mesa_instructions = NULL;
2812
2813 do_set_program_inouts(shader->ir, prog, shader->Stage);
2814
2815 prog->SamplersUsed = shader->active_samplers;
2816 prog->ShadowSamplers = shader->shadow_samplers;
2817 _mesa_update_shader_textures_used(shader_program, prog);
2818
2819 /* Set the gl_FragDepth layout. */
2820 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2821 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2822 fp->FragDepthLayout = shader_program->FragDepthLayout;
2823 }
2824
2825 _mesa_reference_program(ctx, &shader->Program, prog);
2826
2827 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2828 _mesa_optimize_program(ctx, prog);
2829 }
2830
2831 /* This has to be done last. Any operation that can cause
2832 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2833 * program constant) has to happen before creating this linkage.
2834 */
2835 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2836 if (!shader_program->LinkStatus) {
2837 goto fail_exit;
2838 }
2839
2840 return prog;
2841
2842 fail_exit:
2843 free(mesa_instructions);
2844 _mesa_reference_program(ctx, &shader->Program, NULL);
2845 return NULL;
2846 }
2847
2848 extern "C" {
2849
2850 /**
2851 * Link a shader.
2852 * Called via ctx->Driver.LinkShader()
2853 * This actually involves converting GLSL IR into Mesa gl_programs with
2854 * code lowering and other optimizations.
2855 */
2856 GLboolean
2857 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2858 {
2859 assert(prog->LinkStatus);
2860
2861 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2862 if (prog->_LinkedShaders[i] == NULL)
2863 continue;
2864
2865 bool progress;
2866 exec_list *ir = prog->_LinkedShaders[i]->ir;
2867 const struct gl_shader_compiler_options *options =
2868 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2869
2870 do {
2871 progress = false;
2872
2873 /* Lowering */
2874 do_mat_op_to_vec(ir);
2875 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2876 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2877 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2878
2879 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2880
2881 progress = do_common_optimization(ir, true, true,
2882 options, ctx->Const.NativeIntegers)
2883 || progress;
2884
2885 progress = lower_quadop_vector(ir, true) || progress;
2886
2887 if (options->MaxIfDepth == 0)
2888 progress = lower_discard(ir) || progress;
2889
2890 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2891
2892 if (options->EmitNoNoise)
2893 progress = lower_noise(ir) || progress;
2894
2895 /* If there are forms of indirect addressing that the driver
2896 * cannot handle, perform the lowering pass.
2897 */
2898 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2899 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2900 progress =
2901 lower_variable_index_to_cond_assign(ir,
2902 options->EmitNoIndirectInput,
2903 options->EmitNoIndirectOutput,
2904 options->EmitNoIndirectTemp,
2905 options->EmitNoIndirectUniform)
2906 || progress;
2907
2908 progress = do_vec_index_to_cond_assign(ir) || progress;
2909 progress = lower_vector_insert(ir, true) || progress;
2910 } while (progress);
2911
2912 validate_ir_tree(ir);
2913 }
2914
2915 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2916 struct gl_program *linked_prog;
2917
2918 if (prog->_LinkedShaders[i] == NULL)
2919 continue;
2920
2921 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2922
2923 if (linked_prog) {
2924 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2925
2926 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
2927 linked_prog);
2928 if (!ctx->Driver.ProgramStringNotify(ctx,
2929 _mesa_shader_stage_to_program(i),
2930 linked_prog)) {
2931 return GL_FALSE;
2932 }
2933 }
2934
2935 _mesa_reference_program(ctx, &linked_prog, NULL);
2936 }
2937
2938 return prog->LinkStatus;
2939 }
2940
2941 /**
2942 * Link a GLSL shader program. Called via glLinkProgram().
2943 */
2944 void
2945 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2946 {
2947 unsigned int i;
2948
2949 _mesa_clear_shader_program_data(prog);
2950
2951 prog->LinkStatus = GL_TRUE;
2952
2953 for (i = 0; i < prog->NumShaders; i++) {
2954 if (!prog->Shaders[i]->CompileStatus) {
2955 linker_error(prog, "linking with uncompiled shader");
2956 }
2957 }
2958
2959 if (prog->LinkStatus) {
2960 link_shaders(ctx, prog);
2961 }
2962
2963 if (prog->LinkStatus) {
2964 if (!ctx->Driver.LinkShader(ctx, prog)) {
2965 prog->LinkStatus = GL_FALSE;
2966 }
2967 }
2968
2969 if (ctx->_Shader->Flags & GLSL_DUMP) {
2970 if (!prog->LinkStatus) {
2971 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
2972 }
2973
2974 if (prog->InfoLog && prog->InfoLog[0] != 0) {
2975 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
2976 fprintf(stderr, "%s\n", prog->InfoLog);
2977 }
2978 }
2979 }
2980
2981 } /* extern "C" */