glsl: Improve precision of mod(x,y)
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderapi.h"
47 #include "main/shaderobj.h"
48 #include "main/uniforms.h"
49
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58
59 static int swizzle_for_size(int size);
60
61 namespace {
62
63 class src_reg;
64 class dst_reg;
65
66 /**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70 class src_reg {
71 public:
72 src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->reladdr = NULL;
82 }
83
84 src_reg()
85 {
86 this->file = PROGRAM_UNDEFINED;
87 this->index = 0;
88 this->swizzle = 0;
89 this->negate = 0;
90 this->reladdr = NULL;
91 }
92
93 explicit src_reg(dst_reg reg);
94
95 gl_register_file file; /**< PROGRAM_* from Mesa */
96 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
97 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98 int negate; /**< NEGATE_XYZW mask from mesa */
99 /** Register index should be offset by the integer in this reg. */
100 src_reg *reladdr;
101 };
102
103 class dst_reg {
104 public:
105 dst_reg(gl_register_file file, int writemask)
106 {
107 this->file = file;
108 this->index = 0;
109 this->writemask = writemask;
110 this->cond_mask = COND_TR;
111 this->reladdr = NULL;
112 }
113
114 dst_reg()
115 {
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->writemask = 0;
119 this->cond_mask = COND_TR;
120 this->reladdr = NULL;
121 }
122
123 explicit dst_reg(src_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
127 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128 GLuint cond_mask:4;
129 /** Register index should be offset by the integer in this reg. */
130 src_reg *reladdr;
131 };
132
133 } /* anonymous namespace */
134
135 src_reg::src_reg(dst_reg reg)
136 {
137 this->file = reg.file;
138 this->index = reg.index;
139 this->swizzle = SWIZZLE_XYZW;
140 this->negate = 0;
141 this->reladdr = reg.reladdr;
142 }
143
144 dst_reg::dst_reg(src_reg reg)
145 {
146 this->file = reg.file;
147 this->index = reg.index;
148 this->writemask = WRITEMASK_XYZW;
149 this->cond_mask = COND_TR;
150 this->reladdr = reg.reladdr;
151 }
152
153 namespace {
154
155 class ir_to_mesa_instruction : public exec_node {
156 public:
157 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
158
159 enum prog_opcode op;
160 dst_reg dst;
161 src_reg src[3];
162 /** Pointer to the ir source this tree came from for debugging */
163 ir_instruction *ir;
164 GLboolean cond_update;
165 bool saturate;
166 int sampler; /**< sampler index */
167 int tex_target; /**< One of TEXTURE_*_INDEX */
168 GLboolean tex_shadow;
169 };
170
171 class variable_storage : public exec_node {
172 public:
173 variable_storage(ir_variable *var, gl_register_file file, int index)
174 : file(file), index(index), var(var)
175 {
176 /* empty */
177 }
178
179 gl_register_file file;
180 int index;
181 ir_variable *var; /* variable that maps to this, if any */
182 };
183
184 class function_entry : public exec_node {
185 public:
186 ir_function_signature *sig;
187
188 /**
189 * identifier of this function signature used by the program.
190 *
191 * At the point that Mesa instructions for function calls are
192 * generated, we don't know the address of the first instruction of
193 * the function body. So we make the BranchTarget that is called a
194 * small integer and rewrite them during set_branchtargets().
195 */
196 int sig_id;
197
198 /**
199 * Pointer to first instruction of the function body.
200 *
201 * Set during function body emits after main() is processed.
202 */
203 ir_to_mesa_instruction *bgn_inst;
204
205 /**
206 * Index of the first instruction of the function body in actual
207 * Mesa IR.
208 *
209 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
210 */
211 int inst;
212
213 /** Storage for the return value. */
214 src_reg return_reg;
215 };
216
217 class ir_to_mesa_visitor : public ir_visitor {
218 public:
219 ir_to_mesa_visitor();
220 ~ir_to_mesa_visitor();
221
222 function_entry *current_function;
223
224 struct gl_context *ctx;
225 struct gl_program *prog;
226 struct gl_shader_program *shader_program;
227 struct gl_shader_compiler_options *options;
228
229 int next_temp;
230
231 variable_storage *find_variable_storage(const ir_variable *var);
232
233 src_reg get_temp(const glsl_type *type);
234 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
235
236 src_reg src_reg_for_float(float val);
237
238 /**
239 * \name Visit methods
240 *
241 * As typical for the visitor pattern, there must be one \c visit method for
242 * each concrete subclass of \c ir_instruction. Virtual base classes within
243 * the hierarchy should not have \c visit methods.
244 */
245 /*@{*/
246 virtual void visit(ir_variable *);
247 virtual void visit(ir_loop *);
248 virtual void visit(ir_loop_jump *);
249 virtual void visit(ir_function_signature *);
250 virtual void visit(ir_function *);
251 virtual void visit(ir_expression *);
252 virtual void visit(ir_swizzle *);
253 virtual void visit(ir_dereference_variable *);
254 virtual void visit(ir_dereference_array *);
255 virtual void visit(ir_dereference_record *);
256 virtual void visit(ir_assignment *);
257 virtual void visit(ir_constant *);
258 virtual void visit(ir_call *);
259 virtual void visit(ir_return *);
260 virtual void visit(ir_discard *);
261 virtual void visit(ir_texture *);
262 virtual void visit(ir_if *);
263 virtual void visit(ir_emit_vertex *);
264 virtual void visit(ir_end_primitive *);
265 /*@}*/
266
267 src_reg result;
268
269 /** List of variable_storage */
270 exec_list variables;
271
272 /** List of function_entry */
273 exec_list function_signatures;
274 int next_signature_id;
275
276 /** List of ir_to_mesa_instruction */
277 exec_list instructions;
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst, src_reg src0);
283
284 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
285 dst_reg dst, src_reg src0, src_reg src1);
286
287 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
288 dst_reg dst,
289 src_reg src0, src_reg src1, src_reg src2);
290
291 /**
292 * Emit the correct dot-product instruction for the type of arguments
293 */
294 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
295 dst_reg dst,
296 src_reg src0,
297 src_reg src1,
298 unsigned elements);
299
300 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
301 dst_reg dst, src_reg src0);
302
303 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
304 dst_reg dst, src_reg src0, src_reg src1);
305
306 void emit_scs(ir_instruction *ir, enum prog_opcode op,
307 dst_reg dst, const src_reg &src);
308
309 bool try_emit_mad(ir_expression *ir,
310 int mul_operand);
311 bool try_emit_mad_for_and_not(ir_expression *ir,
312 int mul_operand);
313
314 void emit_swz(ir_expression *ir);
315
316 bool process_move_condition(ir_rvalue *ir);
317
318 void copy_propagate(void);
319
320 void *mem_ctx;
321 };
322
323 } /* anonymous namespace */
324
325 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
326
327 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
328
329 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
330
331 static int
332 swizzle_for_size(int size)
333 {
334 static const int size_swizzles[4] = {
335 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
336 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
337 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
339 };
340
341 assert((size >= 1) && (size <= 4));
342 return size_swizzles[size - 1];
343 }
344
345 ir_to_mesa_instruction *
346 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
347 dst_reg dst,
348 src_reg src0, src_reg src1, src_reg src2)
349 {
350 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
351 int num_reladdr = 0;
352
353 /* If we have to do relative addressing, we want to load the ARL
354 * reg directly for one of the regs, and preload the other reladdr
355 * sources into temps.
356 */
357 num_reladdr += dst.reladdr != NULL;
358 num_reladdr += src0.reladdr != NULL;
359 num_reladdr += src1.reladdr != NULL;
360 num_reladdr += src2.reladdr != NULL;
361
362 reladdr_to_temp(ir, &src2, &num_reladdr);
363 reladdr_to_temp(ir, &src1, &num_reladdr);
364 reladdr_to_temp(ir, &src0, &num_reladdr);
365
366 if (dst.reladdr) {
367 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
368 num_reladdr--;
369 }
370 assert(num_reladdr == 0);
371
372 inst->op = op;
373 inst->dst = dst;
374 inst->src[0] = src0;
375 inst->src[1] = src1;
376 inst->src[2] = src2;
377 inst->ir = ir;
378
379 this->instructions.push_tail(inst);
380
381 return inst;
382 }
383
384
385 ir_to_mesa_instruction *
386 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
387 dst_reg dst, src_reg src0, src_reg src1)
388 {
389 return emit(ir, op, dst, src0, src1, undef_src);
390 }
391
392 ir_to_mesa_instruction *
393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
394 dst_reg dst, src_reg src0)
395 {
396 assert(dst.writemask != 0);
397 return emit(ir, op, dst, src0, undef_src, undef_src);
398 }
399
400 ir_to_mesa_instruction *
401 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
402 {
403 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
404 }
405
406 ir_to_mesa_instruction *
407 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
408 dst_reg dst, src_reg src0, src_reg src1,
409 unsigned elements)
410 {
411 static const gl_inst_opcode dot_opcodes[] = {
412 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
413 };
414
415 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
416 }
417
418 /**
419 * Emits Mesa scalar opcodes to produce unique answers across channels.
420 *
421 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
422 * channel determines the result across all channels. So to do a vec4
423 * of this operation, we want to emit a scalar per source channel used
424 * to produce dest channels.
425 */
426 void
427 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
428 dst_reg dst,
429 src_reg orig_src0, src_reg orig_src1)
430 {
431 int i, j;
432 int done_mask = ~dst.writemask;
433
434 /* Mesa RCP is a scalar operation splatting results to all channels,
435 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
436 * dst channels.
437 */
438 for (i = 0; i < 4; i++) {
439 GLuint this_mask = (1 << i);
440 ir_to_mesa_instruction *inst;
441 src_reg src0 = orig_src0;
442 src_reg src1 = orig_src1;
443
444 if (done_mask & this_mask)
445 continue;
446
447 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
448 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
449 for (j = i + 1; j < 4; j++) {
450 /* If there is another enabled component in the destination that is
451 * derived from the same inputs, generate its value on this pass as
452 * well.
453 */
454 if (!(done_mask & (1 << j)) &&
455 GET_SWZ(src0.swizzle, j) == src0_swiz &&
456 GET_SWZ(src1.swizzle, j) == src1_swiz) {
457 this_mask |= (1 << j);
458 }
459 }
460 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
461 src0_swiz, src0_swiz);
462 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
463 src1_swiz, src1_swiz);
464
465 inst = emit(ir, op, dst, src0, src1);
466 inst->dst.writemask = this_mask;
467 done_mask |= this_mask;
468 }
469 }
470
471 void
472 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
473 dst_reg dst, src_reg src0)
474 {
475 src_reg undef = undef_src;
476
477 undef.swizzle = SWIZZLE_XXXX;
478
479 emit_scalar(ir, op, dst, src0, undef);
480 }
481
482 /**
483 * Emit an OPCODE_SCS instruction
484 *
485 * The \c SCS opcode functions a bit differently than the other Mesa (or
486 * ARB_fragment_program) opcodes. Instead of splatting its result across all
487 * four components of the destination, it writes one value to the \c x
488 * component and another value to the \c y component.
489 *
490 * \param ir IR instruction being processed
491 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
492 * value is desired.
493 * \param dst Destination register
494 * \param src Source register
495 */
496 void
497 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
498 dst_reg dst,
499 const src_reg &src)
500 {
501 /* Vertex programs cannot use the SCS opcode.
502 */
503 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
504 emit_scalar(ir, op, dst, src);
505 return;
506 }
507
508 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
509 const unsigned scs_mask = (1U << component);
510 int done_mask = ~dst.writemask;
511 src_reg tmp;
512
513 assert(op == OPCODE_SIN || op == OPCODE_COS);
514
515 /* If there are compnents in the destination that differ from the component
516 * that will be written by the SCS instrution, we'll need a temporary.
517 */
518 if (scs_mask != unsigned(dst.writemask)) {
519 tmp = get_temp(glsl_type::vec4_type);
520 }
521
522 for (unsigned i = 0; i < 4; i++) {
523 unsigned this_mask = (1U << i);
524 src_reg src0 = src;
525
526 if ((done_mask & this_mask) != 0)
527 continue;
528
529 /* The source swizzle specified which component of the source generates
530 * sine / cosine for the current component in the destination. The SCS
531 * instruction requires that this value be swizzle to the X component.
532 * Replace the current swizzle with a swizzle that puts the source in
533 * the X component.
534 */
535 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
536
537 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
538 src0_swiz, src0_swiz);
539 for (unsigned j = i + 1; j < 4; j++) {
540 /* If there is another enabled component in the destination that is
541 * derived from the same inputs, generate its value on this pass as
542 * well.
543 */
544 if (!(done_mask & (1 << j)) &&
545 GET_SWZ(src0.swizzle, j) == src0_swiz) {
546 this_mask |= (1 << j);
547 }
548 }
549
550 if (this_mask != scs_mask) {
551 ir_to_mesa_instruction *inst;
552 dst_reg tmp_dst = dst_reg(tmp);
553
554 /* Emit the SCS instruction.
555 */
556 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
557 inst->dst.writemask = scs_mask;
558
559 /* Move the result of the SCS instruction to the desired location in
560 * the destination.
561 */
562 tmp.swizzle = MAKE_SWIZZLE4(component, component,
563 component, component);
564 inst = emit(ir, OPCODE_SCS, dst, tmp);
565 inst->dst.writemask = this_mask;
566 } else {
567 /* Emit the SCS instruction to write directly to the destination.
568 */
569 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
570 inst->dst.writemask = scs_mask;
571 }
572
573 done_mask |= this_mask;
574 }
575 }
576
577 src_reg
578 ir_to_mesa_visitor::src_reg_for_float(float val)
579 {
580 src_reg src(PROGRAM_CONSTANT, -1, NULL);
581
582 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
583 (const gl_constant_value *)&val, 1, &src.swizzle);
584
585 return src;
586 }
587
588 static int
589 type_size(const struct glsl_type *type)
590 {
591 unsigned int i;
592 int size;
593
594 switch (type->base_type) {
595 case GLSL_TYPE_UINT:
596 case GLSL_TYPE_INT:
597 case GLSL_TYPE_FLOAT:
598 case GLSL_TYPE_BOOL:
599 if (type->is_matrix()) {
600 return type->matrix_columns;
601 } else {
602 /* Regardless of size of vector, it gets a vec4. This is bad
603 * packing for things like floats, but otherwise arrays become a
604 * mess. Hopefully a later pass over the code can pack scalars
605 * down if appropriate.
606 */
607 return 1;
608 }
609 case GLSL_TYPE_ARRAY:
610 assert(type->length > 0);
611 return type_size(type->fields.array) * type->length;
612 case GLSL_TYPE_STRUCT:
613 size = 0;
614 for (i = 0; i < type->length; i++) {
615 size += type_size(type->fields.structure[i].type);
616 }
617 return size;
618 case GLSL_TYPE_SAMPLER:
619 case GLSL_TYPE_IMAGE:
620 /* Samplers take up one slot in UNIFORMS[], but they're baked in
621 * at link time.
622 */
623 return 1;
624 case GLSL_TYPE_ATOMIC_UINT:
625 case GLSL_TYPE_VOID:
626 case GLSL_TYPE_ERROR:
627 case GLSL_TYPE_INTERFACE:
628 assert(!"Invalid type in type_size");
629 break;
630 }
631
632 return 0;
633 }
634
635 /**
636 * In the initial pass of codegen, we assign temporary numbers to
637 * intermediate results. (not SSA -- variable assignments will reuse
638 * storage). Actual register allocation for the Mesa VM occurs in a
639 * pass over the Mesa IR later.
640 */
641 src_reg
642 ir_to_mesa_visitor::get_temp(const glsl_type *type)
643 {
644 src_reg src;
645
646 src.file = PROGRAM_TEMPORARY;
647 src.index = next_temp;
648 src.reladdr = NULL;
649 next_temp += type_size(type);
650
651 if (type->is_array() || type->is_record()) {
652 src.swizzle = SWIZZLE_NOOP;
653 } else {
654 src.swizzle = swizzle_for_size(type->vector_elements);
655 }
656 src.negate = 0;
657
658 return src;
659 }
660
661 variable_storage *
662 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
663 {
664 foreach_in_list(variable_storage, entry, &this->variables) {
665 if (entry->var == var)
666 return entry;
667 }
668
669 return NULL;
670 }
671
672 void
673 ir_to_mesa_visitor::visit(ir_variable *ir)
674 {
675 if (strcmp(ir->name, "gl_FragCoord") == 0) {
676 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
677
678 fp->OriginUpperLeft = ir->data.origin_upper_left;
679 fp->PixelCenterInteger = ir->data.pixel_center_integer;
680 }
681
682 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
683 unsigned int i;
684 const ir_state_slot *const slots = ir->get_state_slots();
685 assert(slots != NULL);
686
687 /* Check if this statevar's setup in the STATE file exactly
688 * matches how we'll want to reference it as a
689 * struct/array/whatever. If not, then we need to move it into
690 * temporary storage and hope that it'll get copy-propagated
691 * out.
692 */
693 for (i = 0; i < ir->get_num_state_slots(); i++) {
694 if (slots[i].swizzle != SWIZZLE_XYZW) {
695 break;
696 }
697 }
698
699 variable_storage *storage;
700 dst_reg dst;
701 if (i == ir->get_num_state_slots()) {
702 /* We'll set the index later. */
703 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
704 this->variables.push_tail(storage);
705
706 dst = undef_dst;
707 } else {
708 /* The variable_storage constructor allocates slots based on the size
709 * of the type. However, this had better match the number of state
710 * elements that we're going to copy into the new temporary.
711 */
712 assert((int) ir->get_num_state_slots() == type_size(ir->type));
713
714 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
715 this->next_temp);
716 this->variables.push_tail(storage);
717 this->next_temp += type_size(ir->type);
718
719 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
720 }
721
722
723 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
724 int index = _mesa_add_state_reference(this->prog->Parameters,
725 (gl_state_index *)slots[i].tokens);
726
727 if (storage->file == PROGRAM_STATE_VAR) {
728 if (storage->index == -1) {
729 storage->index = index;
730 } else {
731 assert(index == storage->index + (int)i);
732 }
733 } else {
734 src_reg src(PROGRAM_STATE_VAR, index, NULL);
735 src.swizzle = slots[i].swizzle;
736 emit(ir, OPCODE_MOV, dst, src);
737 /* even a float takes up a whole vec4 reg in a struct/array. */
738 dst.index++;
739 }
740 }
741
742 if (storage->file == PROGRAM_TEMPORARY &&
743 dst.index != storage->index + (int) ir->get_num_state_slots()) {
744 linker_error(this->shader_program,
745 "failed to load builtin uniform `%s' "
746 "(%d/%d regs loaded)\n",
747 ir->name, dst.index - storage->index,
748 type_size(ir->type));
749 }
750 }
751 }
752
753 void
754 ir_to_mesa_visitor::visit(ir_loop *ir)
755 {
756 emit(NULL, OPCODE_BGNLOOP);
757
758 visit_exec_list(&ir->body_instructions, this);
759
760 emit(NULL, OPCODE_ENDLOOP);
761 }
762
763 void
764 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
765 {
766 switch (ir->mode) {
767 case ir_loop_jump::jump_break:
768 emit(NULL, OPCODE_BRK);
769 break;
770 case ir_loop_jump::jump_continue:
771 emit(NULL, OPCODE_CONT);
772 break;
773 }
774 }
775
776
777 void
778 ir_to_mesa_visitor::visit(ir_function_signature *ir)
779 {
780 assert(0);
781 (void)ir;
782 }
783
784 void
785 ir_to_mesa_visitor::visit(ir_function *ir)
786 {
787 /* Ignore function bodies other than main() -- we shouldn't see calls to
788 * them since they should all be inlined before we get to ir_to_mesa.
789 */
790 if (strcmp(ir->name, "main") == 0) {
791 const ir_function_signature *sig;
792 exec_list empty;
793
794 sig = ir->matching_signature(NULL, &empty, false);
795
796 assert(sig);
797
798 foreach_in_list(ir_instruction, ir, &sig->body) {
799 ir->accept(this);
800 }
801 }
802 }
803
804 bool
805 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
806 {
807 int nonmul_operand = 1 - mul_operand;
808 src_reg a, b, c;
809
810 ir_expression *expr = ir->operands[mul_operand]->as_expression();
811 if (!expr || expr->operation != ir_binop_mul)
812 return false;
813
814 expr->operands[0]->accept(this);
815 a = this->result;
816 expr->operands[1]->accept(this);
817 b = this->result;
818 ir->operands[nonmul_operand]->accept(this);
819 c = this->result;
820
821 this->result = get_temp(ir->type);
822 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
823
824 return true;
825 }
826
827 /**
828 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
829 *
830 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
831 * implemented using multiplication, and logical-or is implemented using
832 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
833 * As result, the logical expression (a & !b) can be rewritten as:
834 *
835 * - a * !b
836 * - a * (1 - b)
837 * - (a * 1) - (a * b)
838 * - a + -(a * b)
839 * - a + (a * -b)
840 *
841 * This final expression can be implemented as a single MAD(a, -b, a)
842 * instruction.
843 */
844 bool
845 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
846 {
847 const int other_operand = 1 - try_operand;
848 src_reg a, b;
849
850 ir_expression *expr = ir->operands[try_operand]->as_expression();
851 if (!expr || expr->operation != ir_unop_logic_not)
852 return false;
853
854 ir->operands[other_operand]->accept(this);
855 a = this->result;
856 expr->operands[0]->accept(this);
857 b = this->result;
858
859 b.negate = ~b.negate;
860
861 this->result = get_temp(ir->type);
862 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
863
864 return true;
865 }
866
867 void
868 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
869 src_reg *reg, int *num_reladdr)
870 {
871 if (!reg->reladdr)
872 return;
873
874 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
875
876 if (*num_reladdr != 1) {
877 src_reg temp = get_temp(glsl_type::vec4_type);
878
879 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
880 *reg = temp;
881 }
882
883 (*num_reladdr)--;
884 }
885
886 void
887 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
888 {
889 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
890 * This means that each of the operands is either an immediate value of -1,
891 * 0, or 1, or is a component from one source register (possibly with
892 * negation).
893 */
894 uint8_t components[4] = { 0 };
895 bool negate[4] = { false };
896 ir_variable *var = NULL;
897
898 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
899 ir_rvalue *op = ir->operands[i];
900
901 assert(op->type->is_scalar());
902
903 while (op != NULL) {
904 switch (op->ir_type) {
905 case ir_type_constant: {
906
907 assert(op->type->is_scalar());
908
909 const ir_constant *const c = op->as_constant();
910 if (c->is_one()) {
911 components[i] = SWIZZLE_ONE;
912 } else if (c->is_zero()) {
913 components[i] = SWIZZLE_ZERO;
914 } else if (c->is_negative_one()) {
915 components[i] = SWIZZLE_ONE;
916 negate[i] = true;
917 } else {
918 assert(!"SWZ constant must be 0.0 or 1.0.");
919 }
920
921 op = NULL;
922 break;
923 }
924
925 case ir_type_dereference_variable: {
926 ir_dereference_variable *const deref =
927 (ir_dereference_variable *) op;
928
929 assert((var == NULL) || (deref->var == var));
930 components[i] = SWIZZLE_X;
931 var = deref->var;
932 op = NULL;
933 break;
934 }
935
936 case ir_type_expression: {
937 ir_expression *const expr = (ir_expression *) op;
938
939 assert(expr->operation == ir_unop_neg);
940 negate[i] = true;
941
942 op = expr->operands[0];
943 break;
944 }
945
946 case ir_type_swizzle: {
947 ir_swizzle *const swiz = (ir_swizzle *) op;
948
949 components[i] = swiz->mask.x;
950 op = swiz->val;
951 break;
952 }
953
954 default:
955 assert(!"Should not get here.");
956 return;
957 }
958 }
959 }
960
961 assert(var != NULL);
962
963 ir_dereference_variable *const deref =
964 new(mem_ctx) ir_dereference_variable(var);
965
966 this->result.file = PROGRAM_UNDEFINED;
967 deref->accept(this);
968 if (this->result.file == PROGRAM_UNDEFINED) {
969 printf("Failed to get tree for expression operand:\n");
970 deref->print();
971 printf("\n");
972 exit(1);
973 }
974
975 src_reg src;
976
977 src = this->result;
978 src.swizzle = MAKE_SWIZZLE4(components[0],
979 components[1],
980 components[2],
981 components[3]);
982 src.negate = ((unsigned(negate[0]) << 0)
983 | (unsigned(negate[1]) << 1)
984 | (unsigned(negate[2]) << 2)
985 | (unsigned(negate[3]) << 3));
986
987 /* Storage for our result. Ideally for an assignment we'd be using the
988 * actual storage for the result here, instead.
989 */
990 const src_reg result_src = get_temp(ir->type);
991 dst_reg result_dst = dst_reg(result_src);
992
993 /* Limit writes to the channels that will be used by result_src later.
994 * This does limit this temp's use as a temporary for multi-instruction
995 * sequences.
996 */
997 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
998
999 emit(ir, OPCODE_SWZ, result_dst, src);
1000 this->result = result_src;
1001 }
1002
1003 void
1004 ir_to_mesa_visitor::visit(ir_expression *ir)
1005 {
1006 unsigned int operand;
1007 src_reg op[Elements(ir->operands)];
1008 src_reg result_src;
1009 dst_reg result_dst;
1010
1011 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1012 */
1013 if (ir->operation == ir_binop_add) {
1014 if (try_emit_mad(ir, 1))
1015 return;
1016 if (try_emit_mad(ir, 0))
1017 return;
1018 }
1019
1020 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1021 */
1022 if (ir->operation == ir_binop_logic_and) {
1023 if (try_emit_mad_for_and_not(ir, 1))
1024 return;
1025 if (try_emit_mad_for_and_not(ir, 0))
1026 return;
1027 }
1028
1029 if (ir->operation == ir_quadop_vector) {
1030 this->emit_swz(ir);
1031 return;
1032 }
1033
1034 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1035 this->result.file = PROGRAM_UNDEFINED;
1036 ir->operands[operand]->accept(this);
1037 if (this->result.file == PROGRAM_UNDEFINED) {
1038 printf("Failed to get tree for expression operand:\n");
1039 ir->operands[operand]->print();
1040 printf("\n");
1041 exit(1);
1042 }
1043 op[operand] = this->result;
1044
1045 /* Matrix expression operands should have been broken down to vector
1046 * operations already.
1047 */
1048 assert(!ir->operands[operand]->type->is_matrix());
1049 }
1050
1051 int vector_elements = ir->operands[0]->type->vector_elements;
1052 if (ir->operands[1]) {
1053 vector_elements = MAX2(vector_elements,
1054 ir->operands[1]->type->vector_elements);
1055 }
1056
1057 this->result.file = PROGRAM_UNDEFINED;
1058
1059 /* Storage for our result. Ideally for an assignment we'd be using
1060 * the actual storage for the result here, instead.
1061 */
1062 result_src = get_temp(ir->type);
1063 /* convenience for the emit functions below. */
1064 result_dst = dst_reg(result_src);
1065 /* Limit writes to the channels that will be used by result_src later.
1066 * This does limit this temp's use as a temporary for multi-instruction
1067 * sequences.
1068 */
1069 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1070
1071 switch (ir->operation) {
1072 case ir_unop_logic_not:
1073 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1074 * older GPUs implement SEQ using multiple instructions (i915 uses two
1075 * SGE instructions and a MUL instruction). Since our logic values are
1076 * 0.0 and 1.0, 1-x also implements !x.
1077 */
1078 op[0].negate = ~op[0].negate;
1079 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1080 break;
1081 case ir_unop_neg:
1082 op[0].negate = ~op[0].negate;
1083 result_src = op[0];
1084 break;
1085 case ir_unop_abs:
1086 emit(ir, OPCODE_ABS, result_dst, op[0]);
1087 break;
1088 case ir_unop_sign:
1089 emit(ir, OPCODE_SSG, result_dst, op[0]);
1090 break;
1091 case ir_unop_rcp:
1092 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1093 break;
1094
1095 case ir_unop_exp2:
1096 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1097 break;
1098 case ir_unop_exp:
1099 case ir_unop_log:
1100 assert(!"not reached: should be handled by ir_explog_to_explog2");
1101 break;
1102 case ir_unop_log2:
1103 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1104 break;
1105 case ir_unop_sin:
1106 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1107 break;
1108 case ir_unop_cos:
1109 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1110 break;
1111 case ir_unop_sin_reduced:
1112 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1113 break;
1114 case ir_unop_cos_reduced:
1115 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1116 break;
1117
1118 case ir_unop_dFdx:
1119 emit(ir, OPCODE_DDX, result_dst, op[0]);
1120 break;
1121 case ir_unop_dFdy:
1122 emit(ir, OPCODE_DDY, result_dst, op[0]);
1123 break;
1124
1125 case ir_unop_saturate: {
1126 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1127 result_dst, op[0]);
1128 inst->saturate = true;
1129 break;
1130 }
1131 case ir_unop_noise: {
1132 const enum prog_opcode opcode =
1133 prog_opcode(OPCODE_NOISE1
1134 + (ir->operands[0]->type->vector_elements) - 1);
1135 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1136
1137 emit(ir, opcode, result_dst, op[0]);
1138 break;
1139 }
1140
1141 case ir_binop_add:
1142 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1143 break;
1144 case ir_binop_sub:
1145 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1146 break;
1147
1148 case ir_binop_mul:
1149 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1150 break;
1151 case ir_binop_div:
1152 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1153 break;
1154 case ir_binop_mod:
1155 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1156 assert(ir->type->is_integer());
1157 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1158 break;
1159
1160 case ir_binop_less:
1161 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1162 break;
1163 case ir_binop_greater:
1164 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1165 break;
1166 case ir_binop_lequal:
1167 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1168 break;
1169 case ir_binop_gequal:
1170 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1171 break;
1172 case ir_binop_equal:
1173 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1174 break;
1175 case ir_binop_nequal:
1176 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1177 break;
1178 case ir_binop_all_equal:
1179 /* "==" operator producing a scalar boolean. */
1180 if (ir->operands[0]->type->is_vector() ||
1181 ir->operands[1]->type->is_vector()) {
1182 src_reg temp = get_temp(glsl_type::vec4_type);
1183 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1184
1185 /* After the dot-product, the value will be an integer on the
1186 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1187 */
1188 emit_dp(ir, result_dst, temp, temp, vector_elements);
1189
1190 /* Negating the result of the dot-product gives values on the range
1191 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1192 * achieved using SGE.
1193 */
1194 src_reg sge_src = result_src;
1195 sge_src.negate = ~sge_src.negate;
1196 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1197 } else {
1198 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1199 }
1200 break;
1201 case ir_binop_any_nequal:
1202 /* "!=" operator producing a scalar boolean. */
1203 if (ir->operands[0]->type->is_vector() ||
1204 ir->operands[1]->type->is_vector()) {
1205 src_reg temp = get_temp(glsl_type::vec4_type);
1206 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1207
1208 /* After the dot-product, the value will be an integer on the
1209 * range [0,4]. Zero stays zero, and positive values become 1.0.
1210 */
1211 ir_to_mesa_instruction *const dp =
1212 emit_dp(ir, result_dst, temp, temp, vector_elements);
1213 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1214 /* The clamping to [0,1] can be done for free in the fragment
1215 * shader with a saturate.
1216 */
1217 dp->saturate = true;
1218 } else {
1219 /* Negating the result of the dot-product gives values on the range
1220 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1221 * achieved using SLT.
1222 */
1223 src_reg slt_src = result_src;
1224 slt_src.negate = ~slt_src.negate;
1225 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1226 }
1227 } else {
1228 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1229 }
1230 break;
1231
1232 case ir_unop_any: {
1233 assert(ir->operands[0]->type->is_vector());
1234
1235 /* After the dot-product, the value will be an integer on the
1236 * range [0,4]. Zero stays zero, and positive values become 1.0.
1237 */
1238 ir_to_mesa_instruction *const dp =
1239 emit_dp(ir, result_dst, op[0], op[0],
1240 ir->operands[0]->type->vector_elements);
1241 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1242 /* The clamping to [0,1] can be done for free in the fragment
1243 * shader with a saturate.
1244 */
1245 dp->saturate = true;
1246 } else {
1247 /* Negating the result of the dot-product gives values on the range
1248 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1249 * is achieved using SLT.
1250 */
1251 src_reg slt_src = result_src;
1252 slt_src.negate = ~slt_src.negate;
1253 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1254 }
1255 break;
1256 }
1257
1258 case ir_binop_logic_xor:
1259 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1260 break;
1261
1262 case ir_binop_logic_or: {
1263 /* After the addition, the value will be an integer on the
1264 * range [0,2]. Zero stays zero, and positive values become 1.0.
1265 */
1266 ir_to_mesa_instruction *add =
1267 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1268 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1269 /* The clamping to [0,1] can be done for free in the fragment
1270 * shader with a saturate.
1271 */
1272 add->saturate = true;
1273 } else {
1274 /* Negating the result of the addition gives values on the range
1275 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1276 * is achieved using SLT.
1277 */
1278 src_reg slt_src = result_src;
1279 slt_src.negate = ~slt_src.negate;
1280 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1281 }
1282 break;
1283 }
1284
1285 case ir_binop_logic_and:
1286 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1287 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1288 break;
1289
1290 case ir_binop_dot:
1291 assert(ir->operands[0]->type->is_vector());
1292 assert(ir->operands[0]->type == ir->operands[1]->type);
1293 emit_dp(ir, result_dst, op[0], op[1],
1294 ir->operands[0]->type->vector_elements);
1295 break;
1296
1297 case ir_unop_sqrt:
1298 /* sqrt(x) = x * rsq(x). */
1299 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1300 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1301 /* For incoming channels <= 0, set the result to 0. */
1302 op[0].negate = ~op[0].negate;
1303 emit(ir, OPCODE_CMP, result_dst,
1304 op[0], result_src, src_reg_for_float(0.0));
1305 break;
1306 case ir_unop_rsq:
1307 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1308 break;
1309 case ir_unop_i2f:
1310 case ir_unop_u2f:
1311 case ir_unop_b2f:
1312 case ir_unop_b2i:
1313 case ir_unop_i2u:
1314 case ir_unop_u2i:
1315 /* Mesa IR lacks types, ints are stored as truncated floats. */
1316 result_src = op[0];
1317 break;
1318 case ir_unop_f2i:
1319 case ir_unop_f2u:
1320 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1321 break;
1322 case ir_unop_f2b:
1323 case ir_unop_i2b:
1324 emit(ir, OPCODE_SNE, result_dst,
1325 op[0], src_reg_for_float(0.0));
1326 break;
1327 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1328 case ir_unop_bitcast_f2u:
1329 case ir_unop_bitcast_i2f:
1330 case ir_unop_bitcast_u2f:
1331 break;
1332 case ir_unop_trunc:
1333 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1334 break;
1335 case ir_unop_ceil:
1336 op[0].negate = ~op[0].negate;
1337 emit(ir, OPCODE_FLR, result_dst, op[0]);
1338 result_src.negate = ~result_src.negate;
1339 break;
1340 case ir_unop_floor:
1341 emit(ir, OPCODE_FLR, result_dst, op[0]);
1342 break;
1343 case ir_unop_fract:
1344 emit(ir, OPCODE_FRC, result_dst, op[0]);
1345 break;
1346 case ir_unop_pack_snorm_2x16:
1347 case ir_unop_pack_snorm_4x8:
1348 case ir_unop_pack_unorm_2x16:
1349 case ir_unop_pack_unorm_4x8:
1350 case ir_unop_pack_half_2x16:
1351 case ir_unop_unpack_snorm_2x16:
1352 case ir_unop_unpack_snorm_4x8:
1353 case ir_unop_unpack_unorm_2x16:
1354 case ir_unop_unpack_unorm_4x8:
1355 case ir_unop_unpack_half_2x16:
1356 case ir_unop_unpack_half_2x16_split_x:
1357 case ir_unop_unpack_half_2x16_split_y:
1358 case ir_binop_pack_half_2x16_split:
1359 case ir_unop_bitfield_reverse:
1360 case ir_unop_bit_count:
1361 case ir_unop_find_msb:
1362 case ir_unop_find_lsb:
1363 assert(!"not supported");
1364 break;
1365 case ir_binop_min:
1366 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1367 break;
1368 case ir_binop_max:
1369 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1370 break;
1371 case ir_binop_pow:
1372 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1373 break;
1374
1375 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1376 * hardware backends have no way to avoid Mesa IR generation
1377 * even if they don't use it, we need to emit "something" and
1378 * continue.
1379 */
1380 case ir_binop_lshift:
1381 case ir_binop_rshift:
1382 case ir_binop_bit_and:
1383 case ir_binop_bit_xor:
1384 case ir_binop_bit_or:
1385 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1386 break;
1387
1388 case ir_unop_bit_not:
1389 case ir_unop_round_even:
1390 emit(ir, OPCODE_MOV, result_dst, op[0]);
1391 break;
1392
1393 case ir_binop_ubo_load:
1394 assert(!"not supported");
1395 break;
1396
1397 case ir_triop_lrp:
1398 /* ir_triop_lrp operands are (x, y, a) while
1399 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1400 */
1401 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1402 break;
1403
1404 case ir_binop_vector_extract:
1405 case ir_binop_bfm:
1406 case ir_triop_fma:
1407 case ir_triop_bfi:
1408 case ir_triop_bitfield_extract:
1409 case ir_triop_vector_insert:
1410 case ir_quadop_bitfield_insert:
1411 case ir_binop_ldexp:
1412 case ir_triop_csel:
1413 case ir_binop_carry:
1414 case ir_binop_borrow:
1415 case ir_binop_imul_high:
1416 case ir_unop_interpolate_at_centroid:
1417 case ir_binop_interpolate_at_offset:
1418 case ir_binop_interpolate_at_sample:
1419 case ir_unop_dFdx_coarse:
1420 case ir_unop_dFdx_fine:
1421 case ir_unop_dFdy_coarse:
1422 case ir_unop_dFdy_fine:
1423 assert(!"not supported");
1424 break;
1425
1426 case ir_quadop_vector:
1427 /* This operation should have already been handled.
1428 */
1429 assert(!"Should not get here.");
1430 break;
1431 }
1432
1433 this->result = result_src;
1434 }
1435
1436
1437 void
1438 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1439 {
1440 src_reg src;
1441 int i;
1442 int swizzle[4];
1443
1444 /* Note that this is only swizzles in expressions, not those on the left
1445 * hand side of an assignment, which do write masking. See ir_assignment
1446 * for that.
1447 */
1448
1449 ir->val->accept(this);
1450 src = this->result;
1451 assert(src.file != PROGRAM_UNDEFINED);
1452 assert(ir->type->vector_elements > 0);
1453
1454 for (i = 0; i < 4; i++) {
1455 if (i < ir->type->vector_elements) {
1456 switch (i) {
1457 case 0:
1458 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1459 break;
1460 case 1:
1461 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1462 break;
1463 case 2:
1464 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1465 break;
1466 case 3:
1467 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1468 break;
1469 }
1470 } else {
1471 /* If the type is smaller than a vec4, replicate the last
1472 * channel out.
1473 */
1474 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1475 }
1476 }
1477
1478 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1479
1480 this->result = src;
1481 }
1482
1483 void
1484 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1485 {
1486 variable_storage *entry = find_variable_storage(ir->var);
1487 ir_variable *var = ir->var;
1488
1489 if (!entry) {
1490 switch (var->data.mode) {
1491 case ir_var_uniform:
1492 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1493 var->data.location);
1494 this->variables.push_tail(entry);
1495 break;
1496 case ir_var_shader_in:
1497 /* The linker assigns locations for varyings and attributes,
1498 * including deprecated builtins (like gl_Color),
1499 * user-assigned generic attributes (glBindVertexLocation),
1500 * and user-defined varyings.
1501 */
1502 assert(var->data.location != -1);
1503 entry = new(mem_ctx) variable_storage(var,
1504 PROGRAM_INPUT,
1505 var->data.location);
1506 break;
1507 case ir_var_shader_out:
1508 assert(var->data.location != -1);
1509 entry = new(mem_ctx) variable_storage(var,
1510 PROGRAM_OUTPUT,
1511 var->data.location);
1512 break;
1513 case ir_var_system_value:
1514 entry = new(mem_ctx) variable_storage(var,
1515 PROGRAM_SYSTEM_VALUE,
1516 var->data.location);
1517 break;
1518 case ir_var_auto:
1519 case ir_var_temporary:
1520 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1521 this->next_temp);
1522 this->variables.push_tail(entry);
1523
1524 next_temp += type_size(var->type);
1525 break;
1526 }
1527
1528 if (!entry) {
1529 printf("Failed to make storage for %s\n", var->name);
1530 exit(1);
1531 }
1532 }
1533
1534 this->result = src_reg(entry->file, entry->index, var->type);
1535 }
1536
1537 void
1538 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1539 {
1540 ir_constant *index;
1541 src_reg src;
1542 int element_size = type_size(ir->type);
1543
1544 index = ir->array_index->constant_expression_value();
1545
1546 ir->array->accept(this);
1547 src = this->result;
1548
1549 if (index) {
1550 src.index += index->value.i[0] * element_size;
1551 } else {
1552 /* Variable index array dereference. It eats the "vec4" of the
1553 * base of the array and an index that offsets the Mesa register
1554 * index.
1555 */
1556 ir->array_index->accept(this);
1557
1558 src_reg index_reg;
1559
1560 if (element_size == 1) {
1561 index_reg = this->result;
1562 } else {
1563 index_reg = get_temp(glsl_type::float_type);
1564
1565 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1566 this->result, src_reg_for_float(element_size));
1567 }
1568
1569 /* If there was already a relative address register involved, add the
1570 * new and the old together to get the new offset.
1571 */
1572 if (src.reladdr != NULL) {
1573 src_reg accum_reg = get_temp(glsl_type::float_type);
1574
1575 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1576 index_reg, *src.reladdr);
1577
1578 index_reg = accum_reg;
1579 }
1580
1581 src.reladdr = ralloc(mem_ctx, src_reg);
1582 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1583 }
1584
1585 /* If the type is smaller than a vec4, replicate the last channel out. */
1586 if (ir->type->is_scalar() || ir->type->is_vector())
1587 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1588 else
1589 src.swizzle = SWIZZLE_NOOP;
1590
1591 this->result = src;
1592 }
1593
1594 void
1595 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1596 {
1597 unsigned int i;
1598 const glsl_type *struct_type = ir->record->type;
1599 int offset = 0;
1600
1601 ir->record->accept(this);
1602
1603 for (i = 0; i < struct_type->length; i++) {
1604 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1605 break;
1606 offset += type_size(struct_type->fields.structure[i].type);
1607 }
1608
1609 /* If the type is smaller than a vec4, replicate the last channel out. */
1610 if (ir->type->is_scalar() || ir->type->is_vector())
1611 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1612 else
1613 this->result.swizzle = SWIZZLE_NOOP;
1614
1615 this->result.index += offset;
1616 }
1617
1618 /**
1619 * We want to be careful in assignment setup to hit the actual storage
1620 * instead of potentially using a temporary like we might with the
1621 * ir_dereference handler.
1622 */
1623 static dst_reg
1624 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1625 {
1626 /* The LHS must be a dereference. If the LHS is a variable indexed array
1627 * access of a vector, it must be separated into a series conditional moves
1628 * before reaching this point (see ir_vec_index_to_cond_assign).
1629 */
1630 assert(ir->as_dereference());
1631 ir_dereference_array *deref_array = ir->as_dereference_array();
1632 if (deref_array) {
1633 assert(!deref_array->array->type->is_vector());
1634 }
1635
1636 /* Use the rvalue deref handler for the most part. We'll ignore
1637 * swizzles in it and write swizzles using writemask, though.
1638 */
1639 ir->accept(v);
1640 return dst_reg(v->result);
1641 }
1642
1643 /**
1644 * Process the condition of a conditional assignment
1645 *
1646 * Examines the condition of a conditional assignment to generate the optimal
1647 * first operand of a \c CMP instruction. If the condition is a relational
1648 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1649 * used as the source for the \c CMP instruction. Otherwise the comparison
1650 * is processed to a boolean result, and the boolean result is used as the
1651 * operand to the CMP instruction.
1652 */
1653 bool
1654 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1655 {
1656 ir_rvalue *src_ir = ir;
1657 bool negate = true;
1658 bool switch_order = false;
1659
1660 ir_expression *const expr = ir->as_expression();
1661 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1662 bool zero_on_left = false;
1663
1664 if (expr->operands[0]->is_zero()) {
1665 src_ir = expr->operands[1];
1666 zero_on_left = true;
1667 } else if (expr->operands[1]->is_zero()) {
1668 src_ir = expr->operands[0];
1669 zero_on_left = false;
1670 }
1671
1672 /* a is - 0 + - 0 +
1673 * (a < 0) T F F ( a < 0) T F F
1674 * (0 < a) F F T (-a < 0) F F T
1675 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1676 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1677 * (a > 0) F F T (-a < 0) F F T
1678 * (0 > a) T F F ( a < 0) T F F
1679 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1680 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1681 *
1682 * Note that exchanging the order of 0 and 'a' in the comparison simply
1683 * means that the value of 'a' should be negated.
1684 */
1685 if (src_ir != ir) {
1686 switch (expr->operation) {
1687 case ir_binop_less:
1688 switch_order = false;
1689 negate = zero_on_left;
1690 break;
1691
1692 case ir_binop_greater:
1693 switch_order = false;
1694 negate = !zero_on_left;
1695 break;
1696
1697 case ir_binop_lequal:
1698 switch_order = true;
1699 negate = !zero_on_left;
1700 break;
1701
1702 case ir_binop_gequal:
1703 switch_order = true;
1704 negate = zero_on_left;
1705 break;
1706
1707 default:
1708 /* This isn't the right kind of comparison afterall, so make sure
1709 * the whole condition is visited.
1710 */
1711 src_ir = ir;
1712 break;
1713 }
1714 }
1715 }
1716
1717 src_ir->accept(this);
1718
1719 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1720 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1721 * choose which value OPCODE_CMP produces without an extra instruction
1722 * computing the condition.
1723 */
1724 if (negate)
1725 this->result.negate = ~this->result.negate;
1726
1727 return switch_order;
1728 }
1729
1730 void
1731 ir_to_mesa_visitor::visit(ir_assignment *ir)
1732 {
1733 dst_reg l;
1734 src_reg r;
1735 int i;
1736
1737 ir->rhs->accept(this);
1738 r = this->result;
1739
1740 l = get_assignment_lhs(ir->lhs, this);
1741
1742 /* FINISHME: This should really set to the correct maximal writemask for each
1743 * FINISHME: component written (in the loops below). This case can only
1744 * FINISHME: occur for matrices, arrays, and structures.
1745 */
1746 if (ir->write_mask == 0) {
1747 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1748 l.writemask = WRITEMASK_XYZW;
1749 } else if (ir->lhs->type->is_scalar()) {
1750 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1751 * FINISHME: W component of fragment shader output zero, work correctly.
1752 */
1753 l.writemask = WRITEMASK_XYZW;
1754 } else {
1755 int swizzles[4];
1756 int first_enabled_chan = 0;
1757 int rhs_chan = 0;
1758
1759 assert(ir->lhs->type->is_vector());
1760 l.writemask = ir->write_mask;
1761
1762 for (int i = 0; i < 4; i++) {
1763 if (l.writemask & (1 << i)) {
1764 first_enabled_chan = GET_SWZ(r.swizzle, i);
1765 break;
1766 }
1767 }
1768
1769 /* Swizzle a small RHS vector into the channels being written.
1770 *
1771 * glsl ir treats write_mask as dictating how many channels are
1772 * present on the RHS while Mesa IR treats write_mask as just
1773 * showing which channels of the vec4 RHS get written.
1774 */
1775 for (int i = 0; i < 4; i++) {
1776 if (l.writemask & (1 << i))
1777 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1778 else
1779 swizzles[i] = first_enabled_chan;
1780 }
1781 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1782 swizzles[2], swizzles[3]);
1783 }
1784
1785 assert(l.file != PROGRAM_UNDEFINED);
1786 assert(r.file != PROGRAM_UNDEFINED);
1787
1788 if (ir->condition) {
1789 const bool switch_order = this->process_move_condition(ir->condition);
1790 src_reg condition = this->result;
1791
1792 for (i = 0; i < type_size(ir->lhs->type); i++) {
1793 if (switch_order) {
1794 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1795 } else {
1796 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1797 }
1798
1799 l.index++;
1800 r.index++;
1801 }
1802 } else {
1803 for (i = 0; i < type_size(ir->lhs->type); i++) {
1804 emit(ir, OPCODE_MOV, l, r);
1805 l.index++;
1806 r.index++;
1807 }
1808 }
1809 }
1810
1811
1812 void
1813 ir_to_mesa_visitor::visit(ir_constant *ir)
1814 {
1815 src_reg src;
1816 GLfloat stack_vals[4] = { 0 };
1817 GLfloat *values = stack_vals;
1818 unsigned int i;
1819
1820 /* Unfortunately, 4 floats is all we can get into
1821 * _mesa_add_unnamed_constant. So, make a temp to store an
1822 * aggregate constant and move each constant value into it. If we
1823 * get lucky, copy propagation will eliminate the extra moves.
1824 */
1825
1826 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1827 src_reg temp_base = get_temp(ir->type);
1828 dst_reg temp = dst_reg(temp_base);
1829
1830 foreach_in_list(ir_constant, field_value, &ir->components) {
1831 int size = type_size(field_value->type);
1832
1833 assert(size > 0);
1834
1835 field_value->accept(this);
1836 src = this->result;
1837
1838 for (i = 0; i < (unsigned int)size; i++) {
1839 emit(ir, OPCODE_MOV, temp, src);
1840
1841 src.index++;
1842 temp.index++;
1843 }
1844 }
1845 this->result = temp_base;
1846 return;
1847 }
1848
1849 if (ir->type->is_array()) {
1850 src_reg temp_base = get_temp(ir->type);
1851 dst_reg temp = dst_reg(temp_base);
1852 int size = type_size(ir->type->fields.array);
1853
1854 assert(size > 0);
1855
1856 for (i = 0; i < ir->type->length; i++) {
1857 ir->array_elements[i]->accept(this);
1858 src = this->result;
1859 for (int j = 0; j < size; j++) {
1860 emit(ir, OPCODE_MOV, temp, src);
1861
1862 src.index++;
1863 temp.index++;
1864 }
1865 }
1866 this->result = temp_base;
1867 return;
1868 }
1869
1870 if (ir->type->is_matrix()) {
1871 src_reg mat = get_temp(ir->type);
1872 dst_reg mat_column = dst_reg(mat);
1873
1874 for (i = 0; i < ir->type->matrix_columns; i++) {
1875 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1876 values = &ir->value.f[i * ir->type->vector_elements];
1877
1878 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1879 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1880 (gl_constant_value *) values,
1881 ir->type->vector_elements,
1882 &src.swizzle);
1883 emit(ir, OPCODE_MOV, mat_column, src);
1884
1885 mat_column.index++;
1886 }
1887
1888 this->result = mat;
1889 return;
1890 }
1891
1892 src.file = PROGRAM_CONSTANT;
1893 switch (ir->type->base_type) {
1894 case GLSL_TYPE_FLOAT:
1895 values = &ir->value.f[0];
1896 break;
1897 case GLSL_TYPE_UINT:
1898 for (i = 0; i < ir->type->vector_elements; i++) {
1899 values[i] = ir->value.u[i];
1900 }
1901 break;
1902 case GLSL_TYPE_INT:
1903 for (i = 0; i < ir->type->vector_elements; i++) {
1904 values[i] = ir->value.i[i];
1905 }
1906 break;
1907 case GLSL_TYPE_BOOL:
1908 for (i = 0; i < ir->type->vector_elements; i++) {
1909 values[i] = ir->value.b[i];
1910 }
1911 break;
1912 default:
1913 assert(!"Non-float/uint/int/bool constant");
1914 }
1915
1916 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1917 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1918 (gl_constant_value *) values,
1919 ir->type->vector_elements,
1920 &this->result.swizzle);
1921 }
1922
1923 void
1924 ir_to_mesa_visitor::visit(ir_call *)
1925 {
1926 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1927 }
1928
1929 void
1930 ir_to_mesa_visitor::visit(ir_texture *ir)
1931 {
1932 src_reg result_src, coord, lod_info, projector, dx, dy;
1933 dst_reg result_dst, coord_dst;
1934 ir_to_mesa_instruction *inst = NULL;
1935 prog_opcode opcode = OPCODE_NOP;
1936
1937 if (ir->op == ir_txs)
1938 this->result = src_reg_for_float(0.0);
1939 else
1940 ir->coordinate->accept(this);
1941
1942 /* Put our coords in a temp. We'll need to modify them for shadow,
1943 * projection, or LOD, so the only case we'd use it as is is if
1944 * we're doing plain old texturing. Mesa IR optimization should
1945 * handle cleaning up our mess in that case.
1946 */
1947 coord = get_temp(glsl_type::vec4_type);
1948 coord_dst = dst_reg(coord);
1949 emit(ir, OPCODE_MOV, coord_dst, this->result);
1950
1951 if (ir->projector) {
1952 ir->projector->accept(this);
1953 projector = this->result;
1954 }
1955
1956 /* Storage for our result. Ideally for an assignment we'd be using
1957 * the actual storage for the result here, instead.
1958 */
1959 result_src = get_temp(glsl_type::vec4_type);
1960 result_dst = dst_reg(result_src);
1961
1962 switch (ir->op) {
1963 case ir_tex:
1964 case ir_txs:
1965 opcode = OPCODE_TEX;
1966 break;
1967 case ir_txb:
1968 opcode = OPCODE_TXB;
1969 ir->lod_info.bias->accept(this);
1970 lod_info = this->result;
1971 break;
1972 case ir_txf:
1973 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1974 case ir_txl:
1975 opcode = OPCODE_TXL;
1976 ir->lod_info.lod->accept(this);
1977 lod_info = this->result;
1978 break;
1979 case ir_txd:
1980 opcode = OPCODE_TXD;
1981 ir->lod_info.grad.dPdx->accept(this);
1982 dx = this->result;
1983 ir->lod_info.grad.dPdy->accept(this);
1984 dy = this->result;
1985 break;
1986 case ir_txf_ms:
1987 assert(!"Unexpected ir_txf_ms opcode");
1988 break;
1989 case ir_lod:
1990 assert(!"Unexpected ir_lod opcode");
1991 break;
1992 case ir_tg4:
1993 assert(!"Unexpected ir_tg4 opcode");
1994 break;
1995 case ir_query_levels:
1996 assert(!"Unexpected ir_query_levels opcode");
1997 break;
1998 }
1999
2000 const glsl_type *sampler_type = ir->sampler->type;
2001
2002 if (ir->projector) {
2003 if (opcode == OPCODE_TEX) {
2004 /* Slot the projector in as the last component of the coord. */
2005 coord_dst.writemask = WRITEMASK_W;
2006 emit(ir, OPCODE_MOV, coord_dst, projector);
2007 coord_dst.writemask = WRITEMASK_XYZW;
2008 opcode = OPCODE_TXP;
2009 } else {
2010 src_reg coord_w = coord;
2011 coord_w.swizzle = SWIZZLE_WWWW;
2012
2013 /* For the other TEX opcodes there's no projective version
2014 * since the last slot is taken up by lod info. Do the
2015 * projective divide now.
2016 */
2017 coord_dst.writemask = WRITEMASK_W;
2018 emit(ir, OPCODE_RCP, coord_dst, projector);
2019
2020 /* In the case where we have to project the coordinates "by hand,"
2021 * the shadow comparitor value must also be projected.
2022 */
2023 src_reg tmp_src = coord;
2024 if (ir->shadow_comparitor) {
2025 /* Slot the shadow value in as the second to last component of the
2026 * coord.
2027 */
2028 ir->shadow_comparitor->accept(this);
2029
2030 tmp_src = get_temp(glsl_type::vec4_type);
2031 dst_reg tmp_dst = dst_reg(tmp_src);
2032
2033 /* Projective division not allowed for array samplers. */
2034 assert(!sampler_type->sampler_array);
2035
2036 tmp_dst.writemask = WRITEMASK_Z;
2037 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2038
2039 tmp_dst.writemask = WRITEMASK_XY;
2040 emit(ir, OPCODE_MOV, tmp_dst, coord);
2041 }
2042
2043 coord_dst.writemask = WRITEMASK_XYZ;
2044 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2045
2046 coord_dst.writemask = WRITEMASK_XYZW;
2047 coord.swizzle = SWIZZLE_XYZW;
2048 }
2049 }
2050
2051 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2052 * comparitor was put in the correct place (and projected) by the code,
2053 * above, that handles by-hand projection.
2054 */
2055 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2056 /* Slot the shadow value in as the second to last component of the
2057 * coord.
2058 */
2059 ir->shadow_comparitor->accept(this);
2060
2061 /* XXX This will need to be updated for cubemap array samplers. */
2062 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2063 sampler_type->sampler_array) {
2064 coord_dst.writemask = WRITEMASK_W;
2065 } else {
2066 coord_dst.writemask = WRITEMASK_Z;
2067 }
2068
2069 emit(ir, OPCODE_MOV, coord_dst, this->result);
2070 coord_dst.writemask = WRITEMASK_XYZW;
2071 }
2072
2073 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2074 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2075 coord_dst.writemask = WRITEMASK_W;
2076 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2077 coord_dst.writemask = WRITEMASK_XYZW;
2078 }
2079
2080 if (opcode == OPCODE_TXD)
2081 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2082 else
2083 inst = emit(ir, opcode, result_dst, coord);
2084
2085 if (ir->shadow_comparitor)
2086 inst->tex_shadow = GL_TRUE;
2087
2088 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2089 this->shader_program,
2090 this->prog);
2091
2092 switch (sampler_type->sampler_dimensionality) {
2093 case GLSL_SAMPLER_DIM_1D:
2094 inst->tex_target = (sampler_type->sampler_array)
2095 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2096 break;
2097 case GLSL_SAMPLER_DIM_2D:
2098 inst->tex_target = (sampler_type->sampler_array)
2099 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2100 break;
2101 case GLSL_SAMPLER_DIM_3D:
2102 inst->tex_target = TEXTURE_3D_INDEX;
2103 break;
2104 case GLSL_SAMPLER_DIM_CUBE:
2105 inst->tex_target = TEXTURE_CUBE_INDEX;
2106 break;
2107 case GLSL_SAMPLER_DIM_RECT:
2108 inst->tex_target = TEXTURE_RECT_INDEX;
2109 break;
2110 case GLSL_SAMPLER_DIM_BUF:
2111 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2112 break;
2113 case GLSL_SAMPLER_DIM_EXTERNAL:
2114 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2115 break;
2116 default:
2117 assert(!"Should not get here.");
2118 }
2119
2120 this->result = result_src;
2121 }
2122
2123 void
2124 ir_to_mesa_visitor::visit(ir_return *ir)
2125 {
2126 /* Non-void functions should have been inlined. We may still emit RETs
2127 * from main() unless the EmitNoMainReturn option is set.
2128 */
2129 assert(!ir->get_value());
2130 emit(ir, OPCODE_RET);
2131 }
2132
2133 void
2134 ir_to_mesa_visitor::visit(ir_discard *ir)
2135 {
2136 if (ir->condition) {
2137 ir->condition->accept(this);
2138 this->result.negate = ~this->result.negate;
2139 emit(ir, OPCODE_KIL, undef_dst, this->result);
2140 } else {
2141 emit(ir, OPCODE_KIL_NV);
2142 }
2143 }
2144
2145 void
2146 ir_to_mesa_visitor::visit(ir_if *ir)
2147 {
2148 ir_to_mesa_instruction *cond_inst, *if_inst;
2149 ir_to_mesa_instruction *prev_inst;
2150
2151 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2152
2153 ir->condition->accept(this);
2154 assert(this->result.file != PROGRAM_UNDEFINED);
2155
2156 if (this->options->EmitCondCodes) {
2157 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2158
2159 /* See if we actually generated any instruction for generating
2160 * the condition. If not, then cook up a move to a temp so we
2161 * have something to set cond_update on.
2162 */
2163 if (cond_inst == prev_inst) {
2164 src_reg temp = get_temp(glsl_type::bool_type);
2165 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2166 }
2167 cond_inst->cond_update = GL_TRUE;
2168
2169 if_inst = emit(ir->condition, OPCODE_IF);
2170 if_inst->dst.cond_mask = COND_NE;
2171 } else {
2172 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2173 }
2174
2175 this->instructions.push_tail(if_inst);
2176
2177 visit_exec_list(&ir->then_instructions, this);
2178
2179 if (!ir->else_instructions.is_empty()) {
2180 emit(ir->condition, OPCODE_ELSE);
2181 visit_exec_list(&ir->else_instructions, this);
2182 }
2183
2184 emit(ir->condition, OPCODE_ENDIF);
2185 }
2186
2187 void
2188 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2189 {
2190 assert(!"Geometry shaders not supported.");
2191 }
2192
2193 void
2194 ir_to_mesa_visitor::visit(ir_end_primitive *)
2195 {
2196 assert(!"Geometry shaders not supported.");
2197 }
2198
2199 ir_to_mesa_visitor::ir_to_mesa_visitor()
2200 {
2201 result.file = PROGRAM_UNDEFINED;
2202 next_temp = 1;
2203 next_signature_id = 1;
2204 current_function = NULL;
2205 mem_ctx = ralloc_context(NULL);
2206 }
2207
2208 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2209 {
2210 ralloc_free(mem_ctx);
2211 }
2212
2213 static struct prog_src_register
2214 mesa_src_reg_from_ir_src_reg(src_reg reg)
2215 {
2216 struct prog_src_register mesa_reg;
2217
2218 mesa_reg.File = reg.file;
2219 assert(reg.index < (1 << INST_INDEX_BITS));
2220 mesa_reg.Index = reg.index;
2221 mesa_reg.Swizzle = reg.swizzle;
2222 mesa_reg.RelAddr = reg.reladdr != NULL;
2223 mesa_reg.Negate = reg.negate;
2224 mesa_reg.Abs = 0;
2225 mesa_reg.HasIndex2 = GL_FALSE;
2226 mesa_reg.RelAddr2 = 0;
2227 mesa_reg.Index2 = 0;
2228
2229 return mesa_reg;
2230 }
2231
2232 static void
2233 set_branchtargets(ir_to_mesa_visitor *v,
2234 struct prog_instruction *mesa_instructions,
2235 int num_instructions)
2236 {
2237 int if_count = 0, loop_count = 0;
2238 int *if_stack, *loop_stack;
2239 int if_stack_pos = 0, loop_stack_pos = 0;
2240 int i, j;
2241
2242 for (i = 0; i < num_instructions; i++) {
2243 switch (mesa_instructions[i].Opcode) {
2244 case OPCODE_IF:
2245 if_count++;
2246 break;
2247 case OPCODE_BGNLOOP:
2248 loop_count++;
2249 break;
2250 case OPCODE_BRK:
2251 case OPCODE_CONT:
2252 mesa_instructions[i].BranchTarget = -1;
2253 break;
2254 default:
2255 break;
2256 }
2257 }
2258
2259 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2260 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2261
2262 for (i = 0; i < num_instructions; i++) {
2263 switch (mesa_instructions[i].Opcode) {
2264 case OPCODE_IF:
2265 if_stack[if_stack_pos] = i;
2266 if_stack_pos++;
2267 break;
2268 case OPCODE_ELSE:
2269 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2270 if_stack[if_stack_pos - 1] = i;
2271 break;
2272 case OPCODE_ENDIF:
2273 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2274 if_stack_pos--;
2275 break;
2276 case OPCODE_BGNLOOP:
2277 loop_stack[loop_stack_pos] = i;
2278 loop_stack_pos++;
2279 break;
2280 case OPCODE_ENDLOOP:
2281 loop_stack_pos--;
2282 /* Rewrite any breaks/conts at this nesting level (haven't
2283 * already had a BranchTarget assigned) to point to the end
2284 * of the loop.
2285 */
2286 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2287 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2288 mesa_instructions[j].Opcode == OPCODE_CONT) {
2289 if (mesa_instructions[j].BranchTarget == -1) {
2290 mesa_instructions[j].BranchTarget = i;
2291 }
2292 }
2293 }
2294 /* The loop ends point at each other. */
2295 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2296 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2297 break;
2298 case OPCODE_CAL:
2299 foreach_in_list(function_entry, entry, &v->function_signatures) {
2300 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2301 mesa_instructions[i].BranchTarget = entry->inst;
2302 break;
2303 }
2304 }
2305 break;
2306 default:
2307 break;
2308 }
2309 }
2310 }
2311
2312 static void
2313 print_program(struct prog_instruction *mesa_instructions,
2314 ir_instruction **mesa_instruction_annotation,
2315 int num_instructions)
2316 {
2317 ir_instruction *last_ir = NULL;
2318 int i;
2319 int indent = 0;
2320
2321 for (i = 0; i < num_instructions; i++) {
2322 struct prog_instruction *mesa_inst = mesa_instructions + i;
2323 ir_instruction *ir = mesa_instruction_annotation[i];
2324
2325 fprintf(stdout, "%3d: ", i);
2326
2327 if (last_ir != ir && ir) {
2328 int j;
2329
2330 for (j = 0; j < indent; j++) {
2331 fprintf(stdout, " ");
2332 }
2333 ir->print();
2334 printf("\n");
2335 last_ir = ir;
2336
2337 fprintf(stdout, " "); /* line number spacing. */
2338 }
2339
2340 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2341 PROG_PRINT_DEBUG, NULL);
2342 }
2343 }
2344
2345 namespace {
2346
2347 class add_uniform_to_shader : public program_resource_visitor {
2348 public:
2349 add_uniform_to_shader(struct gl_shader_program *shader_program,
2350 struct gl_program_parameter_list *params,
2351 gl_shader_stage shader_type)
2352 : shader_program(shader_program), params(params), idx(-1),
2353 shader_type(shader_type)
2354 {
2355 /* empty */
2356 }
2357
2358 void process(ir_variable *var)
2359 {
2360 this->idx = -1;
2361 this->program_resource_visitor::process(var);
2362
2363 var->data.location = this->idx;
2364 }
2365
2366 private:
2367 virtual void visit_field(const glsl_type *type, const char *name,
2368 bool row_major);
2369
2370 struct gl_shader_program *shader_program;
2371 struct gl_program_parameter_list *params;
2372 int idx;
2373 gl_shader_stage shader_type;
2374 };
2375
2376 } /* anonymous namespace */
2377
2378 void
2379 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2380 bool row_major)
2381 {
2382 unsigned int size;
2383
2384 (void) row_major;
2385
2386 if (type->is_vector() || type->is_scalar()) {
2387 size = type->vector_elements;
2388 } else {
2389 size = type_size(type) * 4;
2390 }
2391
2392 gl_register_file file;
2393 if (type->without_array()->is_sampler()) {
2394 file = PROGRAM_SAMPLER;
2395 } else {
2396 file = PROGRAM_UNIFORM;
2397 }
2398
2399 int index = _mesa_lookup_parameter_index(params, -1, name);
2400 if (index < 0) {
2401 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2402 NULL, NULL);
2403
2404 /* Sampler uniform values are stored in prog->SamplerUnits,
2405 * and the entry in that array is selected by this index we
2406 * store in ParameterValues[].
2407 */
2408 if (file == PROGRAM_SAMPLER) {
2409 unsigned location;
2410 const bool found =
2411 this->shader_program->UniformHash->get(location,
2412 params->Parameters[index].Name);
2413 assert(found);
2414
2415 if (!found)
2416 return;
2417
2418 struct gl_uniform_storage *storage =
2419 &this->shader_program->UniformStorage[location];
2420
2421 assert(storage->sampler[shader_type].active);
2422
2423 for (unsigned int j = 0; j < size / 4; j++)
2424 params->ParameterValues[index + j][0].f =
2425 storage->sampler[shader_type].index + j;
2426 }
2427 }
2428
2429 /* The first part of the uniform that's processed determines the base
2430 * location of the whole uniform (for structures).
2431 */
2432 if (this->idx < 0)
2433 this->idx = index;
2434 }
2435
2436 /**
2437 * Generate the program parameters list for the user uniforms in a shader
2438 *
2439 * \param shader_program Linked shader program. This is only used to
2440 * emit possible link errors to the info log.
2441 * \param sh Shader whose uniforms are to be processed.
2442 * \param params Parameter list to be filled in.
2443 */
2444 void
2445 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2446 *shader_program,
2447 struct gl_shader *sh,
2448 struct gl_program_parameter_list
2449 *params)
2450 {
2451 add_uniform_to_shader add(shader_program, params, sh->Stage);
2452
2453 foreach_in_list(ir_instruction, node, sh->ir) {
2454 ir_variable *var = node->as_variable();
2455
2456 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2457 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2458 continue;
2459
2460 add.process(var);
2461 }
2462 }
2463
2464 void
2465 _mesa_associate_uniform_storage(struct gl_context *ctx,
2466 struct gl_shader_program *shader_program,
2467 struct gl_program_parameter_list *params)
2468 {
2469 /* After adding each uniform to the parameter list, connect the storage for
2470 * the parameter with the tracking structure used by the API for the
2471 * uniform.
2472 */
2473 unsigned last_location = unsigned(~0);
2474 for (unsigned i = 0; i < params->NumParameters; i++) {
2475 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2476 continue;
2477
2478 unsigned location;
2479 const bool found =
2480 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2481 assert(found);
2482
2483 if (!found)
2484 continue;
2485
2486 if (location != last_location) {
2487 struct gl_uniform_storage *storage =
2488 &shader_program->UniformStorage[location];
2489 enum gl_uniform_driver_format format = uniform_native;
2490
2491 unsigned columns = 0;
2492 switch (storage->type->base_type) {
2493 case GLSL_TYPE_UINT:
2494 assert(ctx->Const.NativeIntegers);
2495 format = uniform_native;
2496 columns = 1;
2497 break;
2498 case GLSL_TYPE_INT:
2499 format =
2500 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2501 columns = 1;
2502 break;
2503 case GLSL_TYPE_FLOAT:
2504 format = uniform_native;
2505 columns = storage->type->matrix_columns;
2506 break;
2507 case GLSL_TYPE_BOOL:
2508 format = uniform_native;
2509 columns = 1;
2510 break;
2511 case GLSL_TYPE_SAMPLER:
2512 case GLSL_TYPE_IMAGE:
2513 format = uniform_native;
2514 columns = 1;
2515 break;
2516 case GLSL_TYPE_ATOMIC_UINT:
2517 case GLSL_TYPE_ARRAY:
2518 case GLSL_TYPE_VOID:
2519 case GLSL_TYPE_STRUCT:
2520 case GLSL_TYPE_ERROR:
2521 case GLSL_TYPE_INTERFACE:
2522 assert(!"Should not get here.");
2523 break;
2524 }
2525
2526 _mesa_uniform_attach_driver_storage(storage,
2527 4 * sizeof(float) * columns,
2528 4 * sizeof(float),
2529 format,
2530 &params->ParameterValues[i]);
2531
2532 /* After attaching the driver's storage to the uniform, propagate any
2533 * data from the linker's backing store. This will cause values from
2534 * initializers in the source code to be copied over.
2535 */
2536 _mesa_propagate_uniforms_to_driver_storage(storage,
2537 0,
2538 MAX2(1, storage->array_elements));
2539
2540 last_location = location;
2541 }
2542 }
2543 }
2544
2545 /*
2546 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2547 * channels for copy propagation and updates following instructions to
2548 * use the original versions.
2549 *
2550 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2551 * will occur. As an example, a TXP production before this pass:
2552 *
2553 * 0: MOV TEMP[1], INPUT[4].xyyy;
2554 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2555 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2556 *
2557 * and after:
2558 *
2559 * 0: MOV TEMP[1], INPUT[4].xyyy;
2560 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2561 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2562 *
2563 * which allows for dead code elimination on TEMP[1]'s writes.
2564 */
2565 void
2566 ir_to_mesa_visitor::copy_propagate(void)
2567 {
2568 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2569 ir_to_mesa_instruction *,
2570 this->next_temp * 4);
2571 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2572 int level = 0;
2573
2574 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2575 assert(inst->dst.file != PROGRAM_TEMPORARY
2576 || inst->dst.index < this->next_temp);
2577
2578 /* First, do any copy propagation possible into the src regs. */
2579 for (int r = 0; r < 3; r++) {
2580 ir_to_mesa_instruction *first = NULL;
2581 bool good = true;
2582 int acp_base = inst->src[r].index * 4;
2583
2584 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2585 inst->src[r].reladdr)
2586 continue;
2587
2588 /* See if we can find entries in the ACP consisting of MOVs
2589 * from the same src register for all the swizzled channels
2590 * of this src register reference.
2591 */
2592 for (int i = 0; i < 4; i++) {
2593 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2594 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2595
2596 if (!copy_chan) {
2597 good = false;
2598 break;
2599 }
2600
2601 assert(acp_level[acp_base + src_chan] <= level);
2602
2603 if (!first) {
2604 first = copy_chan;
2605 } else {
2606 if (first->src[0].file != copy_chan->src[0].file ||
2607 first->src[0].index != copy_chan->src[0].index) {
2608 good = false;
2609 break;
2610 }
2611 }
2612 }
2613
2614 if (good) {
2615 /* We've now validated that we can copy-propagate to
2616 * replace this src register reference. Do it.
2617 */
2618 inst->src[r].file = first->src[0].file;
2619 inst->src[r].index = first->src[0].index;
2620
2621 int swizzle = 0;
2622 for (int i = 0; i < 4; i++) {
2623 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2624 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2625 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2626 (3 * i));
2627 }
2628 inst->src[r].swizzle = swizzle;
2629 }
2630 }
2631
2632 switch (inst->op) {
2633 case OPCODE_BGNLOOP:
2634 case OPCODE_ENDLOOP:
2635 /* End of a basic block, clear the ACP entirely. */
2636 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2637 break;
2638
2639 case OPCODE_IF:
2640 ++level;
2641 break;
2642
2643 case OPCODE_ENDIF:
2644 case OPCODE_ELSE:
2645 /* Clear all channels written inside the block from the ACP, but
2646 * leaving those that were not touched.
2647 */
2648 for (int r = 0; r < this->next_temp; r++) {
2649 for (int c = 0; c < 4; c++) {
2650 if (!acp[4 * r + c])
2651 continue;
2652
2653 if (acp_level[4 * r + c] >= level)
2654 acp[4 * r + c] = NULL;
2655 }
2656 }
2657 if (inst->op == OPCODE_ENDIF)
2658 --level;
2659 break;
2660
2661 default:
2662 /* Continuing the block, clear any written channels from
2663 * the ACP.
2664 */
2665 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2666 /* Any temporary might be written, so no copy propagation
2667 * across this instruction.
2668 */
2669 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2670 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2671 inst->dst.reladdr) {
2672 /* Any output might be written, so no copy propagation
2673 * from outputs across this instruction.
2674 */
2675 for (int r = 0; r < this->next_temp; r++) {
2676 for (int c = 0; c < 4; c++) {
2677 if (!acp[4 * r + c])
2678 continue;
2679
2680 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2681 acp[4 * r + c] = NULL;
2682 }
2683 }
2684 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2685 inst->dst.file == PROGRAM_OUTPUT) {
2686 /* Clear where it's used as dst. */
2687 if (inst->dst.file == PROGRAM_TEMPORARY) {
2688 for (int c = 0; c < 4; c++) {
2689 if (inst->dst.writemask & (1 << c)) {
2690 acp[4 * inst->dst.index + c] = NULL;
2691 }
2692 }
2693 }
2694
2695 /* Clear where it's used as src. */
2696 for (int r = 0; r < this->next_temp; r++) {
2697 for (int c = 0; c < 4; c++) {
2698 if (!acp[4 * r + c])
2699 continue;
2700
2701 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2702
2703 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2704 acp[4 * r + c]->src[0].index == inst->dst.index &&
2705 inst->dst.writemask & (1 << src_chan))
2706 {
2707 acp[4 * r + c] = NULL;
2708 }
2709 }
2710 }
2711 }
2712 break;
2713 }
2714
2715 /* If this is a copy, add it to the ACP. */
2716 if (inst->op == OPCODE_MOV &&
2717 inst->dst.file == PROGRAM_TEMPORARY &&
2718 !(inst->dst.file == inst->src[0].file &&
2719 inst->dst.index == inst->src[0].index) &&
2720 !inst->dst.reladdr &&
2721 !inst->saturate &&
2722 !inst->src[0].reladdr &&
2723 !inst->src[0].negate) {
2724 for (int i = 0; i < 4; i++) {
2725 if (inst->dst.writemask & (1 << i)) {
2726 acp[4 * inst->dst.index + i] = inst;
2727 acp_level[4 * inst->dst.index + i] = level;
2728 }
2729 }
2730 }
2731 }
2732
2733 ralloc_free(acp_level);
2734 ralloc_free(acp);
2735 }
2736
2737
2738 /**
2739 * Convert a shader's GLSL IR into a Mesa gl_program.
2740 */
2741 static struct gl_program *
2742 get_mesa_program(struct gl_context *ctx,
2743 struct gl_shader_program *shader_program,
2744 struct gl_shader *shader)
2745 {
2746 ir_to_mesa_visitor v;
2747 struct prog_instruction *mesa_instructions, *mesa_inst;
2748 ir_instruction **mesa_instruction_annotation;
2749 int i;
2750 struct gl_program *prog;
2751 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2752 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2753 struct gl_shader_compiler_options *options =
2754 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2755
2756 validate_ir_tree(shader->ir);
2757
2758 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2759 if (!prog)
2760 return NULL;
2761 prog->Parameters = _mesa_new_parameter_list();
2762 v.ctx = ctx;
2763 v.prog = prog;
2764 v.shader_program = shader_program;
2765 v.options = options;
2766
2767 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2768 prog->Parameters);
2769
2770 /* Emit Mesa IR for main(). */
2771 visit_exec_list(shader->ir, &v);
2772 v.emit(NULL, OPCODE_END);
2773
2774 prog->NumTemporaries = v.next_temp;
2775
2776 unsigned num_instructions = v.instructions.length();
2777
2778 mesa_instructions =
2779 (struct prog_instruction *)calloc(num_instructions,
2780 sizeof(*mesa_instructions));
2781 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2782 num_instructions);
2783
2784 v.copy_propagate();
2785
2786 /* Convert ir_mesa_instructions into prog_instructions.
2787 */
2788 mesa_inst = mesa_instructions;
2789 i = 0;
2790 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2791 mesa_inst->Opcode = inst->op;
2792 mesa_inst->CondUpdate = inst->cond_update;
2793 if (inst->saturate)
2794 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2795 mesa_inst->DstReg.File = inst->dst.file;
2796 mesa_inst->DstReg.Index = inst->dst.index;
2797 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2798 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2799 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2800 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2801 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2802 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2803 mesa_inst->TexSrcUnit = inst->sampler;
2804 mesa_inst->TexSrcTarget = inst->tex_target;
2805 mesa_inst->TexShadow = inst->tex_shadow;
2806 mesa_instruction_annotation[i] = inst->ir;
2807
2808 /* Set IndirectRegisterFiles. */
2809 if (mesa_inst->DstReg.RelAddr)
2810 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2811
2812 /* Update program's bitmask of indirectly accessed register files */
2813 for (unsigned src = 0; src < 3; src++)
2814 if (mesa_inst->SrcReg[src].RelAddr)
2815 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2816
2817 switch (mesa_inst->Opcode) {
2818 case OPCODE_IF:
2819 if (options->MaxIfDepth == 0) {
2820 linker_warning(shader_program,
2821 "Couldn't flatten if-statement. "
2822 "This will likely result in software "
2823 "rasterization.\n");
2824 }
2825 break;
2826 case OPCODE_BGNLOOP:
2827 if (options->EmitNoLoops) {
2828 linker_warning(shader_program,
2829 "Couldn't unroll loop. "
2830 "This will likely result in software "
2831 "rasterization.\n");
2832 }
2833 break;
2834 case OPCODE_CONT:
2835 if (options->EmitNoCont) {
2836 linker_warning(shader_program,
2837 "Couldn't lower continue-statement. "
2838 "This will likely result in software "
2839 "rasterization.\n");
2840 }
2841 break;
2842 case OPCODE_ARL:
2843 prog->NumAddressRegs = 1;
2844 break;
2845 default:
2846 break;
2847 }
2848
2849 mesa_inst++;
2850 i++;
2851
2852 if (!shader_program->LinkStatus)
2853 break;
2854 }
2855
2856 if (!shader_program->LinkStatus) {
2857 goto fail_exit;
2858 }
2859
2860 set_branchtargets(&v, mesa_instructions, num_instructions);
2861
2862 if (ctx->_Shader->Flags & GLSL_DUMP) {
2863 fprintf(stderr, "\n");
2864 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2865 shader_program->Name);
2866 _mesa_print_ir(stderr, shader->ir, NULL);
2867 fprintf(stderr, "\n");
2868 fprintf(stderr, "\n");
2869 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2870 shader_program->Name);
2871 print_program(mesa_instructions, mesa_instruction_annotation,
2872 num_instructions);
2873 fflush(stderr);
2874 }
2875
2876 prog->Instructions = mesa_instructions;
2877 prog->NumInstructions = num_instructions;
2878
2879 /* Setting this to NULL prevents a possible double free in the fail_exit
2880 * path (far below).
2881 */
2882 mesa_instructions = NULL;
2883
2884 do_set_program_inouts(shader->ir, prog, shader->Stage);
2885
2886 prog->SamplersUsed = shader->active_samplers;
2887 prog->ShadowSamplers = shader->shadow_samplers;
2888 _mesa_update_shader_textures_used(shader_program, prog);
2889
2890 /* Set the gl_FragDepth layout. */
2891 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2892 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2893 fp->FragDepthLayout = shader_program->FragDepthLayout;
2894 }
2895
2896 _mesa_reference_program(ctx, &shader->Program, prog);
2897
2898 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2899 _mesa_optimize_program(ctx, prog);
2900 }
2901
2902 /* This has to be done last. Any operation that can cause
2903 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2904 * program constant) has to happen before creating this linkage.
2905 */
2906 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2907 if (!shader_program->LinkStatus) {
2908 goto fail_exit;
2909 }
2910
2911 return prog;
2912
2913 fail_exit:
2914 free(mesa_instructions);
2915 _mesa_reference_program(ctx, &shader->Program, NULL);
2916 return NULL;
2917 }
2918
2919 extern "C" {
2920
2921 /**
2922 * Link a shader.
2923 * Called via ctx->Driver.LinkShader()
2924 * This actually involves converting GLSL IR into Mesa gl_programs with
2925 * code lowering and other optimizations.
2926 */
2927 GLboolean
2928 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2929 {
2930 assert(prog->LinkStatus);
2931
2932 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2933 if (prog->_LinkedShaders[i] == NULL)
2934 continue;
2935
2936 bool progress;
2937 exec_list *ir = prog->_LinkedShaders[i]->ir;
2938 const struct gl_shader_compiler_options *options =
2939 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2940
2941 do {
2942 progress = false;
2943
2944 /* Lowering */
2945 do_mat_op_to_vec(ir);
2946 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2947 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2948 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2949
2950 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2951
2952 progress = do_common_optimization(ir, true, true,
2953 options, ctx->Const.NativeIntegers)
2954 || progress;
2955
2956 progress = lower_quadop_vector(ir, true) || progress;
2957
2958 if (options->MaxIfDepth == 0)
2959 progress = lower_discard(ir) || progress;
2960
2961 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2962
2963 if (options->EmitNoNoise)
2964 progress = lower_noise(ir) || progress;
2965
2966 /* If there are forms of indirect addressing that the driver
2967 * cannot handle, perform the lowering pass.
2968 */
2969 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2970 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2971 progress =
2972 lower_variable_index_to_cond_assign(ir,
2973 options->EmitNoIndirectInput,
2974 options->EmitNoIndirectOutput,
2975 options->EmitNoIndirectTemp,
2976 options->EmitNoIndirectUniform)
2977 || progress;
2978
2979 progress = do_vec_index_to_cond_assign(ir) || progress;
2980 progress = lower_vector_insert(ir, true) || progress;
2981 } while (progress);
2982
2983 validate_ir_tree(ir);
2984 }
2985
2986 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2987 struct gl_program *linked_prog;
2988
2989 if (prog->_LinkedShaders[i] == NULL)
2990 continue;
2991
2992 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2993
2994 if (linked_prog) {
2995 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2996
2997 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
2998 linked_prog);
2999 if (!ctx->Driver.ProgramStringNotify(ctx,
3000 _mesa_shader_stage_to_program(i),
3001 linked_prog)) {
3002 return GL_FALSE;
3003 }
3004 }
3005
3006 _mesa_reference_program(ctx, &linked_prog, NULL);
3007 }
3008
3009 return prog->LinkStatus;
3010 }
3011
3012 /**
3013 * Link a GLSL shader program. Called via glLinkProgram().
3014 */
3015 void
3016 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3017 {
3018 unsigned int i;
3019
3020 _mesa_clear_shader_program_data(prog);
3021
3022 prog->LinkStatus = GL_TRUE;
3023
3024 for (i = 0; i < prog->NumShaders; i++) {
3025 if (!prog->Shaders[i]->CompileStatus) {
3026 linker_error(prog, "linking with uncompiled shader");
3027 }
3028 }
3029
3030 if (prog->LinkStatus) {
3031 link_shaders(ctx, prog);
3032 }
3033
3034 if (prog->LinkStatus) {
3035 if (!ctx->Driver.LinkShader(ctx, prog)) {
3036 prog->LinkStatus = GL_FALSE;
3037 }
3038 }
3039
3040 if (ctx->_Shader->Flags & GLSL_DUMP) {
3041 if (!prog->LinkStatus) {
3042 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3043 }
3044
3045 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3046 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3047 fprintf(stderr, "%s\n", prog->InfoLog);
3048 }
3049 }
3050 }
3051
3052 } /* extern "C" */