glsl: Add GLSL_TYPE_FUNCTION to the base types enums
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderapi.h"
47 #include "main/shaderobj.h"
48 #include "main/uniforms.h"
49
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58
59 static int swizzle_for_size(int size);
60
61 namespace {
62
63 class src_reg;
64 class dst_reg;
65
66 /**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70 class src_reg {
71 public:
72 src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->reladdr = NULL;
82 }
83
84 src_reg()
85 {
86 this->file = PROGRAM_UNDEFINED;
87 this->index = 0;
88 this->swizzle = 0;
89 this->negate = 0;
90 this->reladdr = NULL;
91 }
92
93 explicit src_reg(dst_reg reg);
94
95 gl_register_file file; /**< PROGRAM_* from Mesa */
96 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
97 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98 int negate; /**< NEGATE_XYZW mask from mesa */
99 /** Register index should be offset by the integer in this reg. */
100 src_reg *reladdr;
101 };
102
103 class dst_reg {
104 public:
105 dst_reg(gl_register_file file, int writemask)
106 {
107 this->file = file;
108 this->index = 0;
109 this->writemask = writemask;
110 this->cond_mask = COND_TR;
111 this->reladdr = NULL;
112 }
113
114 dst_reg()
115 {
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->writemask = 0;
119 this->cond_mask = COND_TR;
120 this->reladdr = NULL;
121 }
122
123 explicit dst_reg(src_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
127 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128 GLuint cond_mask:4;
129 /** Register index should be offset by the integer in this reg. */
130 src_reg *reladdr;
131 };
132
133 } /* anonymous namespace */
134
135 src_reg::src_reg(dst_reg reg)
136 {
137 this->file = reg.file;
138 this->index = reg.index;
139 this->swizzle = SWIZZLE_XYZW;
140 this->negate = 0;
141 this->reladdr = reg.reladdr;
142 }
143
144 dst_reg::dst_reg(src_reg reg)
145 {
146 this->file = reg.file;
147 this->index = reg.index;
148 this->writemask = WRITEMASK_XYZW;
149 this->cond_mask = COND_TR;
150 this->reladdr = reg.reladdr;
151 }
152
153 namespace {
154
155 class ir_to_mesa_instruction : public exec_node {
156 public:
157 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
158
159 enum prog_opcode op;
160 dst_reg dst;
161 src_reg src[3];
162 /** Pointer to the ir source this tree came from for debugging */
163 ir_instruction *ir;
164 GLboolean cond_update;
165 bool saturate;
166 int sampler; /**< sampler index */
167 int tex_target; /**< One of TEXTURE_*_INDEX */
168 GLboolean tex_shadow;
169 };
170
171 class variable_storage : public exec_node {
172 public:
173 variable_storage(ir_variable *var, gl_register_file file, int index)
174 : file(file), index(index), var(var)
175 {
176 /* empty */
177 }
178
179 gl_register_file file;
180 int index;
181 ir_variable *var; /* variable that maps to this, if any */
182 };
183
184 class function_entry : public exec_node {
185 public:
186 ir_function_signature *sig;
187
188 /**
189 * identifier of this function signature used by the program.
190 *
191 * At the point that Mesa instructions for function calls are
192 * generated, we don't know the address of the first instruction of
193 * the function body. So we make the BranchTarget that is called a
194 * small integer and rewrite them during set_branchtargets().
195 */
196 int sig_id;
197
198 /**
199 * Pointer to first instruction of the function body.
200 *
201 * Set during function body emits after main() is processed.
202 */
203 ir_to_mesa_instruction *bgn_inst;
204
205 /**
206 * Index of the first instruction of the function body in actual
207 * Mesa IR.
208 *
209 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
210 */
211 int inst;
212
213 /** Storage for the return value. */
214 src_reg return_reg;
215 };
216
217 class ir_to_mesa_visitor : public ir_visitor {
218 public:
219 ir_to_mesa_visitor();
220 ~ir_to_mesa_visitor();
221
222 function_entry *current_function;
223
224 struct gl_context *ctx;
225 struct gl_program *prog;
226 struct gl_shader_program *shader_program;
227 struct gl_shader_compiler_options *options;
228
229 int next_temp;
230
231 variable_storage *find_variable_storage(const ir_variable *var);
232
233 src_reg get_temp(const glsl_type *type);
234 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
235
236 src_reg src_reg_for_float(float val);
237
238 /**
239 * \name Visit methods
240 *
241 * As typical for the visitor pattern, there must be one \c visit method for
242 * each concrete subclass of \c ir_instruction. Virtual base classes within
243 * the hierarchy should not have \c visit methods.
244 */
245 /*@{*/
246 virtual void visit(ir_variable *);
247 virtual void visit(ir_loop *);
248 virtual void visit(ir_loop_jump *);
249 virtual void visit(ir_function_signature *);
250 virtual void visit(ir_function *);
251 virtual void visit(ir_expression *);
252 virtual void visit(ir_swizzle *);
253 virtual void visit(ir_dereference_variable *);
254 virtual void visit(ir_dereference_array *);
255 virtual void visit(ir_dereference_record *);
256 virtual void visit(ir_assignment *);
257 virtual void visit(ir_constant *);
258 virtual void visit(ir_call *);
259 virtual void visit(ir_return *);
260 virtual void visit(ir_discard *);
261 virtual void visit(ir_texture *);
262 virtual void visit(ir_if *);
263 virtual void visit(ir_emit_vertex *);
264 virtual void visit(ir_end_primitive *);
265 /*@}*/
266
267 src_reg result;
268
269 /** List of variable_storage */
270 exec_list variables;
271
272 /** List of function_entry */
273 exec_list function_signatures;
274 int next_signature_id;
275
276 /** List of ir_to_mesa_instruction */
277 exec_list instructions;
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst, src_reg src0);
283
284 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
285 dst_reg dst, src_reg src0, src_reg src1);
286
287 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
288 dst_reg dst,
289 src_reg src0, src_reg src1, src_reg src2);
290
291 /**
292 * Emit the correct dot-product instruction for the type of arguments
293 */
294 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
295 dst_reg dst,
296 src_reg src0,
297 src_reg src1,
298 unsigned elements);
299
300 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
301 dst_reg dst, src_reg src0);
302
303 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
304 dst_reg dst, src_reg src0, src_reg src1);
305
306 bool try_emit_mad(ir_expression *ir,
307 int mul_operand);
308 bool try_emit_mad_for_and_not(ir_expression *ir,
309 int mul_operand);
310
311 void emit_swz(ir_expression *ir);
312
313 bool process_move_condition(ir_rvalue *ir);
314
315 void copy_propagate(void);
316
317 void *mem_ctx;
318 };
319
320 } /* anonymous namespace */
321
322 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
323
324 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
325
326 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
327
328 static int
329 swizzle_for_size(int size)
330 {
331 static const int size_swizzles[4] = {
332 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
333 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
334 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
335 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
336 };
337
338 assert((size >= 1) && (size <= 4));
339 return size_swizzles[size - 1];
340 }
341
342 ir_to_mesa_instruction *
343 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
344 dst_reg dst,
345 src_reg src0, src_reg src1, src_reg src2)
346 {
347 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
348 int num_reladdr = 0;
349
350 /* If we have to do relative addressing, we want to load the ARL
351 * reg directly for one of the regs, and preload the other reladdr
352 * sources into temps.
353 */
354 num_reladdr += dst.reladdr != NULL;
355 num_reladdr += src0.reladdr != NULL;
356 num_reladdr += src1.reladdr != NULL;
357 num_reladdr += src2.reladdr != NULL;
358
359 reladdr_to_temp(ir, &src2, &num_reladdr);
360 reladdr_to_temp(ir, &src1, &num_reladdr);
361 reladdr_to_temp(ir, &src0, &num_reladdr);
362
363 if (dst.reladdr) {
364 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
365 num_reladdr--;
366 }
367 assert(num_reladdr == 0);
368
369 inst->op = op;
370 inst->dst = dst;
371 inst->src[0] = src0;
372 inst->src[1] = src1;
373 inst->src[2] = src2;
374 inst->ir = ir;
375
376 this->instructions.push_tail(inst);
377
378 return inst;
379 }
380
381
382 ir_to_mesa_instruction *
383 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
384 dst_reg dst, src_reg src0, src_reg src1)
385 {
386 return emit(ir, op, dst, src0, src1, undef_src);
387 }
388
389 ir_to_mesa_instruction *
390 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
391 dst_reg dst, src_reg src0)
392 {
393 assert(dst.writemask != 0);
394 return emit(ir, op, dst, src0, undef_src, undef_src);
395 }
396
397 ir_to_mesa_instruction *
398 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
399 {
400 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
401 }
402
403 ir_to_mesa_instruction *
404 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
405 dst_reg dst, src_reg src0, src_reg src1,
406 unsigned elements)
407 {
408 static const gl_inst_opcode dot_opcodes[] = {
409 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
410 };
411
412 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
413 }
414
415 /**
416 * Emits Mesa scalar opcodes to produce unique answers across channels.
417 *
418 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
419 * channel determines the result across all channels. So to do a vec4
420 * of this operation, we want to emit a scalar per source channel used
421 * to produce dest channels.
422 */
423 void
424 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
425 dst_reg dst,
426 src_reg orig_src0, src_reg orig_src1)
427 {
428 int i, j;
429 int done_mask = ~dst.writemask;
430
431 /* Mesa RCP is a scalar operation splatting results to all channels,
432 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
433 * dst channels.
434 */
435 for (i = 0; i < 4; i++) {
436 GLuint this_mask = (1 << i);
437 ir_to_mesa_instruction *inst;
438 src_reg src0 = orig_src0;
439 src_reg src1 = orig_src1;
440
441 if (done_mask & this_mask)
442 continue;
443
444 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
445 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
446 for (j = i + 1; j < 4; j++) {
447 /* If there is another enabled component in the destination that is
448 * derived from the same inputs, generate its value on this pass as
449 * well.
450 */
451 if (!(done_mask & (1 << j)) &&
452 GET_SWZ(src0.swizzle, j) == src0_swiz &&
453 GET_SWZ(src1.swizzle, j) == src1_swiz) {
454 this_mask |= (1 << j);
455 }
456 }
457 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
458 src0_swiz, src0_swiz);
459 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
460 src1_swiz, src1_swiz);
461
462 inst = emit(ir, op, dst, src0, src1);
463 inst->dst.writemask = this_mask;
464 done_mask |= this_mask;
465 }
466 }
467
468 void
469 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
470 dst_reg dst, src_reg src0)
471 {
472 src_reg undef = undef_src;
473
474 undef.swizzle = SWIZZLE_XXXX;
475
476 emit_scalar(ir, op, dst, src0, undef);
477 }
478
479 src_reg
480 ir_to_mesa_visitor::src_reg_for_float(float val)
481 {
482 src_reg src(PROGRAM_CONSTANT, -1, NULL);
483
484 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
485 (const gl_constant_value *)&val, 1, &src.swizzle);
486
487 return src;
488 }
489
490 static int
491 type_size(const struct glsl_type *type)
492 {
493 unsigned int i;
494 int size;
495
496 switch (type->base_type) {
497 case GLSL_TYPE_UINT:
498 case GLSL_TYPE_INT:
499 case GLSL_TYPE_FLOAT:
500 case GLSL_TYPE_BOOL:
501 if (type->is_matrix()) {
502 return type->matrix_columns;
503 } else {
504 /* Regardless of size of vector, it gets a vec4. This is bad
505 * packing for things like floats, but otherwise arrays become a
506 * mess. Hopefully a later pass over the code can pack scalars
507 * down if appropriate.
508 */
509 return 1;
510 }
511 break;
512 case GLSL_TYPE_DOUBLE:
513 if (type->is_matrix()) {
514 if (type->vector_elements > 2)
515 return type->matrix_columns * 2;
516 else
517 return type->matrix_columns;
518 } else {
519 if (type->vector_elements > 2)
520 return 2;
521 else
522 return 1;
523 }
524 break;
525 case GLSL_TYPE_ARRAY:
526 assert(type->length > 0);
527 return type_size(type->fields.array) * type->length;
528 case GLSL_TYPE_STRUCT:
529 size = 0;
530 for (i = 0; i < type->length; i++) {
531 size += type_size(type->fields.structure[i].type);
532 }
533 return size;
534 case GLSL_TYPE_SAMPLER:
535 case GLSL_TYPE_IMAGE:
536 /* Samplers take up one slot in UNIFORMS[], but they're baked in
537 * at link time.
538 */
539 return 1;
540 case GLSL_TYPE_ATOMIC_UINT:
541 case GLSL_TYPE_VOID:
542 case GLSL_TYPE_ERROR:
543 case GLSL_TYPE_INTERFACE:
544 case GLSL_TYPE_FUNCTION:
545 assert(!"Invalid type in type_size");
546 break;
547 }
548
549 return 0;
550 }
551
552 /**
553 * In the initial pass of codegen, we assign temporary numbers to
554 * intermediate results. (not SSA -- variable assignments will reuse
555 * storage). Actual register allocation for the Mesa VM occurs in a
556 * pass over the Mesa IR later.
557 */
558 src_reg
559 ir_to_mesa_visitor::get_temp(const glsl_type *type)
560 {
561 src_reg src;
562
563 src.file = PROGRAM_TEMPORARY;
564 src.index = next_temp;
565 src.reladdr = NULL;
566 next_temp += type_size(type);
567
568 if (type->is_array() || type->is_record()) {
569 src.swizzle = SWIZZLE_NOOP;
570 } else {
571 src.swizzle = swizzle_for_size(type->vector_elements);
572 }
573 src.negate = 0;
574
575 return src;
576 }
577
578 variable_storage *
579 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
580 {
581 foreach_in_list(variable_storage, entry, &this->variables) {
582 if (entry->var == var)
583 return entry;
584 }
585
586 return NULL;
587 }
588
589 void
590 ir_to_mesa_visitor::visit(ir_variable *ir)
591 {
592 if (strcmp(ir->name, "gl_FragCoord") == 0) {
593 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
594
595 fp->OriginUpperLeft = ir->data.origin_upper_left;
596 fp->PixelCenterInteger = ir->data.pixel_center_integer;
597 }
598
599 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
600 unsigned int i;
601 const ir_state_slot *const slots = ir->get_state_slots();
602 assert(slots != NULL);
603
604 /* Check if this statevar's setup in the STATE file exactly
605 * matches how we'll want to reference it as a
606 * struct/array/whatever. If not, then we need to move it into
607 * temporary storage and hope that it'll get copy-propagated
608 * out.
609 */
610 for (i = 0; i < ir->get_num_state_slots(); i++) {
611 if (slots[i].swizzle != SWIZZLE_XYZW) {
612 break;
613 }
614 }
615
616 variable_storage *storage;
617 dst_reg dst;
618 if (i == ir->get_num_state_slots()) {
619 /* We'll set the index later. */
620 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
621 this->variables.push_tail(storage);
622
623 dst = undef_dst;
624 } else {
625 /* The variable_storage constructor allocates slots based on the size
626 * of the type. However, this had better match the number of state
627 * elements that we're going to copy into the new temporary.
628 */
629 assert((int) ir->get_num_state_slots() == type_size(ir->type));
630
631 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
632 this->next_temp);
633 this->variables.push_tail(storage);
634 this->next_temp += type_size(ir->type);
635
636 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
637 }
638
639
640 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
641 int index = _mesa_add_state_reference(this->prog->Parameters,
642 (gl_state_index *)slots[i].tokens);
643
644 if (storage->file == PROGRAM_STATE_VAR) {
645 if (storage->index == -1) {
646 storage->index = index;
647 } else {
648 assert(index == storage->index + (int)i);
649 }
650 } else {
651 src_reg src(PROGRAM_STATE_VAR, index, NULL);
652 src.swizzle = slots[i].swizzle;
653 emit(ir, OPCODE_MOV, dst, src);
654 /* even a float takes up a whole vec4 reg in a struct/array. */
655 dst.index++;
656 }
657 }
658
659 if (storage->file == PROGRAM_TEMPORARY &&
660 dst.index != storage->index + (int) ir->get_num_state_slots()) {
661 linker_error(this->shader_program,
662 "failed to load builtin uniform `%s' "
663 "(%d/%d regs loaded)\n",
664 ir->name, dst.index - storage->index,
665 type_size(ir->type));
666 }
667 }
668 }
669
670 void
671 ir_to_mesa_visitor::visit(ir_loop *ir)
672 {
673 emit(NULL, OPCODE_BGNLOOP);
674
675 visit_exec_list(&ir->body_instructions, this);
676
677 emit(NULL, OPCODE_ENDLOOP);
678 }
679
680 void
681 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
682 {
683 switch (ir->mode) {
684 case ir_loop_jump::jump_break:
685 emit(NULL, OPCODE_BRK);
686 break;
687 case ir_loop_jump::jump_continue:
688 emit(NULL, OPCODE_CONT);
689 break;
690 }
691 }
692
693
694 void
695 ir_to_mesa_visitor::visit(ir_function_signature *ir)
696 {
697 assert(0);
698 (void)ir;
699 }
700
701 void
702 ir_to_mesa_visitor::visit(ir_function *ir)
703 {
704 /* Ignore function bodies other than main() -- we shouldn't see calls to
705 * them since they should all be inlined before we get to ir_to_mesa.
706 */
707 if (strcmp(ir->name, "main") == 0) {
708 const ir_function_signature *sig;
709 exec_list empty;
710
711 sig = ir->matching_signature(NULL, &empty, false);
712
713 assert(sig);
714
715 foreach_in_list(ir_instruction, ir, &sig->body) {
716 ir->accept(this);
717 }
718 }
719 }
720
721 bool
722 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
723 {
724 int nonmul_operand = 1 - mul_operand;
725 src_reg a, b, c;
726
727 ir_expression *expr = ir->operands[mul_operand]->as_expression();
728 if (!expr || expr->operation != ir_binop_mul)
729 return false;
730
731 expr->operands[0]->accept(this);
732 a = this->result;
733 expr->operands[1]->accept(this);
734 b = this->result;
735 ir->operands[nonmul_operand]->accept(this);
736 c = this->result;
737
738 this->result = get_temp(ir->type);
739 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
740
741 return true;
742 }
743
744 /**
745 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
746 *
747 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
748 * implemented using multiplication, and logical-or is implemented using
749 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
750 * As result, the logical expression (a & !b) can be rewritten as:
751 *
752 * - a * !b
753 * - a * (1 - b)
754 * - (a * 1) - (a * b)
755 * - a + -(a * b)
756 * - a + (a * -b)
757 *
758 * This final expression can be implemented as a single MAD(a, -b, a)
759 * instruction.
760 */
761 bool
762 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
763 {
764 const int other_operand = 1 - try_operand;
765 src_reg a, b;
766
767 ir_expression *expr = ir->operands[try_operand]->as_expression();
768 if (!expr || expr->operation != ir_unop_logic_not)
769 return false;
770
771 ir->operands[other_operand]->accept(this);
772 a = this->result;
773 expr->operands[0]->accept(this);
774 b = this->result;
775
776 b.negate = ~b.negate;
777
778 this->result = get_temp(ir->type);
779 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
780
781 return true;
782 }
783
784 void
785 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
786 src_reg *reg, int *num_reladdr)
787 {
788 if (!reg->reladdr)
789 return;
790
791 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
792
793 if (*num_reladdr != 1) {
794 src_reg temp = get_temp(glsl_type::vec4_type);
795
796 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
797 *reg = temp;
798 }
799
800 (*num_reladdr)--;
801 }
802
803 void
804 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
805 {
806 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
807 * This means that each of the operands is either an immediate value of -1,
808 * 0, or 1, or is a component from one source register (possibly with
809 * negation).
810 */
811 uint8_t components[4] = { 0 };
812 bool negate[4] = { false };
813 ir_variable *var = NULL;
814
815 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
816 ir_rvalue *op = ir->operands[i];
817
818 assert(op->type->is_scalar());
819
820 while (op != NULL) {
821 switch (op->ir_type) {
822 case ir_type_constant: {
823
824 assert(op->type->is_scalar());
825
826 const ir_constant *const c = op->as_constant();
827 if (c->is_one()) {
828 components[i] = SWIZZLE_ONE;
829 } else if (c->is_zero()) {
830 components[i] = SWIZZLE_ZERO;
831 } else if (c->is_negative_one()) {
832 components[i] = SWIZZLE_ONE;
833 negate[i] = true;
834 } else {
835 assert(!"SWZ constant must be 0.0 or 1.0.");
836 }
837
838 op = NULL;
839 break;
840 }
841
842 case ir_type_dereference_variable: {
843 ir_dereference_variable *const deref =
844 (ir_dereference_variable *) op;
845
846 assert((var == NULL) || (deref->var == var));
847 components[i] = SWIZZLE_X;
848 var = deref->var;
849 op = NULL;
850 break;
851 }
852
853 case ir_type_expression: {
854 ir_expression *const expr = (ir_expression *) op;
855
856 assert(expr->operation == ir_unop_neg);
857 negate[i] = true;
858
859 op = expr->operands[0];
860 break;
861 }
862
863 case ir_type_swizzle: {
864 ir_swizzle *const swiz = (ir_swizzle *) op;
865
866 components[i] = swiz->mask.x;
867 op = swiz->val;
868 break;
869 }
870
871 default:
872 assert(!"Should not get here.");
873 return;
874 }
875 }
876 }
877
878 assert(var != NULL);
879
880 ir_dereference_variable *const deref =
881 new(mem_ctx) ir_dereference_variable(var);
882
883 this->result.file = PROGRAM_UNDEFINED;
884 deref->accept(this);
885 if (this->result.file == PROGRAM_UNDEFINED) {
886 printf("Failed to get tree for expression operand:\n");
887 deref->print();
888 printf("\n");
889 exit(1);
890 }
891
892 src_reg src;
893
894 src = this->result;
895 src.swizzle = MAKE_SWIZZLE4(components[0],
896 components[1],
897 components[2],
898 components[3]);
899 src.negate = ((unsigned(negate[0]) << 0)
900 | (unsigned(negate[1]) << 1)
901 | (unsigned(negate[2]) << 2)
902 | (unsigned(negate[3]) << 3));
903
904 /* Storage for our result. Ideally for an assignment we'd be using the
905 * actual storage for the result here, instead.
906 */
907 const src_reg result_src = get_temp(ir->type);
908 dst_reg result_dst = dst_reg(result_src);
909
910 /* Limit writes to the channels that will be used by result_src later.
911 * This does limit this temp's use as a temporary for multi-instruction
912 * sequences.
913 */
914 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
915
916 emit(ir, OPCODE_SWZ, result_dst, src);
917 this->result = result_src;
918 }
919
920 void
921 ir_to_mesa_visitor::visit(ir_expression *ir)
922 {
923 unsigned int operand;
924 src_reg op[ARRAY_SIZE(ir->operands)];
925 src_reg result_src;
926 dst_reg result_dst;
927
928 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
929 */
930 if (ir->operation == ir_binop_add) {
931 if (try_emit_mad(ir, 1))
932 return;
933 if (try_emit_mad(ir, 0))
934 return;
935 }
936
937 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
938 */
939 if (ir->operation == ir_binop_logic_and) {
940 if (try_emit_mad_for_and_not(ir, 1))
941 return;
942 if (try_emit_mad_for_and_not(ir, 0))
943 return;
944 }
945
946 if (ir->operation == ir_quadop_vector) {
947 this->emit_swz(ir);
948 return;
949 }
950
951 for (operand = 0; operand < ir->get_num_operands(); operand++) {
952 this->result.file = PROGRAM_UNDEFINED;
953 ir->operands[operand]->accept(this);
954 if (this->result.file == PROGRAM_UNDEFINED) {
955 printf("Failed to get tree for expression operand:\n");
956 ir->operands[operand]->print();
957 printf("\n");
958 exit(1);
959 }
960 op[operand] = this->result;
961
962 /* Matrix expression operands should have been broken down to vector
963 * operations already.
964 */
965 assert(!ir->operands[operand]->type->is_matrix());
966 }
967
968 int vector_elements = ir->operands[0]->type->vector_elements;
969 if (ir->operands[1]) {
970 vector_elements = MAX2(vector_elements,
971 ir->operands[1]->type->vector_elements);
972 }
973
974 this->result.file = PROGRAM_UNDEFINED;
975
976 /* Storage for our result. Ideally for an assignment we'd be using
977 * the actual storage for the result here, instead.
978 */
979 result_src = get_temp(ir->type);
980 /* convenience for the emit functions below. */
981 result_dst = dst_reg(result_src);
982 /* Limit writes to the channels that will be used by result_src later.
983 * This does limit this temp's use as a temporary for multi-instruction
984 * sequences.
985 */
986 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
987
988 switch (ir->operation) {
989 case ir_unop_logic_not:
990 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
991 * older GPUs implement SEQ using multiple instructions (i915 uses two
992 * SGE instructions and a MUL instruction). Since our logic values are
993 * 0.0 and 1.0, 1-x also implements !x.
994 */
995 op[0].negate = ~op[0].negate;
996 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
997 break;
998 case ir_unop_neg:
999 op[0].negate = ~op[0].negate;
1000 result_src = op[0];
1001 break;
1002 case ir_unop_abs:
1003 emit(ir, OPCODE_ABS, result_dst, op[0]);
1004 break;
1005 case ir_unop_sign:
1006 emit(ir, OPCODE_SSG, result_dst, op[0]);
1007 break;
1008 case ir_unop_rcp:
1009 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1010 break;
1011
1012 case ir_unop_exp2:
1013 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1014 break;
1015 case ir_unop_exp:
1016 case ir_unop_log:
1017 assert(!"not reached: should be handled by ir_explog_to_explog2");
1018 break;
1019 case ir_unop_log2:
1020 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1021 break;
1022 case ir_unop_sin:
1023 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1024 break;
1025 case ir_unop_cos:
1026 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1027 break;
1028
1029 case ir_unop_dFdx:
1030 emit(ir, OPCODE_DDX, result_dst, op[0]);
1031 break;
1032 case ir_unop_dFdy:
1033 emit(ir, OPCODE_DDY, result_dst, op[0]);
1034 break;
1035
1036 case ir_unop_saturate: {
1037 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1038 result_dst, op[0]);
1039 inst->saturate = true;
1040 break;
1041 }
1042 case ir_unop_noise: {
1043 const enum prog_opcode opcode =
1044 prog_opcode(OPCODE_NOISE1
1045 + (ir->operands[0]->type->vector_elements) - 1);
1046 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1047
1048 emit(ir, opcode, result_dst, op[0]);
1049 break;
1050 }
1051
1052 case ir_binop_add:
1053 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1054 break;
1055 case ir_binop_sub:
1056 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1057 break;
1058
1059 case ir_binop_mul:
1060 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1061 break;
1062 case ir_binop_div:
1063 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1064 break;
1065 case ir_binop_mod:
1066 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1067 assert(ir->type->is_integer());
1068 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1069 break;
1070
1071 case ir_binop_less:
1072 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1073 break;
1074 case ir_binop_greater:
1075 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1076 break;
1077 case ir_binop_lequal:
1078 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1079 break;
1080 case ir_binop_gequal:
1081 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1082 break;
1083 case ir_binop_equal:
1084 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1085 break;
1086 case ir_binop_nequal:
1087 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1088 break;
1089 case ir_binop_all_equal:
1090 /* "==" operator producing a scalar boolean. */
1091 if (ir->operands[0]->type->is_vector() ||
1092 ir->operands[1]->type->is_vector()) {
1093 src_reg temp = get_temp(glsl_type::vec4_type);
1094 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1095
1096 /* After the dot-product, the value will be an integer on the
1097 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1098 */
1099 emit_dp(ir, result_dst, temp, temp, vector_elements);
1100
1101 /* Negating the result of the dot-product gives values on the range
1102 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1103 * achieved using SGE.
1104 */
1105 src_reg sge_src = result_src;
1106 sge_src.negate = ~sge_src.negate;
1107 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1108 } else {
1109 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1110 }
1111 break;
1112 case ir_binop_any_nequal:
1113 /* "!=" operator producing a scalar boolean. */
1114 if (ir->operands[0]->type->is_vector() ||
1115 ir->operands[1]->type->is_vector()) {
1116 src_reg temp = get_temp(glsl_type::vec4_type);
1117 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1118
1119 /* After the dot-product, the value will be an integer on the
1120 * range [0,4]. Zero stays zero, and positive values become 1.0.
1121 */
1122 ir_to_mesa_instruction *const dp =
1123 emit_dp(ir, result_dst, temp, temp, vector_elements);
1124 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1125 /* The clamping to [0,1] can be done for free in the fragment
1126 * shader with a saturate.
1127 */
1128 dp->saturate = true;
1129 } else {
1130 /* Negating the result of the dot-product gives values on the range
1131 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1132 * achieved using SLT.
1133 */
1134 src_reg slt_src = result_src;
1135 slt_src.negate = ~slt_src.negate;
1136 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1137 }
1138 } else {
1139 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1140 }
1141 break;
1142
1143 case ir_unop_any: {
1144 assert(ir->operands[0]->type->is_vector());
1145
1146 /* After the dot-product, the value will be an integer on the
1147 * range [0,4]. Zero stays zero, and positive values become 1.0.
1148 */
1149 ir_to_mesa_instruction *const dp =
1150 emit_dp(ir, result_dst, op[0], op[0],
1151 ir->operands[0]->type->vector_elements);
1152 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1153 /* The clamping to [0,1] can be done for free in the fragment
1154 * shader with a saturate.
1155 */
1156 dp->saturate = true;
1157 } else {
1158 /* Negating the result of the dot-product gives values on the range
1159 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1160 * is achieved using SLT.
1161 */
1162 src_reg slt_src = result_src;
1163 slt_src.negate = ~slt_src.negate;
1164 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1165 }
1166 break;
1167 }
1168
1169 case ir_binop_logic_xor:
1170 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1171 break;
1172
1173 case ir_binop_logic_or: {
1174 /* After the addition, the value will be an integer on the
1175 * range [0,2]. Zero stays zero, and positive values become 1.0.
1176 */
1177 ir_to_mesa_instruction *add =
1178 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1179 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1180 /* The clamping to [0,1] can be done for free in the fragment
1181 * shader with a saturate.
1182 */
1183 add->saturate = true;
1184 } else {
1185 /* Negating the result of the addition gives values on the range
1186 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1187 * is achieved using SLT.
1188 */
1189 src_reg slt_src = result_src;
1190 slt_src.negate = ~slt_src.negate;
1191 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1192 }
1193 break;
1194 }
1195
1196 case ir_binop_logic_and:
1197 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1198 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1199 break;
1200
1201 case ir_binop_dot:
1202 assert(ir->operands[0]->type->is_vector());
1203 assert(ir->operands[0]->type == ir->operands[1]->type);
1204 emit_dp(ir, result_dst, op[0], op[1],
1205 ir->operands[0]->type->vector_elements);
1206 break;
1207
1208 case ir_unop_sqrt:
1209 /* sqrt(x) = x * rsq(x). */
1210 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1211 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1212 /* For incoming channels <= 0, set the result to 0. */
1213 op[0].negate = ~op[0].negate;
1214 emit(ir, OPCODE_CMP, result_dst,
1215 op[0], result_src, src_reg_for_float(0.0));
1216 break;
1217 case ir_unop_rsq:
1218 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1219 break;
1220 case ir_unop_i2f:
1221 case ir_unop_u2f:
1222 case ir_unop_b2f:
1223 case ir_unop_b2i:
1224 case ir_unop_i2u:
1225 case ir_unop_u2i:
1226 /* Mesa IR lacks types, ints are stored as truncated floats. */
1227 result_src = op[0];
1228 break;
1229 case ir_unop_f2i:
1230 case ir_unop_f2u:
1231 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1232 break;
1233 case ir_unop_f2b:
1234 case ir_unop_i2b:
1235 emit(ir, OPCODE_SNE, result_dst,
1236 op[0], src_reg_for_float(0.0));
1237 break;
1238 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1239 case ir_unop_bitcast_f2u:
1240 case ir_unop_bitcast_i2f:
1241 case ir_unop_bitcast_u2f:
1242 break;
1243 case ir_unop_trunc:
1244 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1245 break;
1246 case ir_unop_ceil:
1247 op[0].negate = ~op[0].negate;
1248 emit(ir, OPCODE_FLR, result_dst, op[0]);
1249 result_src.negate = ~result_src.negate;
1250 break;
1251 case ir_unop_floor:
1252 emit(ir, OPCODE_FLR, result_dst, op[0]);
1253 break;
1254 case ir_unop_fract:
1255 emit(ir, OPCODE_FRC, result_dst, op[0]);
1256 break;
1257 case ir_unop_pack_snorm_2x16:
1258 case ir_unop_pack_snorm_4x8:
1259 case ir_unop_pack_unorm_2x16:
1260 case ir_unop_pack_unorm_4x8:
1261 case ir_unop_pack_half_2x16:
1262 case ir_unop_pack_double_2x32:
1263 case ir_unop_unpack_snorm_2x16:
1264 case ir_unop_unpack_snorm_4x8:
1265 case ir_unop_unpack_unorm_2x16:
1266 case ir_unop_unpack_unorm_4x8:
1267 case ir_unop_unpack_half_2x16:
1268 case ir_unop_unpack_half_2x16_split_x:
1269 case ir_unop_unpack_half_2x16_split_y:
1270 case ir_unop_unpack_double_2x32:
1271 case ir_binop_pack_half_2x16_split:
1272 case ir_unop_bitfield_reverse:
1273 case ir_unop_bit_count:
1274 case ir_unop_find_msb:
1275 case ir_unop_find_lsb:
1276 case ir_unop_d2f:
1277 case ir_unop_f2d:
1278 case ir_unop_d2i:
1279 case ir_unop_i2d:
1280 case ir_unop_d2u:
1281 case ir_unop_u2d:
1282 case ir_unop_d2b:
1283 case ir_unop_frexp_sig:
1284 case ir_unop_frexp_exp:
1285 assert(!"not supported");
1286 break;
1287 case ir_binop_min:
1288 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1289 break;
1290 case ir_binop_max:
1291 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1292 break;
1293 case ir_binop_pow:
1294 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1295 break;
1296
1297 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1298 * hardware backends have no way to avoid Mesa IR generation
1299 * even if they don't use it, we need to emit "something" and
1300 * continue.
1301 */
1302 case ir_binop_lshift:
1303 case ir_binop_rshift:
1304 case ir_binop_bit_and:
1305 case ir_binop_bit_xor:
1306 case ir_binop_bit_or:
1307 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1308 break;
1309
1310 case ir_unop_bit_not:
1311 case ir_unop_round_even:
1312 emit(ir, OPCODE_MOV, result_dst, op[0]);
1313 break;
1314
1315 case ir_binop_ubo_load:
1316 assert(!"not supported");
1317 break;
1318
1319 case ir_triop_lrp:
1320 /* ir_triop_lrp operands are (x, y, a) while
1321 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1322 */
1323 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1324 break;
1325
1326 case ir_binop_vector_extract:
1327 case ir_binop_bfm:
1328 case ir_triop_fma:
1329 case ir_triop_bfi:
1330 case ir_triop_bitfield_extract:
1331 case ir_triop_vector_insert:
1332 case ir_quadop_bitfield_insert:
1333 case ir_binop_ldexp:
1334 case ir_triop_csel:
1335 case ir_binop_carry:
1336 case ir_binop_borrow:
1337 case ir_binop_imul_high:
1338 case ir_unop_interpolate_at_centroid:
1339 case ir_binop_interpolate_at_offset:
1340 case ir_binop_interpolate_at_sample:
1341 case ir_unop_dFdx_coarse:
1342 case ir_unop_dFdx_fine:
1343 case ir_unop_dFdy_coarse:
1344 case ir_unop_dFdy_fine:
1345 assert(!"not supported");
1346 break;
1347
1348 case ir_quadop_vector:
1349 /* This operation should have already been handled.
1350 */
1351 assert(!"Should not get here.");
1352 break;
1353 }
1354
1355 this->result = result_src;
1356 }
1357
1358
1359 void
1360 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1361 {
1362 src_reg src;
1363 int i;
1364 int swizzle[4];
1365
1366 /* Note that this is only swizzles in expressions, not those on the left
1367 * hand side of an assignment, which do write masking. See ir_assignment
1368 * for that.
1369 */
1370
1371 ir->val->accept(this);
1372 src = this->result;
1373 assert(src.file != PROGRAM_UNDEFINED);
1374 assert(ir->type->vector_elements > 0);
1375
1376 for (i = 0; i < 4; i++) {
1377 if (i < ir->type->vector_elements) {
1378 switch (i) {
1379 case 0:
1380 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1381 break;
1382 case 1:
1383 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1384 break;
1385 case 2:
1386 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1387 break;
1388 case 3:
1389 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1390 break;
1391 }
1392 } else {
1393 /* If the type is smaller than a vec4, replicate the last
1394 * channel out.
1395 */
1396 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1397 }
1398 }
1399
1400 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1401
1402 this->result = src;
1403 }
1404
1405 void
1406 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1407 {
1408 variable_storage *entry = find_variable_storage(ir->var);
1409 ir_variable *var = ir->var;
1410
1411 if (!entry) {
1412 switch (var->data.mode) {
1413 case ir_var_uniform:
1414 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1415 var->data.location);
1416 this->variables.push_tail(entry);
1417 break;
1418 case ir_var_shader_in:
1419 /* The linker assigns locations for varyings and attributes,
1420 * including deprecated builtins (like gl_Color),
1421 * user-assigned generic attributes (glBindVertexLocation),
1422 * and user-defined varyings.
1423 */
1424 assert(var->data.location != -1);
1425 entry = new(mem_ctx) variable_storage(var,
1426 PROGRAM_INPUT,
1427 var->data.location);
1428 break;
1429 case ir_var_shader_out:
1430 assert(var->data.location != -1);
1431 entry = new(mem_ctx) variable_storage(var,
1432 PROGRAM_OUTPUT,
1433 var->data.location);
1434 break;
1435 case ir_var_system_value:
1436 entry = new(mem_ctx) variable_storage(var,
1437 PROGRAM_SYSTEM_VALUE,
1438 var->data.location);
1439 break;
1440 case ir_var_auto:
1441 case ir_var_temporary:
1442 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1443 this->next_temp);
1444 this->variables.push_tail(entry);
1445
1446 next_temp += type_size(var->type);
1447 break;
1448 }
1449
1450 if (!entry) {
1451 printf("Failed to make storage for %s\n", var->name);
1452 exit(1);
1453 }
1454 }
1455
1456 this->result = src_reg(entry->file, entry->index, var->type);
1457 }
1458
1459 void
1460 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1461 {
1462 ir_constant *index;
1463 src_reg src;
1464 int element_size = type_size(ir->type);
1465
1466 index = ir->array_index->constant_expression_value();
1467
1468 ir->array->accept(this);
1469 src = this->result;
1470
1471 if (index) {
1472 src.index += index->value.i[0] * element_size;
1473 } else {
1474 /* Variable index array dereference. It eats the "vec4" of the
1475 * base of the array and an index that offsets the Mesa register
1476 * index.
1477 */
1478 ir->array_index->accept(this);
1479
1480 src_reg index_reg;
1481
1482 if (element_size == 1) {
1483 index_reg = this->result;
1484 } else {
1485 index_reg = get_temp(glsl_type::float_type);
1486
1487 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1488 this->result, src_reg_for_float(element_size));
1489 }
1490
1491 /* If there was already a relative address register involved, add the
1492 * new and the old together to get the new offset.
1493 */
1494 if (src.reladdr != NULL) {
1495 src_reg accum_reg = get_temp(glsl_type::float_type);
1496
1497 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1498 index_reg, *src.reladdr);
1499
1500 index_reg = accum_reg;
1501 }
1502
1503 src.reladdr = ralloc(mem_ctx, src_reg);
1504 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1505 }
1506
1507 /* If the type is smaller than a vec4, replicate the last channel out. */
1508 if (ir->type->is_scalar() || ir->type->is_vector())
1509 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1510 else
1511 src.swizzle = SWIZZLE_NOOP;
1512
1513 this->result = src;
1514 }
1515
1516 void
1517 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1518 {
1519 unsigned int i;
1520 const glsl_type *struct_type = ir->record->type;
1521 int offset = 0;
1522
1523 ir->record->accept(this);
1524
1525 for (i = 0; i < struct_type->length; i++) {
1526 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1527 break;
1528 offset += type_size(struct_type->fields.structure[i].type);
1529 }
1530
1531 /* If the type is smaller than a vec4, replicate the last channel out. */
1532 if (ir->type->is_scalar() || ir->type->is_vector())
1533 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1534 else
1535 this->result.swizzle = SWIZZLE_NOOP;
1536
1537 this->result.index += offset;
1538 }
1539
1540 /**
1541 * We want to be careful in assignment setup to hit the actual storage
1542 * instead of potentially using a temporary like we might with the
1543 * ir_dereference handler.
1544 */
1545 static dst_reg
1546 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1547 {
1548 /* The LHS must be a dereference. If the LHS is a variable indexed array
1549 * access of a vector, it must be separated into a series conditional moves
1550 * before reaching this point (see ir_vec_index_to_cond_assign).
1551 */
1552 assert(ir->as_dereference());
1553 ir_dereference_array *deref_array = ir->as_dereference_array();
1554 if (deref_array) {
1555 assert(!deref_array->array->type->is_vector());
1556 }
1557
1558 /* Use the rvalue deref handler for the most part. We'll ignore
1559 * swizzles in it and write swizzles using writemask, though.
1560 */
1561 ir->accept(v);
1562 return dst_reg(v->result);
1563 }
1564
1565 /**
1566 * Process the condition of a conditional assignment
1567 *
1568 * Examines the condition of a conditional assignment to generate the optimal
1569 * first operand of a \c CMP instruction. If the condition is a relational
1570 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1571 * used as the source for the \c CMP instruction. Otherwise the comparison
1572 * is processed to a boolean result, and the boolean result is used as the
1573 * operand to the CMP instruction.
1574 */
1575 bool
1576 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1577 {
1578 ir_rvalue *src_ir = ir;
1579 bool negate = true;
1580 bool switch_order = false;
1581
1582 ir_expression *const expr = ir->as_expression();
1583 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1584 bool zero_on_left = false;
1585
1586 if (expr->operands[0]->is_zero()) {
1587 src_ir = expr->operands[1];
1588 zero_on_left = true;
1589 } else if (expr->operands[1]->is_zero()) {
1590 src_ir = expr->operands[0];
1591 zero_on_left = false;
1592 }
1593
1594 /* a is - 0 + - 0 +
1595 * (a < 0) T F F ( a < 0) T F F
1596 * (0 < a) F F T (-a < 0) F F T
1597 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1598 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1599 * (a > 0) F F T (-a < 0) F F T
1600 * (0 > a) T F F ( a < 0) T F F
1601 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1602 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1603 *
1604 * Note that exchanging the order of 0 and 'a' in the comparison simply
1605 * means that the value of 'a' should be negated.
1606 */
1607 if (src_ir != ir) {
1608 switch (expr->operation) {
1609 case ir_binop_less:
1610 switch_order = false;
1611 negate = zero_on_left;
1612 break;
1613
1614 case ir_binop_greater:
1615 switch_order = false;
1616 negate = !zero_on_left;
1617 break;
1618
1619 case ir_binop_lequal:
1620 switch_order = true;
1621 negate = !zero_on_left;
1622 break;
1623
1624 case ir_binop_gequal:
1625 switch_order = true;
1626 negate = zero_on_left;
1627 break;
1628
1629 default:
1630 /* This isn't the right kind of comparison afterall, so make sure
1631 * the whole condition is visited.
1632 */
1633 src_ir = ir;
1634 break;
1635 }
1636 }
1637 }
1638
1639 src_ir->accept(this);
1640
1641 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1642 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1643 * choose which value OPCODE_CMP produces without an extra instruction
1644 * computing the condition.
1645 */
1646 if (negate)
1647 this->result.negate = ~this->result.negate;
1648
1649 return switch_order;
1650 }
1651
1652 void
1653 ir_to_mesa_visitor::visit(ir_assignment *ir)
1654 {
1655 dst_reg l;
1656 src_reg r;
1657 int i;
1658
1659 ir->rhs->accept(this);
1660 r = this->result;
1661
1662 l = get_assignment_lhs(ir->lhs, this);
1663
1664 /* FINISHME: This should really set to the correct maximal writemask for each
1665 * FINISHME: component written (in the loops below). This case can only
1666 * FINISHME: occur for matrices, arrays, and structures.
1667 */
1668 if (ir->write_mask == 0) {
1669 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1670 l.writemask = WRITEMASK_XYZW;
1671 } else if (ir->lhs->type->is_scalar()) {
1672 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1673 * FINISHME: W component of fragment shader output zero, work correctly.
1674 */
1675 l.writemask = WRITEMASK_XYZW;
1676 } else {
1677 int swizzles[4];
1678 int first_enabled_chan = 0;
1679 int rhs_chan = 0;
1680
1681 assert(ir->lhs->type->is_vector());
1682 l.writemask = ir->write_mask;
1683
1684 for (int i = 0; i < 4; i++) {
1685 if (l.writemask & (1 << i)) {
1686 first_enabled_chan = GET_SWZ(r.swizzle, i);
1687 break;
1688 }
1689 }
1690
1691 /* Swizzle a small RHS vector into the channels being written.
1692 *
1693 * glsl ir treats write_mask as dictating how many channels are
1694 * present on the RHS while Mesa IR treats write_mask as just
1695 * showing which channels of the vec4 RHS get written.
1696 */
1697 for (int i = 0; i < 4; i++) {
1698 if (l.writemask & (1 << i))
1699 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1700 else
1701 swizzles[i] = first_enabled_chan;
1702 }
1703 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1704 swizzles[2], swizzles[3]);
1705 }
1706
1707 assert(l.file != PROGRAM_UNDEFINED);
1708 assert(r.file != PROGRAM_UNDEFINED);
1709
1710 if (ir->condition) {
1711 const bool switch_order = this->process_move_condition(ir->condition);
1712 src_reg condition = this->result;
1713
1714 for (i = 0; i < type_size(ir->lhs->type); i++) {
1715 if (switch_order) {
1716 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1717 } else {
1718 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1719 }
1720
1721 l.index++;
1722 r.index++;
1723 }
1724 } else {
1725 for (i = 0; i < type_size(ir->lhs->type); i++) {
1726 emit(ir, OPCODE_MOV, l, r);
1727 l.index++;
1728 r.index++;
1729 }
1730 }
1731 }
1732
1733
1734 void
1735 ir_to_mesa_visitor::visit(ir_constant *ir)
1736 {
1737 src_reg src;
1738 GLfloat stack_vals[4] = { 0 };
1739 GLfloat *values = stack_vals;
1740 unsigned int i;
1741
1742 /* Unfortunately, 4 floats is all we can get into
1743 * _mesa_add_unnamed_constant. So, make a temp to store an
1744 * aggregate constant and move each constant value into it. If we
1745 * get lucky, copy propagation will eliminate the extra moves.
1746 */
1747
1748 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1749 src_reg temp_base = get_temp(ir->type);
1750 dst_reg temp = dst_reg(temp_base);
1751
1752 foreach_in_list(ir_constant, field_value, &ir->components) {
1753 int size = type_size(field_value->type);
1754
1755 assert(size > 0);
1756
1757 field_value->accept(this);
1758 src = this->result;
1759
1760 for (i = 0; i < (unsigned int)size; i++) {
1761 emit(ir, OPCODE_MOV, temp, src);
1762
1763 src.index++;
1764 temp.index++;
1765 }
1766 }
1767 this->result = temp_base;
1768 return;
1769 }
1770
1771 if (ir->type->is_array()) {
1772 src_reg temp_base = get_temp(ir->type);
1773 dst_reg temp = dst_reg(temp_base);
1774 int size = type_size(ir->type->fields.array);
1775
1776 assert(size > 0);
1777
1778 for (i = 0; i < ir->type->length; i++) {
1779 ir->array_elements[i]->accept(this);
1780 src = this->result;
1781 for (int j = 0; j < size; j++) {
1782 emit(ir, OPCODE_MOV, temp, src);
1783
1784 src.index++;
1785 temp.index++;
1786 }
1787 }
1788 this->result = temp_base;
1789 return;
1790 }
1791
1792 if (ir->type->is_matrix()) {
1793 src_reg mat = get_temp(ir->type);
1794 dst_reg mat_column = dst_reg(mat);
1795
1796 for (i = 0; i < ir->type->matrix_columns; i++) {
1797 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1798 values = &ir->value.f[i * ir->type->vector_elements];
1799
1800 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1801 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1802 (gl_constant_value *) values,
1803 ir->type->vector_elements,
1804 &src.swizzle);
1805 emit(ir, OPCODE_MOV, mat_column, src);
1806
1807 mat_column.index++;
1808 }
1809
1810 this->result = mat;
1811 return;
1812 }
1813
1814 src.file = PROGRAM_CONSTANT;
1815 switch (ir->type->base_type) {
1816 case GLSL_TYPE_FLOAT:
1817 values = &ir->value.f[0];
1818 break;
1819 case GLSL_TYPE_UINT:
1820 for (i = 0; i < ir->type->vector_elements; i++) {
1821 values[i] = ir->value.u[i];
1822 }
1823 break;
1824 case GLSL_TYPE_INT:
1825 for (i = 0; i < ir->type->vector_elements; i++) {
1826 values[i] = ir->value.i[i];
1827 }
1828 break;
1829 case GLSL_TYPE_BOOL:
1830 for (i = 0; i < ir->type->vector_elements; i++) {
1831 values[i] = ir->value.b[i];
1832 }
1833 break;
1834 default:
1835 assert(!"Non-float/uint/int/bool constant");
1836 }
1837
1838 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1839 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1840 (gl_constant_value *) values,
1841 ir->type->vector_elements,
1842 &this->result.swizzle);
1843 }
1844
1845 void
1846 ir_to_mesa_visitor::visit(ir_call *)
1847 {
1848 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1849 }
1850
1851 void
1852 ir_to_mesa_visitor::visit(ir_texture *ir)
1853 {
1854 src_reg result_src, coord, lod_info, projector, dx, dy;
1855 dst_reg result_dst, coord_dst;
1856 ir_to_mesa_instruction *inst = NULL;
1857 prog_opcode opcode = OPCODE_NOP;
1858
1859 if (ir->op == ir_txs)
1860 this->result = src_reg_for_float(0.0);
1861 else
1862 ir->coordinate->accept(this);
1863
1864 /* Put our coords in a temp. We'll need to modify them for shadow,
1865 * projection, or LOD, so the only case we'd use it as is is if
1866 * we're doing plain old texturing. Mesa IR optimization should
1867 * handle cleaning up our mess in that case.
1868 */
1869 coord = get_temp(glsl_type::vec4_type);
1870 coord_dst = dst_reg(coord);
1871 emit(ir, OPCODE_MOV, coord_dst, this->result);
1872
1873 if (ir->projector) {
1874 ir->projector->accept(this);
1875 projector = this->result;
1876 }
1877
1878 /* Storage for our result. Ideally for an assignment we'd be using
1879 * the actual storage for the result here, instead.
1880 */
1881 result_src = get_temp(glsl_type::vec4_type);
1882 result_dst = dst_reg(result_src);
1883
1884 switch (ir->op) {
1885 case ir_tex:
1886 case ir_txs:
1887 opcode = OPCODE_TEX;
1888 break;
1889 case ir_txb:
1890 opcode = OPCODE_TXB;
1891 ir->lod_info.bias->accept(this);
1892 lod_info = this->result;
1893 break;
1894 case ir_txf:
1895 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1896 case ir_txl:
1897 opcode = OPCODE_TXL;
1898 ir->lod_info.lod->accept(this);
1899 lod_info = this->result;
1900 break;
1901 case ir_txd:
1902 opcode = OPCODE_TXD;
1903 ir->lod_info.grad.dPdx->accept(this);
1904 dx = this->result;
1905 ir->lod_info.grad.dPdy->accept(this);
1906 dy = this->result;
1907 break;
1908 case ir_txf_ms:
1909 assert(!"Unexpected ir_txf_ms opcode");
1910 break;
1911 case ir_lod:
1912 assert(!"Unexpected ir_lod opcode");
1913 break;
1914 case ir_tg4:
1915 assert(!"Unexpected ir_tg4 opcode");
1916 break;
1917 case ir_query_levels:
1918 assert(!"Unexpected ir_query_levels opcode");
1919 break;
1920 }
1921
1922 const glsl_type *sampler_type = ir->sampler->type;
1923
1924 if (ir->projector) {
1925 if (opcode == OPCODE_TEX) {
1926 /* Slot the projector in as the last component of the coord. */
1927 coord_dst.writemask = WRITEMASK_W;
1928 emit(ir, OPCODE_MOV, coord_dst, projector);
1929 coord_dst.writemask = WRITEMASK_XYZW;
1930 opcode = OPCODE_TXP;
1931 } else {
1932 src_reg coord_w = coord;
1933 coord_w.swizzle = SWIZZLE_WWWW;
1934
1935 /* For the other TEX opcodes there's no projective version
1936 * since the last slot is taken up by lod info. Do the
1937 * projective divide now.
1938 */
1939 coord_dst.writemask = WRITEMASK_W;
1940 emit(ir, OPCODE_RCP, coord_dst, projector);
1941
1942 /* In the case where we have to project the coordinates "by hand,"
1943 * the shadow comparitor value must also be projected.
1944 */
1945 src_reg tmp_src = coord;
1946 if (ir->shadow_comparitor) {
1947 /* Slot the shadow value in as the second to last component of the
1948 * coord.
1949 */
1950 ir->shadow_comparitor->accept(this);
1951
1952 tmp_src = get_temp(glsl_type::vec4_type);
1953 dst_reg tmp_dst = dst_reg(tmp_src);
1954
1955 /* Projective division not allowed for array samplers. */
1956 assert(!sampler_type->sampler_array);
1957
1958 tmp_dst.writemask = WRITEMASK_Z;
1959 emit(ir, OPCODE_MOV, tmp_dst, this->result);
1960
1961 tmp_dst.writemask = WRITEMASK_XY;
1962 emit(ir, OPCODE_MOV, tmp_dst, coord);
1963 }
1964
1965 coord_dst.writemask = WRITEMASK_XYZ;
1966 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
1967
1968 coord_dst.writemask = WRITEMASK_XYZW;
1969 coord.swizzle = SWIZZLE_XYZW;
1970 }
1971 }
1972
1973 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
1974 * comparitor was put in the correct place (and projected) by the code,
1975 * above, that handles by-hand projection.
1976 */
1977 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
1978 /* Slot the shadow value in as the second to last component of the
1979 * coord.
1980 */
1981 ir->shadow_comparitor->accept(this);
1982
1983 /* XXX This will need to be updated for cubemap array samplers. */
1984 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
1985 sampler_type->sampler_array) {
1986 coord_dst.writemask = WRITEMASK_W;
1987 } else {
1988 coord_dst.writemask = WRITEMASK_Z;
1989 }
1990
1991 emit(ir, OPCODE_MOV, coord_dst, this->result);
1992 coord_dst.writemask = WRITEMASK_XYZW;
1993 }
1994
1995 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
1996 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
1997 coord_dst.writemask = WRITEMASK_W;
1998 emit(ir, OPCODE_MOV, coord_dst, lod_info);
1999 coord_dst.writemask = WRITEMASK_XYZW;
2000 }
2001
2002 if (opcode == OPCODE_TXD)
2003 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2004 else
2005 inst = emit(ir, opcode, result_dst, coord);
2006
2007 if (ir->shadow_comparitor)
2008 inst->tex_shadow = GL_TRUE;
2009
2010 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2011 this->shader_program,
2012 this->prog);
2013
2014 switch (sampler_type->sampler_dimensionality) {
2015 case GLSL_SAMPLER_DIM_1D:
2016 inst->tex_target = (sampler_type->sampler_array)
2017 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2018 break;
2019 case GLSL_SAMPLER_DIM_2D:
2020 inst->tex_target = (sampler_type->sampler_array)
2021 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2022 break;
2023 case GLSL_SAMPLER_DIM_3D:
2024 inst->tex_target = TEXTURE_3D_INDEX;
2025 break;
2026 case GLSL_SAMPLER_DIM_CUBE:
2027 inst->tex_target = TEXTURE_CUBE_INDEX;
2028 break;
2029 case GLSL_SAMPLER_DIM_RECT:
2030 inst->tex_target = TEXTURE_RECT_INDEX;
2031 break;
2032 case GLSL_SAMPLER_DIM_BUF:
2033 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2034 break;
2035 case GLSL_SAMPLER_DIM_EXTERNAL:
2036 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2037 break;
2038 default:
2039 assert(!"Should not get here.");
2040 }
2041
2042 this->result = result_src;
2043 }
2044
2045 void
2046 ir_to_mesa_visitor::visit(ir_return *ir)
2047 {
2048 /* Non-void functions should have been inlined. We may still emit RETs
2049 * from main() unless the EmitNoMainReturn option is set.
2050 */
2051 assert(!ir->get_value());
2052 emit(ir, OPCODE_RET);
2053 }
2054
2055 void
2056 ir_to_mesa_visitor::visit(ir_discard *ir)
2057 {
2058 if (ir->condition) {
2059 ir->condition->accept(this);
2060 this->result.negate = ~this->result.negate;
2061 emit(ir, OPCODE_KIL, undef_dst, this->result);
2062 } else {
2063 emit(ir, OPCODE_KIL_NV);
2064 }
2065 }
2066
2067 void
2068 ir_to_mesa_visitor::visit(ir_if *ir)
2069 {
2070 ir_to_mesa_instruction *cond_inst, *if_inst;
2071 ir_to_mesa_instruction *prev_inst;
2072
2073 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2074
2075 ir->condition->accept(this);
2076 assert(this->result.file != PROGRAM_UNDEFINED);
2077
2078 if (this->options->EmitCondCodes) {
2079 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2080
2081 /* See if we actually generated any instruction for generating
2082 * the condition. If not, then cook up a move to a temp so we
2083 * have something to set cond_update on.
2084 */
2085 if (cond_inst == prev_inst) {
2086 src_reg temp = get_temp(glsl_type::bool_type);
2087 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2088 }
2089 cond_inst->cond_update = GL_TRUE;
2090
2091 if_inst = emit(ir->condition, OPCODE_IF);
2092 if_inst->dst.cond_mask = COND_NE;
2093 } else {
2094 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2095 }
2096
2097 this->instructions.push_tail(if_inst);
2098
2099 visit_exec_list(&ir->then_instructions, this);
2100
2101 if (!ir->else_instructions.is_empty()) {
2102 emit(ir->condition, OPCODE_ELSE);
2103 visit_exec_list(&ir->else_instructions, this);
2104 }
2105
2106 emit(ir->condition, OPCODE_ENDIF);
2107 }
2108
2109 void
2110 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2111 {
2112 assert(!"Geometry shaders not supported.");
2113 }
2114
2115 void
2116 ir_to_mesa_visitor::visit(ir_end_primitive *)
2117 {
2118 assert(!"Geometry shaders not supported.");
2119 }
2120
2121 ir_to_mesa_visitor::ir_to_mesa_visitor()
2122 {
2123 result.file = PROGRAM_UNDEFINED;
2124 next_temp = 1;
2125 next_signature_id = 1;
2126 current_function = NULL;
2127 mem_ctx = ralloc_context(NULL);
2128 }
2129
2130 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2131 {
2132 ralloc_free(mem_ctx);
2133 }
2134
2135 static struct prog_src_register
2136 mesa_src_reg_from_ir_src_reg(src_reg reg)
2137 {
2138 struct prog_src_register mesa_reg;
2139
2140 mesa_reg.File = reg.file;
2141 assert(reg.index < (1 << INST_INDEX_BITS));
2142 mesa_reg.Index = reg.index;
2143 mesa_reg.Swizzle = reg.swizzle;
2144 mesa_reg.RelAddr = reg.reladdr != NULL;
2145 mesa_reg.Negate = reg.negate;
2146 mesa_reg.Abs = 0;
2147 mesa_reg.HasIndex2 = GL_FALSE;
2148 mesa_reg.RelAddr2 = 0;
2149 mesa_reg.Index2 = 0;
2150
2151 return mesa_reg;
2152 }
2153
2154 static void
2155 set_branchtargets(ir_to_mesa_visitor *v,
2156 struct prog_instruction *mesa_instructions,
2157 int num_instructions)
2158 {
2159 int if_count = 0, loop_count = 0;
2160 int *if_stack, *loop_stack;
2161 int if_stack_pos = 0, loop_stack_pos = 0;
2162 int i, j;
2163
2164 for (i = 0; i < num_instructions; i++) {
2165 switch (mesa_instructions[i].Opcode) {
2166 case OPCODE_IF:
2167 if_count++;
2168 break;
2169 case OPCODE_BGNLOOP:
2170 loop_count++;
2171 break;
2172 case OPCODE_BRK:
2173 case OPCODE_CONT:
2174 mesa_instructions[i].BranchTarget = -1;
2175 break;
2176 default:
2177 break;
2178 }
2179 }
2180
2181 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2182 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2183
2184 for (i = 0; i < num_instructions; i++) {
2185 switch (mesa_instructions[i].Opcode) {
2186 case OPCODE_IF:
2187 if_stack[if_stack_pos] = i;
2188 if_stack_pos++;
2189 break;
2190 case OPCODE_ELSE:
2191 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2192 if_stack[if_stack_pos - 1] = i;
2193 break;
2194 case OPCODE_ENDIF:
2195 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2196 if_stack_pos--;
2197 break;
2198 case OPCODE_BGNLOOP:
2199 loop_stack[loop_stack_pos] = i;
2200 loop_stack_pos++;
2201 break;
2202 case OPCODE_ENDLOOP:
2203 loop_stack_pos--;
2204 /* Rewrite any breaks/conts at this nesting level (haven't
2205 * already had a BranchTarget assigned) to point to the end
2206 * of the loop.
2207 */
2208 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2209 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2210 mesa_instructions[j].Opcode == OPCODE_CONT) {
2211 if (mesa_instructions[j].BranchTarget == -1) {
2212 mesa_instructions[j].BranchTarget = i;
2213 }
2214 }
2215 }
2216 /* The loop ends point at each other. */
2217 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2218 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2219 break;
2220 case OPCODE_CAL:
2221 foreach_in_list(function_entry, entry, &v->function_signatures) {
2222 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2223 mesa_instructions[i].BranchTarget = entry->inst;
2224 break;
2225 }
2226 }
2227 break;
2228 default:
2229 break;
2230 }
2231 }
2232 }
2233
2234 static void
2235 print_program(struct prog_instruction *mesa_instructions,
2236 ir_instruction **mesa_instruction_annotation,
2237 int num_instructions)
2238 {
2239 ir_instruction *last_ir = NULL;
2240 int i;
2241 int indent = 0;
2242
2243 for (i = 0; i < num_instructions; i++) {
2244 struct prog_instruction *mesa_inst = mesa_instructions + i;
2245 ir_instruction *ir = mesa_instruction_annotation[i];
2246
2247 fprintf(stdout, "%3d: ", i);
2248
2249 if (last_ir != ir && ir) {
2250 int j;
2251
2252 for (j = 0; j < indent; j++) {
2253 fprintf(stdout, " ");
2254 }
2255 ir->print();
2256 printf("\n");
2257 last_ir = ir;
2258
2259 fprintf(stdout, " "); /* line number spacing. */
2260 }
2261
2262 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2263 PROG_PRINT_DEBUG, NULL);
2264 }
2265 }
2266
2267 namespace {
2268
2269 class add_uniform_to_shader : public program_resource_visitor {
2270 public:
2271 add_uniform_to_shader(struct gl_shader_program *shader_program,
2272 struct gl_program_parameter_list *params,
2273 gl_shader_stage shader_type)
2274 : shader_program(shader_program), params(params), idx(-1),
2275 shader_type(shader_type)
2276 {
2277 /* empty */
2278 }
2279
2280 void process(ir_variable *var)
2281 {
2282 this->idx = -1;
2283 this->program_resource_visitor::process(var);
2284
2285 var->data.location = this->idx;
2286 }
2287
2288 private:
2289 virtual void visit_field(const glsl_type *type, const char *name,
2290 bool row_major);
2291
2292 struct gl_shader_program *shader_program;
2293 struct gl_program_parameter_list *params;
2294 int idx;
2295 gl_shader_stage shader_type;
2296 };
2297
2298 } /* anonymous namespace */
2299
2300 void
2301 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2302 bool row_major)
2303 {
2304 unsigned int size;
2305
2306 (void) row_major;
2307
2308 if (type->is_vector() || type->is_scalar()) {
2309 size = type->vector_elements;
2310 if (type->is_double())
2311 size *= 2;
2312 } else {
2313 size = type_size(type) * 4;
2314 }
2315
2316 gl_register_file file;
2317 if (type->without_array()->is_sampler()) {
2318 file = PROGRAM_SAMPLER;
2319 } else {
2320 file = PROGRAM_UNIFORM;
2321 }
2322
2323 int index = _mesa_lookup_parameter_index(params, -1, name);
2324 if (index < 0) {
2325 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2326 NULL, NULL);
2327
2328 /* Sampler uniform values are stored in prog->SamplerUnits,
2329 * and the entry in that array is selected by this index we
2330 * store in ParameterValues[].
2331 */
2332 if (file == PROGRAM_SAMPLER) {
2333 unsigned location;
2334 const bool found =
2335 this->shader_program->UniformHash->get(location,
2336 params->Parameters[index].Name);
2337 assert(found);
2338
2339 if (!found)
2340 return;
2341
2342 struct gl_uniform_storage *storage =
2343 &this->shader_program->UniformStorage[location];
2344
2345 assert(storage->sampler[shader_type].active);
2346
2347 for (unsigned int j = 0; j < size / 4; j++)
2348 params->ParameterValues[index + j][0].f =
2349 storage->sampler[shader_type].index + j;
2350 }
2351 }
2352
2353 /* The first part of the uniform that's processed determines the base
2354 * location of the whole uniform (for structures).
2355 */
2356 if (this->idx < 0)
2357 this->idx = index;
2358 }
2359
2360 /**
2361 * Generate the program parameters list for the user uniforms in a shader
2362 *
2363 * \param shader_program Linked shader program. This is only used to
2364 * emit possible link errors to the info log.
2365 * \param sh Shader whose uniforms are to be processed.
2366 * \param params Parameter list to be filled in.
2367 */
2368 void
2369 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2370 *shader_program,
2371 struct gl_shader *sh,
2372 struct gl_program_parameter_list
2373 *params)
2374 {
2375 add_uniform_to_shader add(shader_program, params, sh->Stage);
2376
2377 foreach_in_list(ir_instruction, node, sh->ir) {
2378 ir_variable *var = node->as_variable();
2379
2380 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2381 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2382 continue;
2383
2384 add.process(var);
2385 }
2386 }
2387
2388 void
2389 _mesa_associate_uniform_storage(struct gl_context *ctx,
2390 struct gl_shader_program *shader_program,
2391 struct gl_program_parameter_list *params)
2392 {
2393 /* After adding each uniform to the parameter list, connect the storage for
2394 * the parameter with the tracking structure used by the API for the
2395 * uniform.
2396 */
2397 unsigned last_location = unsigned(~0);
2398 for (unsigned i = 0; i < params->NumParameters; i++) {
2399 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2400 continue;
2401
2402 unsigned location;
2403 const bool found =
2404 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2405 assert(found);
2406
2407 if (!found)
2408 continue;
2409
2410 if (location != last_location) {
2411 struct gl_uniform_storage *storage =
2412 &shader_program->UniformStorage[location];
2413 enum gl_uniform_driver_format format = uniform_native;
2414
2415 unsigned columns = 0;
2416 int dmul = 4 * sizeof(float);
2417 switch (storage->type->base_type) {
2418 case GLSL_TYPE_UINT:
2419 assert(ctx->Const.NativeIntegers);
2420 format = uniform_native;
2421 columns = 1;
2422 break;
2423 case GLSL_TYPE_INT:
2424 format =
2425 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2426 columns = 1;
2427 break;
2428
2429 case GLSL_TYPE_DOUBLE:
2430 if (storage->type->vector_elements > 2)
2431 dmul *= 2;
2432 /* fallthrough */
2433 case GLSL_TYPE_FLOAT:
2434 format = uniform_native;
2435 columns = storage->type->matrix_columns;
2436 break;
2437 case GLSL_TYPE_BOOL:
2438 format = uniform_native;
2439 columns = 1;
2440 break;
2441 case GLSL_TYPE_SAMPLER:
2442 case GLSL_TYPE_IMAGE:
2443 format = uniform_native;
2444 columns = 1;
2445 break;
2446 case GLSL_TYPE_ATOMIC_UINT:
2447 case GLSL_TYPE_ARRAY:
2448 case GLSL_TYPE_VOID:
2449 case GLSL_TYPE_STRUCT:
2450 case GLSL_TYPE_ERROR:
2451 case GLSL_TYPE_INTERFACE:
2452 case GLSL_TYPE_FUNCTION:
2453 assert(!"Should not get here.");
2454 break;
2455 }
2456
2457 _mesa_uniform_attach_driver_storage(storage,
2458 dmul * columns,
2459 dmul,
2460 format,
2461 &params->ParameterValues[i]);
2462
2463 /* After attaching the driver's storage to the uniform, propagate any
2464 * data from the linker's backing store. This will cause values from
2465 * initializers in the source code to be copied over.
2466 */
2467 _mesa_propagate_uniforms_to_driver_storage(storage,
2468 0,
2469 MAX2(1, storage->array_elements));
2470
2471 last_location = location;
2472 }
2473 }
2474 }
2475
2476 /*
2477 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2478 * channels for copy propagation and updates following instructions to
2479 * use the original versions.
2480 *
2481 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2482 * will occur. As an example, a TXP production before this pass:
2483 *
2484 * 0: MOV TEMP[1], INPUT[4].xyyy;
2485 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2486 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2487 *
2488 * and after:
2489 *
2490 * 0: MOV TEMP[1], INPUT[4].xyyy;
2491 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2492 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2493 *
2494 * which allows for dead code elimination on TEMP[1]'s writes.
2495 */
2496 void
2497 ir_to_mesa_visitor::copy_propagate(void)
2498 {
2499 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2500 ir_to_mesa_instruction *,
2501 this->next_temp * 4);
2502 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2503 int level = 0;
2504
2505 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2506 assert(inst->dst.file != PROGRAM_TEMPORARY
2507 || inst->dst.index < this->next_temp);
2508
2509 /* First, do any copy propagation possible into the src regs. */
2510 for (int r = 0; r < 3; r++) {
2511 ir_to_mesa_instruction *first = NULL;
2512 bool good = true;
2513 int acp_base = inst->src[r].index * 4;
2514
2515 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2516 inst->src[r].reladdr)
2517 continue;
2518
2519 /* See if we can find entries in the ACP consisting of MOVs
2520 * from the same src register for all the swizzled channels
2521 * of this src register reference.
2522 */
2523 for (int i = 0; i < 4; i++) {
2524 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2525 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2526
2527 if (!copy_chan) {
2528 good = false;
2529 break;
2530 }
2531
2532 assert(acp_level[acp_base + src_chan] <= level);
2533
2534 if (!first) {
2535 first = copy_chan;
2536 } else {
2537 if (first->src[0].file != copy_chan->src[0].file ||
2538 first->src[0].index != copy_chan->src[0].index) {
2539 good = false;
2540 break;
2541 }
2542 }
2543 }
2544
2545 if (good) {
2546 /* We've now validated that we can copy-propagate to
2547 * replace this src register reference. Do it.
2548 */
2549 inst->src[r].file = first->src[0].file;
2550 inst->src[r].index = first->src[0].index;
2551
2552 int swizzle = 0;
2553 for (int i = 0; i < 4; i++) {
2554 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2555 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2556 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2557 (3 * i));
2558 }
2559 inst->src[r].swizzle = swizzle;
2560 }
2561 }
2562
2563 switch (inst->op) {
2564 case OPCODE_BGNLOOP:
2565 case OPCODE_ENDLOOP:
2566 /* End of a basic block, clear the ACP entirely. */
2567 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2568 break;
2569
2570 case OPCODE_IF:
2571 ++level;
2572 break;
2573
2574 case OPCODE_ENDIF:
2575 case OPCODE_ELSE:
2576 /* Clear all channels written inside the block from the ACP, but
2577 * leaving those that were not touched.
2578 */
2579 for (int r = 0; r < this->next_temp; r++) {
2580 for (int c = 0; c < 4; c++) {
2581 if (!acp[4 * r + c])
2582 continue;
2583
2584 if (acp_level[4 * r + c] >= level)
2585 acp[4 * r + c] = NULL;
2586 }
2587 }
2588 if (inst->op == OPCODE_ENDIF)
2589 --level;
2590 break;
2591
2592 default:
2593 /* Continuing the block, clear any written channels from
2594 * the ACP.
2595 */
2596 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2597 /* Any temporary might be written, so no copy propagation
2598 * across this instruction.
2599 */
2600 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2601 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2602 inst->dst.reladdr) {
2603 /* Any output might be written, so no copy propagation
2604 * from outputs across this instruction.
2605 */
2606 for (int r = 0; r < this->next_temp; r++) {
2607 for (int c = 0; c < 4; c++) {
2608 if (!acp[4 * r + c])
2609 continue;
2610
2611 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2612 acp[4 * r + c] = NULL;
2613 }
2614 }
2615 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2616 inst->dst.file == PROGRAM_OUTPUT) {
2617 /* Clear where it's used as dst. */
2618 if (inst->dst.file == PROGRAM_TEMPORARY) {
2619 for (int c = 0; c < 4; c++) {
2620 if (inst->dst.writemask & (1 << c)) {
2621 acp[4 * inst->dst.index + c] = NULL;
2622 }
2623 }
2624 }
2625
2626 /* Clear where it's used as src. */
2627 for (int r = 0; r < this->next_temp; r++) {
2628 for (int c = 0; c < 4; c++) {
2629 if (!acp[4 * r + c])
2630 continue;
2631
2632 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2633
2634 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2635 acp[4 * r + c]->src[0].index == inst->dst.index &&
2636 inst->dst.writemask & (1 << src_chan))
2637 {
2638 acp[4 * r + c] = NULL;
2639 }
2640 }
2641 }
2642 }
2643 break;
2644 }
2645
2646 /* If this is a copy, add it to the ACP. */
2647 if (inst->op == OPCODE_MOV &&
2648 inst->dst.file == PROGRAM_TEMPORARY &&
2649 !(inst->dst.file == inst->src[0].file &&
2650 inst->dst.index == inst->src[0].index) &&
2651 !inst->dst.reladdr &&
2652 !inst->saturate &&
2653 !inst->src[0].reladdr &&
2654 !inst->src[0].negate) {
2655 for (int i = 0; i < 4; i++) {
2656 if (inst->dst.writemask & (1 << i)) {
2657 acp[4 * inst->dst.index + i] = inst;
2658 acp_level[4 * inst->dst.index + i] = level;
2659 }
2660 }
2661 }
2662 }
2663
2664 ralloc_free(acp_level);
2665 ralloc_free(acp);
2666 }
2667
2668
2669 /**
2670 * Convert a shader's GLSL IR into a Mesa gl_program.
2671 */
2672 static struct gl_program *
2673 get_mesa_program(struct gl_context *ctx,
2674 struct gl_shader_program *shader_program,
2675 struct gl_shader *shader)
2676 {
2677 ir_to_mesa_visitor v;
2678 struct prog_instruction *mesa_instructions, *mesa_inst;
2679 ir_instruction **mesa_instruction_annotation;
2680 int i;
2681 struct gl_program *prog;
2682 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2683 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2684 struct gl_shader_compiler_options *options =
2685 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2686
2687 validate_ir_tree(shader->ir);
2688
2689 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2690 if (!prog)
2691 return NULL;
2692 prog->Parameters = _mesa_new_parameter_list();
2693 v.ctx = ctx;
2694 v.prog = prog;
2695 v.shader_program = shader_program;
2696 v.options = options;
2697
2698 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2699 prog->Parameters);
2700
2701 /* Emit Mesa IR for main(). */
2702 visit_exec_list(shader->ir, &v);
2703 v.emit(NULL, OPCODE_END);
2704
2705 prog->NumTemporaries = v.next_temp;
2706
2707 unsigned num_instructions = v.instructions.length();
2708
2709 mesa_instructions =
2710 (struct prog_instruction *)calloc(num_instructions,
2711 sizeof(*mesa_instructions));
2712 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2713 num_instructions);
2714
2715 v.copy_propagate();
2716
2717 /* Convert ir_mesa_instructions into prog_instructions.
2718 */
2719 mesa_inst = mesa_instructions;
2720 i = 0;
2721 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2722 mesa_inst->Opcode = inst->op;
2723 mesa_inst->CondUpdate = inst->cond_update;
2724 if (inst->saturate)
2725 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2726 mesa_inst->DstReg.File = inst->dst.file;
2727 mesa_inst->DstReg.Index = inst->dst.index;
2728 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2729 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2730 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2731 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2732 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2733 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2734 mesa_inst->TexSrcUnit = inst->sampler;
2735 mesa_inst->TexSrcTarget = inst->tex_target;
2736 mesa_inst->TexShadow = inst->tex_shadow;
2737 mesa_instruction_annotation[i] = inst->ir;
2738
2739 /* Set IndirectRegisterFiles. */
2740 if (mesa_inst->DstReg.RelAddr)
2741 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2742
2743 /* Update program's bitmask of indirectly accessed register files */
2744 for (unsigned src = 0; src < 3; src++)
2745 if (mesa_inst->SrcReg[src].RelAddr)
2746 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2747
2748 switch (mesa_inst->Opcode) {
2749 case OPCODE_IF:
2750 if (options->MaxIfDepth == 0) {
2751 linker_warning(shader_program,
2752 "Couldn't flatten if-statement. "
2753 "This will likely result in software "
2754 "rasterization.\n");
2755 }
2756 break;
2757 case OPCODE_BGNLOOP:
2758 if (options->EmitNoLoops) {
2759 linker_warning(shader_program,
2760 "Couldn't unroll loop. "
2761 "This will likely result in software "
2762 "rasterization.\n");
2763 }
2764 break;
2765 case OPCODE_CONT:
2766 if (options->EmitNoCont) {
2767 linker_warning(shader_program,
2768 "Couldn't lower continue-statement. "
2769 "This will likely result in software "
2770 "rasterization.\n");
2771 }
2772 break;
2773 case OPCODE_ARL:
2774 prog->NumAddressRegs = 1;
2775 break;
2776 default:
2777 break;
2778 }
2779
2780 mesa_inst++;
2781 i++;
2782
2783 if (!shader_program->LinkStatus)
2784 break;
2785 }
2786
2787 if (!shader_program->LinkStatus) {
2788 goto fail_exit;
2789 }
2790
2791 set_branchtargets(&v, mesa_instructions, num_instructions);
2792
2793 if (ctx->_Shader->Flags & GLSL_DUMP) {
2794 fprintf(stderr, "\n");
2795 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2796 shader_program->Name);
2797 _mesa_print_ir(stderr, shader->ir, NULL);
2798 fprintf(stderr, "\n");
2799 fprintf(stderr, "\n");
2800 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2801 shader_program->Name);
2802 print_program(mesa_instructions, mesa_instruction_annotation,
2803 num_instructions);
2804 fflush(stderr);
2805 }
2806
2807 prog->Instructions = mesa_instructions;
2808 prog->NumInstructions = num_instructions;
2809
2810 /* Setting this to NULL prevents a possible double free in the fail_exit
2811 * path (far below).
2812 */
2813 mesa_instructions = NULL;
2814
2815 do_set_program_inouts(shader->ir, prog, shader->Stage);
2816
2817 prog->SamplersUsed = shader->active_samplers;
2818 prog->ShadowSamplers = shader->shadow_samplers;
2819 _mesa_update_shader_textures_used(shader_program, prog);
2820
2821 /* Set the gl_FragDepth layout. */
2822 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2823 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2824 fp->FragDepthLayout = shader_program->FragDepthLayout;
2825 }
2826
2827 _mesa_reference_program(ctx, &shader->Program, prog);
2828
2829 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2830 _mesa_optimize_program(ctx, prog);
2831 }
2832
2833 /* This has to be done last. Any operation that can cause
2834 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2835 * program constant) has to happen before creating this linkage.
2836 */
2837 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2838 if (!shader_program->LinkStatus) {
2839 goto fail_exit;
2840 }
2841
2842 return prog;
2843
2844 fail_exit:
2845 free(mesa_instructions);
2846 _mesa_reference_program(ctx, &shader->Program, NULL);
2847 return NULL;
2848 }
2849
2850 extern "C" {
2851
2852 /**
2853 * Link a shader.
2854 * Called via ctx->Driver.LinkShader()
2855 * This actually involves converting GLSL IR into Mesa gl_programs with
2856 * code lowering and other optimizations.
2857 */
2858 GLboolean
2859 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2860 {
2861 assert(prog->LinkStatus);
2862
2863 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2864 if (prog->_LinkedShaders[i] == NULL)
2865 continue;
2866
2867 bool progress;
2868 exec_list *ir = prog->_LinkedShaders[i]->ir;
2869 const struct gl_shader_compiler_options *options =
2870 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2871
2872 do {
2873 progress = false;
2874
2875 /* Lowering */
2876 do_mat_op_to_vec(ir);
2877 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2878 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2879 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2880
2881 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2882
2883 progress = do_common_optimization(ir, true, true,
2884 options, ctx->Const.NativeIntegers)
2885 || progress;
2886
2887 progress = lower_quadop_vector(ir, true) || progress;
2888
2889 if (options->MaxIfDepth == 0)
2890 progress = lower_discard(ir) || progress;
2891
2892 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2893
2894 if (options->EmitNoNoise)
2895 progress = lower_noise(ir) || progress;
2896
2897 /* If there are forms of indirect addressing that the driver
2898 * cannot handle, perform the lowering pass.
2899 */
2900 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2901 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2902 progress =
2903 lower_variable_index_to_cond_assign(ir,
2904 options->EmitNoIndirectInput,
2905 options->EmitNoIndirectOutput,
2906 options->EmitNoIndirectTemp,
2907 options->EmitNoIndirectUniform)
2908 || progress;
2909
2910 progress = do_vec_index_to_cond_assign(ir) || progress;
2911 progress = lower_vector_insert(ir, true) || progress;
2912 } while (progress);
2913
2914 validate_ir_tree(ir);
2915 }
2916
2917 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2918 struct gl_program *linked_prog;
2919
2920 if (prog->_LinkedShaders[i] == NULL)
2921 continue;
2922
2923 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2924
2925 if (linked_prog) {
2926 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2927
2928 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
2929 linked_prog);
2930 if (!ctx->Driver.ProgramStringNotify(ctx,
2931 _mesa_shader_stage_to_program(i),
2932 linked_prog)) {
2933 return GL_FALSE;
2934 }
2935 }
2936
2937 _mesa_reference_program(ctx, &linked_prog, NULL);
2938 }
2939
2940 return prog->LinkStatus;
2941 }
2942
2943 /**
2944 * Link a GLSL shader program. Called via glLinkProgram().
2945 */
2946 void
2947 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2948 {
2949 unsigned int i;
2950
2951 _mesa_clear_shader_program_data(prog);
2952
2953 prog->LinkStatus = GL_TRUE;
2954
2955 for (i = 0; i < prog->NumShaders; i++) {
2956 if (!prog->Shaders[i]->CompileStatus) {
2957 linker_error(prog, "linking with uncompiled shader");
2958 }
2959 }
2960
2961 if (prog->LinkStatus) {
2962 link_shaders(ctx, prog);
2963 }
2964
2965 if (prog->LinkStatus) {
2966 if (!ctx->Driver.LinkShader(ctx, prog)) {
2967 prog->LinkStatus = GL_FALSE;
2968 }
2969 }
2970
2971 if (ctx->_Shader->Flags & GLSL_DUMP) {
2972 if (!prog->LinkStatus) {
2973 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
2974 }
2975
2976 if (prog->InfoLog && prog->InfoLog[0] != 0) {
2977 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
2978 fprintf(stderr, "%s\n", prog->InfoLog);
2979 }
2980 }
2981 }
2982
2983 } /* extern "C" */