program: Remove OPCODE_KIL_NV.
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/macros.h"
35 #include "main/mtypes.h"
36 #include "main/shaderapi.h"
37 #include "main/shaderobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "program/hash_table.h"
50 #include "program/prog_instruction.h"
51 #include "program/prog_optimize.h"
52 #include "program/prog_print.h"
53 #include "program/program.h"
54 #include "program/prog_parameter.h"
55
56
57 static int swizzle_for_size(int size);
58
59 namespace {
60
61 class src_reg;
62 class dst_reg;
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->cond_mask = COND_TR;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->cond_mask = COND_TR;
118 this->reladdr = NULL;
119 }
120
121 explicit dst_reg(src_reg reg);
122
123 gl_register_file file; /**< PROGRAM_* from Mesa */
124 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
125 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
126 GLuint cond_mask:4;
127 /** Register index should be offset by the integer in this reg. */
128 src_reg *reladdr;
129 };
130
131 } /* anonymous namespace */
132
133 src_reg::src_reg(dst_reg reg)
134 {
135 this->file = reg.file;
136 this->index = reg.index;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = reg.reladdr;
140 }
141
142 dst_reg::dst_reg(src_reg reg)
143 {
144 this->file = reg.file;
145 this->index = reg.index;
146 this->writemask = WRITEMASK_XYZW;
147 this->cond_mask = COND_TR;
148 this->reladdr = reg.reladdr;
149 }
150
151 namespace {
152
153 class ir_to_mesa_instruction : public exec_node {
154 public:
155 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
156
157 enum prog_opcode op;
158 dst_reg dst;
159 src_reg src[3];
160 /** Pointer to the ir source this tree came from for debugging */
161 ir_instruction *ir;
162 GLboolean cond_update;
163 bool saturate;
164 int sampler; /**< sampler index */
165 int tex_target; /**< One of TEXTURE_*_INDEX */
166 GLboolean tex_shadow;
167 };
168
169 class variable_storage : public exec_node {
170 public:
171 variable_storage(ir_variable *var, gl_register_file file, int index)
172 : file(file), index(index), var(var)
173 {
174 /* empty */
175 }
176
177 gl_register_file file;
178 int index;
179 ir_variable *var; /* variable that maps to this, if any */
180 };
181
182 class function_entry : public exec_node {
183 public:
184 ir_function_signature *sig;
185
186 /**
187 * identifier of this function signature used by the program.
188 *
189 * At the point that Mesa instructions for function calls are
190 * generated, we don't know the address of the first instruction of
191 * the function body. So we make the BranchTarget that is called a
192 * small integer and rewrite them during set_branchtargets().
193 */
194 int sig_id;
195
196 /**
197 * Pointer to first instruction of the function body.
198 *
199 * Set during function body emits after main() is processed.
200 */
201 ir_to_mesa_instruction *bgn_inst;
202
203 /**
204 * Index of the first instruction of the function body in actual
205 * Mesa IR.
206 *
207 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
208 */
209 int inst;
210
211 /** Storage for the return value. */
212 src_reg return_reg;
213 };
214
215 class ir_to_mesa_visitor : public ir_visitor {
216 public:
217 ir_to_mesa_visitor();
218 ~ir_to_mesa_visitor();
219
220 function_entry *current_function;
221
222 struct gl_context *ctx;
223 struct gl_program *prog;
224 struct gl_shader_program *shader_program;
225 struct gl_shader_compiler_options *options;
226
227 int next_temp;
228
229 variable_storage *find_variable_storage(const ir_variable *var);
230
231 src_reg get_temp(const glsl_type *type);
232 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
233
234 src_reg src_reg_for_float(float val);
235
236 /**
237 * \name Visit methods
238 *
239 * As typical for the visitor pattern, there must be one \c visit method for
240 * each concrete subclass of \c ir_instruction. Virtual base classes within
241 * the hierarchy should not have \c visit methods.
242 */
243 /*@{*/
244 virtual void visit(ir_variable *);
245 virtual void visit(ir_loop *);
246 virtual void visit(ir_loop_jump *);
247 virtual void visit(ir_function_signature *);
248 virtual void visit(ir_function *);
249 virtual void visit(ir_expression *);
250 virtual void visit(ir_swizzle *);
251 virtual void visit(ir_dereference_variable *);
252 virtual void visit(ir_dereference_array *);
253 virtual void visit(ir_dereference_record *);
254 virtual void visit(ir_assignment *);
255 virtual void visit(ir_constant *);
256 virtual void visit(ir_call *);
257 virtual void visit(ir_return *);
258 virtual void visit(ir_discard *);
259 virtual void visit(ir_texture *);
260 virtual void visit(ir_if *);
261 virtual void visit(ir_emit_vertex *);
262 virtual void visit(ir_end_primitive *);
263 virtual void visit(ir_barrier *);
264 /*@}*/
265
266 src_reg result;
267
268 /** List of variable_storage */
269 exec_list variables;
270
271 /** List of function_entry */
272 exec_list function_signatures;
273 int next_signature_id;
274
275 /** List of ir_to_mesa_instruction */
276 exec_list instructions;
277
278 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
281 dst_reg dst, src_reg src0);
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
284 dst_reg dst, src_reg src0, src_reg src1);
285
286 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
287 dst_reg dst,
288 src_reg src0, src_reg src1, src_reg src2);
289
290 /**
291 * Emit the correct dot-product instruction for the type of arguments
292 */
293 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
294 dst_reg dst,
295 src_reg src0,
296 src_reg src1,
297 unsigned elements);
298
299 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
300 dst_reg dst, src_reg src0);
301
302 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
303 dst_reg dst, src_reg src0, src_reg src1);
304
305 bool try_emit_mad(ir_expression *ir,
306 int mul_operand);
307 bool try_emit_mad_for_and_not(ir_expression *ir,
308 int mul_operand);
309
310 void emit_swz(ir_expression *ir);
311
312 bool process_move_condition(ir_rvalue *ir);
313
314 void copy_propagate(void);
315
316 void *mem_ctx;
317 };
318
319 } /* anonymous namespace */
320
321 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
322
323 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
324
325 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
326
327 static int
328 swizzle_for_size(int size)
329 {
330 static const int size_swizzles[4] = {
331 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
332 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
333 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
334 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
335 };
336
337 assert((size >= 1) && (size <= 4));
338 return size_swizzles[size - 1];
339 }
340
341 ir_to_mesa_instruction *
342 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
343 dst_reg dst,
344 src_reg src0, src_reg src1, src_reg src2)
345 {
346 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
347 int num_reladdr = 0;
348
349 /* If we have to do relative addressing, we want to load the ARL
350 * reg directly for one of the regs, and preload the other reladdr
351 * sources into temps.
352 */
353 num_reladdr += dst.reladdr != NULL;
354 num_reladdr += src0.reladdr != NULL;
355 num_reladdr += src1.reladdr != NULL;
356 num_reladdr += src2.reladdr != NULL;
357
358 reladdr_to_temp(ir, &src2, &num_reladdr);
359 reladdr_to_temp(ir, &src1, &num_reladdr);
360 reladdr_to_temp(ir, &src0, &num_reladdr);
361
362 if (dst.reladdr) {
363 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
364 num_reladdr--;
365 }
366 assert(num_reladdr == 0);
367
368 inst->op = op;
369 inst->dst = dst;
370 inst->src[0] = src0;
371 inst->src[1] = src1;
372 inst->src[2] = src2;
373 inst->ir = ir;
374
375 this->instructions.push_tail(inst);
376
377 return inst;
378 }
379
380
381 ir_to_mesa_instruction *
382 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
383 dst_reg dst, src_reg src0, src_reg src1)
384 {
385 return emit(ir, op, dst, src0, src1, undef_src);
386 }
387
388 ir_to_mesa_instruction *
389 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
390 dst_reg dst, src_reg src0)
391 {
392 assert(dst.writemask != 0);
393 return emit(ir, op, dst, src0, undef_src, undef_src);
394 }
395
396 ir_to_mesa_instruction *
397 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
398 {
399 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
400 }
401
402 ir_to_mesa_instruction *
403 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
404 dst_reg dst, src_reg src0, src_reg src1,
405 unsigned elements)
406 {
407 static const enum prog_opcode dot_opcodes[] = {
408 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
409 };
410
411 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
412 }
413
414 /**
415 * Emits Mesa scalar opcodes to produce unique answers across channels.
416 *
417 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
418 * channel determines the result across all channels. So to do a vec4
419 * of this operation, we want to emit a scalar per source channel used
420 * to produce dest channels.
421 */
422 void
423 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
424 dst_reg dst,
425 src_reg orig_src0, src_reg orig_src1)
426 {
427 int i, j;
428 int done_mask = ~dst.writemask;
429
430 /* Mesa RCP is a scalar operation splatting results to all channels,
431 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
432 * dst channels.
433 */
434 for (i = 0; i < 4; i++) {
435 GLuint this_mask = (1 << i);
436 ir_to_mesa_instruction *inst;
437 src_reg src0 = orig_src0;
438 src_reg src1 = orig_src1;
439
440 if (done_mask & this_mask)
441 continue;
442
443 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
444 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
445 for (j = i + 1; j < 4; j++) {
446 /* If there is another enabled component in the destination that is
447 * derived from the same inputs, generate its value on this pass as
448 * well.
449 */
450 if (!(done_mask & (1 << j)) &&
451 GET_SWZ(src0.swizzle, j) == src0_swiz &&
452 GET_SWZ(src1.swizzle, j) == src1_swiz) {
453 this_mask |= (1 << j);
454 }
455 }
456 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
457 src0_swiz, src0_swiz);
458 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
459 src1_swiz, src1_swiz);
460
461 inst = emit(ir, op, dst, src0, src1);
462 inst->dst.writemask = this_mask;
463 done_mask |= this_mask;
464 }
465 }
466
467 void
468 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
469 dst_reg dst, src_reg src0)
470 {
471 src_reg undef = undef_src;
472
473 undef.swizzle = SWIZZLE_XXXX;
474
475 emit_scalar(ir, op, dst, src0, undef);
476 }
477
478 src_reg
479 ir_to_mesa_visitor::src_reg_for_float(float val)
480 {
481 src_reg src(PROGRAM_CONSTANT, -1, NULL);
482
483 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
484 (const gl_constant_value *)&val, 1, &src.swizzle);
485
486 return src;
487 }
488
489 static int
490 type_size(const struct glsl_type *type)
491 {
492 unsigned int i;
493 int size;
494
495 switch (type->base_type) {
496 case GLSL_TYPE_UINT:
497 case GLSL_TYPE_INT:
498 case GLSL_TYPE_FLOAT:
499 case GLSL_TYPE_BOOL:
500 if (type->is_matrix()) {
501 return type->matrix_columns;
502 } else {
503 /* Regardless of size of vector, it gets a vec4. This is bad
504 * packing for things like floats, but otherwise arrays become a
505 * mess. Hopefully a later pass over the code can pack scalars
506 * down if appropriate.
507 */
508 return 1;
509 }
510 break;
511 case GLSL_TYPE_DOUBLE:
512 if (type->is_matrix()) {
513 if (type->vector_elements > 2)
514 return type->matrix_columns * 2;
515 else
516 return type->matrix_columns;
517 } else {
518 if (type->vector_elements > 2)
519 return 2;
520 else
521 return 1;
522 }
523 break;
524 case GLSL_TYPE_ARRAY:
525 assert(type->length > 0);
526 return type_size(type->fields.array) * type->length;
527 case GLSL_TYPE_STRUCT:
528 size = 0;
529 for (i = 0; i < type->length; i++) {
530 size += type_size(type->fields.structure[i].type);
531 }
532 return size;
533 case GLSL_TYPE_SAMPLER:
534 case GLSL_TYPE_IMAGE:
535 case GLSL_TYPE_SUBROUTINE:
536 /* Samplers take up one slot in UNIFORMS[], but they're baked in
537 * at link time.
538 */
539 return 1;
540 case GLSL_TYPE_ATOMIC_UINT:
541 case GLSL_TYPE_VOID:
542 case GLSL_TYPE_ERROR:
543 case GLSL_TYPE_INTERFACE:
544 case GLSL_TYPE_FUNCTION:
545 assert(!"Invalid type in type_size");
546 break;
547 }
548
549 return 0;
550 }
551
552 /**
553 * In the initial pass of codegen, we assign temporary numbers to
554 * intermediate results. (not SSA -- variable assignments will reuse
555 * storage). Actual register allocation for the Mesa VM occurs in a
556 * pass over the Mesa IR later.
557 */
558 src_reg
559 ir_to_mesa_visitor::get_temp(const glsl_type *type)
560 {
561 src_reg src;
562
563 src.file = PROGRAM_TEMPORARY;
564 src.index = next_temp;
565 src.reladdr = NULL;
566 next_temp += type_size(type);
567
568 if (type->is_array() || type->is_record()) {
569 src.swizzle = SWIZZLE_NOOP;
570 } else {
571 src.swizzle = swizzle_for_size(type->vector_elements);
572 }
573 src.negate = 0;
574
575 return src;
576 }
577
578 variable_storage *
579 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
580 {
581 foreach_in_list(variable_storage, entry, &this->variables) {
582 if (entry->var == var)
583 return entry;
584 }
585
586 return NULL;
587 }
588
589 void
590 ir_to_mesa_visitor::visit(ir_variable *ir)
591 {
592 if (strcmp(ir->name, "gl_FragCoord") == 0) {
593 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
594
595 fp->OriginUpperLeft = ir->data.origin_upper_left;
596 fp->PixelCenterInteger = ir->data.pixel_center_integer;
597 }
598
599 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
600 unsigned int i;
601 const ir_state_slot *const slots = ir->get_state_slots();
602 assert(slots != NULL);
603
604 /* Check if this statevar's setup in the STATE file exactly
605 * matches how we'll want to reference it as a
606 * struct/array/whatever. If not, then we need to move it into
607 * temporary storage and hope that it'll get copy-propagated
608 * out.
609 */
610 for (i = 0; i < ir->get_num_state_slots(); i++) {
611 if (slots[i].swizzle != SWIZZLE_XYZW) {
612 break;
613 }
614 }
615
616 variable_storage *storage;
617 dst_reg dst;
618 if (i == ir->get_num_state_slots()) {
619 /* We'll set the index later. */
620 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
621 this->variables.push_tail(storage);
622
623 dst = undef_dst;
624 } else {
625 /* The variable_storage constructor allocates slots based on the size
626 * of the type. However, this had better match the number of state
627 * elements that we're going to copy into the new temporary.
628 */
629 assert((int) ir->get_num_state_slots() == type_size(ir->type));
630
631 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
632 this->next_temp);
633 this->variables.push_tail(storage);
634 this->next_temp += type_size(ir->type);
635
636 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
637 }
638
639
640 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
641 int index = _mesa_add_state_reference(this->prog->Parameters,
642 (gl_state_index *)slots[i].tokens);
643
644 if (storage->file == PROGRAM_STATE_VAR) {
645 if (storage->index == -1) {
646 storage->index = index;
647 } else {
648 assert(index == storage->index + (int)i);
649 }
650 } else {
651 src_reg src(PROGRAM_STATE_VAR, index, NULL);
652 src.swizzle = slots[i].swizzle;
653 emit(ir, OPCODE_MOV, dst, src);
654 /* even a float takes up a whole vec4 reg in a struct/array. */
655 dst.index++;
656 }
657 }
658
659 if (storage->file == PROGRAM_TEMPORARY &&
660 dst.index != storage->index + (int) ir->get_num_state_slots()) {
661 linker_error(this->shader_program,
662 "failed to load builtin uniform `%s' "
663 "(%d/%d regs loaded)\n",
664 ir->name, dst.index - storage->index,
665 type_size(ir->type));
666 }
667 }
668 }
669
670 void
671 ir_to_mesa_visitor::visit(ir_loop *ir)
672 {
673 emit(NULL, OPCODE_BGNLOOP);
674
675 visit_exec_list(&ir->body_instructions, this);
676
677 emit(NULL, OPCODE_ENDLOOP);
678 }
679
680 void
681 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
682 {
683 switch (ir->mode) {
684 case ir_loop_jump::jump_break:
685 emit(NULL, OPCODE_BRK);
686 break;
687 case ir_loop_jump::jump_continue:
688 emit(NULL, OPCODE_CONT);
689 break;
690 }
691 }
692
693
694 void
695 ir_to_mesa_visitor::visit(ir_function_signature *ir)
696 {
697 assert(0);
698 (void)ir;
699 }
700
701 void
702 ir_to_mesa_visitor::visit(ir_function *ir)
703 {
704 /* Ignore function bodies other than main() -- we shouldn't see calls to
705 * them since they should all be inlined before we get to ir_to_mesa.
706 */
707 if (strcmp(ir->name, "main") == 0) {
708 const ir_function_signature *sig;
709 exec_list empty;
710
711 sig = ir->matching_signature(NULL, &empty, false);
712
713 assert(sig);
714
715 foreach_in_list(ir_instruction, ir, &sig->body) {
716 ir->accept(this);
717 }
718 }
719 }
720
721 bool
722 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
723 {
724 int nonmul_operand = 1 - mul_operand;
725 src_reg a, b, c;
726
727 ir_expression *expr = ir->operands[mul_operand]->as_expression();
728 if (!expr || expr->operation != ir_binop_mul)
729 return false;
730
731 expr->operands[0]->accept(this);
732 a = this->result;
733 expr->operands[1]->accept(this);
734 b = this->result;
735 ir->operands[nonmul_operand]->accept(this);
736 c = this->result;
737
738 this->result = get_temp(ir->type);
739 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
740
741 return true;
742 }
743
744 /**
745 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
746 *
747 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
748 * implemented using multiplication, and logical-or is implemented using
749 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
750 * As result, the logical expression (a & !b) can be rewritten as:
751 *
752 * - a * !b
753 * - a * (1 - b)
754 * - (a * 1) - (a * b)
755 * - a + -(a * b)
756 * - a + (a * -b)
757 *
758 * This final expression can be implemented as a single MAD(a, -b, a)
759 * instruction.
760 */
761 bool
762 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
763 {
764 const int other_operand = 1 - try_operand;
765 src_reg a, b;
766
767 ir_expression *expr = ir->operands[try_operand]->as_expression();
768 if (!expr || expr->operation != ir_unop_logic_not)
769 return false;
770
771 ir->operands[other_operand]->accept(this);
772 a = this->result;
773 expr->operands[0]->accept(this);
774 b = this->result;
775
776 b.negate = ~b.negate;
777
778 this->result = get_temp(ir->type);
779 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
780
781 return true;
782 }
783
784 void
785 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
786 src_reg *reg, int *num_reladdr)
787 {
788 if (!reg->reladdr)
789 return;
790
791 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
792
793 if (*num_reladdr != 1) {
794 src_reg temp = get_temp(glsl_type::vec4_type);
795
796 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
797 *reg = temp;
798 }
799
800 (*num_reladdr)--;
801 }
802
803 void
804 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
805 {
806 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
807 * This means that each of the operands is either an immediate value of -1,
808 * 0, or 1, or is a component from one source register (possibly with
809 * negation).
810 */
811 uint8_t components[4] = { 0 };
812 bool negate[4] = { false };
813 ir_variable *var = NULL;
814
815 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
816 ir_rvalue *op = ir->operands[i];
817
818 assert(op->type->is_scalar());
819
820 while (op != NULL) {
821 switch (op->ir_type) {
822 case ir_type_constant: {
823
824 assert(op->type->is_scalar());
825
826 const ir_constant *const c = op->as_constant();
827 if (c->is_one()) {
828 components[i] = SWIZZLE_ONE;
829 } else if (c->is_zero()) {
830 components[i] = SWIZZLE_ZERO;
831 } else if (c->is_negative_one()) {
832 components[i] = SWIZZLE_ONE;
833 negate[i] = true;
834 } else {
835 assert(!"SWZ constant must be 0.0 or 1.0.");
836 }
837
838 op = NULL;
839 break;
840 }
841
842 case ir_type_dereference_variable: {
843 ir_dereference_variable *const deref =
844 (ir_dereference_variable *) op;
845
846 assert((var == NULL) || (deref->var == var));
847 components[i] = SWIZZLE_X;
848 var = deref->var;
849 op = NULL;
850 break;
851 }
852
853 case ir_type_expression: {
854 ir_expression *const expr = (ir_expression *) op;
855
856 assert(expr->operation == ir_unop_neg);
857 negate[i] = true;
858
859 op = expr->operands[0];
860 break;
861 }
862
863 case ir_type_swizzle: {
864 ir_swizzle *const swiz = (ir_swizzle *) op;
865
866 components[i] = swiz->mask.x;
867 op = swiz->val;
868 break;
869 }
870
871 default:
872 assert(!"Should not get here.");
873 return;
874 }
875 }
876 }
877
878 assert(var != NULL);
879
880 ir_dereference_variable *const deref =
881 new(mem_ctx) ir_dereference_variable(var);
882
883 this->result.file = PROGRAM_UNDEFINED;
884 deref->accept(this);
885 if (this->result.file == PROGRAM_UNDEFINED) {
886 printf("Failed to get tree for expression operand:\n");
887 deref->print();
888 printf("\n");
889 exit(1);
890 }
891
892 src_reg src;
893
894 src = this->result;
895 src.swizzle = MAKE_SWIZZLE4(components[0],
896 components[1],
897 components[2],
898 components[3]);
899 src.negate = ((unsigned(negate[0]) << 0)
900 | (unsigned(negate[1]) << 1)
901 | (unsigned(negate[2]) << 2)
902 | (unsigned(negate[3]) << 3));
903
904 /* Storage for our result. Ideally for an assignment we'd be using the
905 * actual storage for the result here, instead.
906 */
907 const src_reg result_src = get_temp(ir->type);
908 dst_reg result_dst = dst_reg(result_src);
909
910 /* Limit writes to the channels that will be used by result_src later.
911 * This does limit this temp's use as a temporary for multi-instruction
912 * sequences.
913 */
914 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
915
916 emit(ir, OPCODE_SWZ, result_dst, src);
917 this->result = result_src;
918 }
919
920 void
921 ir_to_mesa_visitor::visit(ir_expression *ir)
922 {
923 unsigned int operand;
924 src_reg op[ARRAY_SIZE(ir->operands)];
925 src_reg result_src;
926 dst_reg result_dst;
927
928 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
929 */
930 if (ir->operation == ir_binop_add) {
931 if (try_emit_mad(ir, 1))
932 return;
933 if (try_emit_mad(ir, 0))
934 return;
935 }
936
937 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
938 */
939 if (ir->operation == ir_binop_logic_and) {
940 if (try_emit_mad_for_and_not(ir, 1))
941 return;
942 if (try_emit_mad_for_and_not(ir, 0))
943 return;
944 }
945
946 if (ir->operation == ir_quadop_vector) {
947 this->emit_swz(ir);
948 return;
949 }
950
951 for (operand = 0; operand < ir->get_num_operands(); operand++) {
952 this->result.file = PROGRAM_UNDEFINED;
953 ir->operands[operand]->accept(this);
954 if (this->result.file == PROGRAM_UNDEFINED) {
955 printf("Failed to get tree for expression operand:\n");
956 ir->operands[operand]->print();
957 printf("\n");
958 exit(1);
959 }
960 op[operand] = this->result;
961
962 /* Matrix expression operands should have been broken down to vector
963 * operations already.
964 */
965 assert(!ir->operands[operand]->type->is_matrix());
966 }
967
968 int vector_elements = ir->operands[0]->type->vector_elements;
969 if (ir->operands[1]) {
970 vector_elements = MAX2(vector_elements,
971 ir->operands[1]->type->vector_elements);
972 }
973
974 this->result.file = PROGRAM_UNDEFINED;
975
976 /* Storage for our result. Ideally for an assignment we'd be using
977 * the actual storage for the result here, instead.
978 */
979 result_src = get_temp(ir->type);
980 /* convenience for the emit functions below. */
981 result_dst = dst_reg(result_src);
982 /* Limit writes to the channels that will be used by result_src later.
983 * This does limit this temp's use as a temporary for multi-instruction
984 * sequences.
985 */
986 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
987
988 switch (ir->operation) {
989 case ir_unop_logic_not:
990 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
991 * older GPUs implement SEQ using multiple instructions (i915 uses two
992 * SGE instructions and a MUL instruction). Since our logic values are
993 * 0.0 and 1.0, 1-x also implements !x.
994 */
995 op[0].negate = ~op[0].negate;
996 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
997 break;
998 case ir_unop_neg:
999 op[0].negate = ~op[0].negate;
1000 result_src = op[0];
1001 break;
1002 case ir_unop_abs:
1003 emit(ir, OPCODE_ABS, result_dst, op[0]);
1004 break;
1005 case ir_unop_sign:
1006 emit(ir, OPCODE_SSG, result_dst, op[0]);
1007 break;
1008 case ir_unop_rcp:
1009 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1010 break;
1011
1012 case ir_unop_exp2:
1013 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1014 break;
1015 case ir_unop_exp:
1016 case ir_unop_log:
1017 assert(!"not reached: should be handled by ir_explog_to_explog2");
1018 break;
1019 case ir_unop_log2:
1020 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1021 break;
1022 case ir_unop_sin:
1023 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1024 break;
1025 case ir_unop_cos:
1026 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1027 break;
1028
1029 case ir_unop_dFdx:
1030 emit(ir, OPCODE_DDX, result_dst, op[0]);
1031 break;
1032 case ir_unop_dFdy:
1033 emit(ir, OPCODE_DDY, result_dst, op[0]);
1034 break;
1035
1036 case ir_unop_saturate: {
1037 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1038 result_dst, op[0]);
1039 inst->saturate = true;
1040 break;
1041 }
1042 case ir_unop_noise: {
1043 const enum prog_opcode opcode =
1044 prog_opcode(OPCODE_NOISE1
1045 + (ir->operands[0]->type->vector_elements) - 1);
1046 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1047
1048 emit(ir, opcode, result_dst, op[0]);
1049 break;
1050 }
1051
1052 case ir_binop_add:
1053 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1054 break;
1055 case ir_binop_sub:
1056 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1057 break;
1058
1059 case ir_binop_mul:
1060 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1061 break;
1062 case ir_binop_div:
1063 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1064 break;
1065 case ir_binop_mod:
1066 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1067 assert(ir->type->is_integer());
1068 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1069 break;
1070
1071 case ir_binop_less:
1072 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1073 break;
1074 case ir_binop_greater:
1075 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1076 break;
1077 case ir_binop_lequal:
1078 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1079 break;
1080 case ir_binop_gequal:
1081 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1082 break;
1083 case ir_binop_equal:
1084 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1085 break;
1086 case ir_binop_nequal:
1087 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1088 break;
1089 case ir_binop_all_equal:
1090 /* "==" operator producing a scalar boolean. */
1091 if (ir->operands[0]->type->is_vector() ||
1092 ir->operands[1]->type->is_vector()) {
1093 src_reg temp = get_temp(glsl_type::vec4_type);
1094 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1095
1096 /* After the dot-product, the value will be an integer on the
1097 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1098 */
1099 emit_dp(ir, result_dst, temp, temp, vector_elements);
1100
1101 /* Negating the result of the dot-product gives values on the range
1102 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1103 * achieved using SGE.
1104 */
1105 src_reg sge_src = result_src;
1106 sge_src.negate = ~sge_src.negate;
1107 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1108 } else {
1109 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1110 }
1111 break;
1112 case ir_binop_any_nequal:
1113 /* "!=" operator producing a scalar boolean. */
1114 if (ir->operands[0]->type->is_vector() ||
1115 ir->operands[1]->type->is_vector()) {
1116 src_reg temp = get_temp(glsl_type::vec4_type);
1117 if (ir->operands[0]->type->is_boolean() &&
1118 ir->operands[1]->as_constant() &&
1119 ir->operands[1]->as_constant()->is_zero()) {
1120 temp = op[0];
1121 } else {
1122 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1123 }
1124
1125 /* After the dot-product, the value will be an integer on the
1126 * range [0,4]. Zero stays zero, and positive values become 1.0.
1127 */
1128 ir_to_mesa_instruction *const dp =
1129 emit_dp(ir, result_dst, temp, temp, vector_elements);
1130 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1131 /* The clamping to [0,1] can be done for free in the fragment
1132 * shader with a saturate.
1133 */
1134 dp->saturate = true;
1135 } else {
1136 /* Negating the result of the dot-product gives values on the range
1137 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1138 * achieved using SLT.
1139 */
1140 src_reg slt_src = result_src;
1141 slt_src.negate = ~slt_src.negate;
1142 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1143 }
1144 } else {
1145 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1146 }
1147 break;
1148
1149 case ir_binop_logic_xor:
1150 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1151 break;
1152
1153 case ir_binop_logic_or: {
1154 /* After the addition, the value will be an integer on the
1155 * range [0,2]. Zero stays zero, and positive values become 1.0.
1156 */
1157 ir_to_mesa_instruction *add =
1158 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1159 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1160 /* The clamping to [0,1] can be done for free in the fragment
1161 * shader with a saturate.
1162 */
1163 add->saturate = true;
1164 } else {
1165 /* Negating the result of the addition gives values on the range
1166 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1167 * is achieved using SLT.
1168 */
1169 src_reg slt_src = result_src;
1170 slt_src.negate = ~slt_src.negate;
1171 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1172 }
1173 break;
1174 }
1175
1176 case ir_binop_logic_and:
1177 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1178 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1179 break;
1180
1181 case ir_binop_dot:
1182 assert(ir->operands[0]->type->is_vector());
1183 assert(ir->operands[0]->type == ir->operands[1]->type);
1184 emit_dp(ir, result_dst, op[0], op[1],
1185 ir->operands[0]->type->vector_elements);
1186 break;
1187
1188 case ir_unop_sqrt:
1189 /* sqrt(x) = x * rsq(x). */
1190 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1191 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1192 /* For incoming channels <= 0, set the result to 0. */
1193 op[0].negate = ~op[0].negate;
1194 emit(ir, OPCODE_CMP, result_dst,
1195 op[0], result_src, src_reg_for_float(0.0));
1196 break;
1197 case ir_unop_rsq:
1198 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1199 break;
1200 case ir_unop_i2f:
1201 case ir_unop_u2f:
1202 case ir_unop_b2f:
1203 case ir_unop_b2i:
1204 case ir_unop_i2u:
1205 case ir_unop_u2i:
1206 /* Mesa IR lacks types, ints are stored as truncated floats. */
1207 result_src = op[0];
1208 break;
1209 case ir_unop_f2i:
1210 case ir_unop_f2u:
1211 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1212 break;
1213 case ir_unop_f2b:
1214 case ir_unop_i2b:
1215 emit(ir, OPCODE_SNE, result_dst,
1216 op[0], src_reg_for_float(0.0));
1217 break;
1218 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1219 case ir_unop_bitcast_f2u:
1220 case ir_unop_bitcast_i2f:
1221 case ir_unop_bitcast_u2f:
1222 break;
1223 case ir_unop_trunc:
1224 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1225 break;
1226 case ir_unop_ceil:
1227 op[0].negate = ~op[0].negate;
1228 emit(ir, OPCODE_FLR, result_dst, op[0]);
1229 result_src.negate = ~result_src.negate;
1230 break;
1231 case ir_unop_floor:
1232 emit(ir, OPCODE_FLR, result_dst, op[0]);
1233 break;
1234 case ir_unop_fract:
1235 emit(ir, OPCODE_FRC, result_dst, op[0]);
1236 break;
1237 case ir_unop_pack_snorm_2x16:
1238 case ir_unop_pack_snorm_4x8:
1239 case ir_unop_pack_unorm_2x16:
1240 case ir_unop_pack_unorm_4x8:
1241 case ir_unop_pack_half_2x16:
1242 case ir_unop_pack_double_2x32:
1243 case ir_unop_unpack_snorm_2x16:
1244 case ir_unop_unpack_snorm_4x8:
1245 case ir_unop_unpack_unorm_2x16:
1246 case ir_unop_unpack_unorm_4x8:
1247 case ir_unop_unpack_half_2x16:
1248 case ir_unop_unpack_double_2x32:
1249 case ir_unop_bitfield_reverse:
1250 case ir_unop_bit_count:
1251 case ir_unop_find_msb:
1252 case ir_unop_find_lsb:
1253 case ir_unop_d2f:
1254 case ir_unop_f2d:
1255 case ir_unop_d2i:
1256 case ir_unop_i2d:
1257 case ir_unop_d2u:
1258 case ir_unop_u2d:
1259 case ir_unop_d2b:
1260 case ir_unop_frexp_sig:
1261 case ir_unop_frexp_exp:
1262 assert(!"not supported");
1263 break;
1264 case ir_binop_min:
1265 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1266 break;
1267 case ir_binop_max:
1268 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1269 break;
1270 case ir_binop_pow:
1271 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1272 break;
1273
1274 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1275 * hardware backends have no way to avoid Mesa IR generation
1276 * even if they don't use it, we need to emit "something" and
1277 * continue.
1278 */
1279 case ir_binop_lshift:
1280 case ir_binop_rshift:
1281 case ir_binop_bit_and:
1282 case ir_binop_bit_xor:
1283 case ir_binop_bit_or:
1284 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1285 break;
1286
1287 case ir_unop_bit_not:
1288 case ir_unop_round_even:
1289 emit(ir, OPCODE_MOV, result_dst, op[0]);
1290 break;
1291
1292 case ir_binop_ubo_load:
1293 assert(!"not supported");
1294 break;
1295
1296 case ir_triop_lrp:
1297 /* ir_triop_lrp operands are (x, y, a) while
1298 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1299 */
1300 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1301 break;
1302
1303 case ir_binop_vector_extract:
1304 case ir_triop_fma:
1305 case ir_triop_bitfield_extract:
1306 case ir_triop_vector_insert:
1307 case ir_quadop_bitfield_insert:
1308 case ir_binop_ldexp:
1309 case ir_triop_csel:
1310 case ir_binop_carry:
1311 case ir_binop_borrow:
1312 case ir_binop_imul_high:
1313 case ir_unop_interpolate_at_centroid:
1314 case ir_binop_interpolate_at_offset:
1315 case ir_binop_interpolate_at_sample:
1316 case ir_unop_dFdx_coarse:
1317 case ir_unop_dFdx_fine:
1318 case ir_unop_dFdy_coarse:
1319 case ir_unop_dFdy_fine:
1320 case ir_unop_subroutine_to_int:
1321 case ir_unop_get_buffer_size:
1322 assert(!"not supported");
1323 break;
1324
1325 case ir_unop_ssbo_unsized_array_length:
1326 case ir_quadop_vector:
1327 /* This operation should have already been handled.
1328 */
1329 assert(!"Should not get here.");
1330 break;
1331 }
1332
1333 this->result = result_src;
1334 }
1335
1336
1337 void
1338 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1339 {
1340 src_reg src;
1341 int i;
1342 int swizzle[4];
1343
1344 /* Note that this is only swizzles in expressions, not those on the left
1345 * hand side of an assignment, which do write masking. See ir_assignment
1346 * for that.
1347 */
1348
1349 ir->val->accept(this);
1350 src = this->result;
1351 assert(src.file != PROGRAM_UNDEFINED);
1352 assert(ir->type->vector_elements > 0);
1353
1354 for (i = 0; i < 4; i++) {
1355 if (i < ir->type->vector_elements) {
1356 switch (i) {
1357 case 0:
1358 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1359 break;
1360 case 1:
1361 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1362 break;
1363 case 2:
1364 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1365 break;
1366 case 3:
1367 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1368 break;
1369 }
1370 } else {
1371 /* If the type is smaller than a vec4, replicate the last
1372 * channel out.
1373 */
1374 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1375 }
1376 }
1377
1378 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1379
1380 this->result = src;
1381 }
1382
1383 void
1384 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1385 {
1386 variable_storage *entry = find_variable_storage(ir->var);
1387 ir_variable *var = ir->var;
1388
1389 if (!entry) {
1390 switch (var->data.mode) {
1391 case ir_var_uniform:
1392 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1393 var->data.param_index);
1394 this->variables.push_tail(entry);
1395 break;
1396 case ir_var_shader_in:
1397 /* The linker assigns locations for varyings and attributes,
1398 * including deprecated builtins (like gl_Color),
1399 * user-assigned generic attributes (glBindVertexLocation),
1400 * and user-defined varyings.
1401 */
1402 assert(var->data.location != -1);
1403 entry = new(mem_ctx) variable_storage(var,
1404 PROGRAM_INPUT,
1405 var->data.location);
1406 break;
1407 case ir_var_shader_out:
1408 assert(var->data.location != -1);
1409 entry = new(mem_ctx) variable_storage(var,
1410 PROGRAM_OUTPUT,
1411 var->data.location);
1412 break;
1413 case ir_var_system_value:
1414 entry = new(mem_ctx) variable_storage(var,
1415 PROGRAM_SYSTEM_VALUE,
1416 var->data.location);
1417 break;
1418 case ir_var_auto:
1419 case ir_var_temporary:
1420 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1421 this->next_temp);
1422 this->variables.push_tail(entry);
1423
1424 next_temp += type_size(var->type);
1425 break;
1426 }
1427
1428 if (!entry) {
1429 printf("Failed to make storage for %s\n", var->name);
1430 exit(1);
1431 }
1432 }
1433
1434 this->result = src_reg(entry->file, entry->index, var->type);
1435 }
1436
1437 void
1438 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1439 {
1440 ir_constant *index;
1441 src_reg src;
1442 int element_size = type_size(ir->type);
1443
1444 index = ir->array_index->constant_expression_value();
1445
1446 ir->array->accept(this);
1447 src = this->result;
1448
1449 if (index) {
1450 src.index += index->value.i[0] * element_size;
1451 } else {
1452 /* Variable index array dereference. It eats the "vec4" of the
1453 * base of the array and an index that offsets the Mesa register
1454 * index.
1455 */
1456 ir->array_index->accept(this);
1457
1458 src_reg index_reg;
1459
1460 if (element_size == 1) {
1461 index_reg = this->result;
1462 } else {
1463 index_reg = get_temp(glsl_type::float_type);
1464
1465 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1466 this->result, src_reg_for_float(element_size));
1467 }
1468
1469 /* If there was already a relative address register involved, add the
1470 * new and the old together to get the new offset.
1471 */
1472 if (src.reladdr != NULL) {
1473 src_reg accum_reg = get_temp(glsl_type::float_type);
1474
1475 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1476 index_reg, *src.reladdr);
1477
1478 index_reg = accum_reg;
1479 }
1480
1481 src.reladdr = ralloc(mem_ctx, src_reg);
1482 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1483 }
1484
1485 /* If the type is smaller than a vec4, replicate the last channel out. */
1486 if (ir->type->is_scalar() || ir->type->is_vector())
1487 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1488 else
1489 src.swizzle = SWIZZLE_NOOP;
1490
1491 this->result = src;
1492 }
1493
1494 void
1495 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1496 {
1497 unsigned int i;
1498 const glsl_type *struct_type = ir->record->type;
1499 int offset = 0;
1500
1501 ir->record->accept(this);
1502
1503 for (i = 0; i < struct_type->length; i++) {
1504 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1505 break;
1506 offset += type_size(struct_type->fields.structure[i].type);
1507 }
1508
1509 /* If the type is smaller than a vec4, replicate the last channel out. */
1510 if (ir->type->is_scalar() || ir->type->is_vector())
1511 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1512 else
1513 this->result.swizzle = SWIZZLE_NOOP;
1514
1515 this->result.index += offset;
1516 }
1517
1518 /**
1519 * We want to be careful in assignment setup to hit the actual storage
1520 * instead of potentially using a temporary like we might with the
1521 * ir_dereference handler.
1522 */
1523 static dst_reg
1524 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1525 {
1526 /* The LHS must be a dereference. If the LHS is a variable indexed array
1527 * access of a vector, it must be separated into a series conditional moves
1528 * before reaching this point (see ir_vec_index_to_cond_assign).
1529 */
1530 assert(ir->as_dereference());
1531 ir_dereference_array *deref_array = ir->as_dereference_array();
1532 if (deref_array) {
1533 assert(!deref_array->array->type->is_vector());
1534 }
1535
1536 /* Use the rvalue deref handler for the most part. We'll ignore
1537 * swizzles in it and write swizzles using writemask, though.
1538 */
1539 ir->accept(v);
1540 return dst_reg(v->result);
1541 }
1542
1543 /* Calculate the sampler index and also calculate the base uniform location
1544 * for struct members.
1545 */
1546 static void
1547 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1548 unsigned *offset, unsigned *array_elements,
1549 unsigned *location)
1550 {
1551 if (deref->ir_type == ir_type_dereference_variable)
1552 return;
1553
1554 switch (deref->ir_type) {
1555 case ir_type_dereference_array: {
1556 ir_dereference_array *deref_arr = deref->as_dereference_array();
1557 ir_constant *array_index =
1558 deref_arr->array_index->constant_expression_value();
1559
1560 if (!array_index) {
1561 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1562 * while GLSL 1.30 requires that the array indices be
1563 * constant integer expressions. We don't expect any driver
1564 * to actually work with a really variable array index, so
1565 * all that would work would be an unrolled loop counter that ends
1566 * up being constant above.
1567 */
1568 ralloc_strcat(&prog->InfoLog,
1569 "warning: Variable sampler array index unsupported.\n"
1570 "This feature of the language was removed in GLSL 1.20 "
1571 "and is unlikely to be supported for 1.10 in Mesa.\n");
1572 } else {
1573 *offset += array_index->value.u[0] * *array_elements;
1574 }
1575
1576 *array_elements *= deref_arr->array->type->length;
1577
1578 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1579 offset, array_elements, location);
1580 break;
1581 }
1582
1583 case ir_type_dereference_record: {
1584 ir_dereference_record *deref_record = deref->as_dereference_record();
1585 unsigned field_index =
1586 deref_record->record->type->field_index(deref_record->field);
1587 *location +=
1588 deref_record->record->type->record_location_offset(field_index);
1589 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1590 offset, array_elements, location);
1591 break;
1592 }
1593
1594 default:
1595 unreachable("Invalid deref type");
1596 break;
1597 }
1598 }
1599
1600 static int
1601 get_sampler_uniform_value(class ir_dereference *sampler,
1602 struct gl_shader_program *shader_program,
1603 const struct gl_program *prog)
1604 {
1605 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1606 ir_variable *var = sampler->variable_referenced();
1607 unsigned location = var->data.location;
1608 unsigned array_elements = 1;
1609 unsigned offset = 0;
1610
1611 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1612 &location);
1613
1614 assert(shader_program->UniformStorage[location].opaque[shader].active);
1615 return shader_program->UniformStorage[location].opaque[shader].index +
1616 offset;
1617 }
1618
1619 /**
1620 * Process the condition of a conditional assignment
1621 *
1622 * Examines the condition of a conditional assignment to generate the optimal
1623 * first operand of a \c CMP instruction. If the condition is a relational
1624 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1625 * used as the source for the \c CMP instruction. Otherwise the comparison
1626 * is processed to a boolean result, and the boolean result is used as the
1627 * operand to the CMP instruction.
1628 */
1629 bool
1630 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1631 {
1632 ir_rvalue *src_ir = ir;
1633 bool negate = true;
1634 bool switch_order = false;
1635
1636 ir_expression *const expr = ir->as_expression();
1637 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1638 bool zero_on_left = false;
1639
1640 if (expr->operands[0]->is_zero()) {
1641 src_ir = expr->operands[1];
1642 zero_on_left = true;
1643 } else if (expr->operands[1]->is_zero()) {
1644 src_ir = expr->operands[0];
1645 zero_on_left = false;
1646 }
1647
1648 /* a is - 0 + - 0 +
1649 * (a < 0) T F F ( a < 0) T F F
1650 * (0 < a) F F T (-a < 0) F F T
1651 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1652 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1653 * (a > 0) F F T (-a < 0) F F T
1654 * (0 > a) T F F ( a < 0) T F F
1655 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1656 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1657 *
1658 * Note that exchanging the order of 0 and 'a' in the comparison simply
1659 * means that the value of 'a' should be negated.
1660 */
1661 if (src_ir != ir) {
1662 switch (expr->operation) {
1663 case ir_binop_less:
1664 switch_order = false;
1665 negate = zero_on_left;
1666 break;
1667
1668 case ir_binop_greater:
1669 switch_order = false;
1670 negate = !zero_on_left;
1671 break;
1672
1673 case ir_binop_lequal:
1674 switch_order = true;
1675 negate = !zero_on_left;
1676 break;
1677
1678 case ir_binop_gequal:
1679 switch_order = true;
1680 negate = zero_on_left;
1681 break;
1682
1683 default:
1684 /* This isn't the right kind of comparison afterall, so make sure
1685 * the whole condition is visited.
1686 */
1687 src_ir = ir;
1688 break;
1689 }
1690 }
1691 }
1692
1693 src_ir->accept(this);
1694
1695 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1696 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1697 * choose which value OPCODE_CMP produces without an extra instruction
1698 * computing the condition.
1699 */
1700 if (negate)
1701 this->result.negate = ~this->result.negate;
1702
1703 return switch_order;
1704 }
1705
1706 void
1707 ir_to_mesa_visitor::visit(ir_assignment *ir)
1708 {
1709 dst_reg l;
1710 src_reg r;
1711 int i;
1712
1713 ir->rhs->accept(this);
1714 r = this->result;
1715
1716 l = get_assignment_lhs(ir->lhs, this);
1717
1718 /* FINISHME: This should really set to the correct maximal writemask for each
1719 * FINISHME: component written (in the loops below). This case can only
1720 * FINISHME: occur for matrices, arrays, and structures.
1721 */
1722 if (ir->write_mask == 0) {
1723 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1724 l.writemask = WRITEMASK_XYZW;
1725 } else if (ir->lhs->type->is_scalar()) {
1726 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1727 * FINISHME: W component of fragment shader output zero, work correctly.
1728 */
1729 l.writemask = WRITEMASK_XYZW;
1730 } else {
1731 int swizzles[4];
1732 int first_enabled_chan = 0;
1733 int rhs_chan = 0;
1734
1735 assert(ir->lhs->type->is_vector());
1736 l.writemask = ir->write_mask;
1737
1738 for (int i = 0; i < 4; i++) {
1739 if (l.writemask & (1 << i)) {
1740 first_enabled_chan = GET_SWZ(r.swizzle, i);
1741 break;
1742 }
1743 }
1744
1745 /* Swizzle a small RHS vector into the channels being written.
1746 *
1747 * glsl ir treats write_mask as dictating how many channels are
1748 * present on the RHS while Mesa IR treats write_mask as just
1749 * showing which channels of the vec4 RHS get written.
1750 */
1751 for (int i = 0; i < 4; i++) {
1752 if (l.writemask & (1 << i))
1753 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1754 else
1755 swizzles[i] = first_enabled_chan;
1756 }
1757 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1758 swizzles[2], swizzles[3]);
1759 }
1760
1761 assert(l.file != PROGRAM_UNDEFINED);
1762 assert(r.file != PROGRAM_UNDEFINED);
1763
1764 if (ir->condition) {
1765 const bool switch_order = this->process_move_condition(ir->condition);
1766 src_reg condition = this->result;
1767
1768 for (i = 0; i < type_size(ir->lhs->type); i++) {
1769 if (switch_order) {
1770 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1771 } else {
1772 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1773 }
1774
1775 l.index++;
1776 r.index++;
1777 }
1778 } else {
1779 for (i = 0; i < type_size(ir->lhs->type); i++) {
1780 emit(ir, OPCODE_MOV, l, r);
1781 l.index++;
1782 r.index++;
1783 }
1784 }
1785 }
1786
1787
1788 void
1789 ir_to_mesa_visitor::visit(ir_constant *ir)
1790 {
1791 src_reg src;
1792 GLfloat stack_vals[4] = { 0 };
1793 GLfloat *values = stack_vals;
1794 unsigned int i;
1795
1796 /* Unfortunately, 4 floats is all we can get into
1797 * _mesa_add_unnamed_constant. So, make a temp to store an
1798 * aggregate constant and move each constant value into it. If we
1799 * get lucky, copy propagation will eliminate the extra moves.
1800 */
1801
1802 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1803 src_reg temp_base = get_temp(ir->type);
1804 dst_reg temp = dst_reg(temp_base);
1805
1806 foreach_in_list(ir_constant, field_value, &ir->components) {
1807 int size = type_size(field_value->type);
1808
1809 assert(size > 0);
1810
1811 field_value->accept(this);
1812 src = this->result;
1813
1814 for (i = 0; i < (unsigned int)size; i++) {
1815 emit(ir, OPCODE_MOV, temp, src);
1816
1817 src.index++;
1818 temp.index++;
1819 }
1820 }
1821 this->result = temp_base;
1822 return;
1823 }
1824
1825 if (ir->type->is_array()) {
1826 src_reg temp_base = get_temp(ir->type);
1827 dst_reg temp = dst_reg(temp_base);
1828 int size = type_size(ir->type->fields.array);
1829
1830 assert(size > 0);
1831
1832 for (i = 0; i < ir->type->length; i++) {
1833 ir->array_elements[i]->accept(this);
1834 src = this->result;
1835 for (int j = 0; j < size; j++) {
1836 emit(ir, OPCODE_MOV, temp, src);
1837
1838 src.index++;
1839 temp.index++;
1840 }
1841 }
1842 this->result = temp_base;
1843 return;
1844 }
1845
1846 if (ir->type->is_matrix()) {
1847 src_reg mat = get_temp(ir->type);
1848 dst_reg mat_column = dst_reg(mat);
1849
1850 for (i = 0; i < ir->type->matrix_columns; i++) {
1851 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1852 values = &ir->value.f[i * ir->type->vector_elements];
1853
1854 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1855 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1856 (gl_constant_value *) values,
1857 ir->type->vector_elements,
1858 &src.swizzle);
1859 emit(ir, OPCODE_MOV, mat_column, src);
1860
1861 mat_column.index++;
1862 }
1863
1864 this->result = mat;
1865 return;
1866 }
1867
1868 src.file = PROGRAM_CONSTANT;
1869 switch (ir->type->base_type) {
1870 case GLSL_TYPE_FLOAT:
1871 values = &ir->value.f[0];
1872 break;
1873 case GLSL_TYPE_UINT:
1874 for (i = 0; i < ir->type->vector_elements; i++) {
1875 values[i] = ir->value.u[i];
1876 }
1877 break;
1878 case GLSL_TYPE_INT:
1879 for (i = 0; i < ir->type->vector_elements; i++) {
1880 values[i] = ir->value.i[i];
1881 }
1882 break;
1883 case GLSL_TYPE_BOOL:
1884 for (i = 0; i < ir->type->vector_elements; i++) {
1885 values[i] = ir->value.b[i];
1886 }
1887 break;
1888 default:
1889 assert(!"Non-float/uint/int/bool constant");
1890 }
1891
1892 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1893 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1894 (gl_constant_value *) values,
1895 ir->type->vector_elements,
1896 &this->result.swizzle);
1897 }
1898
1899 void
1900 ir_to_mesa_visitor::visit(ir_call *)
1901 {
1902 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1903 }
1904
1905 void
1906 ir_to_mesa_visitor::visit(ir_texture *ir)
1907 {
1908 src_reg result_src, coord, lod_info, projector, dx, dy;
1909 dst_reg result_dst, coord_dst;
1910 ir_to_mesa_instruction *inst = NULL;
1911 prog_opcode opcode = OPCODE_NOP;
1912
1913 if (ir->op == ir_txs)
1914 this->result = src_reg_for_float(0.0);
1915 else
1916 ir->coordinate->accept(this);
1917
1918 /* Put our coords in a temp. We'll need to modify them for shadow,
1919 * projection, or LOD, so the only case we'd use it as is is if
1920 * we're doing plain old texturing. Mesa IR optimization should
1921 * handle cleaning up our mess in that case.
1922 */
1923 coord = get_temp(glsl_type::vec4_type);
1924 coord_dst = dst_reg(coord);
1925 emit(ir, OPCODE_MOV, coord_dst, this->result);
1926
1927 if (ir->projector) {
1928 ir->projector->accept(this);
1929 projector = this->result;
1930 }
1931
1932 /* Storage for our result. Ideally for an assignment we'd be using
1933 * the actual storage for the result here, instead.
1934 */
1935 result_src = get_temp(glsl_type::vec4_type);
1936 result_dst = dst_reg(result_src);
1937
1938 switch (ir->op) {
1939 case ir_tex:
1940 case ir_txs:
1941 opcode = OPCODE_TEX;
1942 break;
1943 case ir_txb:
1944 opcode = OPCODE_TXB;
1945 ir->lod_info.bias->accept(this);
1946 lod_info = this->result;
1947 break;
1948 case ir_txf:
1949 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1950 case ir_txl:
1951 opcode = OPCODE_TXL;
1952 ir->lod_info.lod->accept(this);
1953 lod_info = this->result;
1954 break;
1955 case ir_txd:
1956 opcode = OPCODE_TXD;
1957 ir->lod_info.grad.dPdx->accept(this);
1958 dx = this->result;
1959 ir->lod_info.grad.dPdy->accept(this);
1960 dy = this->result;
1961 break;
1962 case ir_txf_ms:
1963 assert(!"Unexpected ir_txf_ms opcode");
1964 break;
1965 case ir_lod:
1966 assert(!"Unexpected ir_lod opcode");
1967 break;
1968 case ir_tg4:
1969 assert(!"Unexpected ir_tg4 opcode");
1970 break;
1971 case ir_query_levels:
1972 assert(!"Unexpected ir_query_levels opcode");
1973 break;
1974 case ir_samples_identical:
1975 unreachable("Unexpected ir_samples_identical opcode");
1976 case ir_texture_samples:
1977 unreachable("Unexpected ir_texture_samples opcode");
1978 }
1979
1980 const glsl_type *sampler_type = ir->sampler->type;
1981
1982 if (ir->projector) {
1983 if (opcode == OPCODE_TEX) {
1984 /* Slot the projector in as the last component of the coord. */
1985 coord_dst.writemask = WRITEMASK_W;
1986 emit(ir, OPCODE_MOV, coord_dst, projector);
1987 coord_dst.writemask = WRITEMASK_XYZW;
1988 opcode = OPCODE_TXP;
1989 } else {
1990 src_reg coord_w = coord;
1991 coord_w.swizzle = SWIZZLE_WWWW;
1992
1993 /* For the other TEX opcodes there's no projective version
1994 * since the last slot is taken up by lod info. Do the
1995 * projective divide now.
1996 */
1997 coord_dst.writemask = WRITEMASK_W;
1998 emit(ir, OPCODE_RCP, coord_dst, projector);
1999
2000 /* In the case where we have to project the coordinates "by hand,"
2001 * the shadow comparitor value must also be projected.
2002 */
2003 src_reg tmp_src = coord;
2004 if (ir->shadow_comparitor) {
2005 /* Slot the shadow value in as the second to last component of the
2006 * coord.
2007 */
2008 ir->shadow_comparitor->accept(this);
2009
2010 tmp_src = get_temp(glsl_type::vec4_type);
2011 dst_reg tmp_dst = dst_reg(tmp_src);
2012
2013 /* Projective division not allowed for array samplers. */
2014 assert(!sampler_type->sampler_array);
2015
2016 tmp_dst.writemask = WRITEMASK_Z;
2017 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2018
2019 tmp_dst.writemask = WRITEMASK_XY;
2020 emit(ir, OPCODE_MOV, tmp_dst, coord);
2021 }
2022
2023 coord_dst.writemask = WRITEMASK_XYZ;
2024 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2025
2026 coord_dst.writemask = WRITEMASK_XYZW;
2027 coord.swizzle = SWIZZLE_XYZW;
2028 }
2029 }
2030
2031 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2032 * comparitor was put in the correct place (and projected) by the code,
2033 * above, that handles by-hand projection.
2034 */
2035 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2036 /* Slot the shadow value in as the second to last component of the
2037 * coord.
2038 */
2039 ir->shadow_comparitor->accept(this);
2040
2041 /* XXX This will need to be updated for cubemap array samplers. */
2042 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2043 sampler_type->sampler_array) {
2044 coord_dst.writemask = WRITEMASK_W;
2045 } else {
2046 coord_dst.writemask = WRITEMASK_Z;
2047 }
2048
2049 emit(ir, OPCODE_MOV, coord_dst, this->result);
2050 coord_dst.writemask = WRITEMASK_XYZW;
2051 }
2052
2053 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2054 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2055 coord_dst.writemask = WRITEMASK_W;
2056 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2057 coord_dst.writemask = WRITEMASK_XYZW;
2058 }
2059
2060 if (opcode == OPCODE_TXD)
2061 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2062 else
2063 inst = emit(ir, opcode, result_dst, coord);
2064
2065 if (ir->shadow_comparitor)
2066 inst->tex_shadow = GL_TRUE;
2067
2068 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2069 prog);
2070
2071 switch (sampler_type->sampler_dimensionality) {
2072 case GLSL_SAMPLER_DIM_1D:
2073 inst->tex_target = (sampler_type->sampler_array)
2074 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2075 break;
2076 case GLSL_SAMPLER_DIM_2D:
2077 inst->tex_target = (sampler_type->sampler_array)
2078 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2079 break;
2080 case GLSL_SAMPLER_DIM_3D:
2081 inst->tex_target = TEXTURE_3D_INDEX;
2082 break;
2083 case GLSL_SAMPLER_DIM_CUBE:
2084 inst->tex_target = TEXTURE_CUBE_INDEX;
2085 break;
2086 case GLSL_SAMPLER_DIM_RECT:
2087 inst->tex_target = TEXTURE_RECT_INDEX;
2088 break;
2089 case GLSL_SAMPLER_DIM_BUF:
2090 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2091 break;
2092 case GLSL_SAMPLER_DIM_EXTERNAL:
2093 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2094 break;
2095 default:
2096 assert(!"Should not get here.");
2097 }
2098
2099 this->result = result_src;
2100 }
2101
2102 void
2103 ir_to_mesa_visitor::visit(ir_return *ir)
2104 {
2105 /* Non-void functions should have been inlined. We may still emit RETs
2106 * from main() unless the EmitNoMainReturn option is set.
2107 */
2108 assert(!ir->get_value());
2109 emit(ir, OPCODE_RET);
2110 }
2111
2112 void
2113 ir_to_mesa_visitor::visit(ir_discard *ir)
2114 {
2115 if (!ir->condition)
2116 ir->condition = new(mem_ctx) ir_constant(true);
2117
2118 ir->condition->accept(this);
2119 this->result.negate = ~this->result.negate;
2120 emit(ir, OPCODE_KIL, undef_dst, this->result);
2121 }
2122
2123 void
2124 ir_to_mesa_visitor::visit(ir_if *ir)
2125 {
2126 ir_to_mesa_instruction *if_inst;
2127
2128 ir->condition->accept(this);
2129 assert(this->result.file != PROGRAM_UNDEFINED);
2130
2131 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2132
2133 this->instructions.push_tail(if_inst);
2134
2135 visit_exec_list(&ir->then_instructions, this);
2136
2137 if (!ir->else_instructions.is_empty()) {
2138 emit(ir->condition, OPCODE_ELSE);
2139 visit_exec_list(&ir->else_instructions, this);
2140 }
2141
2142 emit(ir->condition, OPCODE_ENDIF);
2143 }
2144
2145 void
2146 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2147 {
2148 assert(!"Geometry shaders not supported.");
2149 }
2150
2151 void
2152 ir_to_mesa_visitor::visit(ir_end_primitive *)
2153 {
2154 assert(!"Geometry shaders not supported.");
2155 }
2156
2157 void
2158 ir_to_mesa_visitor::visit(ir_barrier *)
2159 {
2160 unreachable("GLSL barrier() not supported.");
2161 }
2162
2163 ir_to_mesa_visitor::ir_to_mesa_visitor()
2164 {
2165 result.file = PROGRAM_UNDEFINED;
2166 next_temp = 1;
2167 next_signature_id = 1;
2168 current_function = NULL;
2169 mem_ctx = ralloc_context(NULL);
2170 }
2171
2172 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2173 {
2174 ralloc_free(mem_ctx);
2175 }
2176
2177 static struct prog_src_register
2178 mesa_src_reg_from_ir_src_reg(src_reg reg)
2179 {
2180 struct prog_src_register mesa_reg;
2181
2182 mesa_reg.File = reg.file;
2183 assert(reg.index < (1 << INST_INDEX_BITS));
2184 mesa_reg.Index = reg.index;
2185 mesa_reg.Swizzle = reg.swizzle;
2186 mesa_reg.RelAddr = reg.reladdr != NULL;
2187 mesa_reg.Negate = reg.negate;
2188 mesa_reg.Abs = 0;
2189
2190 return mesa_reg;
2191 }
2192
2193 static void
2194 set_branchtargets(ir_to_mesa_visitor *v,
2195 struct prog_instruction *mesa_instructions,
2196 int num_instructions)
2197 {
2198 int if_count = 0, loop_count = 0;
2199 int *if_stack, *loop_stack;
2200 int if_stack_pos = 0, loop_stack_pos = 0;
2201 int i, j;
2202
2203 for (i = 0; i < num_instructions; i++) {
2204 switch (mesa_instructions[i].Opcode) {
2205 case OPCODE_IF:
2206 if_count++;
2207 break;
2208 case OPCODE_BGNLOOP:
2209 loop_count++;
2210 break;
2211 case OPCODE_BRK:
2212 case OPCODE_CONT:
2213 mesa_instructions[i].BranchTarget = -1;
2214 break;
2215 default:
2216 break;
2217 }
2218 }
2219
2220 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2221 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2222
2223 for (i = 0; i < num_instructions; i++) {
2224 switch (mesa_instructions[i].Opcode) {
2225 case OPCODE_IF:
2226 if_stack[if_stack_pos] = i;
2227 if_stack_pos++;
2228 break;
2229 case OPCODE_ELSE:
2230 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2231 if_stack[if_stack_pos - 1] = i;
2232 break;
2233 case OPCODE_ENDIF:
2234 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2235 if_stack_pos--;
2236 break;
2237 case OPCODE_BGNLOOP:
2238 loop_stack[loop_stack_pos] = i;
2239 loop_stack_pos++;
2240 break;
2241 case OPCODE_ENDLOOP:
2242 loop_stack_pos--;
2243 /* Rewrite any breaks/conts at this nesting level (haven't
2244 * already had a BranchTarget assigned) to point to the end
2245 * of the loop.
2246 */
2247 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2248 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2249 mesa_instructions[j].Opcode == OPCODE_CONT) {
2250 if (mesa_instructions[j].BranchTarget == -1) {
2251 mesa_instructions[j].BranchTarget = i;
2252 }
2253 }
2254 }
2255 /* The loop ends point at each other. */
2256 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2257 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2258 break;
2259 case OPCODE_CAL:
2260 foreach_in_list(function_entry, entry, &v->function_signatures) {
2261 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2262 mesa_instructions[i].BranchTarget = entry->inst;
2263 break;
2264 }
2265 }
2266 break;
2267 default:
2268 break;
2269 }
2270 }
2271 }
2272
2273 static void
2274 print_program(struct prog_instruction *mesa_instructions,
2275 ir_instruction **mesa_instruction_annotation,
2276 int num_instructions)
2277 {
2278 ir_instruction *last_ir = NULL;
2279 int i;
2280 int indent = 0;
2281
2282 for (i = 0; i < num_instructions; i++) {
2283 struct prog_instruction *mesa_inst = mesa_instructions + i;
2284 ir_instruction *ir = mesa_instruction_annotation[i];
2285
2286 fprintf(stdout, "%3d: ", i);
2287
2288 if (last_ir != ir && ir) {
2289 int j;
2290
2291 for (j = 0; j < indent; j++) {
2292 fprintf(stdout, " ");
2293 }
2294 ir->print();
2295 printf("\n");
2296 last_ir = ir;
2297
2298 fprintf(stdout, " "); /* line number spacing. */
2299 }
2300
2301 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2302 PROG_PRINT_DEBUG, NULL);
2303 }
2304 }
2305
2306 namespace {
2307
2308 class add_uniform_to_shader : public program_resource_visitor {
2309 public:
2310 add_uniform_to_shader(struct gl_shader_program *shader_program,
2311 struct gl_program_parameter_list *params,
2312 gl_shader_stage shader_type)
2313 : shader_program(shader_program), params(params), idx(-1),
2314 shader_type(shader_type)
2315 {
2316 /* empty */
2317 }
2318
2319 void process(ir_variable *var)
2320 {
2321 this->idx = -1;
2322 this->program_resource_visitor::process(var);
2323 var->data.param_index = this->idx;
2324 }
2325
2326 private:
2327 virtual void visit_field(const glsl_type *type, const char *name,
2328 bool row_major);
2329
2330 struct gl_shader_program *shader_program;
2331 struct gl_program_parameter_list *params;
2332 int idx;
2333 gl_shader_stage shader_type;
2334 };
2335
2336 } /* anonymous namespace */
2337
2338 void
2339 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2340 bool row_major)
2341 {
2342 unsigned int size;
2343
2344 (void) row_major;
2345
2346 /* atomics don't get real storage */
2347 if (type->contains_atomic())
2348 return;
2349
2350 if (type->is_vector() || type->is_scalar()) {
2351 size = type->vector_elements;
2352 if (type->is_double())
2353 size *= 2;
2354 } else {
2355 size = type_size(type) * 4;
2356 }
2357
2358 gl_register_file file;
2359 if (type->without_array()->is_sampler()) {
2360 file = PROGRAM_SAMPLER;
2361 } else {
2362 file = PROGRAM_UNIFORM;
2363 }
2364
2365 int index = _mesa_lookup_parameter_index(params, -1, name);
2366 if (index < 0) {
2367 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2368 NULL, NULL);
2369
2370 /* Sampler uniform values are stored in prog->SamplerUnits,
2371 * and the entry in that array is selected by this index we
2372 * store in ParameterValues[].
2373 */
2374 if (file == PROGRAM_SAMPLER) {
2375 unsigned location;
2376 const bool found =
2377 this->shader_program->UniformHash->get(location,
2378 params->Parameters[index].Name);
2379 assert(found);
2380
2381 if (!found)
2382 return;
2383
2384 struct gl_uniform_storage *storage =
2385 &this->shader_program->UniformStorage[location];
2386
2387 assert(storage->type->is_sampler() &&
2388 storage->opaque[shader_type].active);
2389
2390 for (unsigned int j = 0; j < size / 4; j++)
2391 params->ParameterValues[index + j][0].f =
2392 storage->opaque[shader_type].index + j;
2393 }
2394 }
2395
2396 /* The first part of the uniform that's processed determines the base
2397 * location of the whole uniform (for structures).
2398 */
2399 if (this->idx < 0)
2400 this->idx = index;
2401 }
2402
2403 /**
2404 * Generate the program parameters list for the user uniforms in a shader
2405 *
2406 * \param shader_program Linked shader program. This is only used to
2407 * emit possible link errors to the info log.
2408 * \param sh Shader whose uniforms are to be processed.
2409 * \param params Parameter list to be filled in.
2410 */
2411 void
2412 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2413 *shader_program,
2414 struct gl_shader *sh,
2415 struct gl_program_parameter_list
2416 *params)
2417 {
2418 add_uniform_to_shader add(shader_program, params, sh->Stage);
2419
2420 foreach_in_list(ir_instruction, node, sh->ir) {
2421 ir_variable *var = node->as_variable();
2422
2423 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2424 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2425 continue;
2426
2427 add.process(var);
2428 }
2429 }
2430
2431 void
2432 _mesa_associate_uniform_storage(struct gl_context *ctx,
2433 struct gl_shader_program *shader_program,
2434 struct gl_program_parameter_list *params)
2435 {
2436 /* After adding each uniform to the parameter list, connect the storage for
2437 * the parameter with the tracking structure used by the API for the
2438 * uniform.
2439 */
2440 unsigned last_location = unsigned(~0);
2441 for (unsigned i = 0; i < params->NumParameters; i++) {
2442 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2443 continue;
2444
2445 unsigned location;
2446 const bool found =
2447 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2448 assert(found);
2449
2450 if (!found)
2451 continue;
2452
2453 struct gl_uniform_storage *storage =
2454 &shader_program->UniformStorage[location];
2455
2456 /* Do not associate any uniform storage to built-in uniforms */
2457 if (storage->builtin)
2458 continue;
2459
2460 if (location != last_location) {
2461 enum gl_uniform_driver_format format = uniform_native;
2462
2463 unsigned columns = 0;
2464 int dmul = 4 * sizeof(float);
2465 switch (storage->type->base_type) {
2466 case GLSL_TYPE_UINT:
2467 assert(ctx->Const.NativeIntegers);
2468 format = uniform_native;
2469 columns = 1;
2470 break;
2471 case GLSL_TYPE_INT:
2472 format =
2473 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2474 columns = 1;
2475 break;
2476
2477 case GLSL_TYPE_DOUBLE:
2478 if (storage->type->vector_elements > 2)
2479 dmul *= 2;
2480 /* fallthrough */
2481 case GLSL_TYPE_FLOAT:
2482 format = uniform_native;
2483 columns = storage->type->matrix_columns;
2484 break;
2485 case GLSL_TYPE_BOOL:
2486 format = uniform_native;
2487 columns = 1;
2488 break;
2489 case GLSL_TYPE_SAMPLER:
2490 case GLSL_TYPE_IMAGE:
2491 case GLSL_TYPE_SUBROUTINE:
2492 format = uniform_native;
2493 columns = 1;
2494 break;
2495 case GLSL_TYPE_ATOMIC_UINT:
2496 case GLSL_TYPE_ARRAY:
2497 case GLSL_TYPE_VOID:
2498 case GLSL_TYPE_STRUCT:
2499 case GLSL_TYPE_ERROR:
2500 case GLSL_TYPE_INTERFACE:
2501 case GLSL_TYPE_FUNCTION:
2502 assert(!"Should not get here.");
2503 break;
2504 }
2505
2506 _mesa_uniform_attach_driver_storage(storage,
2507 dmul * columns,
2508 dmul,
2509 format,
2510 &params->ParameterValues[i]);
2511
2512 /* After attaching the driver's storage to the uniform, propagate any
2513 * data from the linker's backing store. This will cause values from
2514 * initializers in the source code to be copied over.
2515 */
2516 _mesa_propagate_uniforms_to_driver_storage(storage,
2517 0,
2518 MAX2(1, storage->array_elements));
2519
2520 last_location = location;
2521 }
2522 }
2523 }
2524
2525 /*
2526 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2527 * channels for copy propagation and updates following instructions to
2528 * use the original versions.
2529 *
2530 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2531 * will occur. As an example, a TXP production before this pass:
2532 *
2533 * 0: MOV TEMP[1], INPUT[4].xyyy;
2534 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2535 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2536 *
2537 * and after:
2538 *
2539 * 0: MOV TEMP[1], INPUT[4].xyyy;
2540 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2541 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2542 *
2543 * which allows for dead code elimination on TEMP[1]'s writes.
2544 */
2545 void
2546 ir_to_mesa_visitor::copy_propagate(void)
2547 {
2548 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2549 ir_to_mesa_instruction *,
2550 this->next_temp * 4);
2551 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2552 int level = 0;
2553
2554 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2555 assert(inst->dst.file != PROGRAM_TEMPORARY
2556 || inst->dst.index < this->next_temp);
2557
2558 /* First, do any copy propagation possible into the src regs. */
2559 for (int r = 0; r < 3; r++) {
2560 ir_to_mesa_instruction *first = NULL;
2561 bool good = true;
2562 int acp_base = inst->src[r].index * 4;
2563
2564 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2565 inst->src[r].reladdr)
2566 continue;
2567
2568 /* See if we can find entries in the ACP consisting of MOVs
2569 * from the same src register for all the swizzled channels
2570 * of this src register reference.
2571 */
2572 for (int i = 0; i < 4; i++) {
2573 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2574 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2575
2576 if (!copy_chan) {
2577 good = false;
2578 break;
2579 }
2580
2581 assert(acp_level[acp_base + src_chan] <= level);
2582
2583 if (!first) {
2584 first = copy_chan;
2585 } else {
2586 if (first->src[0].file != copy_chan->src[0].file ||
2587 first->src[0].index != copy_chan->src[0].index) {
2588 good = false;
2589 break;
2590 }
2591 }
2592 }
2593
2594 if (good) {
2595 /* We've now validated that we can copy-propagate to
2596 * replace this src register reference. Do it.
2597 */
2598 inst->src[r].file = first->src[0].file;
2599 inst->src[r].index = first->src[0].index;
2600
2601 int swizzle = 0;
2602 for (int i = 0; i < 4; i++) {
2603 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2604 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2605 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2606 (3 * i));
2607 }
2608 inst->src[r].swizzle = swizzle;
2609 }
2610 }
2611
2612 switch (inst->op) {
2613 case OPCODE_BGNLOOP:
2614 case OPCODE_ENDLOOP:
2615 /* End of a basic block, clear the ACP entirely. */
2616 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2617 break;
2618
2619 case OPCODE_IF:
2620 ++level;
2621 break;
2622
2623 case OPCODE_ENDIF:
2624 case OPCODE_ELSE:
2625 /* Clear all channels written inside the block from the ACP, but
2626 * leaving those that were not touched.
2627 */
2628 for (int r = 0; r < this->next_temp; r++) {
2629 for (int c = 0; c < 4; c++) {
2630 if (!acp[4 * r + c])
2631 continue;
2632
2633 if (acp_level[4 * r + c] >= level)
2634 acp[4 * r + c] = NULL;
2635 }
2636 }
2637 if (inst->op == OPCODE_ENDIF)
2638 --level;
2639 break;
2640
2641 default:
2642 /* Continuing the block, clear any written channels from
2643 * the ACP.
2644 */
2645 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2646 /* Any temporary might be written, so no copy propagation
2647 * across this instruction.
2648 */
2649 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2650 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2651 inst->dst.reladdr) {
2652 /* Any output might be written, so no copy propagation
2653 * from outputs across this instruction.
2654 */
2655 for (int r = 0; r < this->next_temp; r++) {
2656 for (int c = 0; c < 4; c++) {
2657 if (!acp[4 * r + c])
2658 continue;
2659
2660 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2661 acp[4 * r + c] = NULL;
2662 }
2663 }
2664 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2665 inst->dst.file == PROGRAM_OUTPUT) {
2666 /* Clear where it's used as dst. */
2667 if (inst->dst.file == PROGRAM_TEMPORARY) {
2668 for (int c = 0; c < 4; c++) {
2669 if (inst->dst.writemask & (1 << c)) {
2670 acp[4 * inst->dst.index + c] = NULL;
2671 }
2672 }
2673 }
2674
2675 /* Clear where it's used as src. */
2676 for (int r = 0; r < this->next_temp; r++) {
2677 for (int c = 0; c < 4; c++) {
2678 if (!acp[4 * r + c])
2679 continue;
2680
2681 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2682
2683 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2684 acp[4 * r + c]->src[0].index == inst->dst.index &&
2685 inst->dst.writemask & (1 << src_chan))
2686 {
2687 acp[4 * r + c] = NULL;
2688 }
2689 }
2690 }
2691 }
2692 break;
2693 }
2694
2695 /* If this is a copy, add it to the ACP. */
2696 if (inst->op == OPCODE_MOV &&
2697 inst->dst.file == PROGRAM_TEMPORARY &&
2698 !(inst->dst.file == inst->src[0].file &&
2699 inst->dst.index == inst->src[0].index) &&
2700 !inst->dst.reladdr &&
2701 !inst->saturate &&
2702 !inst->src[0].reladdr &&
2703 !inst->src[0].negate) {
2704 for (int i = 0; i < 4; i++) {
2705 if (inst->dst.writemask & (1 << i)) {
2706 acp[4 * inst->dst.index + i] = inst;
2707 acp_level[4 * inst->dst.index + i] = level;
2708 }
2709 }
2710 }
2711 }
2712
2713 ralloc_free(acp_level);
2714 ralloc_free(acp);
2715 }
2716
2717
2718 /**
2719 * Convert a shader's GLSL IR into a Mesa gl_program.
2720 */
2721 static struct gl_program *
2722 get_mesa_program(struct gl_context *ctx,
2723 struct gl_shader_program *shader_program,
2724 struct gl_shader *shader)
2725 {
2726 ir_to_mesa_visitor v;
2727 struct prog_instruction *mesa_instructions, *mesa_inst;
2728 ir_instruction **mesa_instruction_annotation;
2729 int i;
2730 struct gl_program *prog;
2731 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2732 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2733 struct gl_shader_compiler_options *options =
2734 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2735
2736 validate_ir_tree(shader->ir);
2737
2738 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2739 if (!prog)
2740 return NULL;
2741 prog->Parameters = _mesa_new_parameter_list();
2742 v.ctx = ctx;
2743 v.prog = prog;
2744 v.shader_program = shader_program;
2745 v.options = options;
2746
2747 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2748 prog->Parameters);
2749
2750 /* Emit Mesa IR for main(). */
2751 visit_exec_list(shader->ir, &v);
2752 v.emit(NULL, OPCODE_END);
2753
2754 prog->NumTemporaries = v.next_temp;
2755
2756 unsigned num_instructions = v.instructions.length();
2757
2758 mesa_instructions =
2759 (struct prog_instruction *)calloc(num_instructions,
2760 sizeof(*mesa_instructions));
2761 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2762 num_instructions);
2763
2764 v.copy_propagate();
2765
2766 /* Convert ir_mesa_instructions into prog_instructions.
2767 */
2768 mesa_inst = mesa_instructions;
2769 i = 0;
2770 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2771 mesa_inst->Opcode = inst->op;
2772 mesa_inst->CondUpdate = inst->cond_update;
2773 if (inst->saturate)
2774 mesa_inst->Saturate = GL_TRUE;
2775 mesa_inst->DstReg.File = inst->dst.file;
2776 mesa_inst->DstReg.Index = inst->dst.index;
2777 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2778 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2779 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2780 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2781 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2782 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2783 mesa_inst->TexSrcUnit = inst->sampler;
2784 mesa_inst->TexSrcTarget = inst->tex_target;
2785 mesa_inst->TexShadow = inst->tex_shadow;
2786 mesa_instruction_annotation[i] = inst->ir;
2787
2788 /* Set IndirectRegisterFiles. */
2789 if (mesa_inst->DstReg.RelAddr)
2790 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2791
2792 /* Update program's bitmask of indirectly accessed register files */
2793 for (unsigned src = 0; src < 3; src++)
2794 if (mesa_inst->SrcReg[src].RelAddr)
2795 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2796
2797 switch (mesa_inst->Opcode) {
2798 case OPCODE_IF:
2799 if (options->MaxIfDepth == 0) {
2800 linker_warning(shader_program,
2801 "Couldn't flatten if-statement. "
2802 "This will likely result in software "
2803 "rasterization.\n");
2804 }
2805 break;
2806 case OPCODE_BGNLOOP:
2807 if (options->EmitNoLoops) {
2808 linker_warning(shader_program,
2809 "Couldn't unroll loop. "
2810 "This will likely result in software "
2811 "rasterization.\n");
2812 }
2813 break;
2814 case OPCODE_CONT:
2815 if (options->EmitNoCont) {
2816 linker_warning(shader_program,
2817 "Couldn't lower continue-statement. "
2818 "This will likely result in software "
2819 "rasterization.\n");
2820 }
2821 break;
2822 case OPCODE_ARL:
2823 prog->NumAddressRegs = 1;
2824 break;
2825 default:
2826 break;
2827 }
2828
2829 mesa_inst++;
2830 i++;
2831
2832 if (!shader_program->LinkStatus)
2833 break;
2834 }
2835
2836 if (!shader_program->LinkStatus) {
2837 goto fail_exit;
2838 }
2839
2840 set_branchtargets(&v, mesa_instructions, num_instructions);
2841
2842 if (ctx->_Shader->Flags & GLSL_DUMP) {
2843 fprintf(stderr, "\n");
2844 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2845 shader_program->Name);
2846 _mesa_print_ir(stderr, shader->ir, NULL);
2847 fprintf(stderr, "\n");
2848 fprintf(stderr, "\n");
2849 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2850 shader_program->Name);
2851 print_program(mesa_instructions, mesa_instruction_annotation,
2852 num_instructions);
2853 fflush(stderr);
2854 }
2855
2856 prog->Instructions = mesa_instructions;
2857 prog->NumInstructions = num_instructions;
2858
2859 /* Setting this to NULL prevents a possible double free in the fail_exit
2860 * path (far below).
2861 */
2862 mesa_instructions = NULL;
2863
2864 do_set_program_inouts(shader->ir, prog, shader->Stage);
2865
2866 prog->SamplersUsed = shader->active_samplers;
2867 prog->ShadowSamplers = shader->shadow_samplers;
2868 _mesa_update_shader_textures_used(shader_program, prog);
2869
2870 /* Set the gl_FragDepth layout. */
2871 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2872 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2873 fp->FragDepthLayout = shader_program->FragDepthLayout;
2874 }
2875
2876 _mesa_reference_program(ctx, &shader->Program, prog);
2877
2878 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2879 _mesa_optimize_program(ctx, prog);
2880 }
2881
2882 /* This has to be done last. Any operation that can cause
2883 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2884 * program constant) has to happen before creating this linkage.
2885 */
2886 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2887 if (!shader_program->LinkStatus) {
2888 goto fail_exit;
2889 }
2890
2891 return prog;
2892
2893 fail_exit:
2894 free(mesa_instructions);
2895 _mesa_reference_program(ctx, &shader->Program, NULL);
2896 return NULL;
2897 }
2898
2899 extern "C" {
2900
2901 /**
2902 * Link a shader.
2903 * Called via ctx->Driver.LinkShader()
2904 * This actually involves converting GLSL IR into Mesa gl_programs with
2905 * code lowering and other optimizations.
2906 */
2907 GLboolean
2908 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2909 {
2910 assert(prog->LinkStatus);
2911
2912 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2913 if (prog->_LinkedShaders[i] == NULL)
2914 continue;
2915
2916 bool progress;
2917 exec_list *ir = prog->_LinkedShaders[i]->ir;
2918 const struct gl_shader_compiler_options *options =
2919 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2920
2921 do {
2922 progress = false;
2923
2924 /* Lowering */
2925 do_mat_op_to_vec(ir);
2926 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2927 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2928 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2929
2930 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2931
2932 progress = do_common_optimization(ir, true, true,
2933 options, ctx->Const.NativeIntegers)
2934 || progress;
2935
2936 progress = lower_quadop_vector(ir, true) || progress;
2937
2938 if (options->MaxIfDepth == 0)
2939 progress = lower_discard(ir) || progress;
2940
2941 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2942
2943 if (options->EmitNoNoise)
2944 progress = lower_noise(ir) || progress;
2945
2946 /* If there are forms of indirect addressing that the driver
2947 * cannot handle, perform the lowering pass.
2948 */
2949 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2950 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2951 progress =
2952 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
2953 options->EmitNoIndirectInput,
2954 options->EmitNoIndirectOutput,
2955 options->EmitNoIndirectTemp,
2956 options->EmitNoIndirectUniform)
2957 || progress;
2958
2959 progress = do_vec_index_to_cond_assign(ir) || progress;
2960 progress = lower_vector_insert(ir, true) || progress;
2961 } while (progress);
2962
2963 validate_ir_tree(ir);
2964 }
2965
2966 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2967 struct gl_program *linked_prog;
2968
2969 if (prog->_LinkedShaders[i] == NULL)
2970 continue;
2971
2972 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2973
2974 if (linked_prog) {
2975 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2976
2977 if (!ctx->Driver.ProgramStringNotify(ctx,
2978 _mesa_shader_stage_to_program(i),
2979 linked_prog)) {
2980 return GL_FALSE;
2981 }
2982 }
2983
2984 _mesa_reference_program(ctx, &linked_prog, NULL);
2985 }
2986
2987 build_program_resource_list(prog);
2988 return prog->LinkStatus;
2989 }
2990
2991 /**
2992 * Link a GLSL shader program. Called via glLinkProgram().
2993 */
2994 void
2995 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2996 {
2997 unsigned int i;
2998
2999 _mesa_clear_shader_program_data(prog);
3000
3001 prog->LinkStatus = GL_TRUE;
3002
3003 for (i = 0; i < prog->NumShaders; i++) {
3004 if (!prog->Shaders[i]->CompileStatus) {
3005 linker_error(prog, "linking with uncompiled shader");
3006 }
3007 }
3008
3009 if (prog->LinkStatus) {
3010 link_shaders(ctx, prog);
3011 }
3012
3013 if (prog->LinkStatus) {
3014 if (!ctx->Driver.LinkShader(ctx, prog)) {
3015 prog->LinkStatus = GL_FALSE;
3016 }
3017 }
3018
3019 if (ctx->_Shader->Flags & GLSL_DUMP) {
3020 if (!prog->LinkStatus) {
3021 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3022 }
3023
3024 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3025 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3026 fprintf(stderr, "%s\n", prog->InfoLog);
3027 }
3028 }
3029 }
3030
3031 } /* extern "C" */