mesa: rework _mesa_add_parameter() to only add a single param
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/macros.h"
35 #include "main/mtypes.h"
36 #include "main/shaderapi.h"
37 #include "main/shaderobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "compiler/glsl/string_to_uint_map.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56
57
58 static int swizzle_for_size(int size);
59
60 namespace {
61
62 class src_reg;
63 class dst_reg;
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 /** Register index should be offset by the integer in this reg. */
126 src_reg *reladdr;
127 };
128
129 } /* anonymous namespace */
130
131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->reladdr = reg.reladdr;
146 }
147
148 namespace {
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154 enum prog_opcode op;
155 dst_reg dst;
156 src_reg src[3];
157 /** Pointer to the ir source this tree came from for debugging */
158 ir_instruction *ir;
159 bool saturate;
160 int sampler; /**< sampler index */
161 int tex_target; /**< One of TEXTURE_*_INDEX */
162 GLboolean tex_shadow;
163 };
164
165 class variable_storage : public exec_node {
166 public:
167 variable_storage(ir_variable *var, gl_register_file file, int index)
168 : file(file), index(index), var(var)
169 {
170 /* empty */
171 }
172
173 gl_register_file file;
174 int index;
175 ir_variable *var; /* variable that maps to this, if any */
176 };
177
178 class function_entry : public exec_node {
179 public:
180 ir_function_signature *sig;
181
182 /**
183 * identifier of this function signature used by the program.
184 *
185 * At the point that Mesa instructions for function calls are
186 * generated, we don't know the address of the first instruction of
187 * the function body. So we make the BranchTarget that is called a
188 * small integer and rewrite them during set_branchtargets().
189 */
190 int sig_id;
191
192 /**
193 * Pointer to first instruction of the function body.
194 *
195 * Set during function body emits after main() is processed.
196 */
197 ir_to_mesa_instruction *bgn_inst;
198
199 /**
200 * Index of the first instruction of the function body in actual
201 * Mesa IR.
202 *
203 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204 */
205 int inst;
206
207 /** Storage for the return value. */
208 src_reg return_reg;
209 };
210
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213 ir_to_mesa_visitor();
214 ~ir_to_mesa_visitor();
215
216 function_entry *current_function;
217
218 struct gl_context *ctx;
219 struct gl_program *prog;
220 struct gl_shader_program *shader_program;
221 struct gl_shader_compiler_options *options;
222
223 int next_temp;
224
225 variable_storage *find_variable_storage(const ir_variable *var);
226
227 src_reg get_temp(const glsl_type *type);
228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230 src_reg src_reg_for_float(float val);
231
232 /**
233 * \name Visit methods
234 *
235 * As typical for the visitor pattern, there must be one \c visit method for
236 * each concrete subclass of \c ir_instruction. Virtual base classes within
237 * the hierarchy should not have \c visit methods.
238 */
239 /*@{*/
240 virtual void visit(ir_variable *);
241 virtual void visit(ir_loop *);
242 virtual void visit(ir_loop_jump *);
243 virtual void visit(ir_function_signature *);
244 virtual void visit(ir_function *);
245 virtual void visit(ir_expression *);
246 virtual void visit(ir_swizzle *);
247 virtual void visit(ir_dereference_variable *);
248 virtual void visit(ir_dereference_array *);
249 virtual void visit(ir_dereference_record *);
250 virtual void visit(ir_assignment *);
251 virtual void visit(ir_constant *);
252 virtual void visit(ir_call *);
253 virtual void visit(ir_return *);
254 virtual void visit(ir_discard *);
255 virtual void visit(ir_texture *);
256 virtual void visit(ir_if *);
257 virtual void visit(ir_emit_vertex *);
258 virtual void visit(ir_end_primitive *);
259 virtual void visit(ir_barrier *);
260 /*@}*/
261
262 src_reg result;
263
264 /** List of variable_storage */
265 exec_list variables;
266
267 /** List of function_entry */
268 exec_list function_signatures;
269 int next_signature_id;
270
271 /** List of ir_to_mesa_instruction */
272 exec_list instructions;
273
274 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
275
276 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
277 dst_reg dst, src_reg src0);
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
280 dst_reg dst, src_reg src0, src_reg src1);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst,
284 src_reg src0, src_reg src1, src_reg src2);
285
286 /**
287 * Emit the correct dot-product instruction for the type of arguments
288 */
289 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
290 dst_reg dst,
291 src_reg src0,
292 src_reg src1,
293 unsigned elements);
294
295 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
296 dst_reg dst, src_reg src0);
297
298 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
299 dst_reg dst, src_reg src0, src_reg src1);
300
301 bool try_emit_mad(ir_expression *ir,
302 int mul_operand);
303 bool try_emit_mad_for_and_not(ir_expression *ir,
304 int mul_operand);
305
306 void emit_swz(ir_expression *ir);
307
308 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
309 dst_reg dst,
310 const src_reg &src0, const src_reg &src1);
311
312 inline void emit_sne(ir_expression *ir, dst_reg dst,
313 const src_reg &src0, const src_reg &src1)
314 {
315 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
316 }
317
318 inline void emit_seq(ir_expression *ir, dst_reg dst,
319 const src_reg &src0, const src_reg &src1)
320 {
321 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
322 }
323
324 bool process_move_condition(ir_rvalue *ir);
325
326 void copy_propagate(void);
327
328 void *mem_ctx;
329 };
330
331 } /* anonymous namespace */
332
333 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
334
335 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
336
337 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
338
339 static int
340 swizzle_for_size(int size)
341 {
342 static const int size_swizzles[4] = {
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
347 };
348
349 assert((size >= 1) && (size <= 4));
350 return size_swizzles[size - 1];
351 }
352
353 ir_to_mesa_instruction *
354 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
355 dst_reg dst,
356 src_reg src0, src_reg src1, src_reg src2)
357 {
358 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
359 int num_reladdr = 0;
360
361 /* If we have to do relative addressing, we want to load the ARL
362 * reg directly for one of the regs, and preload the other reladdr
363 * sources into temps.
364 */
365 num_reladdr += dst.reladdr != NULL;
366 num_reladdr += src0.reladdr != NULL;
367 num_reladdr += src1.reladdr != NULL;
368 num_reladdr += src2.reladdr != NULL;
369
370 reladdr_to_temp(ir, &src2, &num_reladdr);
371 reladdr_to_temp(ir, &src1, &num_reladdr);
372 reladdr_to_temp(ir, &src0, &num_reladdr);
373
374 if (dst.reladdr) {
375 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
376 num_reladdr--;
377 }
378 assert(num_reladdr == 0);
379
380 inst->op = op;
381 inst->dst = dst;
382 inst->src[0] = src0;
383 inst->src[1] = src1;
384 inst->src[2] = src2;
385 inst->ir = ir;
386
387 this->instructions.push_tail(inst);
388
389 return inst;
390 }
391
392
393 ir_to_mesa_instruction *
394 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
395 dst_reg dst, src_reg src0, src_reg src1)
396 {
397 return emit(ir, op, dst, src0, src1, undef_src);
398 }
399
400 ir_to_mesa_instruction *
401 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
402 dst_reg dst, src_reg src0)
403 {
404 assert(dst.writemask != 0);
405 return emit(ir, op, dst, src0, undef_src, undef_src);
406 }
407
408 ir_to_mesa_instruction *
409 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
410 {
411 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
412 }
413
414 ir_to_mesa_instruction *
415 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
416 dst_reg dst, src_reg src0, src_reg src1,
417 unsigned elements)
418 {
419 static const enum prog_opcode dot_opcodes[] = {
420 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
421 };
422
423 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
424 }
425
426 /**
427 * Emits Mesa scalar opcodes to produce unique answers across channels.
428 *
429 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
430 * channel determines the result across all channels. So to do a vec4
431 * of this operation, we want to emit a scalar per source channel used
432 * to produce dest channels.
433 */
434 void
435 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
436 dst_reg dst,
437 src_reg orig_src0, src_reg orig_src1)
438 {
439 int i, j;
440 int done_mask = ~dst.writemask;
441
442 /* Mesa RCP is a scalar operation splatting results to all channels,
443 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
444 * dst channels.
445 */
446 for (i = 0; i < 4; i++) {
447 GLuint this_mask = (1 << i);
448 ir_to_mesa_instruction *inst;
449 src_reg src0 = orig_src0;
450 src_reg src1 = orig_src1;
451
452 if (done_mask & this_mask)
453 continue;
454
455 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
456 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
457 for (j = i + 1; j < 4; j++) {
458 /* If there is another enabled component in the destination that is
459 * derived from the same inputs, generate its value on this pass as
460 * well.
461 */
462 if (!(done_mask & (1 << j)) &&
463 GET_SWZ(src0.swizzle, j) == src0_swiz &&
464 GET_SWZ(src1.swizzle, j) == src1_swiz) {
465 this_mask |= (1 << j);
466 }
467 }
468 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
469 src0_swiz, src0_swiz);
470 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
471 src1_swiz, src1_swiz);
472
473 inst = emit(ir, op, dst, src0, src1);
474 inst->dst.writemask = this_mask;
475 done_mask |= this_mask;
476 }
477 }
478
479 void
480 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
481 dst_reg dst, src_reg src0)
482 {
483 src_reg undef = undef_src;
484
485 undef.swizzle = SWIZZLE_XXXX;
486
487 emit_scalar(ir, op, dst, src0, undef);
488 }
489
490 src_reg
491 ir_to_mesa_visitor::src_reg_for_float(float val)
492 {
493 src_reg src(PROGRAM_CONSTANT, -1, NULL);
494
495 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
496 (const gl_constant_value *)&val, 1, &src.swizzle);
497
498 return src;
499 }
500
501 static int
502 storage_type_size(const struct glsl_type *type, bool bindless)
503 {
504 unsigned int i;
505 int size;
506
507 switch (type->base_type) {
508 case GLSL_TYPE_UINT:
509 case GLSL_TYPE_INT:
510 case GLSL_TYPE_FLOAT:
511 case GLSL_TYPE_BOOL:
512 if (type->is_matrix()) {
513 return type->matrix_columns;
514 } else {
515 /* Regardless of size of vector, it gets a vec4. This is bad
516 * packing for things like floats, but otherwise arrays become a
517 * mess. Hopefully a later pass over the code can pack scalars
518 * down if appropriate.
519 */
520 return 1;
521 }
522 break;
523 case GLSL_TYPE_DOUBLE:
524 if (type->is_matrix()) {
525 if (type->vector_elements > 2)
526 return type->matrix_columns * 2;
527 else
528 return type->matrix_columns;
529 } else {
530 if (type->vector_elements > 2)
531 return 2;
532 else
533 return 1;
534 }
535 break;
536 case GLSL_TYPE_UINT64:
537 case GLSL_TYPE_INT64:
538 if (type->vector_elements > 2)
539 return 2;
540 else
541 return 1;
542 case GLSL_TYPE_ARRAY:
543 assert(type->length > 0);
544 return storage_type_size(type->fields.array, bindless) * type->length;
545 case GLSL_TYPE_STRUCT:
546 size = 0;
547 for (i = 0; i < type->length; i++) {
548 size += storage_type_size(type->fields.structure[i].type, bindless);
549 }
550 return size;
551 case GLSL_TYPE_SAMPLER:
552 case GLSL_TYPE_IMAGE:
553 if (!bindless)
554 return 0;
555 /* fall through */
556 case GLSL_TYPE_SUBROUTINE:
557 return 1;
558 case GLSL_TYPE_ATOMIC_UINT:
559 case GLSL_TYPE_VOID:
560 case GLSL_TYPE_ERROR:
561 case GLSL_TYPE_INTERFACE:
562 case GLSL_TYPE_FUNCTION:
563 assert(!"Invalid type in type_size");
564 break;
565 }
566
567 return 0;
568 }
569
570 static int
571 type_size(const struct glsl_type *type)
572 {
573 return storage_type_size(type, false);
574 }
575
576 /**
577 * In the initial pass of codegen, we assign temporary numbers to
578 * intermediate results. (not SSA -- variable assignments will reuse
579 * storage). Actual register allocation for the Mesa VM occurs in a
580 * pass over the Mesa IR later.
581 */
582 src_reg
583 ir_to_mesa_visitor::get_temp(const glsl_type *type)
584 {
585 src_reg src;
586
587 src.file = PROGRAM_TEMPORARY;
588 src.index = next_temp;
589 src.reladdr = NULL;
590 next_temp += type_size(type);
591
592 if (type->is_array() || type->is_record()) {
593 src.swizzle = SWIZZLE_NOOP;
594 } else {
595 src.swizzle = swizzle_for_size(type->vector_elements);
596 }
597 src.negate = 0;
598
599 return src;
600 }
601
602 variable_storage *
603 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
604 {
605 foreach_in_list(variable_storage, entry, &this->variables) {
606 if (entry->var == var)
607 return entry;
608 }
609
610 return NULL;
611 }
612
613 void
614 ir_to_mesa_visitor::visit(ir_variable *ir)
615 {
616 if (strcmp(ir->name, "gl_FragCoord") == 0) {
617 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
618 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
619 }
620
621 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
622 unsigned int i;
623 const ir_state_slot *const slots = ir->get_state_slots();
624 assert(slots != NULL);
625
626 /* Check if this statevar's setup in the STATE file exactly
627 * matches how we'll want to reference it as a
628 * struct/array/whatever. If not, then we need to move it into
629 * temporary storage and hope that it'll get copy-propagated
630 * out.
631 */
632 for (i = 0; i < ir->get_num_state_slots(); i++) {
633 if (slots[i].swizzle != SWIZZLE_XYZW) {
634 break;
635 }
636 }
637
638 variable_storage *storage;
639 dst_reg dst;
640 if (i == ir->get_num_state_slots()) {
641 /* We'll set the index later. */
642 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
643 this->variables.push_tail(storage);
644
645 dst = undef_dst;
646 } else {
647 /* The variable_storage constructor allocates slots based on the size
648 * of the type. However, this had better match the number of state
649 * elements that we're going to copy into the new temporary.
650 */
651 assert((int) ir->get_num_state_slots() == type_size(ir->type));
652
653 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
654 this->next_temp);
655 this->variables.push_tail(storage);
656 this->next_temp += type_size(ir->type);
657
658 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
659 }
660
661
662 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
663 int index = _mesa_add_state_reference(this->prog->Parameters,
664 (gl_state_index *)slots[i].tokens);
665
666 if (storage->file == PROGRAM_STATE_VAR) {
667 if (storage->index == -1) {
668 storage->index = index;
669 } else {
670 assert(index == storage->index + (int)i);
671 }
672 } else {
673 src_reg src(PROGRAM_STATE_VAR, index, NULL);
674 src.swizzle = slots[i].swizzle;
675 emit(ir, OPCODE_MOV, dst, src);
676 /* even a float takes up a whole vec4 reg in a struct/array. */
677 dst.index++;
678 }
679 }
680
681 if (storage->file == PROGRAM_TEMPORARY &&
682 dst.index != storage->index + (int) ir->get_num_state_slots()) {
683 linker_error(this->shader_program,
684 "failed to load builtin uniform `%s' "
685 "(%d/%d regs loaded)\n",
686 ir->name, dst.index - storage->index,
687 type_size(ir->type));
688 }
689 }
690 }
691
692 void
693 ir_to_mesa_visitor::visit(ir_loop *ir)
694 {
695 emit(NULL, OPCODE_BGNLOOP);
696
697 visit_exec_list(&ir->body_instructions, this);
698
699 emit(NULL, OPCODE_ENDLOOP);
700 }
701
702 void
703 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
704 {
705 switch (ir->mode) {
706 case ir_loop_jump::jump_break:
707 emit(NULL, OPCODE_BRK);
708 break;
709 case ir_loop_jump::jump_continue:
710 emit(NULL, OPCODE_CONT);
711 break;
712 }
713 }
714
715
716 void
717 ir_to_mesa_visitor::visit(ir_function_signature *ir)
718 {
719 assert(0);
720 (void)ir;
721 }
722
723 void
724 ir_to_mesa_visitor::visit(ir_function *ir)
725 {
726 /* Ignore function bodies other than main() -- we shouldn't see calls to
727 * them since they should all be inlined before we get to ir_to_mesa.
728 */
729 if (strcmp(ir->name, "main") == 0) {
730 const ir_function_signature *sig;
731 exec_list empty;
732
733 sig = ir->matching_signature(NULL, &empty, false);
734
735 assert(sig);
736
737 foreach_in_list(ir_instruction, ir, &sig->body) {
738 ir->accept(this);
739 }
740 }
741 }
742
743 bool
744 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
745 {
746 int nonmul_operand = 1 - mul_operand;
747 src_reg a, b, c;
748
749 ir_expression *expr = ir->operands[mul_operand]->as_expression();
750 if (!expr || expr->operation != ir_binop_mul)
751 return false;
752
753 expr->operands[0]->accept(this);
754 a = this->result;
755 expr->operands[1]->accept(this);
756 b = this->result;
757 ir->operands[nonmul_operand]->accept(this);
758 c = this->result;
759
760 this->result = get_temp(ir->type);
761 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
762
763 return true;
764 }
765
766 /**
767 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
768 *
769 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
770 * implemented using multiplication, and logical-or is implemented using
771 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
772 * As result, the logical expression (a & !b) can be rewritten as:
773 *
774 * - a * !b
775 * - a * (1 - b)
776 * - (a * 1) - (a * b)
777 * - a + -(a * b)
778 * - a + (a * -b)
779 *
780 * This final expression can be implemented as a single MAD(a, -b, a)
781 * instruction.
782 */
783 bool
784 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
785 {
786 const int other_operand = 1 - try_operand;
787 src_reg a, b;
788
789 ir_expression *expr = ir->operands[try_operand]->as_expression();
790 if (!expr || expr->operation != ir_unop_logic_not)
791 return false;
792
793 ir->operands[other_operand]->accept(this);
794 a = this->result;
795 expr->operands[0]->accept(this);
796 b = this->result;
797
798 b.negate = ~b.negate;
799
800 this->result = get_temp(ir->type);
801 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
802
803 return true;
804 }
805
806 void
807 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
808 src_reg *reg, int *num_reladdr)
809 {
810 if (!reg->reladdr)
811 return;
812
813 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
814
815 if (*num_reladdr != 1) {
816 src_reg temp = get_temp(glsl_type::vec4_type);
817
818 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
819 *reg = temp;
820 }
821
822 (*num_reladdr)--;
823 }
824
825 void
826 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
827 {
828 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
829 * This means that each of the operands is either an immediate value of -1,
830 * 0, or 1, or is a component from one source register (possibly with
831 * negation).
832 */
833 uint8_t components[4] = { 0 };
834 bool negate[4] = { false };
835 ir_variable *var = NULL;
836
837 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
838 ir_rvalue *op = ir->operands[i];
839
840 assert(op->type->is_scalar());
841
842 while (op != NULL) {
843 switch (op->ir_type) {
844 case ir_type_constant: {
845
846 assert(op->type->is_scalar());
847
848 const ir_constant *const c = op->as_constant();
849 if (c->is_one()) {
850 components[i] = SWIZZLE_ONE;
851 } else if (c->is_zero()) {
852 components[i] = SWIZZLE_ZERO;
853 } else if (c->is_negative_one()) {
854 components[i] = SWIZZLE_ONE;
855 negate[i] = true;
856 } else {
857 assert(!"SWZ constant must be 0.0 or 1.0.");
858 }
859
860 op = NULL;
861 break;
862 }
863
864 case ir_type_dereference_variable: {
865 ir_dereference_variable *const deref =
866 (ir_dereference_variable *) op;
867
868 assert((var == NULL) || (deref->var == var));
869 components[i] = SWIZZLE_X;
870 var = deref->var;
871 op = NULL;
872 break;
873 }
874
875 case ir_type_expression: {
876 ir_expression *const expr = (ir_expression *) op;
877
878 assert(expr->operation == ir_unop_neg);
879 negate[i] = true;
880
881 op = expr->operands[0];
882 break;
883 }
884
885 case ir_type_swizzle: {
886 ir_swizzle *const swiz = (ir_swizzle *) op;
887
888 components[i] = swiz->mask.x;
889 op = swiz->val;
890 break;
891 }
892
893 default:
894 assert(!"Should not get here.");
895 return;
896 }
897 }
898 }
899
900 assert(var != NULL);
901
902 ir_dereference_variable *const deref =
903 new(mem_ctx) ir_dereference_variable(var);
904
905 this->result.file = PROGRAM_UNDEFINED;
906 deref->accept(this);
907 if (this->result.file == PROGRAM_UNDEFINED) {
908 printf("Failed to get tree for expression operand:\n");
909 deref->print();
910 printf("\n");
911 exit(1);
912 }
913
914 src_reg src;
915
916 src = this->result;
917 src.swizzle = MAKE_SWIZZLE4(components[0],
918 components[1],
919 components[2],
920 components[3]);
921 src.negate = ((unsigned(negate[0]) << 0)
922 | (unsigned(negate[1]) << 1)
923 | (unsigned(negate[2]) << 2)
924 | (unsigned(negate[3]) << 3));
925
926 /* Storage for our result. Ideally for an assignment we'd be using the
927 * actual storage for the result here, instead.
928 */
929 const src_reg result_src = get_temp(ir->type);
930 dst_reg result_dst = dst_reg(result_src);
931
932 /* Limit writes to the channels that will be used by result_src later.
933 * This does limit this temp's use as a temporary for multi-instruction
934 * sequences.
935 */
936 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
937
938 emit(ir, OPCODE_SWZ, result_dst, src);
939 this->result = result_src;
940 }
941
942 void
943 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
944 enum prog_opcode op,
945 dst_reg dst,
946 const src_reg &src0,
947 const src_reg &src1)
948 {
949 src_reg difference;
950 src_reg abs_difference = get_temp(glsl_type::vec4_type);
951 const src_reg zero = src_reg_for_float(0.0);
952
953 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
954 * consumes the generated IR is pretty dumb, take special care when one
955 * of the operands is zero.
956 *
957 * Similarly, x != y is equivalent to -abs(x-y) < 0.
958 */
959 if (src0.file == zero.file &&
960 src0.index == zero.index &&
961 src0.swizzle == zero.swizzle) {
962 difference = src1;
963 } else if (src1.file == zero.file &&
964 src1.index == zero.index &&
965 src1.swizzle == zero.swizzle) {
966 difference = src0;
967 } else {
968 difference = get_temp(glsl_type::vec4_type);
969
970 src_reg tmp_src = src0;
971 tmp_src.negate = ~tmp_src.negate;
972
973 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
974 }
975
976 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
977
978 abs_difference.negate = ~abs_difference.negate;
979 emit(ir, op, dst, abs_difference, zero);
980 }
981
982 void
983 ir_to_mesa_visitor::visit(ir_expression *ir)
984 {
985 unsigned int operand;
986 src_reg op[ARRAY_SIZE(ir->operands)];
987 src_reg result_src;
988 dst_reg result_dst;
989
990 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
991 */
992 if (ir->operation == ir_binop_add) {
993 if (try_emit_mad(ir, 1))
994 return;
995 if (try_emit_mad(ir, 0))
996 return;
997 }
998
999 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1000 */
1001 if (ir->operation == ir_binop_logic_and) {
1002 if (try_emit_mad_for_and_not(ir, 1))
1003 return;
1004 if (try_emit_mad_for_and_not(ir, 0))
1005 return;
1006 }
1007
1008 if (ir->operation == ir_quadop_vector) {
1009 this->emit_swz(ir);
1010 return;
1011 }
1012
1013 for (operand = 0; operand < ir->num_operands; operand++) {
1014 this->result.file = PROGRAM_UNDEFINED;
1015 ir->operands[operand]->accept(this);
1016 if (this->result.file == PROGRAM_UNDEFINED) {
1017 printf("Failed to get tree for expression operand:\n");
1018 ir->operands[operand]->print();
1019 printf("\n");
1020 exit(1);
1021 }
1022 op[operand] = this->result;
1023
1024 /* Matrix expression operands should have been broken down to vector
1025 * operations already.
1026 */
1027 assert(!ir->operands[operand]->type->is_matrix());
1028 }
1029
1030 int vector_elements = ir->operands[0]->type->vector_elements;
1031 if (ir->operands[1]) {
1032 vector_elements = MAX2(vector_elements,
1033 ir->operands[1]->type->vector_elements);
1034 }
1035
1036 this->result.file = PROGRAM_UNDEFINED;
1037
1038 /* Storage for our result. Ideally for an assignment we'd be using
1039 * the actual storage for the result here, instead.
1040 */
1041 result_src = get_temp(ir->type);
1042 /* convenience for the emit functions below. */
1043 result_dst = dst_reg(result_src);
1044 /* Limit writes to the channels that will be used by result_src later.
1045 * This does limit this temp's use as a temporary for multi-instruction
1046 * sequences.
1047 */
1048 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1049
1050 switch (ir->operation) {
1051 case ir_unop_logic_not:
1052 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1053 * older GPUs implement SEQ using multiple instructions (i915 uses two
1054 * SGE instructions and a MUL instruction). Since our logic values are
1055 * 0.0 and 1.0, 1-x also implements !x.
1056 */
1057 op[0].negate = ~op[0].negate;
1058 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1059 break;
1060 case ir_unop_neg:
1061 op[0].negate = ~op[0].negate;
1062 result_src = op[0];
1063 break;
1064 case ir_unop_abs:
1065 emit(ir, OPCODE_ABS, result_dst, op[0]);
1066 break;
1067 case ir_unop_sign:
1068 emit(ir, OPCODE_SSG, result_dst, op[0]);
1069 break;
1070 case ir_unop_rcp:
1071 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1072 break;
1073
1074 case ir_unop_exp2:
1075 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1076 break;
1077 case ir_unop_exp:
1078 assert(!"not reached: should be handled by exp_to_exp2");
1079 break;
1080 case ir_unop_log:
1081 assert(!"not reached: should be handled by log_to_log2");
1082 break;
1083 case ir_unop_log2:
1084 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1085 break;
1086 case ir_unop_sin:
1087 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1088 break;
1089 case ir_unop_cos:
1090 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1091 break;
1092
1093 case ir_unop_dFdx:
1094 emit(ir, OPCODE_DDX, result_dst, op[0]);
1095 break;
1096 case ir_unop_dFdy:
1097 emit(ir, OPCODE_DDY, result_dst, op[0]);
1098 break;
1099
1100 case ir_unop_saturate: {
1101 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1102 result_dst, op[0]);
1103 inst->saturate = true;
1104 break;
1105 }
1106 case ir_unop_noise: {
1107 const enum prog_opcode opcode =
1108 prog_opcode(OPCODE_NOISE1
1109 + (ir->operands[0]->type->vector_elements) - 1);
1110 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1111
1112 emit(ir, opcode, result_dst, op[0]);
1113 break;
1114 }
1115
1116 case ir_binop_add:
1117 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1118 break;
1119 case ir_binop_sub:
1120 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1121 break;
1122
1123 case ir_binop_mul:
1124 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1125 break;
1126 case ir_binop_div:
1127 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1128 break;
1129 case ir_binop_mod:
1130 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1131 assert(ir->type->is_integer());
1132 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1133 break;
1134
1135 case ir_binop_less:
1136 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1137 break;
1138 case ir_binop_gequal:
1139 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1140 break;
1141 case ir_binop_equal:
1142 emit_seq(ir, result_dst, op[0], op[1]);
1143 break;
1144 case ir_binop_nequal:
1145 emit_sne(ir, result_dst, op[0], op[1]);
1146 break;
1147 case ir_binop_all_equal:
1148 /* "==" operator producing a scalar boolean. */
1149 if (ir->operands[0]->type->is_vector() ||
1150 ir->operands[1]->type->is_vector()) {
1151 src_reg temp = get_temp(glsl_type::vec4_type);
1152 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1153
1154 /* After the dot-product, the value will be an integer on the
1155 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1156 */
1157 emit_dp(ir, result_dst, temp, temp, vector_elements);
1158
1159 /* Negating the result of the dot-product gives values on the range
1160 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1161 * achieved using SGE.
1162 */
1163 src_reg sge_src = result_src;
1164 sge_src.negate = ~sge_src.negate;
1165 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1166 } else {
1167 emit_seq(ir, result_dst, op[0], op[1]);
1168 }
1169 break;
1170 case ir_binop_any_nequal:
1171 /* "!=" operator producing a scalar boolean. */
1172 if (ir->operands[0]->type->is_vector() ||
1173 ir->operands[1]->type->is_vector()) {
1174 src_reg temp = get_temp(glsl_type::vec4_type);
1175 if (ir->operands[0]->type->is_boolean() &&
1176 ir->operands[1]->as_constant() &&
1177 ir->operands[1]->as_constant()->is_zero()) {
1178 temp = op[0];
1179 } else {
1180 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1181 }
1182
1183 /* After the dot-product, the value will be an integer on the
1184 * range [0,4]. Zero stays zero, and positive values become 1.0.
1185 */
1186 ir_to_mesa_instruction *const dp =
1187 emit_dp(ir, result_dst, temp, temp, vector_elements);
1188 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1189 /* The clamping to [0,1] can be done for free in the fragment
1190 * shader with a saturate.
1191 */
1192 dp->saturate = true;
1193 } else {
1194 /* Negating the result of the dot-product gives values on the range
1195 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1196 * achieved using SLT.
1197 */
1198 src_reg slt_src = result_src;
1199 slt_src.negate = ~slt_src.negate;
1200 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1201 }
1202 } else {
1203 emit_sne(ir, result_dst, op[0], op[1]);
1204 }
1205 break;
1206
1207 case ir_binop_logic_xor:
1208 emit_sne(ir, result_dst, op[0], op[1]);
1209 break;
1210
1211 case ir_binop_logic_or: {
1212 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1213 /* After the addition, the value will be an integer on the
1214 * range [0,2]. Zero stays zero, and positive values become 1.0.
1215 */
1216 ir_to_mesa_instruction *add =
1217 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1218 add->saturate = true;
1219 } else {
1220 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1221 * value is 1.0, the result of the logcal-or should be 1.0. If both
1222 * values are 0.0, the result should be 0.0. This is exactly what
1223 * MAX does.
1224 */
1225 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1226 }
1227 break;
1228 }
1229
1230 case ir_binop_logic_and:
1231 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1232 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1233 break;
1234
1235 case ir_binop_dot:
1236 assert(ir->operands[0]->type->is_vector());
1237 assert(ir->operands[0]->type == ir->operands[1]->type);
1238 emit_dp(ir, result_dst, op[0], op[1],
1239 ir->operands[0]->type->vector_elements);
1240 break;
1241
1242 case ir_unop_sqrt:
1243 /* sqrt(x) = x * rsq(x). */
1244 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1245 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1246 /* For incoming channels <= 0, set the result to 0. */
1247 op[0].negate = ~op[0].negate;
1248 emit(ir, OPCODE_CMP, result_dst,
1249 op[0], result_src, src_reg_for_float(0.0));
1250 break;
1251 case ir_unop_rsq:
1252 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1253 break;
1254 case ir_unop_i2f:
1255 case ir_unop_u2f:
1256 case ir_unop_b2f:
1257 case ir_unop_b2i:
1258 case ir_unop_i2u:
1259 case ir_unop_u2i:
1260 /* Mesa IR lacks types, ints are stored as truncated floats. */
1261 result_src = op[0];
1262 break;
1263 case ir_unop_f2i:
1264 case ir_unop_f2u:
1265 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1266 break;
1267 case ir_unop_f2b:
1268 case ir_unop_i2b:
1269 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1270 break;
1271 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1272 case ir_unop_bitcast_f2u:
1273 case ir_unop_bitcast_i2f:
1274 case ir_unop_bitcast_u2f:
1275 break;
1276 case ir_unop_trunc:
1277 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1278 break;
1279 case ir_unop_ceil:
1280 op[0].negate = ~op[0].negate;
1281 emit(ir, OPCODE_FLR, result_dst, op[0]);
1282 result_src.negate = ~result_src.negate;
1283 break;
1284 case ir_unop_floor:
1285 emit(ir, OPCODE_FLR, result_dst, op[0]);
1286 break;
1287 case ir_unop_fract:
1288 emit(ir, OPCODE_FRC, result_dst, op[0]);
1289 break;
1290 case ir_unop_pack_snorm_2x16:
1291 case ir_unop_pack_snorm_4x8:
1292 case ir_unop_pack_unorm_2x16:
1293 case ir_unop_pack_unorm_4x8:
1294 case ir_unop_pack_half_2x16:
1295 case ir_unop_pack_double_2x32:
1296 case ir_unop_unpack_snorm_2x16:
1297 case ir_unop_unpack_snorm_4x8:
1298 case ir_unop_unpack_unorm_2x16:
1299 case ir_unop_unpack_unorm_4x8:
1300 case ir_unop_unpack_half_2x16:
1301 case ir_unop_unpack_double_2x32:
1302 case ir_unop_bitfield_reverse:
1303 case ir_unop_bit_count:
1304 case ir_unop_find_msb:
1305 case ir_unop_find_lsb:
1306 case ir_unop_d2f:
1307 case ir_unop_f2d:
1308 case ir_unop_d2i:
1309 case ir_unop_i2d:
1310 case ir_unop_d2u:
1311 case ir_unop_u2d:
1312 case ir_unop_d2b:
1313 case ir_unop_frexp_sig:
1314 case ir_unop_frexp_exp:
1315 assert(!"not supported");
1316 break;
1317 case ir_binop_min:
1318 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1319 break;
1320 case ir_binop_max:
1321 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1322 break;
1323 case ir_binop_pow:
1324 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1325 break;
1326
1327 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1328 * hardware backends have no way to avoid Mesa IR generation
1329 * even if they don't use it, we need to emit "something" and
1330 * continue.
1331 */
1332 case ir_binop_lshift:
1333 case ir_binop_rshift:
1334 case ir_binop_bit_and:
1335 case ir_binop_bit_xor:
1336 case ir_binop_bit_or:
1337 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1338 break;
1339
1340 case ir_unop_bit_not:
1341 case ir_unop_round_even:
1342 emit(ir, OPCODE_MOV, result_dst, op[0]);
1343 break;
1344
1345 case ir_binop_ubo_load:
1346 assert(!"not supported");
1347 break;
1348
1349 case ir_triop_lrp:
1350 /* ir_triop_lrp operands are (x, y, a) while
1351 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1352 */
1353 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1354 break;
1355
1356 case ir_triop_csel:
1357 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1358 * selects src1 if src0 is < 0, src2 otherwise.
1359 */
1360 op[0].negate = ~op[0].negate;
1361 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1362 break;
1363
1364 case ir_binop_vector_extract:
1365 case ir_triop_fma:
1366 case ir_triop_bitfield_extract:
1367 case ir_triop_vector_insert:
1368 case ir_quadop_bitfield_insert:
1369 case ir_binop_ldexp:
1370 case ir_binop_carry:
1371 case ir_binop_borrow:
1372 case ir_binop_imul_high:
1373 case ir_unop_interpolate_at_centroid:
1374 case ir_binop_interpolate_at_offset:
1375 case ir_binop_interpolate_at_sample:
1376 case ir_unop_dFdx_coarse:
1377 case ir_unop_dFdx_fine:
1378 case ir_unop_dFdy_coarse:
1379 case ir_unop_dFdy_fine:
1380 case ir_unop_subroutine_to_int:
1381 case ir_unop_get_buffer_size:
1382 case ir_unop_bitcast_u642d:
1383 case ir_unop_bitcast_i642d:
1384 case ir_unop_bitcast_d2u64:
1385 case ir_unop_bitcast_d2i64:
1386 case ir_unop_i642i:
1387 case ir_unop_u642i:
1388 case ir_unop_i642u:
1389 case ir_unop_u642u:
1390 case ir_unop_i642b:
1391 case ir_unop_i642f:
1392 case ir_unop_u642f:
1393 case ir_unop_i642d:
1394 case ir_unop_u642d:
1395 case ir_unop_i2i64:
1396 case ir_unop_u2i64:
1397 case ir_unop_b2i64:
1398 case ir_unop_f2i64:
1399 case ir_unop_d2i64:
1400 case ir_unop_i2u64:
1401 case ir_unop_u2u64:
1402 case ir_unop_f2u64:
1403 case ir_unop_d2u64:
1404 case ir_unop_u642i64:
1405 case ir_unop_i642u64:
1406 case ir_unop_pack_int_2x32:
1407 case ir_unop_unpack_int_2x32:
1408 case ir_unop_pack_uint_2x32:
1409 case ir_unop_unpack_uint_2x32:
1410 case ir_unop_pack_sampler_2x32:
1411 case ir_unop_unpack_sampler_2x32:
1412 case ir_unop_pack_image_2x32:
1413 case ir_unop_unpack_image_2x32:
1414 assert(!"not supported");
1415 break;
1416
1417 case ir_unop_ssbo_unsized_array_length:
1418 case ir_quadop_vector:
1419 /* This operation should have already been handled.
1420 */
1421 assert(!"Should not get here.");
1422 break;
1423 }
1424
1425 this->result = result_src;
1426 }
1427
1428
1429 void
1430 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1431 {
1432 src_reg src;
1433 int i;
1434 int swizzle[4];
1435
1436 /* Note that this is only swizzles in expressions, not those on the left
1437 * hand side of an assignment, which do write masking. See ir_assignment
1438 * for that.
1439 */
1440
1441 ir->val->accept(this);
1442 src = this->result;
1443 assert(src.file != PROGRAM_UNDEFINED);
1444 assert(ir->type->vector_elements > 0);
1445
1446 for (i = 0; i < 4; i++) {
1447 if (i < ir->type->vector_elements) {
1448 switch (i) {
1449 case 0:
1450 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1451 break;
1452 case 1:
1453 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1454 break;
1455 case 2:
1456 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1457 break;
1458 case 3:
1459 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1460 break;
1461 }
1462 } else {
1463 /* If the type is smaller than a vec4, replicate the last
1464 * channel out.
1465 */
1466 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1467 }
1468 }
1469
1470 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1471
1472 this->result = src;
1473 }
1474
1475 void
1476 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1477 {
1478 variable_storage *entry = find_variable_storage(ir->var);
1479 ir_variable *var = ir->var;
1480
1481 if (!entry) {
1482 switch (var->data.mode) {
1483 case ir_var_uniform:
1484 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1485 var->data.param_index);
1486 this->variables.push_tail(entry);
1487 break;
1488 case ir_var_shader_in:
1489 /* The linker assigns locations for varyings and attributes,
1490 * including deprecated builtins (like gl_Color),
1491 * user-assigned generic attributes (glBindVertexLocation),
1492 * and user-defined varyings.
1493 */
1494 assert(var->data.location != -1);
1495 entry = new(mem_ctx) variable_storage(var,
1496 PROGRAM_INPUT,
1497 var->data.location);
1498 break;
1499 case ir_var_shader_out:
1500 assert(var->data.location != -1);
1501 entry = new(mem_ctx) variable_storage(var,
1502 PROGRAM_OUTPUT,
1503 var->data.location);
1504 break;
1505 case ir_var_system_value:
1506 entry = new(mem_ctx) variable_storage(var,
1507 PROGRAM_SYSTEM_VALUE,
1508 var->data.location);
1509 break;
1510 case ir_var_auto:
1511 case ir_var_temporary:
1512 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1513 this->next_temp);
1514 this->variables.push_tail(entry);
1515
1516 next_temp += type_size(var->type);
1517 break;
1518 }
1519
1520 if (!entry) {
1521 printf("Failed to make storage for %s\n", var->name);
1522 exit(1);
1523 }
1524 }
1525
1526 this->result = src_reg(entry->file, entry->index, var->type);
1527 }
1528
1529 void
1530 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1531 {
1532 ir_constant *index;
1533 src_reg src;
1534 int element_size = type_size(ir->type);
1535
1536 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1537
1538 ir->array->accept(this);
1539 src = this->result;
1540
1541 if (index) {
1542 src.index += index->value.i[0] * element_size;
1543 } else {
1544 /* Variable index array dereference. It eats the "vec4" of the
1545 * base of the array and an index that offsets the Mesa register
1546 * index.
1547 */
1548 ir->array_index->accept(this);
1549
1550 src_reg index_reg;
1551
1552 if (element_size == 1) {
1553 index_reg = this->result;
1554 } else {
1555 index_reg = get_temp(glsl_type::float_type);
1556
1557 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1558 this->result, src_reg_for_float(element_size));
1559 }
1560
1561 /* If there was already a relative address register involved, add the
1562 * new and the old together to get the new offset.
1563 */
1564 if (src.reladdr != NULL) {
1565 src_reg accum_reg = get_temp(glsl_type::float_type);
1566
1567 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1568 index_reg, *src.reladdr);
1569
1570 index_reg = accum_reg;
1571 }
1572
1573 src.reladdr = ralloc(mem_ctx, src_reg);
1574 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1575 }
1576
1577 /* If the type is smaller than a vec4, replicate the last channel out. */
1578 if (ir->type->is_scalar() || ir->type->is_vector())
1579 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1580 else
1581 src.swizzle = SWIZZLE_NOOP;
1582
1583 this->result = src;
1584 }
1585
1586 void
1587 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1588 {
1589 unsigned int i;
1590 const glsl_type *struct_type = ir->record->type;
1591 int offset = 0;
1592
1593 ir->record->accept(this);
1594
1595 assert(ir->field_idx >= 0);
1596 for (i = 0; i < struct_type->length; i++) {
1597 if (i == (unsigned) ir->field_idx)
1598 break;
1599 offset += type_size(struct_type->fields.structure[i].type);
1600 }
1601
1602 /* If the type is smaller than a vec4, replicate the last channel out. */
1603 if (ir->type->is_scalar() || ir->type->is_vector())
1604 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1605 else
1606 this->result.swizzle = SWIZZLE_NOOP;
1607
1608 this->result.index += offset;
1609 }
1610
1611 /**
1612 * We want to be careful in assignment setup to hit the actual storage
1613 * instead of potentially using a temporary like we might with the
1614 * ir_dereference handler.
1615 */
1616 static dst_reg
1617 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1618 {
1619 /* The LHS must be a dereference. If the LHS is a variable indexed array
1620 * access of a vector, it must be separated into a series conditional moves
1621 * before reaching this point (see ir_vec_index_to_cond_assign).
1622 */
1623 assert(ir->as_dereference());
1624 ir_dereference_array *deref_array = ir->as_dereference_array();
1625 if (deref_array) {
1626 assert(!deref_array->array->type->is_vector());
1627 }
1628
1629 /* Use the rvalue deref handler for the most part. We'll ignore
1630 * swizzles in it and write swizzles using writemask, though.
1631 */
1632 ir->accept(v);
1633 return dst_reg(v->result);
1634 }
1635
1636 /* Calculate the sampler index and also calculate the base uniform location
1637 * for struct members.
1638 */
1639 static void
1640 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1641 unsigned *offset, unsigned *array_elements,
1642 unsigned *location)
1643 {
1644 if (deref->ir_type == ir_type_dereference_variable)
1645 return;
1646
1647 switch (deref->ir_type) {
1648 case ir_type_dereference_array: {
1649 ir_dereference_array *deref_arr = deref->as_dereference_array();
1650
1651 void *mem_ctx = ralloc_parent(deref_arr);
1652 ir_constant *array_index =
1653 deref_arr->array_index->constant_expression_value(mem_ctx);
1654
1655 if (!array_index) {
1656 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1657 * while GLSL 1.30 requires that the array indices be
1658 * constant integer expressions. We don't expect any driver
1659 * to actually work with a really variable array index, so
1660 * all that would work would be an unrolled loop counter that ends
1661 * up being constant above.
1662 */
1663 ralloc_strcat(&prog->data->InfoLog,
1664 "warning: Variable sampler array index unsupported.\n"
1665 "This feature of the language was removed in GLSL 1.20 "
1666 "and is unlikely to be supported for 1.10 in Mesa.\n");
1667 } else {
1668 *offset += array_index->value.u[0] * *array_elements;
1669 }
1670
1671 *array_elements *= deref_arr->array->type->length;
1672
1673 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1674 offset, array_elements, location);
1675 break;
1676 }
1677
1678 case ir_type_dereference_record: {
1679 ir_dereference_record *deref_record = deref->as_dereference_record();
1680 unsigned field_index = deref_record->field_idx;
1681 *location +=
1682 deref_record->record->type->record_location_offset(field_index);
1683 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1684 offset, array_elements, location);
1685 break;
1686 }
1687
1688 default:
1689 unreachable("Invalid deref type");
1690 break;
1691 }
1692 }
1693
1694 static int
1695 get_sampler_uniform_value(class ir_dereference *sampler,
1696 struct gl_shader_program *shader_program,
1697 const struct gl_program *prog)
1698 {
1699 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1700 ir_variable *var = sampler->variable_referenced();
1701 unsigned location = var->data.location;
1702 unsigned array_elements = 1;
1703 unsigned offset = 0;
1704
1705 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1706 &location);
1707
1708 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1709 return shader_program->data->UniformStorage[location].opaque[shader].index +
1710 offset;
1711 }
1712
1713 /**
1714 * Process the condition of a conditional assignment
1715 *
1716 * Examines the condition of a conditional assignment to generate the optimal
1717 * first operand of a \c CMP instruction. If the condition is a relational
1718 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1719 * used as the source for the \c CMP instruction. Otherwise the comparison
1720 * is processed to a boolean result, and the boolean result is used as the
1721 * operand to the CMP instruction.
1722 */
1723 bool
1724 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1725 {
1726 ir_rvalue *src_ir = ir;
1727 bool negate = true;
1728 bool switch_order = false;
1729
1730 ir_expression *const expr = ir->as_expression();
1731 if ((expr != NULL) && (expr->num_operands == 2)) {
1732 bool zero_on_left = false;
1733
1734 if (expr->operands[0]->is_zero()) {
1735 src_ir = expr->operands[1];
1736 zero_on_left = true;
1737 } else if (expr->operands[1]->is_zero()) {
1738 src_ir = expr->operands[0];
1739 zero_on_left = false;
1740 }
1741
1742 /* a is - 0 + - 0 +
1743 * (a < 0) T F F ( a < 0) T F F
1744 * (0 < a) F F T (-a < 0) F F T
1745 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1746 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1747 *
1748 * Note that exchanging the order of 0 and 'a' in the comparison simply
1749 * means that the value of 'a' should be negated.
1750 */
1751 if (src_ir != ir) {
1752 switch (expr->operation) {
1753 case ir_binop_less:
1754 switch_order = false;
1755 negate = zero_on_left;
1756 break;
1757
1758 case ir_binop_gequal:
1759 switch_order = true;
1760 negate = zero_on_left;
1761 break;
1762
1763 default:
1764 /* This isn't the right kind of comparison afterall, so make sure
1765 * the whole condition is visited.
1766 */
1767 src_ir = ir;
1768 break;
1769 }
1770 }
1771 }
1772
1773 src_ir->accept(this);
1774
1775 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1776 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1777 * choose which value OPCODE_CMP produces without an extra instruction
1778 * computing the condition.
1779 */
1780 if (negate)
1781 this->result.negate = ~this->result.negate;
1782
1783 return switch_order;
1784 }
1785
1786 void
1787 ir_to_mesa_visitor::visit(ir_assignment *ir)
1788 {
1789 dst_reg l;
1790 src_reg r;
1791 int i;
1792
1793 ir->rhs->accept(this);
1794 r = this->result;
1795
1796 l = get_assignment_lhs(ir->lhs, this);
1797
1798 /* FINISHME: This should really set to the correct maximal writemask for each
1799 * FINISHME: component written (in the loops below). This case can only
1800 * FINISHME: occur for matrices, arrays, and structures.
1801 */
1802 if (ir->write_mask == 0) {
1803 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1804 l.writemask = WRITEMASK_XYZW;
1805 } else if (ir->lhs->type->is_scalar()) {
1806 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1807 * FINISHME: W component of fragment shader output zero, work correctly.
1808 */
1809 l.writemask = WRITEMASK_XYZW;
1810 } else {
1811 int swizzles[4];
1812 int first_enabled_chan = 0;
1813 int rhs_chan = 0;
1814
1815 assert(ir->lhs->type->is_vector());
1816 l.writemask = ir->write_mask;
1817
1818 for (int i = 0; i < 4; i++) {
1819 if (l.writemask & (1 << i)) {
1820 first_enabled_chan = GET_SWZ(r.swizzle, i);
1821 break;
1822 }
1823 }
1824
1825 /* Swizzle a small RHS vector into the channels being written.
1826 *
1827 * glsl ir treats write_mask as dictating how many channels are
1828 * present on the RHS while Mesa IR treats write_mask as just
1829 * showing which channels of the vec4 RHS get written.
1830 */
1831 for (int i = 0; i < 4; i++) {
1832 if (l.writemask & (1 << i))
1833 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1834 else
1835 swizzles[i] = first_enabled_chan;
1836 }
1837 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1838 swizzles[2], swizzles[3]);
1839 }
1840
1841 assert(l.file != PROGRAM_UNDEFINED);
1842 assert(r.file != PROGRAM_UNDEFINED);
1843
1844 if (ir->condition) {
1845 const bool switch_order = this->process_move_condition(ir->condition);
1846 src_reg condition = this->result;
1847
1848 for (i = 0; i < type_size(ir->lhs->type); i++) {
1849 if (switch_order) {
1850 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1851 } else {
1852 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1853 }
1854
1855 l.index++;
1856 r.index++;
1857 }
1858 } else {
1859 for (i = 0; i < type_size(ir->lhs->type); i++) {
1860 emit(ir, OPCODE_MOV, l, r);
1861 l.index++;
1862 r.index++;
1863 }
1864 }
1865 }
1866
1867
1868 void
1869 ir_to_mesa_visitor::visit(ir_constant *ir)
1870 {
1871 src_reg src;
1872 GLfloat stack_vals[4] = { 0 };
1873 GLfloat *values = stack_vals;
1874 unsigned int i;
1875
1876 /* Unfortunately, 4 floats is all we can get into
1877 * _mesa_add_unnamed_constant. So, make a temp to store an
1878 * aggregate constant and move each constant value into it. If we
1879 * get lucky, copy propagation will eliminate the extra moves.
1880 */
1881
1882 if (ir->type->is_record()) {
1883 src_reg temp_base = get_temp(ir->type);
1884 dst_reg temp = dst_reg(temp_base);
1885
1886 for (i = 0; i < ir->type->length; i++) {
1887 ir_constant *const field_value = ir->get_record_field(i);
1888 int size = type_size(field_value->type);
1889
1890 assert(size > 0);
1891
1892 field_value->accept(this);
1893 src = this->result;
1894
1895 for (unsigned j = 0; j < (unsigned int)size; j++) {
1896 emit(ir, OPCODE_MOV, temp, src);
1897
1898 src.index++;
1899 temp.index++;
1900 }
1901 }
1902 this->result = temp_base;
1903 return;
1904 }
1905
1906 if (ir->type->is_array()) {
1907 src_reg temp_base = get_temp(ir->type);
1908 dst_reg temp = dst_reg(temp_base);
1909 int size = type_size(ir->type->fields.array);
1910
1911 assert(size > 0);
1912
1913 for (i = 0; i < ir->type->length; i++) {
1914 ir->const_elements[i]->accept(this);
1915 src = this->result;
1916 for (int j = 0; j < size; j++) {
1917 emit(ir, OPCODE_MOV, temp, src);
1918
1919 src.index++;
1920 temp.index++;
1921 }
1922 }
1923 this->result = temp_base;
1924 return;
1925 }
1926
1927 if (ir->type->is_matrix()) {
1928 src_reg mat = get_temp(ir->type);
1929 dst_reg mat_column = dst_reg(mat);
1930
1931 for (i = 0; i < ir->type->matrix_columns; i++) {
1932 assert(ir->type->is_float());
1933 values = &ir->value.f[i * ir->type->vector_elements];
1934
1935 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1936 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1937 (gl_constant_value *) values,
1938 ir->type->vector_elements,
1939 &src.swizzle);
1940 emit(ir, OPCODE_MOV, mat_column, src);
1941
1942 mat_column.index++;
1943 }
1944
1945 this->result = mat;
1946 return;
1947 }
1948
1949 src.file = PROGRAM_CONSTANT;
1950 switch (ir->type->base_type) {
1951 case GLSL_TYPE_FLOAT:
1952 values = &ir->value.f[0];
1953 break;
1954 case GLSL_TYPE_UINT:
1955 for (i = 0; i < ir->type->vector_elements; i++) {
1956 values[i] = ir->value.u[i];
1957 }
1958 break;
1959 case GLSL_TYPE_INT:
1960 for (i = 0; i < ir->type->vector_elements; i++) {
1961 values[i] = ir->value.i[i];
1962 }
1963 break;
1964 case GLSL_TYPE_BOOL:
1965 for (i = 0; i < ir->type->vector_elements; i++) {
1966 values[i] = ir->value.b[i];
1967 }
1968 break;
1969 default:
1970 assert(!"Non-float/uint/int/bool constant");
1971 }
1972
1973 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1974 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1975 (gl_constant_value *) values,
1976 ir->type->vector_elements,
1977 &this->result.swizzle);
1978 }
1979
1980 void
1981 ir_to_mesa_visitor::visit(ir_call *)
1982 {
1983 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1984 }
1985
1986 void
1987 ir_to_mesa_visitor::visit(ir_texture *ir)
1988 {
1989 src_reg result_src, coord, lod_info, projector, dx, dy;
1990 dst_reg result_dst, coord_dst;
1991 ir_to_mesa_instruction *inst = NULL;
1992 prog_opcode opcode = OPCODE_NOP;
1993
1994 if (ir->op == ir_txs)
1995 this->result = src_reg_for_float(0.0);
1996 else
1997 ir->coordinate->accept(this);
1998
1999 /* Put our coords in a temp. We'll need to modify them for shadow,
2000 * projection, or LOD, so the only case we'd use it as-is is if
2001 * we're doing plain old texturing. Mesa IR optimization should
2002 * handle cleaning up our mess in that case.
2003 */
2004 coord = get_temp(glsl_type::vec4_type);
2005 coord_dst = dst_reg(coord);
2006 emit(ir, OPCODE_MOV, coord_dst, this->result);
2007
2008 if (ir->projector) {
2009 ir->projector->accept(this);
2010 projector = this->result;
2011 }
2012
2013 /* Storage for our result. Ideally for an assignment we'd be using
2014 * the actual storage for the result here, instead.
2015 */
2016 result_src = get_temp(glsl_type::vec4_type);
2017 result_dst = dst_reg(result_src);
2018
2019 switch (ir->op) {
2020 case ir_tex:
2021 case ir_txs:
2022 opcode = OPCODE_TEX;
2023 break;
2024 case ir_txb:
2025 opcode = OPCODE_TXB;
2026 ir->lod_info.bias->accept(this);
2027 lod_info = this->result;
2028 break;
2029 case ir_txf:
2030 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2031 case ir_txl:
2032 opcode = OPCODE_TXL;
2033 ir->lod_info.lod->accept(this);
2034 lod_info = this->result;
2035 break;
2036 case ir_txd:
2037 opcode = OPCODE_TXD;
2038 ir->lod_info.grad.dPdx->accept(this);
2039 dx = this->result;
2040 ir->lod_info.grad.dPdy->accept(this);
2041 dy = this->result;
2042 break;
2043 case ir_txf_ms:
2044 assert(!"Unexpected ir_txf_ms opcode");
2045 break;
2046 case ir_lod:
2047 assert(!"Unexpected ir_lod opcode");
2048 break;
2049 case ir_tg4:
2050 assert(!"Unexpected ir_tg4 opcode");
2051 break;
2052 case ir_query_levels:
2053 assert(!"Unexpected ir_query_levels opcode");
2054 break;
2055 case ir_samples_identical:
2056 unreachable("Unexpected ir_samples_identical opcode");
2057 case ir_texture_samples:
2058 unreachable("Unexpected ir_texture_samples opcode");
2059 }
2060
2061 const glsl_type *sampler_type = ir->sampler->type;
2062
2063 if (ir->projector) {
2064 if (opcode == OPCODE_TEX) {
2065 /* Slot the projector in as the last component of the coord. */
2066 coord_dst.writemask = WRITEMASK_W;
2067 emit(ir, OPCODE_MOV, coord_dst, projector);
2068 coord_dst.writemask = WRITEMASK_XYZW;
2069 opcode = OPCODE_TXP;
2070 } else {
2071 src_reg coord_w = coord;
2072 coord_w.swizzle = SWIZZLE_WWWW;
2073
2074 /* For the other TEX opcodes there's no projective version
2075 * since the last slot is taken up by lod info. Do the
2076 * projective divide now.
2077 */
2078 coord_dst.writemask = WRITEMASK_W;
2079 emit(ir, OPCODE_RCP, coord_dst, projector);
2080
2081 /* In the case where we have to project the coordinates "by hand,"
2082 * the shadow comparator value must also be projected.
2083 */
2084 src_reg tmp_src = coord;
2085 if (ir->shadow_comparator) {
2086 /* Slot the shadow value in as the second to last component of the
2087 * coord.
2088 */
2089 ir->shadow_comparator->accept(this);
2090
2091 tmp_src = get_temp(glsl_type::vec4_type);
2092 dst_reg tmp_dst = dst_reg(tmp_src);
2093
2094 /* Projective division not allowed for array samplers. */
2095 assert(!sampler_type->sampler_array);
2096
2097 tmp_dst.writemask = WRITEMASK_Z;
2098 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2099
2100 tmp_dst.writemask = WRITEMASK_XY;
2101 emit(ir, OPCODE_MOV, tmp_dst, coord);
2102 }
2103
2104 coord_dst.writemask = WRITEMASK_XYZ;
2105 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2106
2107 coord_dst.writemask = WRITEMASK_XYZW;
2108 coord.swizzle = SWIZZLE_XYZW;
2109 }
2110 }
2111
2112 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2113 * comparator was put in the correct place (and projected) by the code,
2114 * above, that handles by-hand projection.
2115 */
2116 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2117 /* Slot the shadow value in as the second to last component of the
2118 * coord.
2119 */
2120 ir->shadow_comparator->accept(this);
2121
2122 /* XXX This will need to be updated for cubemap array samplers. */
2123 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2124 sampler_type->sampler_array) {
2125 coord_dst.writemask = WRITEMASK_W;
2126 } else {
2127 coord_dst.writemask = WRITEMASK_Z;
2128 }
2129
2130 emit(ir, OPCODE_MOV, coord_dst, this->result);
2131 coord_dst.writemask = WRITEMASK_XYZW;
2132 }
2133
2134 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2135 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2136 coord_dst.writemask = WRITEMASK_W;
2137 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2138 coord_dst.writemask = WRITEMASK_XYZW;
2139 }
2140
2141 if (opcode == OPCODE_TXD)
2142 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2143 else
2144 inst = emit(ir, opcode, result_dst, coord);
2145
2146 if (ir->shadow_comparator)
2147 inst->tex_shadow = GL_TRUE;
2148
2149 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2150 prog);
2151
2152 switch (sampler_type->sampler_dimensionality) {
2153 case GLSL_SAMPLER_DIM_1D:
2154 inst->tex_target = (sampler_type->sampler_array)
2155 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2156 break;
2157 case GLSL_SAMPLER_DIM_2D:
2158 inst->tex_target = (sampler_type->sampler_array)
2159 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2160 break;
2161 case GLSL_SAMPLER_DIM_3D:
2162 inst->tex_target = TEXTURE_3D_INDEX;
2163 break;
2164 case GLSL_SAMPLER_DIM_CUBE:
2165 inst->tex_target = TEXTURE_CUBE_INDEX;
2166 break;
2167 case GLSL_SAMPLER_DIM_RECT:
2168 inst->tex_target = TEXTURE_RECT_INDEX;
2169 break;
2170 case GLSL_SAMPLER_DIM_BUF:
2171 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2172 break;
2173 case GLSL_SAMPLER_DIM_EXTERNAL:
2174 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2175 break;
2176 default:
2177 assert(!"Should not get here.");
2178 }
2179
2180 this->result = result_src;
2181 }
2182
2183 void
2184 ir_to_mesa_visitor::visit(ir_return *ir)
2185 {
2186 /* Non-void functions should have been inlined. We may still emit RETs
2187 * from main() unless the EmitNoMainReturn option is set.
2188 */
2189 assert(!ir->get_value());
2190 emit(ir, OPCODE_RET);
2191 }
2192
2193 void
2194 ir_to_mesa_visitor::visit(ir_discard *ir)
2195 {
2196 if (!ir->condition)
2197 ir->condition = new(mem_ctx) ir_constant(true);
2198
2199 ir->condition->accept(this);
2200 this->result.negate = ~this->result.negate;
2201 emit(ir, OPCODE_KIL, undef_dst, this->result);
2202 }
2203
2204 void
2205 ir_to_mesa_visitor::visit(ir_if *ir)
2206 {
2207 ir_to_mesa_instruction *if_inst;
2208
2209 ir->condition->accept(this);
2210 assert(this->result.file != PROGRAM_UNDEFINED);
2211
2212 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2213
2214 this->instructions.push_tail(if_inst);
2215
2216 visit_exec_list(&ir->then_instructions, this);
2217
2218 if (!ir->else_instructions.is_empty()) {
2219 emit(ir->condition, OPCODE_ELSE);
2220 visit_exec_list(&ir->else_instructions, this);
2221 }
2222
2223 emit(ir->condition, OPCODE_ENDIF);
2224 }
2225
2226 void
2227 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2228 {
2229 assert(!"Geometry shaders not supported.");
2230 }
2231
2232 void
2233 ir_to_mesa_visitor::visit(ir_end_primitive *)
2234 {
2235 assert(!"Geometry shaders not supported.");
2236 }
2237
2238 void
2239 ir_to_mesa_visitor::visit(ir_barrier *)
2240 {
2241 unreachable("GLSL barrier() not supported.");
2242 }
2243
2244 ir_to_mesa_visitor::ir_to_mesa_visitor()
2245 {
2246 result.file = PROGRAM_UNDEFINED;
2247 next_temp = 1;
2248 next_signature_id = 1;
2249 current_function = NULL;
2250 mem_ctx = ralloc_context(NULL);
2251 }
2252
2253 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2254 {
2255 ralloc_free(mem_ctx);
2256 }
2257
2258 static struct prog_src_register
2259 mesa_src_reg_from_ir_src_reg(src_reg reg)
2260 {
2261 struct prog_src_register mesa_reg;
2262
2263 mesa_reg.File = reg.file;
2264 assert(reg.index < (1 << INST_INDEX_BITS));
2265 mesa_reg.Index = reg.index;
2266 mesa_reg.Swizzle = reg.swizzle;
2267 mesa_reg.RelAddr = reg.reladdr != NULL;
2268 mesa_reg.Negate = reg.negate;
2269
2270 return mesa_reg;
2271 }
2272
2273 static void
2274 set_branchtargets(ir_to_mesa_visitor *v,
2275 struct prog_instruction *mesa_instructions,
2276 int num_instructions)
2277 {
2278 int if_count = 0, loop_count = 0;
2279 int *if_stack, *loop_stack;
2280 int if_stack_pos = 0, loop_stack_pos = 0;
2281 int i, j;
2282
2283 for (i = 0; i < num_instructions; i++) {
2284 switch (mesa_instructions[i].Opcode) {
2285 case OPCODE_IF:
2286 if_count++;
2287 break;
2288 case OPCODE_BGNLOOP:
2289 loop_count++;
2290 break;
2291 case OPCODE_BRK:
2292 case OPCODE_CONT:
2293 mesa_instructions[i].BranchTarget = -1;
2294 break;
2295 default:
2296 break;
2297 }
2298 }
2299
2300 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2301 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2302
2303 for (i = 0; i < num_instructions; i++) {
2304 switch (mesa_instructions[i].Opcode) {
2305 case OPCODE_IF:
2306 if_stack[if_stack_pos] = i;
2307 if_stack_pos++;
2308 break;
2309 case OPCODE_ELSE:
2310 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2311 if_stack[if_stack_pos - 1] = i;
2312 break;
2313 case OPCODE_ENDIF:
2314 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2315 if_stack_pos--;
2316 break;
2317 case OPCODE_BGNLOOP:
2318 loop_stack[loop_stack_pos] = i;
2319 loop_stack_pos++;
2320 break;
2321 case OPCODE_ENDLOOP:
2322 loop_stack_pos--;
2323 /* Rewrite any breaks/conts at this nesting level (haven't
2324 * already had a BranchTarget assigned) to point to the end
2325 * of the loop.
2326 */
2327 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2328 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2329 mesa_instructions[j].Opcode == OPCODE_CONT) {
2330 if (mesa_instructions[j].BranchTarget == -1) {
2331 mesa_instructions[j].BranchTarget = i;
2332 }
2333 }
2334 }
2335 /* The loop ends point at each other. */
2336 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2337 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2338 break;
2339 case OPCODE_CAL:
2340 foreach_in_list(function_entry, entry, &v->function_signatures) {
2341 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2342 mesa_instructions[i].BranchTarget = entry->inst;
2343 break;
2344 }
2345 }
2346 break;
2347 default:
2348 break;
2349 }
2350 }
2351 }
2352
2353 static void
2354 print_program(struct prog_instruction *mesa_instructions,
2355 ir_instruction **mesa_instruction_annotation,
2356 int num_instructions)
2357 {
2358 ir_instruction *last_ir = NULL;
2359 int i;
2360 int indent = 0;
2361
2362 for (i = 0; i < num_instructions; i++) {
2363 struct prog_instruction *mesa_inst = mesa_instructions + i;
2364 ir_instruction *ir = mesa_instruction_annotation[i];
2365
2366 fprintf(stdout, "%3d: ", i);
2367
2368 if (last_ir != ir && ir) {
2369 int j;
2370
2371 for (j = 0; j < indent; j++) {
2372 fprintf(stdout, " ");
2373 }
2374 ir->print();
2375 printf("\n");
2376 last_ir = ir;
2377
2378 fprintf(stdout, " "); /* line number spacing. */
2379 }
2380
2381 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2382 PROG_PRINT_DEBUG, NULL);
2383 }
2384 }
2385
2386 namespace {
2387
2388 class add_uniform_to_shader : public program_resource_visitor {
2389 public:
2390 add_uniform_to_shader(struct gl_context *ctx,
2391 struct gl_shader_program *shader_program,
2392 struct gl_program_parameter_list *params)
2393 : ctx(ctx), params(params), idx(-1)
2394 {
2395 /* empty */
2396 }
2397
2398 void process(ir_variable *var)
2399 {
2400 this->idx = -1;
2401 this->var = var;
2402 this->program_resource_visitor::process(var,
2403 ctx->Const.UseSTD430AsDefaultPacking);
2404 var->data.param_index = this->idx;
2405 }
2406
2407 private:
2408 virtual void visit_field(const glsl_type *type, const char *name,
2409 bool row_major, const glsl_type *record_type,
2410 const enum glsl_interface_packing packing,
2411 bool last_field);
2412
2413 struct gl_context *ctx;
2414 struct gl_program_parameter_list *params;
2415 int idx;
2416 ir_variable *var;
2417 };
2418
2419 } /* anonymous namespace */
2420
2421 void
2422 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2423 bool /* row_major */,
2424 const glsl_type * /* record_type */,
2425 const enum glsl_interface_packing,
2426 bool /* last_field */)
2427 {
2428 /* opaque types don't use storage in the param list unless they are
2429 * bindless samplers or images.
2430 */
2431 if (type->contains_opaque() && !var->data.bindless)
2432 return;
2433
2434 /* Add the uniform to the param list */
2435 assert(_mesa_lookup_parameter_index(params, name) < 0);
2436 int index = _mesa_lookup_parameter_index(params, name);
2437
2438 unsigned num_params = type->arrays_of_arrays_size();
2439 num_params = MAX2(num_params, 1);
2440 num_params *= type->without_array()->matrix_columns;
2441
2442 bool is_dual_slot = type->without_array()->is_dual_slot();
2443 if (is_dual_slot)
2444 num_params *= 2;
2445
2446 _mesa_reserve_parameter_storage(params, num_params);
2447 index = params->NumParameters;
2448 for (unsigned i = 0; i < num_params; i++) {
2449 unsigned comps = 4;
2450 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2451 type->gl_type, NULL, NULL);
2452 }
2453
2454 /* The first part of the uniform that's processed determines the base
2455 * location of the whole uniform (for structures).
2456 */
2457 if (this->idx < 0)
2458 this->idx = index;
2459 }
2460
2461 /**
2462 * Generate the program parameters list for the user uniforms in a shader
2463 *
2464 * \param shader_program Linked shader program. This is only used to
2465 * emit possible link errors to the info log.
2466 * \param sh Shader whose uniforms are to be processed.
2467 * \param params Parameter list to be filled in.
2468 */
2469 void
2470 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2471 struct gl_shader_program
2472 *shader_program,
2473 struct gl_linked_shader *sh,
2474 struct gl_program_parameter_list
2475 *params)
2476 {
2477 add_uniform_to_shader add(ctx, shader_program, params);
2478
2479 foreach_in_list(ir_instruction, node, sh->ir) {
2480 ir_variable *var = node->as_variable();
2481
2482 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2483 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2484 continue;
2485
2486 add.process(var);
2487 }
2488 }
2489
2490 void
2491 _mesa_associate_uniform_storage(struct gl_context *ctx,
2492 struct gl_shader_program *shader_program,
2493 struct gl_program *prog,
2494 bool propagate_to_storage)
2495 {
2496 struct gl_program_parameter_list *params = prog->Parameters;
2497 gl_shader_stage shader_type = prog->info.stage;
2498
2499 /* After adding each uniform to the parameter list, connect the storage for
2500 * the parameter with the tracking structure used by the API for the
2501 * uniform.
2502 */
2503 unsigned last_location = unsigned(~0);
2504 for (unsigned i = 0; i < params->NumParameters; i++) {
2505 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2506 continue;
2507
2508 unsigned location;
2509 const bool found =
2510 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2511 assert(found);
2512
2513 if (!found)
2514 continue;
2515
2516 struct gl_uniform_storage *storage =
2517 &shader_program->data->UniformStorage[location];
2518
2519 /* Do not associate any uniform storage to built-in uniforms */
2520 if (storage->builtin)
2521 continue;
2522
2523 if (location != last_location) {
2524 enum gl_uniform_driver_format format = uniform_native;
2525 unsigned columns = 0;
2526 int dmul = 4 * sizeof(float);
2527
2528 switch (storage->type->base_type) {
2529 case GLSL_TYPE_UINT64:
2530 if (storage->type->vector_elements > 2)
2531 dmul *= 2;
2532 /* fallthrough */
2533 case GLSL_TYPE_UINT:
2534 assert(ctx->Const.NativeIntegers);
2535 format = uniform_native;
2536 columns = 1;
2537 break;
2538 case GLSL_TYPE_INT64:
2539 if (storage->type->vector_elements > 2)
2540 dmul *= 2;
2541 /* fallthrough */
2542 case GLSL_TYPE_INT:
2543 format =
2544 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2545 columns = 1;
2546 break;
2547 case GLSL_TYPE_DOUBLE:
2548 if (storage->type->vector_elements > 2)
2549 dmul *= 2;
2550 /* fallthrough */
2551 case GLSL_TYPE_FLOAT:
2552 format = uniform_native;
2553 columns = storage->type->matrix_columns;
2554 break;
2555 case GLSL_TYPE_BOOL:
2556 format = uniform_native;
2557 columns = 1;
2558 break;
2559 case GLSL_TYPE_SAMPLER:
2560 case GLSL_TYPE_IMAGE:
2561 case GLSL_TYPE_SUBROUTINE:
2562 format = uniform_native;
2563 columns = 1;
2564 break;
2565 case GLSL_TYPE_ATOMIC_UINT:
2566 case GLSL_TYPE_ARRAY:
2567 case GLSL_TYPE_VOID:
2568 case GLSL_TYPE_STRUCT:
2569 case GLSL_TYPE_ERROR:
2570 case GLSL_TYPE_INTERFACE:
2571 case GLSL_TYPE_FUNCTION:
2572 assert(!"Should not get here.");
2573 break;
2574 }
2575
2576 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2577 format,
2578 &params->ParameterValues[i]);
2579
2580 /* When a bindless sampler/image is bound to a texture/image unit, we
2581 * have to overwrite the constant value by the resident handle
2582 * directly in the constant buffer before the next draw. One solution
2583 * is to keep track a pointer to the base of the data.
2584 */
2585 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2586 prog->sh.NumBindlessImages)) {
2587 unsigned array_elements = MAX2(1, storage->array_elements);
2588
2589 for (unsigned j = 0; j < array_elements; ++j) {
2590 unsigned unit = storage->opaque[shader_type].index + j;
2591
2592 if (storage->type->without_array()->is_sampler()) {
2593 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2594 prog->sh.BindlessSamplers[unit].data =
2595 &params->ParameterValues[i] + j;
2596 } else if (storage->type->without_array()->is_image()) {
2597 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2598 prog->sh.BindlessImages[unit].data =
2599 &params->ParameterValues[i] + j;
2600 }
2601 }
2602 }
2603
2604 /* After attaching the driver's storage to the uniform, propagate any
2605 * data from the linker's backing store. This will cause values from
2606 * initializers in the source code to be copied over.
2607 */
2608 if (propagate_to_storage) {
2609 unsigned array_elements = MAX2(1, storage->array_elements);
2610 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2611 array_elements);
2612 }
2613
2614 last_location = location;
2615 }
2616 }
2617 }
2618
2619 /*
2620 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2621 * channels for copy propagation and updates following instructions to
2622 * use the original versions.
2623 *
2624 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2625 * will occur. As an example, a TXP production before this pass:
2626 *
2627 * 0: MOV TEMP[1], INPUT[4].xyyy;
2628 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2629 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2630 *
2631 * and after:
2632 *
2633 * 0: MOV TEMP[1], INPUT[4].xyyy;
2634 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2635 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2636 *
2637 * which allows for dead code elimination on TEMP[1]'s writes.
2638 */
2639 void
2640 ir_to_mesa_visitor::copy_propagate(void)
2641 {
2642 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2643 ir_to_mesa_instruction *,
2644 this->next_temp * 4);
2645 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2646 int level = 0;
2647
2648 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2649 assert(inst->dst.file != PROGRAM_TEMPORARY
2650 || inst->dst.index < this->next_temp);
2651
2652 /* First, do any copy propagation possible into the src regs. */
2653 for (int r = 0; r < 3; r++) {
2654 ir_to_mesa_instruction *first = NULL;
2655 bool good = true;
2656 int acp_base = inst->src[r].index * 4;
2657
2658 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2659 inst->src[r].reladdr)
2660 continue;
2661
2662 /* See if we can find entries in the ACP consisting of MOVs
2663 * from the same src register for all the swizzled channels
2664 * of this src register reference.
2665 */
2666 for (int i = 0; i < 4; i++) {
2667 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2668 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2669
2670 if (!copy_chan) {
2671 good = false;
2672 break;
2673 }
2674
2675 assert(acp_level[acp_base + src_chan] <= level);
2676
2677 if (!first) {
2678 first = copy_chan;
2679 } else {
2680 if (first->src[0].file != copy_chan->src[0].file ||
2681 first->src[0].index != copy_chan->src[0].index) {
2682 good = false;
2683 break;
2684 }
2685 }
2686 }
2687
2688 if (good) {
2689 /* We've now validated that we can copy-propagate to
2690 * replace this src register reference. Do it.
2691 */
2692 inst->src[r].file = first->src[0].file;
2693 inst->src[r].index = first->src[0].index;
2694
2695 int swizzle = 0;
2696 for (int i = 0; i < 4; i++) {
2697 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2698 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2699 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2700 (3 * i));
2701 }
2702 inst->src[r].swizzle = swizzle;
2703 }
2704 }
2705
2706 switch (inst->op) {
2707 case OPCODE_BGNLOOP:
2708 case OPCODE_ENDLOOP:
2709 /* End of a basic block, clear the ACP entirely. */
2710 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2711 break;
2712
2713 case OPCODE_IF:
2714 ++level;
2715 break;
2716
2717 case OPCODE_ENDIF:
2718 case OPCODE_ELSE:
2719 /* Clear all channels written inside the block from the ACP, but
2720 * leaving those that were not touched.
2721 */
2722 for (int r = 0; r < this->next_temp; r++) {
2723 for (int c = 0; c < 4; c++) {
2724 if (!acp[4 * r + c])
2725 continue;
2726
2727 if (acp_level[4 * r + c] >= level)
2728 acp[4 * r + c] = NULL;
2729 }
2730 }
2731 if (inst->op == OPCODE_ENDIF)
2732 --level;
2733 break;
2734
2735 default:
2736 /* Continuing the block, clear any written channels from
2737 * the ACP.
2738 */
2739 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2740 /* Any temporary might be written, so no copy propagation
2741 * across this instruction.
2742 */
2743 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2744 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2745 inst->dst.reladdr) {
2746 /* Any output might be written, so no copy propagation
2747 * from outputs across this instruction.
2748 */
2749 for (int r = 0; r < this->next_temp; r++) {
2750 for (int c = 0; c < 4; c++) {
2751 if (!acp[4 * r + c])
2752 continue;
2753
2754 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2755 acp[4 * r + c] = NULL;
2756 }
2757 }
2758 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2759 inst->dst.file == PROGRAM_OUTPUT) {
2760 /* Clear where it's used as dst. */
2761 if (inst->dst.file == PROGRAM_TEMPORARY) {
2762 for (int c = 0; c < 4; c++) {
2763 if (inst->dst.writemask & (1 << c)) {
2764 acp[4 * inst->dst.index + c] = NULL;
2765 }
2766 }
2767 }
2768
2769 /* Clear where it's used as src. */
2770 for (int r = 0; r < this->next_temp; r++) {
2771 for (int c = 0; c < 4; c++) {
2772 if (!acp[4 * r + c])
2773 continue;
2774
2775 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2776
2777 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2778 acp[4 * r + c]->src[0].index == inst->dst.index &&
2779 inst->dst.writemask & (1 << src_chan))
2780 {
2781 acp[4 * r + c] = NULL;
2782 }
2783 }
2784 }
2785 }
2786 break;
2787 }
2788
2789 /* If this is a copy, add it to the ACP. */
2790 if (inst->op == OPCODE_MOV &&
2791 inst->dst.file == PROGRAM_TEMPORARY &&
2792 !(inst->dst.file == inst->src[0].file &&
2793 inst->dst.index == inst->src[0].index) &&
2794 !inst->dst.reladdr &&
2795 !inst->saturate &&
2796 !inst->src[0].reladdr &&
2797 !inst->src[0].negate) {
2798 for (int i = 0; i < 4; i++) {
2799 if (inst->dst.writemask & (1 << i)) {
2800 acp[4 * inst->dst.index + i] = inst;
2801 acp_level[4 * inst->dst.index + i] = level;
2802 }
2803 }
2804 }
2805 }
2806
2807 ralloc_free(acp_level);
2808 ralloc_free(acp);
2809 }
2810
2811
2812 /**
2813 * Convert a shader's GLSL IR into a Mesa gl_program.
2814 */
2815 static struct gl_program *
2816 get_mesa_program(struct gl_context *ctx,
2817 struct gl_shader_program *shader_program,
2818 struct gl_linked_shader *shader)
2819 {
2820 ir_to_mesa_visitor v;
2821 struct prog_instruction *mesa_instructions, *mesa_inst;
2822 ir_instruction **mesa_instruction_annotation;
2823 int i;
2824 struct gl_program *prog;
2825 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2826 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2827 struct gl_shader_compiler_options *options =
2828 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2829
2830 validate_ir_tree(shader->ir);
2831
2832 prog = shader->Program;
2833 prog->Parameters = _mesa_new_parameter_list();
2834 v.ctx = ctx;
2835 v.prog = prog;
2836 v.shader_program = shader_program;
2837 v.options = options;
2838
2839 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2840 prog->Parameters);
2841
2842 /* Emit Mesa IR for main(). */
2843 visit_exec_list(shader->ir, &v);
2844 v.emit(NULL, OPCODE_END);
2845
2846 prog->arb.NumTemporaries = v.next_temp;
2847
2848 unsigned num_instructions = v.instructions.length();
2849
2850 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2851 num_instructions);
2852 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2853 num_instructions);
2854
2855 v.copy_propagate();
2856
2857 /* Convert ir_mesa_instructions into prog_instructions.
2858 */
2859 mesa_inst = mesa_instructions;
2860 i = 0;
2861 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2862 mesa_inst->Opcode = inst->op;
2863 if (inst->saturate)
2864 mesa_inst->Saturate = GL_TRUE;
2865 mesa_inst->DstReg.File = inst->dst.file;
2866 mesa_inst->DstReg.Index = inst->dst.index;
2867 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2868 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2869 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2870 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2871 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2872 mesa_inst->TexSrcUnit = inst->sampler;
2873 mesa_inst->TexSrcTarget = inst->tex_target;
2874 mesa_inst->TexShadow = inst->tex_shadow;
2875 mesa_instruction_annotation[i] = inst->ir;
2876
2877 /* Set IndirectRegisterFiles. */
2878 if (mesa_inst->DstReg.RelAddr)
2879 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2880
2881 /* Update program's bitmask of indirectly accessed register files */
2882 for (unsigned src = 0; src < 3; src++)
2883 if (mesa_inst->SrcReg[src].RelAddr)
2884 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2885
2886 switch (mesa_inst->Opcode) {
2887 case OPCODE_IF:
2888 if (options->MaxIfDepth == 0) {
2889 linker_warning(shader_program,
2890 "Couldn't flatten if-statement. "
2891 "This will likely result in software "
2892 "rasterization.\n");
2893 }
2894 break;
2895 case OPCODE_BGNLOOP:
2896 if (options->EmitNoLoops) {
2897 linker_warning(shader_program,
2898 "Couldn't unroll loop. "
2899 "This will likely result in software "
2900 "rasterization.\n");
2901 }
2902 break;
2903 case OPCODE_CONT:
2904 if (options->EmitNoCont) {
2905 linker_warning(shader_program,
2906 "Couldn't lower continue-statement. "
2907 "This will likely result in software "
2908 "rasterization.\n");
2909 }
2910 break;
2911 case OPCODE_ARL:
2912 prog->arb.NumAddressRegs = 1;
2913 break;
2914 default:
2915 break;
2916 }
2917
2918 mesa_inst++;
2919 i++;
2920
2921 if (!shader_program->data->LinkStatus)
2922 break;
2923 }
2924
2925 if (!shader_program->data->LinkStatus) {
2926 goto fail_exit;
2927 }
2928
2929 set_branchtargets(&v, mesa_instructions, num_instructions);
2930
2931 if (ctx->_Shader->Flags & GLSL_DUMP) {
2932 fprintf(stderr, "\n");
2933 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2934 shader_program->Name);
2935 _mesa_print_ir(stderr, shader->ir, NULL);
2936 fprintf(stderr, "\n");
2937 fprintf(stderr, "\n");
2938 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2939 shader_program->Name);
2940 print_program(mesa_instructions, mesa_instruction_annotation,
2941 num_instructions);
2942 fflush(stderr);
2943 }
2944
2945 prog->arb.Instructions = mesa_instructions;
2946 prog->arb.NumInstructions = num_instructions;
2947
2948 /* Setting this to NULL prevents a possible double free in the fail_exit
2949 * path (far below).
2950 */
2951 mesa_instructions = NULL;
2952
2953 do_set_program_inouts(shader->ir, prog, shader->Stage);
2954
2955 prog->ShadowSamplers = shader->shadow_samplers;
2956 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2957 _mesa_update_shader_textures_used(shader_program, prog);
2958
2959 /* Set the gl_FragDepth layout. */
2960 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2961 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2962 }
2963
2964 _mesa_optimize_program(ctx, prog, prog);
2965
2966 /* This has to be done last. Any operation that can cause
2967 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2968 * program constant) has to happen before creating this linkage.
2969 */
2970 _mesa_associate_uniform_storage(ctx, shader_program, prog, true);
2971 if (!shader_program->data->LinkStatus) {
2972 goto fail_exit;
2973 }
2974
2975 return prog;
2976
2977 fail_exit:
2978 ralloc_free(mesa_instructions);
2979 _mesa_reference_program(ctx, &shader->Program, NULL);
2980 return NULL;
2981 }
2982
2983 extern "C" {
2984
2985 /**
2986 * Link a shader.
2987 * Called via ctx->Driver.LinkShader()
2988 * This actually involves converting GLSL IR into Mesa gl_programs with
2989 * code lowering and other optimizations.
2990 */
2991 GLboolean
2992 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2993 {
2994 assert(prog->data->LinkStatus);
2995
2996 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2997 if (prog->_LinkedShaders[i] == NULL)
2998 continue;
2999
3000 bool progress;
3001 exec_list *ir = prog->_LinkedShaders[i]->ir;
3002 const struct gl_shader_compiler_options *options =
3003 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3004
3005 do {
3006 progress = false;
3007
3008 /* Lowering */
3009 do_mat_op_to_vec(ir);
3010 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3011 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3012 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3013
3014 progress = do_common_optimization(ir, true, true,
3015 options, ctx->Const.NativeIntegers)
3016 || progress;
3017
3018 progress = lower_quadop_vector(ir, true) || progress;
3019
3020 if (options->MaxIfDepth == 0)
3021 progress = lower_discard(ir) || progress;
3022
3023 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3024 options->MaxIfDepth) || progress;
3025
3026 progress = lower_noise(ir) || progress;
3027
3028 /* If there are forms of indirect addressing that the driver
3029 * cannot handle, perform the lowering pass.
3030 */
3031 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3032 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3033 progress =
3034 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3035 options->EmitNoIndirectInput,
3036 options->EmitNoIndirectOutput,
3037 options->EmitNoIndirectTemp,
3038 options->EmitNoIndirectUniform)
3039 || progress;
3040
3041 progress = do_vec_index_to_cond_assign(ir) || progress;
3042 progress = lower_vector_insert(ir, true) || progress;
3043 } while (progress);
3044
3045 validate_ir_tree(ir);
3046 }
3047
3048 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3049 struct gl_program *linked_prog;
3050
3051 if (prog->_LinkedShaders[i] == NULL)
3052 continue;
3053
3054 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3055
3056 if (linked_prog) {
3057 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3058
3059 if (!ctx->Driver.ProgramStringNotify(ctx,
3060 _mesa_shader_stage_to_program(i),
3061 linked_prog)) {
3062 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3063 NULL);
3064 return GL_FALSE;
3065 }
3066 }
3067 }
3068
3069 build_program_resource_list(ctx, prog);
3070 return prog->data->LinkStatus;
3071 }
3072
3073 /**
3074 * Link a GLSL shader program. Called via glLinkProgram().
3075 */
3076 void
3077 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3078 {
3079 unsigned int i;
3080
3081 _mesa_clear_shader_program_data(ctx, prog);
3082
3083 prog->data = _mesa_create_shader_program_data();
3084
3085 prog->data->LinkStatus = linking_success;
3086
3087 for (i = 0; i < prog->NumShaders; i++) {
3088 if (!prog->Shaders[i]->CompileStatus) {
3089 linker_error(prog, "linking with uncompiled shader");
3090 }
3091 }
3092
3093 if (prog->data->LinkStatus) {
3094 link_shaders(ctx, prog);
3095 }
3096
3097 if (prog->data->LinkStatus) {
3098 /* Reset sampler validated to true, validation happens via the
3099 * LinkShader call below.
3100 */
3101 prog->SamplersValidated = GL_TRUE;
3102
3103 if (!ctx->Driver.LinkShader(ctx, prog)) {
3104 prog->data->LinkStatus = linking_failure;
3105 }
3106 }
3107
3108 /* Return early if we are loading the shader from on-disk cache */
3109 if (prog->data->LinkStatus == linking_skipped)
3110 return;
3111
3112 if (ctx->_Shader->Flags & GLSL_DUMP) {
3113 if (!prog->data->LinkStatus) {
3114 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3115 }
3116
3117 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3118 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3119 fprintf(stderr, "%s\n", prog->data->InfoLog);
3120 }
3121 }
3122
3123 #ifdef ENABLE_SHADER_CACHE
3124 if (prog->data->LinkStatus)
3125 shader_cache_write_program_metadata(ctx, prog);
3126 #endif
3127 }
3128
3129 } /* extern "C" */