st/mesa/i965: create link status enum
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/macros.h"
35 #include "main/mtypes.h"
36 #include "main/shaderapi.h"
37 #include "main/shaderobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_optimize.h"
51 #include "program/prog_print.h"
52 #include "program/program.h"
53 #include "program/prog_parameter.h"
54 #include "util/string_to_uint_map.h"
55
56
57 static int swizzle_for_size(int size);
58
59 namespace {
60
61 class src_reg;
62 class dst_reg;
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->reladdr = NULL;
109 }
110
111 dst_reg()
112 {
113 this->file = PROGRAM_UNDEFINED;
114 this->index = 0;
115 this->writemask = 0;
116 this->reladdr = NULL;
117 }
118
119 explicit dst_reg(src_reg reg);
120
121 gl_register_file file; /**< PROGRAM_* from Mesa */
122 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
123 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
124 /** Register index should be offset by the integer in this reg. */
125 src_reg *reladdr;
126 };
127
128 } /* anonymous namespace */
129
130 src_reg::src_reg(dst_reg reg)
131 {
132 this->file = reg.file;
133 this->index = reg.index;
134 this->swizzle = SWIZZLE_XYZW;
135 this->negate = 0;
136 this->reladdr = reg.reladdr;
137 }
138
139 dst_reg::dst_reg(src_reg reg)
140 {
141 this->file = reg.file;
142 this->index = reg.index;
143 this->writemask = WRITEMASK_XYZW;
144 this->reladdr = reg.reladdr;
145 }
146
147 namespace {
148
149 class ir_to_mesa_instruction : public exec_node {
150 public:
151 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
152
153 enum prog_opcode op;
154 dst_reg dst;
155 src_reg src[3];
156 /** Pointer to the ir source this tree came from for debugging */
157 ir_instruction *ir;
158 bool saturate;
159 int sampler; /**< sampler index */
160 int tex_target; /**< One of TEXTURE_*_INDEX */
161 GLboolean tex_shadow;
162 };
163
164 class variable_storage : public exec_node {
165 public:
166 variable_storage(ir_variable *var, gl_register_file file, int index)
167 : file(file), index(index), var(var)
168 {
169 /* empty */
170 }
171
172 gl_register_file file;
173 int index;
174 ir_variable *var; /* variable that maps to this, if any */
175 };
176
177 class function_entry : public exec_node {
178 public:
179 ir_function_signature *sig;
180
181 /**
182 * identifier of this function signature used by the program.
183 *
184 * At the point that Mesa instructions for function calls are
185 * generated, we don't know the address of the first instruction of
186 * the function body. So we make the BranchTarget that is called a
187 * small integer and rewrite them during set_branchtargets().
188 */
189 int sig_id;
190
191 /**
192 * Pointer to first instruction of the function body.
193 *
194 * Set during function body emits after main() is processed.
195 */
196 ir_to_mesa_instruction *bgn_inst;
197
198 /**
199 * Index of the first instruction of the function body in actual
200 * Mesa IR.
201 *
202 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
203 */
204 int inst;
205
206 /** Storage for the return value. */
207 src_reg return_reg;
208 };
209
210 class ir_to_mesa_visitor : public ir_visitor {
211 public:
212 ir_to_mesa_visitor();
213 ~ir_to_mesa_visitor();
214
215 function_entry *current_function;
216
217 struct gl_context *ctx;
218 struct gl_program *prog;
219 struct gl_shader_program *shader_program;
220 struct gl_shader_compiler_options *options;
221
222 int next_temp;
223
224 variable_storage *find_variable_storage(const ir_variable *var);
225
226 src_reg get_temp(const glsl_type *type);
227 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
228
229 src_reg src_reg_for_float(float val);
230
231 /**
232 * \name Visit methods
233 *
234 * As typical for the visitor pattern, there must be one \c visit method for
235 * each concrete subclass of \c ir_instruction. Virtual base classes within
236 * the hierarchy should not have \c visit methods.
237 */
238 /*@{*/
239 virtual void visit(ir_variable *);
240 virtual void visit(ir_loop *);
241 virtual void visit(ir_loop_jump *);
242 virtual void visit(ir_function_signature *);
243 virtual void visit(ir_function *);
244 virtual void visit(ir_expression *);
245 virtual void visit(ir_swizzle *);
246 virtual void visit(ir_dereference_variable *);
247 virtual void visit(ir_dereference_array *);
248 virtual void visit(ir_dereference_record *);
249 virtual void visit(ir_assignment *);
250 virtual void visit(ir_constant *);
251 virtual void visit(ir_call *);
252 virtual void visit(ir_return *);
253 virtual void visit(ir_discard *);
254 virtual void visit(ir_texture *);
255 virtual void visit(ir_if *);
256 virtual void visit(ir_emit_vertex *);
257 virtual void visit(ir_end_primitive *);
258 virtual void visit(ir_barrier *);
259 /*@}*/
260
261 src_reg result;
262
263 /** List of variable_storage */
264 exec_list variables;
265
266 /** List of function_entry */
267 exec_list function_signatures;
268 int next_signature_id;
269
270 /** List of ir_to_mesa_instruction */
271 exec_list instructions;
272
273 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
276 dst_reg dst, src_reg src0);
277
278 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
279 dst_reg dst, src_reg src0, src_reg src1);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst,
283 src_reg src0, src_reg src1, src_reg src2);
284
285 /**
286 * Emit the correct dot-product instruction for the type of arguments
287 */
288 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
289 dst_reg dst,
290 src_reg src0,
291 src_reg src1,
292 unsigned elements);
293
294 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
295 dst_reg dst, src_reg src0);
296
297 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
298 dst_reg dst, src_reg src0, src_reg src1);
299
300 bool try_emit_mad(ir_expression *ir,
301 int mul_operand);
302 bool try_emit_mad_for_and_not(ir_expression *ir,
303 int mul_operand);
304
305 void emit_swz(ir_expression *ir);
306
307 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
308 dst_reg dst,
309 const src_reg &src0, const src_reg &src1);
310
311 inline void emit_sne(ir_expression *ir, dst_reg dst,
312 const src_reg &src0, const src_reg &src1)
313 {
314 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
315 }
316
317 inline void emit_seq(ir_expression *ir, dst_reg dst,
318 const src_reg &src0, const src_reg &src1)
319 {
320 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
321 }
322
323 bool process_move_condition(ir_rvalue *ir);
324
325 void copy_propagate(void);
326
327 void *mem_ctx;
328 };
329
330 } /* anonymous namespace */
331
332 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
333
334 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
335
336 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
337
338 static int
339 swizzle_for_size(int size)
340 {
341 static const int size_swizzles[4] = {
342 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
346 };
347
348 assert((size >= 1) && (size <= 4));
349 return size_swizzles[size - 1];
350 }
351
352 ir_to_mesa_instruction *
353 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
354 dst_reg dst,
355 src_reg src0, src_reg src1, src_reg src2)
356 {
357 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
358 int num_reladdr = 0;
359
360 /* If we have to do relative addressing, we want to load the ARL
361 * reg directly for one of the regs, and preload the other reladdr
362 * sources into temps.
363 */
364 num_reladdr += dst.reladdr != NULL;
365 num_reladdr += src0.reladdr != NULL;
366 num_reladdr += src1.reladdr != NULL;
367 num_reladdr += src2.reladdr != NULL;
368
369 reladdr_to_temp(ir, &src2, &num_reladdr);
370 reladdr_to_temp(ir, &src1, &num_reladdr);
371 reladdr_to_temp(ir, &src0, &num_reladdr);
372
373 if (dst.reladdr) {
374 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
375 num_reladdr--;
376 }
377 assert(num_reladdr == 0);
378
379 inst->op = op;
380 inst->dst = dst;
381 inst->src[0] = src0;
382 inst->src[1] = src1;
383 inst->src[2] = src2;
384 inst->ir = ir;
385
386 this->instructions.push_tail(inst);
387
388 return inst;
389 }
390
391
392 ir_to_mesa_instruction *
393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
394 dst_reg dst, src_reg src0, src_reg src1)
395 {
396 return emit(ir, op, dst, src0, src1, undef_src);
397 }
398
399 ir_to_mesa_instruction *
400 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
401 dst_reg dst, src_reg src0)
402 {
403 assert(dst.writemask != 0);
404 return emit(ir, op, dst, src0, undef_src, undef_src);
405 }
406
407 ir_to_mesa_instruction *
408 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
409 {
410 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
411 }
412
413 ir_to_mesa_instruction *
414 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
415 dst_reg dst, src_reg src0, src_reg src1,
416 unsigned elements)
417 {
418 static const enum prog_opcode dot_opcodes[] = {
419 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
420 };
421
422 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
423 }
424
425 /**
426 * Emits Mesa scalar opcodes to produce unique answers across channels.
427 *
428 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
429 * channel determines the result across all channels. So to do a vec4
430 * of this operation, we want to emit a scalar per source channel used
431 * to produce dest channels.
432 */
433 void
434 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
435 dst_reg dst,
436 src_reg orig_src0, src_reg orig_src1)
437 {
438 int i, j;
439 int done_mask = ~dst.writemask;
440
441 /* Mesa RCP is a scalar operation splatting results to all channels,
442 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
443 * dst channels.
444 */
445 for (i = 0; i < 4; i++) {
446 GLuint this_mask = (1 << i);
447 ir_to_mesa_instruction *inst;
448 src_reg src0 = orig_src0;
449 src_reg src1 = orig_src1;
450
451 if (done_mask & this_mask)
452 continue;
453
454 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
455 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
456 for (j = i + 1; j < 4; j++) {
457 /* If there is another enabled component in the destination that is
458 * derived from the same inputs, generate its value on this pass as
459 * well.
460 */
461 if (!(done_mask & (1 << j)) &&
462 GET_SWZ(src0.swizzle, j) == src0_swiz &&
463 GET_SWZ(src1.swizzle, j) == src1_swiz) {
464 this_mask |= (1 << j);
465 }
466 }
467 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
468 src0_swiz, src0_swiz);
469 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
470 src1_swiz, src1_swiz);
471
472 inst = emit(ir, op, dst, src0, src1);
473 inst->dst.writemask = this_mask;
474 done_mask |= this_mask;
475 }
476 }
477
478 void
479 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
480 dst_reg dst, src_reg src0)
481 {
482 src_reg undef = undef_src;
483
484 undef.swizzle = SWIZZLE_XXXX;
485
486 emit_scalar(ir, op, dst, src0, undef);
487 }
488
489 src_reg
490 ir_to_mesa_visitor::src_reg_for_float(float val)
491 {
492 src_reg src(PROGRAM_CONSTANT, -1, NULL);
493
494 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
495 (const gl_constant_value *)&val, 1, &src.swizzle);
496
497 return src;
498 }
499
500 static int
501 type_size(const struct glsl_type *type)
502 {
503 unsigned int i;
504 int size;
505
506 switch (type->base_type) {
507 case GLSL_TYPE_UINT:
508 case GLSL_TYPE_INT:
509 case GLSL_TYPE_FLOAT:
510 case GLSL_TYPE_BOOL:
511 if (type->is_matrix()) {
512 return type->matrix_columns;
513 } else {
514 /* Regardless of size of vector, it gets a vec4. This is bad
515 * packing for things like floats, but otherwise arrays become a
516 * mess. Hopefully a later pass over the code can pack scalars
517 * down if appropriate.
518 */
519 return 1;
520 }
521 break;
522 case GLSL_TYPE_DOUBLE:
523 if (type->is_matrix()) {
524 if (type->vector_elements > 2)
525 return type->matrix_columns * 2;
526 else
527 return type->matrix_columns;
528 } else {
529 if (type->vector_elements > 2)
530 return 2;
531 else
532 return 1;
533 }
534 break;
535 case GLSL_TYPE_UINT64:
536 case GLSL_TYPE_INT64:
537 if (type->vector_elements > 2)
538 return 2;
539 else
540 return 1;
541 case GLSL_TYPE_ARRAY:
542 assert(type->length > 0);
543 return type_size(type->fields.array) * type->length;
544 case GLSL_TYPE_STRUCT:
545 size = 0;
546 for (i = 0; i < type->length; i++) {
547 size += type_size(type->fields.structure[i].type);
548 }
549 return size;
550 case GLSL_TYPE_SAMPLER:
551 case GLSL_TYPE_IMAGE:
552 case GLSL_TYPE_SUBROUTINE:
553 /* Samplers take up one slot in UNIFORMS[], but they're baked in
554 * at link time.
555 */
556 return 1;
557 case GLSL_TYPE_ATOMIC_UINT:
558 case GLSL_TYPE_VOID:
559 case GLSL_TYPE_ERROR:
560 case GLSL_TYPE_INTERFACE:
561 case GLSL_TYPE_FUNCTION:
562 assert(!"Invalid type in type_size");
563 break;
564 }
565
566 return 0;
567 }
568
569 /**
570 * In the initial pass of codegen, we assign temporary numbers to
571 * intermediate results. (not SSA -- variable assignments will reuse
572 * storage). Actual register allocation for the Mesa VM occurs in a
573 * pass over the Mesa IR later.
574 */
575 src_reg
576 ir_to_mesa_visitor::get_temp(const glsl_type *type)
577 {
578 src_reg src;
579
580 src.file = PROGRAM_TEMPORARY;
581 src.index = next_temp;
582 src.reladdr = NULL;
583 next_temp += type_size(type);
584
585 if (type->is_array() || type->is_record()) {
586 src.swizzle = SWIZZLE_NOOP;
587 } else {
588 src.swizzle = swizzle_for_size(type->vector_elements);
589 }
590 src.negate = 0;
591
592 return src;
593 }
594
595 variable_storage *
596 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
597 {
598 foreach_in_list(variable_storage, entry, &this->variables) {
599 if (entry->var == var)
600 return entry;
601 }
602
603 return NULL;
604 }
605
606 void
607 ir_to_mesa_visitor::visit(ir_variable *ir)
608 {
609 if (strcmp(ir->name, "gl_FragCoord") == 0) {
610 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
611 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
612 }
613
614 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
615 unsigned int i;
616 const ir_state_slot *const slots = ir->get_state_slots();
617 assert(slots != NULL);
618
619 /* Check if this statevar's setup in the STATE file exactly
620 * matches how we'll want to reference it as a
621 * struct/array/whatever. If not, then we need to move it into
622 * temporary storage and hope that it'll get copy-propagated
623 * out.
624 */
625 for (i = 0; i < ir->get_num_state_slots(); i++) {
626 if (slots[i].swizzle != SWIZZLE_XYZW) {
627 break;
628 }
629 }
630
631 variable_storage *storage;
632 dst_reg dst;
633 if (i == ir->get_num_state_slots()) {
634 /* We'll set the index later. */
635 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
636 this->variables.push_tail(storage);
637
638 dst = undef_dst;
639 } else {
640 /* The variable_storage constructor allocates slots based on the size
641 * of the type. However, this had better match the number of state
642 * elements that we're going to copy into the new temporary.
643 */
644 assert((int) ir->get_num_state_slots() == type_size(ir->type));
645
646 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
647 this->next_temp);
648 this->variables.push_tail(storage);
649 this->next_temp += type_size(ir->type);
650
651 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
652 }
653
654
655 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
656 int index = _mesa_add_state_reference(this->prog->Parameters,
657 (gl_state_index *)slots[i].tokens);
658
659 if (storage->file == PROGRAM_STATE_VAR) {
660 if (storage->index == -1) {
661 storage->index = index;
662 } else {
663 assert(index == storage->index + (int)i);
664 }
665 } else {
666 src_reg src(PROGRAM_STATE_VAR, index, NULL);
667 src.swizzle = slots[i].swizzle;
668 emit(ir, OPCODE_MOV, dst, src);
669 /* even a float takes up a whole vec4 reg in a struct/array. */
670 dst.index++;
671 }
672 }
673
674 if (storage->file == PROGRAM_TEMPORARY &&
675 dst.index != storage->index + (int) ir->get_num_state_slots()) {
676 linker_error(this->shader_program,
677 "failed to load builtin uniform `%s' "
678 "(%d/%d regs loaded)\n",
679 ir->name, dst.index - storage->index,
680 type_size(ir->type));
681 }
682 }
683 }
684
685 void
686 ir_to_mesa_visitor::visit(ir_loop *ir)
687 {
688 emit(NULL, OPCODE_BGNLOOP);
689
690 visit_exec_list(&ir->body_instructions, this);
691
692 emit(NULL, OPCODE_ENDLOOP);
693 }
694
695 void
696 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
697 {
698 switch (ir->mode) {
699 case ir_loop_jump::jump_break:
700 emit(NULL, OPCODE_BRK);
701 break;
702 case ir_loop_jump::jump_continue:
703 emit(NULL, OPCODE_CONT);
704 break;
705 }
706 }
707
708
709 void
710 ir_to_mesa_visitor::visit(ir_function_signature *ir)
711 {
712 assert(0);
713 (void)ir;
714 }
715
716 void
717 ir_to_mesa_visitor::visit(ir_function *ir)
718 {
719 /* Ignore function bodies other than main() -- we shouldn't see calls to
720 * them since they should all be inlined before we get to ir_to_mesa.
721 */
722 if (strcmp(ir->name, "main") == 0) {
723 const ir_function_signature *sig;
724 exec_list empty;
725
726 sig = ir->matching_signature(NULL, &empty, false);
727
728 assert(sig);
729
730 foreach_in_list(ir_instruction, ir, &sig->body) {
731 ir->accept(this);
732 }
733 }
734 }
735
736 bool
737 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
738 {
739 int nonmul_operand = 1 - mul_operand;
740 src_reg a, b, c;
741
742 ir_expression *expr = ir->operands[mul_operand]->as_expression();
743 if (!expr || expr->operation != ir_binop_mul)
744 return false;
745
746 expr->operands[0]->accept(this);
747 a = this->result;
748 expr->operands[1]->accept(this);
749 b = this->result;
750 ir->operands[nonmul_operand]->accept(this);
751 c = this->result;
752
753 this->result = get_temp(ir->type);
754 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
755
756 return true;
757 }
758
759 /**
760 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
761 *
762 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
763 * implemented using multiplication, and logical-or is implemented using
764 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
765 * As result, the logical expression (a & !b) can be rewritten as:
766 *
767 * - a * !b
768 * - a * (1 - b)
769 * - (a * 1) - (a * b)
770 * - a + -(a * b)
771 * - a + (a * -b)
772 *
773 * This final expression can be implemented as a single MAD(a, -b, a)
774 * instruction.
775 */
776 bool
777 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
778 {
779 const int other_operand = 1 - try_operand;
780 src_reg a, b;
781
782 ir_expression *expr = ir->operands[try_operand]->as_expression();
783 if (!expr || expr->operation != ir_unop_logic_not)
784 return false;
785
786 ir->operands[other_operand]->accept(this);
787 a = this->result;
788 expr->operands[0]->accept(this);
789 b = this->result;
790
791 b.negate = ~b.negate;
792
793 this->result = get_temp(ir->type);
794 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
795
796 return true;
797 }
798
799 void
800 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
801 src_reg *reg, int *num_reladdr)
802 {
803 if (!reg->reladdr)
804 return;
805
806 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
807
808 if (*num_reladdr != 1) {
809 src_reg temp = get_temp(glsl_type::vec4_type);
810
811 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
812 *reg = temp;
813 }
814
815 (*num_reladdr)--;
816 }
817
818 void
819 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
820 {
821 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
822 * This means that each of the operands is either an immediate value of -1,
823 * 0, or 1, or is a component from one source register (possibly with
824 * negation).
825 */
826 uint8_t components[4] = { 0 };
827 bool negate[4] = { false };
828 ir_variable *var = NULL;
829
830 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
831 ir_rvalue *op = ir->operands[i];
832
833 assert(op->type->is_scalar());
834
835 while (op != NULL) {
836 switch (op->ir_type) {
837 case ir_type_constant: {
838
839 assert(op->type->is_scalar());
840
841 const ir_constant *const c = op->as_constant();
842 if (c->is_one()) {
843 components[i] = SWIZZLE_ONE;
844 } else if (c->is_zero()) {
845 components[i] = SWIZZLE_ZERO;
846 } else if (c->is_negative_one()) {
847 components[i] = SWIZZLE_ONE;
848 negate[i] = true;
849 } else {
850 assert(!"SWZ constant must be 0.0 or 1.0.");
851 }
852
853 op = NULL;
854 break;
855 }
856
857 case ir_type_dereference_variable: {
858 ir_dereference_variable *const deref =
859 (ir_dereference_variable *) op;
860
861 assert((var == NULL) || (deref->var == var));
862 components[i] = SWIZZLE_X;
863 var = deref->var;
864 op = NULL;
865 break;
866 }
867
868 case ir_type_expression: {
869 ir_expression *const expr = (ir_expression *) op;
870
871 assert(expr->operation == ir_unop_neg);
872 negate[i] = true;
873
874 op = expr->operands[0];
875 break;
876 }
877
878 case ir_type_swizzle: {
879 ir_swizzle *const swiz = (ir_swizzle *) op;
880
881 components[i] = swiz->mask.x;
882 op = swiz->val;
883 break;
884 }
885
886 default:
887 assert(!"Should not get here.");
888 return;
889 }
890 }
891 }
892
893 assert(var != NULL);
894
895 ir_dereference_variable *const deref =
896 new(mem_ctx) ir_dereference_variable(var);
897
898 this->result.file = PROGRAM_UNDEFINED;
899 deref->accept(this);
900 if (this->result.file == PROGRAM_UNDEFINED) {
901 printf("Failed to get tree for expression operand:\n");
902 deref->print();
903 printf("\n");
904 exit(1);
905 }
906
907 src_reg src;
908
909 src = this->result;
910 src.swizzle = MAKE_SWIZZLE4(components[0],
911 components[1],
912 components[2],
913 components[3]);
914 src.negate = ((unsigned(negate[0]) << 0)
915 | (unsigned(negate[1]) << 1)
916 | (unsigned(negate[2]) << 2)
917 | (unsigned(negate[3]) << 3));
918
919 /* Storage for our result. Ideally for an assignment we'd be using the
920 * actual storage for the result here, instead.
921 */
922 const src_reg result_src = get_temp(ir->type);
923 dst_reg result_dst = dst_reg(result_src);
924
925 /* Limit writes to the channels that will be used by result_src later.
926 * This does limit this temp's use as a temporary for multi-instruction
927 * sequences.
928 */
929 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
930
931 emit(ir, OPCODE_SWZ, result_dst, src);
932 this->result = result_src;
933 }
934
935 void
936 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
937 enum prog_opcode op,
938 dst_reg dst,
939 const src_reg &src0,
940 const src_reg &src1)
941 {
942 src_reg difference;
943 src_reg abs_difference = get_temp(glsl_type::vec4_type);
944 const src_reg zero = src_reg_for_float(0.0);
945
946 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
947 * consumes the generated IR is pretty dumb, take special care when one
948 * of the operands is zero.
949 *
950 * Similarly, x != y is equivalent to -abs(x-y) < 0.
951 */
952 if (src0.file == zero.file &&
953 src0.index == zero.index &&
954 src0.swizzle == zero.swizzle) {
955 difference = src1;
956 } else if (src1.file == zero.file &&
957 src1.index == zero.index &&
958 src1.swizzle == zero.swizzle) {
959 difference = src0;
960 } else {
961 difference = get_temp(glsl_type::vec4_type);
962
963 src_reg tmp_src = src0;
964 tmp_src.negate = ~tmp_src.negate;
965
966 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
967 }
968
969 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
970
971 abs_difference.negate = ~abs_difference.negate;
972 emit(ir, op, dst, abs_difference, zero);
973 }
974
975 void
976 ir_to_mesa_visitor::visit(ir_expression *ir)
977 {
978 unsigned int operand;
979 src_reg op[ARRAY_SIZE(ir->operands)];
980 src_reg result_src;
981 dst_reg result_dst;
982
983 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
984 */
985 if (ir->operation == ir_binop_add) {
986 if (try_emit_mad(ir, 1))
987 return;
988 if (try_emit_mad(ir, 0))
989 return;
990 }
991
992 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
993 */
994 if (ir->operation == ir_binop_logic_and) {
995 if (try_emit_mad_for_and_not(ir, 1))
996 return;
997 if (try_emit_mad_for_and_not(ir, 0))
998 return;
999 }
1000
1001 if (ir->operation == ir_quadop_vector) {
1002 this->emit_swz(ir);
1003 return;
1004 }
1005
1006 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1007 this->result.file = PROGRAM_UNDEFINED;
1008 ir->operands[operand]->accept(this);
1009 if (this->result.file == PROGRAM_UNDEFINED) {
1010 printf("Failed to get tree for expression operand:\n");
1011 ir->operands[operand]->print();
1012 printf("\n");
1013 exit(1);
1014 }
1015 op[operand] = this->result;
1016
1017 /* Matrix expression operands should have been broken down to vector
1018 * operations already.
1019 */
1020 assert(!ir->operands[operand]->type->is_matrix());
1021 }
1022
1023 int vector_elements = ir->operands[0]->type->vector_elements;
1024 if (ir->operands[1]) {
1025 vector_elements = MAX2(vector_elements,
1026 ir->operands[1]->type->vector_elements);
1027 }
1028
1029 this->result.file = PROGRAM_UNDEFINED;
1030
1031 /* Storage for our result. Ideally for an assignment we'd be using
1032 * the actual storage for the result here, instead.
1033 */
1034 result_src = get_temp(ir->type);
1035 /* convenience for the emit functions below. */
1036 result_dst = dst_reg(result_src);
1037 /* Limit writes to the channels that will be used by result_src later.
1038 * This does limit this temp's use as a temporary for multi-instruction
1039 * sequences.
1040 */
1041 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1042
1043 switch (ir->operation) {
1044 case ir_unop_logic_not:
1045 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1046 * older GPUs implement SEQ using multiple instructions (i915 uses two
1047 * SGE instructions and a MUL instruction). Since our logic values are
1048 * 0.0 and 1.0, 1-x also implements !x.
1049 */
1050 op[0].negate = ~op[0].negate;
1051 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1052 break;
1053 case ir_unop_neg:
1054 op[0].negate = ~op[0].negate;
1055 result_src = op[0];
1056 break;
1057 case ir_unop_abs:
1058 emit(ir, OPCODE_ABS, result_dst, op[0]);
1059 break;
1060 case ir_unop_sign:
1061 emit(ir, OPCODE_SSG, result_dst, op[0]);
1062 break;
1063 case ir_unop_rcp:
1064 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1065 break;
1066
1067 case ir_unop_exp2:
1068 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1069 break;
1070 case ir_unop_exp:
1071 case ir_unop_log:
1072 assert(!"not reached: should be handled by ir_explog_to_explog2");
1073 break;
1074 case ir_unop_log2:
1075 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1076 break;
1077 case ir_unop_sin:
1078 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1079 break;
1080 case ir_unop_cos:
1081 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1082 break;
1083
1084 case ir_unop_dFdx:
1085 emit(ir, OPCODE_DDX, result_dst, op[0]);
1086 break;
1087 case ir_unop_dFdy:
1088 emit(ir, OPCODE_DDY, result_dst, op[0]);
1089 break;
1090
1091 case ir_unop_saturate: {
1092 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1093 result_dst, op[0]);
1094 inst->saturate = true;
1095 break;
1096 }
1097 case ir_unop_noise: {
1098 const enum prog_opcode opcode =
1099 prog_opcode(OPCODE_NOISE1
1100 + (ir->operands[0]->type->vector_elements) - 1);
1101 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1102
1103 emit(ir, opcode, result_dst, op[0]);
1104 break;
1105 }
1106
1107 case ir_binop_add:
1108 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1109 break;
1110 case ir_binop_sub:
1111 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1112 break;
1113
1114 case ir_binop_mul:
1115 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1116 break;
1117 case ir_binop_div:
1118 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1119 break;
1120 case ir_binop_mod:
1121 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1122 assert(ir->type->is_integer());
1123 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1124 break;
1125
1126 case ir_binop_less:
1127 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1128 break;
1129 case ir_binop_greater:
1130 /* Negating the operands (as opposed to switching the order of the
1131 * operands) produces the correct result when both are +/-Inf.
1132 */
1133 op[0].negate = ~op[0].negate;
1134 op[1].negate = ~op[1].negate;
1135 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1136 break;
1137 case ir_binop_lequal:
1138 /* Negating the operands (as opposed to switching the order of the
1139 * operands) produces the correct result when both are +/-Inf.
1140 */
1141 op[0].negate = ~op[0].negate;
1142 op[1].negate = ~op[1].negate;
1143 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1144 break;
1145 case ir_binop_gequal:
1146 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1147 break;
1148 case ir_binop_equal:
1149 emit_seq(ir, result_dst, op[0], op[1]);
1150 break;
1151 case ir_binop_nequal:
1152 emit_sne(ir, result_dst, op[0], op[1]);
1153 break;
1154 case ir_binop_all_equal:
1155 /* "==" operator producing a scalar boolean. */
1156 if (ir->operands[0]->type->is_vector() ||
1157 ir->operands[1]->type->is_vector()) {
1158 src_reg temp = get_temp(glsl_type::vec4_type);
1159 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1160
1161 /* After the dot-product, the value will be an integer on the
1162 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1163 */
1164 emit_dp(ir, result_dst, temp, temp, vector_elements);
1165
1166 /* Negating the result of the dot-product gives values on the range
1167 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1168 * achieved using SGE.
1169 */
1170 src_reg sge_src = result_src;
1171 sge_src.negate = ~sge_src.negate;
1172 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1173 } else {
1174 emit_seq(ir, result_dst, op[0], op[1]);
1175 }
1176 break;
1177 case ir_binop_any_nequal:
1178 /* "!=" operator producing a scalar boolean. */
1179 if (ir->operands[0]->type->is_vector() ||
1180 ir->operands[1]->type->is_vector()) {
1181 src_reg temp = get_temp(glsl_type::vec4_type);
1182 if (ir->operands[0]->type->is_boolean() &&
1183 ir->operands[1]->as_constant() &&
1184 ir->operands[1]->as_constant()->is_zero()) {
1185 temp = op[0];
1186 } else {
1187 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1188 }
1189
1190 /* After the dot-product, the value will be an integer on the
1191 * range [0,4]. Zero stays zero, and positive values become 1.0.
1192 */
1193 ir_to_mesa_instruction *const dp =
1194 emit_dp(ir, result_dst, temp, temp, vector_elements);
1195 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1196 /* The clamping to [0,1] can be done for free in the fragment
1197 * shader with a saturate.
1198 */
1199 dp->saturate = true;
1200 } else {
1201 /* Negating the result of the dot-product gives values on the range
1202 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1203 * achieved using SLT.
1204 */
1205 src_reg slt_src = result_src;
1206 slt_src.negate = ~slt_src.negate;
1207 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1208 }
1209 } else {
1210 emit_sne(ir, result_dst, op[0], op[1]);
1211 }
1212 break;
1213
1214 case ir_binop_logic_xor:
1215 emit_sne(ir, result_dst, op[0], op[1]);
1216 break;
1217
1218 case ir_binop_logic_or: {
1219 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1220 /* After the addition, the value will be an integer on the
1221 * range [0,2]. Zero stays zero, and positive values become 1.0.
1222 */
1223 ir_to_mesa_instruction *add =
1224 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1225 add->saturate = true;
1226 } else {
1227 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1228 * value is 1.0, the result of the logcal-or should be 1.0. If both
1229 * values are 0.0, the result should be 0.0. This is exactly what
1230 * MAX does.
1231 */
1232 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1233 }
1234 break;
1235 }
1236
1237 case ir_binop_logic_and:
1238 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1239 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1240 break;
1241
1242 case ir_binop_dot:
1243 assert(ir->operands[0]->type->is_vector());
1244 assert(ir->operands[0]->type == ir->operands[1]->type);
1245 emit_dp(ir, result_dst, op[0], op[1],
1246 ir->operands[0]->type->vector_elements);
1247 break;
1248
1249 case ir_unop_sqrt:
1250 /* sqrt(x) = x * rsq(x). */
1251 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1252 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1253 /* For incoming channels <= 0, set the result to 0. */
1254 op[0].negate = ~op[0].negate;
1255 emit(ir, OPCODE_CMP, result_dst,
1256 op[0], result_src, src_reg_for_float(0.0));
1257 break;
1258 case ir_unop_rsq:
1259 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1260 break;
1261 case ir_unop_i2f:
1262 case ir_unop_u2f:
1263 case ir_unop_b2f:
1264 case ir_unop_b2i:
1265 case ir_unop_i2u:
1266 case ir_unop_u2i:
1267 /* Mesa IR lacks types, ints are stored as truncated floats. */
1268 result_src = op[0];
1269 break;
1270 case ir_unop_f2i:
1271 case ir_unop_f2u:
1272 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1273 break;
1274 case ir_unop_f2b:
1275 case ir_unop_i2b:
1276 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1277 break;
1278 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1279 case ir_unop_bitcast_f2u:
1280 case ir_unop_bitcast_i2f:
1281 case ir_unop_bitcast_u2f:
1282 break;
1283 case ir_unop_trunc:
1284 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1285 break;
1286 case ir_unop_ceil:
1287 op[0].negate = ~op[0].negate;
1288 emit(ir, OPCODE_FLR, result_dst, op[0]);
1289 result_src.negate = ~result_src.negate;
1290 break;
1291 case ir_unop_floor:
1292 emit(ir, OPCODE_FLR, result_dst, op[0]);
1293 break;
1294 case ir_unop_fract:
1295 emit(ir, OPCODE_FRC, result_dst, op[0]);
1296 break;
1297 case ir_unop_pack_snorm_2x16:
1298 case ir_unop_pack_snorm_4x8:
1299 case ir_unop_pack_unorm_2x16:
1300 case ir_unop_pack_unorm_4x8:
1301 case ir_unop_pack_half_2x16:
1302 case ir_unop_pack_double_2x32:
1303 case ir_unop_unpack_snorm_2x16:
1304 case ir_unop_unpack_snorm_4x8:
1305 case ir_unop_unpack_unorm_2x16:
1306 case ir_unop_unpack_unorm_4x8:
1307 case ir_unop_unpack_half_2x16:
1308 case ir_unop_unpack_double_2x32:
1309 case ir_unop_bitfield_reverse:
1310 case ir_unop_bit_count:
1311 case ir_unop_find_msb:
1312 case ir_unop_find_lsb:
1313 case ir_unop_d2f:
1314 case ir_unop_f2d:
1315 case ir_unop_d2i:
1316 case ir_unop_i2d:
1317 case ir_unop_d2u:
1318 case ir_unop_u2d:
1319 case ir_unop_d2b:
1320 case ir_unop_frexp_sig:
1321 case ir_unop_frexp_exp:
1322 assert(!"not supported");
1323 break;
1324 case ir_binop_min:
1325 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1326 break;
1327 case ir_binop_max:
1328 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1329 break;
1330 case ir_binop_pow:
1331 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1332 break;
1333
1334 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1335 * hardware backends have no way to avoid Mesa IR generation
1336 * even if they don't use it, we need to emit "something" and
1337 * continue.
1338 */
1339 case ir_binop_lshift:
1340 case ir_binop_rshift:
1341 case ir_binop_bit_and:
1342 case ir_binop_bit_xor:
1343 case ir_binop_bit_or:
1344 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1345 break;
1346
1347 case ir_unop_bit_not:
1348 case ir_unop_round_even:
1349 emit(ir, OPCODE_MOV, result_dst, op[0]);
1350 break;
1351
1352 case ir_binop_ubo_load:
1353 assert(!"not supported");
1354 break;
1355
1356 case ir_triop_lrp:
1357 /* ir_triop_lrp operands are (x, y, a) while
1358 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1359 */
1360 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1361 break;
1362
1363 case ir_triop_csel:
1364 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1365 * selects src1 if src0 is < 0, src2 otherwise.
1366 */
1367 op[0].negate = ~op[0].negate;
1368 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1369 break;
1370
1371 case ir_binop_vector_extract:
1372 case ir_triop_fma:
1373 case ir_triop_bitfield_extract:
1374 case ir_triop_vector_insert:
1375 case ir_quadop_bitfield_insert:
1376 case ir_binop_ldexp:
1377 case ir_binop_carry:
1378 case ir_binop_borrow:
1379 case ir_binop_imul_high:
1380 case ir_unop_interpolate_at_centroid:
1381 case ir_binop_interpolate_at_offset:
1382 case ir_binop_interpolate_at_sample:
1383 case ir_unop_dFdx_coarse:
1384 case ir_unop_dFdx_fine:
1385 case ir_unop_dFdy_coarse:
1386 case ir_unop_dFdy_fine:
1387 case ir_unop_subroutine_to_int:
1388 case ir_unop_get_buffer_size:
1389 case ir_unop_vote_any:
1390 case ir_unop_vote_all:
1391 case ir_unop_vote_eq:
1392 case ir_unop_bitcast_u642d:
1393 case ir_unop_bitcast_i642d:
1394 case ir_unop_bitcast_d2u64:
1395 case ir_unop_bitcast_d2i64:
1396 case ir_unop_i642i:
1397 case ir_unop_u642i:
1398 case ir_unop_i642u:
1399 case ir_unop_u642u:
1400 case ir_unop_i642b:
1401 case ir_unop_i642f:
1402 case ir_unop_u642f:
1403 case ir_unop_i642d:
1404 case ir_unop_u642d:
1405 case ir_unop_i2i64:
1406 case ir_unop_u2i64:
1407 case ir_unop_b2i64:
1408 case ir_unop_f2i64:
1409 case ir_unop_d2i64:
1410 case ir_unop_i2u64:
1411 case ir_unop_u2u64:
1412 case ir_unop_f2u64:
1413 case ir_unop_d2u64:
1414 case ir_unop_u642i64:
1415 case ir_unop_i642u64:
1416 case ir_unop_pack_int_2x32:
1417 case ir_unop_unpack_int_2x32:
1418 case ir_unop_pack_uint_2x32:
1419 case ir_unop_unpack_uint_2x32:
1420 assert(!"not supported");
1421 break;
1422
1423 case ir_unop_ssbo_unsized_array_length:
1424 case ir_quadop_vector:
1425 /* This operation should have already been handled.
1426 */
1427 assert(!"Should not get here.");
1428 break;
1429 }
1430
1431 this->result = result_src;
1432 }
1433
1434
1435 void
1436 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1437 {
1438 src_reg src;
1439 int i;
1440 int swizzle[4];
1441
1442 /* Note that this is only swizzles in expressions, not those on the left
1443 * hand side of an assignment, which do write masking. See ir_assignment
1444 * for that.
1445 */
1446
1447 ir->val->accept(this);
1448 src = this->result;
1449 assert(src.file != PROGRAM_UNDEFINED);
1450 assert(ir->type->vector_elements > 0);
1451
1452 for (i = 0; i < 4; i++) {
1453 if (i < ir->type->vector_elements) {
1454 switch (i) {
1455 case 0:
1456 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1457 break;
1458 case 1:
1459 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1460 break;
1461 case 2:
1462 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1463 break;
1464 case 3:
1465 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1466 break;
1467 }
1468 } else {
1469 /* If the type is smaller than a vec4, replicate the last
1470 * channel out.
1471 */
1472 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1473 }
1474 }
1475
1476 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1477
1478 this->result = src;
1479 }
1480
1481 void
1482 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1483 {
1484 variable_storage *entry = find_variable_storage(ir->var);
1485 ir_variable *var = ir->var;
1486
1487 if (!entry) {
1488 switch (var->data.mode) {
1489 case ir_var_uniform:
1490 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1491 var->data.param_index);
1492 this->variables.push_tail(entry);
1493 break;
1494 case ir_var_shader_in:
1495 /* The linker assigns locations for varyings and attributes,
1496 * including deprecated builtins (like gl_Color),
1497 * user-assigned generic attributes (glBindVertexLocation),
1498 * and user-defined varyings.
1499 */
1500 assert(var->data.location != -1);
1501 entry = new(mem_ctx) variable_storage(var,
1502 PROGRAM_INPUT,
1503 var->data.location);
1504 break;
1505 case ir_var_shader_out:
1506 assert(var->data.location != -1);
1507 entry = new(mem_ctx) variable_storage(var,
1508 PROGRAM_OUTPUT,
1509 var->data.location);
1510 break;
1511 case ir_var_system_value:
1512 entry = new(mem_ctx) variable_storage(var,
1513 PROGRAM_SYSTEM_VALUE,
1514 var->data.location);
1515 break;
1516 case ir_var_auto:
1517 case ir_var_temporary:
1518 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1519 this->next_temp);
1520 this->variables.push_tail(entry);
1521
1522 next_temp += type_size(var->type);
1523 break;
1524 }
1525
1526 if (!entry) {
1527 printf("Failed to make storage for %s\n", var->name);
1528 exit(1);
1529 }
1530 }
1531
1532 this->result = src_reg(entry->file, entry->index, var->type);
1533 }
1534
1535 void
1536 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1537 {
1538 ir_constant *index;
1539 src_reg src;
1540 int element_size = type_size(ir->type);
1541
1542 index = ir->array_index->constant_expression_value();
1543
1544 ir->array->accept(this);
1545 src = this->result;
1546
1547 if (index) {
1548 src.index += index->value.i[0] * element_size;
1549 } else {
1550 /* Variable index array dereference. It eats the "vec4" of the
1551 * base of the array and an index that offsets the Mesa register
1552 * index.
1553 */
1554 ir->array_index->accept(this);
1555
1556 src_reg index_reg;
1557
1558 if (element_size == 1) {
1559 index_reg = this->result;
1560 } else {
1561 index_reg = get_temp(glsl_type::float_type);
1562
1563 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1564 this->result, src_reg_for_float(element_size));
1565 }
1566
1567 /* If there was already a relative address register involved, add the
1568 * new and the old together to get the new offset.
1569 */
1570 if (src.reladdr != NULL) {
1571 src_reg accum_reg = get_temp(glsl_type::float_type);
1572
1573 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1574 index_reg, *src.reladdr);
1575
1576 index_reg = accum_reg;
1577 }
1578
1579 src.reladdr = ralloc(mem_ctx, src_reg);
1580 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1581 }
1582
1583 /* If the type is smaller than a vec4, replicate the last channel out. */
1584 if (ir->type->is_scalar() || ir->type->is_vector())
1585 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1586 else
1587 src.swizzle = SWIZZLE_NOOP;
1588
1589 this->result = src;
1590 }
1591
1592 void
1593 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1594 {
1595 unsigned int i;
1596 const glsl_type *struct_type = ir->record->type;
1597 int offset = 0;
1598
1599 ir->record->accept(this);
1600
1601 for (i = 0; i < struct_type->length; i++) {
1602 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1603 break;
1604 offset += type_size(struct_type->fields.structure[i].type);
1605 }
1606
1607 /* If the type is smaller than a vec4, replicate the last channel out. */
1608 if (ir->type->is_scalar() || ir->type->is_vector())
1609 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1610 else
1611 this->result.swizzle = SWIZZLE_NOOP;
1612
1613 this->result.index += offset;
1614 }
1615
1616 /**
1617 * We want to be careful in assignment setup to hit the actual storage
1618 * instead of potentially using a temporary like we might with the
1619 * ir_dereference handler.
1620 */
1621 static dst_reg
1622 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1623 {
1624 /* The LHS must be a dereference. If the LHS is a variable indexed array
1625 * access of a vector, it must be separated into a series conditional moves
1626 * before reaching this point (see ir_vec_index_to_cond_assign).
1627 */
1628 assert(ir->as_dereference());
1629 ir_dereference_array *deref_array = ir->as_dereference_array();
1630 if (deref_array) {
1631 assert(!deref_array->array->type->is_vector());
1632 }
1633
1634 /* Use the rvalue deref handler for the most part. We'll ignore
1635 * swizzles in it and write swizzles using writemask, though.
1636 */
1637 ir->accept(v);
1638 return dst_reg(v->result);
1639 }
1640
1641 /* Calculate the sampler index and also calculate the base uniform location
1642 * for struct members.
1643 */
1644 static void
1645 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1646 unsigned *offset, unsigned *array_elements,
1647 unsigned *location)
1648 {
1649 if (deref->ir_type == ir_type_dereference_variable)
1650 return;
1651
1652 switch (deref->ir_type) {
1653 case ir_type_dereference_array: {
1654 ir_dereference_array *deref_arr = deref->as_dereference_array();
1655 ir_constant *array_index =
1656 deref_arr->array_index->constant_expression_value();
1657
1658 if (!array_index) {
1659 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1660 * while GLSL 1.30 requires that the array indices be
1661 * constant integer expressions. We don't expect any driver
1662 * to actually work with a really variable array index, so
1663 * all that would work would be an unrolled loop counter that ends
1664 * up being constant above.
1665 */
1666 ralloc_strcat(&prog->data->InfoLog,
1667 "warning: Variable sampler array index unsupported.\n"
1668 "This feature of the language was removed in GLSL 1.20 "
1669 "and is unlikely to be supported for 1.10 in Mesa.\n");
1670 } else {
1671 *offset += array_index->value.u[0] * *array_elements;
1672 }
1673
1674 *array_elements *= deref_arr->array->type->length;
1675
1676 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1677 offset, array_elements, location);
1678 break;
1679 }
1680
1681 case ir_type_dereference_record: {
1682 ir_dereference_record *deref_record = deref->as_dereference_record();
1683 unsigned field_index =
1684 deref_record->record->type->field_index(deref_record->field);
1685 *location +=
1686 deref_record->record->type->record_location_offset(field_index);
1687 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1688 offset, array_elements, location);
1689 break;
1690 }
1691
1692 default:
1693 unreachable("Invalid deref type");
1694 break;
1695 }
1696 }
1697
1698 static int
1699 get_sampler_uniform_value(class ir_dereference *sampler,
1700 struct gl_shader_program *shader_program,
1701 const struct gl_program *prog)
1702 {
1703 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1704 ir_variable *var = sampler->variable_referenced();
1705 unsigned location = var->data.location;
1706 unsigned array_elements = 1;
1707 unsigned offset = 0;
1708
1709 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1710 &location);
1711
1712 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1713 return shader_program->data->UniformStorage[location].opaque[shader].index +
1714 offset;
1715 }
1716
1717 /**
1718 * Process the condition of a conditional assignment
1719 *
1720 * Examines the condition of a conditional assignment to generate the optimal
1721 * first operand of a \c CMP instruction. If the condition is a relational
1722 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1723 * used as the source for the \c CMP instruction. Otherwise the comparison
1724 * is processed to a boolean result, and the boolean result is used as the
1725 * operand to the CMP instruction.
1726 */
1727 bool
1728 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1729 {
1730 ir_rvalue *src_ir = ir;
1731 bool negate = true;
1732 bool switch_order = false;
1733
1734 ir_expression *const expr = ir->as_expression();
1735 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1736 bool zero_on_left = false;
1737
1738 if (expr->operands[0]->is_zero()) {
1739 src_ir = expr->operands[1];
1740 zero_on_left = true;
1741 } else if (expr->operands[1]->is_zero()) {
1742 src_ir = expr->operands[0];
1743 zero_on_left = false;
1744 }
1745
1746 /* a is - 0 + - 0 +
1747 * (a < 0) T F F ( a < 0) T F F
1748 * (0 < a) F F T (-a < 0) F F T
1749 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1750 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1751 * (a > 0) F F T (-a < 0) F F T
1752 * (0 > a) T F F ( a < 0) T F F
1753 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1754 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1755 *
1756 * Note that exchanging the order of 0 and 'a' in the comparison simply
1757 * means that the value of 'a' should be negated.
1758 */
1759 if (src_ir != ir) {
1760 switch (expr->operation) {
1761 case ir_binop_less:
1762 switch_order = false;
1763 negate = zero_on_left;
1764 break;
1765
1766 case ir_binop_greater:
1767 switch_order = false;
1768 negate = !zero_on_left;
1769 break;
1770
1771 case ir_binop_lequal:
1772 switch_order = true;
1773 negate = !zero_on_left;
1774 break;
1775
1776 case ir_binop_gequal:
1777 switch_order = true;
1778 negate = zero_on_left;
1779 break;
1780
1781 default:
1782 /* This isn't the right kind of comparison afterall, so make sure
1783 * the whole condition is visited.
1784 */
1785 src_ir = ir;
1786 break;
1787 }
1788 }
1789 }
1790
1791 src_ir->accept(this);
1792
1793 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1794 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1795 * choose which value OPCODE_CMP produces without an extra instruction
1796 * computing the condition.
1797 */
1798 if (negate)
1799 this->result.negate = ~this->result.negate;
1800
1801 return switch_order;
1802 }
1803
1804 void
1805 ir_to_mesa_visitor::visit(ir_assignment *ir)
1806 {
1807 dst_reg l;
1808 src_reg r;
1809 int i;
1810
1811 ir->rhs->accept(this);
1812 r = this->result;
1813
1814 l = get_assignment_lhs(ir->lhs, this);
1815
1816 /* FINISHME: This should really set to the correct maximal writemask for each
1817 * FINISHME: component written (in the loops below). This case can only
1818 * FINISHME: occur for matrices, arrays, and structures.
1819 */
1820 if (ir->write_mask == 0) {
1821 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1822 l.writemask = WRITEMASK_XYZW;
1823 } else if (ir->lhs->type->is_scalar()) {
1824 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1825 * FINISHME: W component of fragment shader output zero, work correctly.
1826 */
1827 l.writemask = WRITEMASK_XYZW;
1828 } else {
1829 int swizzles[4];
1830 int first_enabled_chan = 0;
1831 int rhs_chan = 0;
1832
1833 assert(ir->lhs->type->is_vector());
1834 l.writemask = ir->write_mask;
1835
1836 for (int i = 0; i < 4; i++) {
1837 if (l.writemask & (1 << i)) {
1838 first_enabled_chan = GET_SWZ(r.swizzle, i);
1839 break;
1840 }
1841 }
1842
1843 /* Swizzle a small RHS vector into the channels being written.
1844 *
1845 * glsl ir treats write_mask as dictating how many channels are
1846 * present on the RHS while Mesa IR treats write_mask as just
1847 * showing which channels of the vec4 RHS get written.
1848 */
1849 for (int i = 0; i < 4; i++) {
1850 if (l.writemask & (1 << i))
1851 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1852 else
1853 swizzles[i] = first_enabled_chan;
1854 }
1855 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1856 swizzles[2], swizzles[3]);
1857 }
1858
1859 assert(l.file != PROGRAM_UNDEFINED);
1860 assert(r.file != PROGRAM_UNDEFINED);
1861
1862 if (ir->condition) {
1863 const bool switch_order = this->process_move_condition(ir->condition);
1864 src_reg condition = this->result;
1865
1866 for (i = 0; i < type_size(ir->lhs->type); i++) {
1867 if (switch_order) {
1868 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1869 } else {
1870 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1871 }
1872
1873 l.index++;
1874 r.index++;
1875 }
1876 } else {
1877 for (i = 0; i < type_size(ir->lhs->type); i++) {
1878 emit(ir, OPCODE_MOV, l, r);
1879 l.index++;
1880 r.index++;
1881 }
1882 }
1883 }
1884
1885
1886 void
1887 ir_to_mesa_visitor::visit(ir_constant *ir)
1888 {
1889 src_reg src;
1890 GLfloat stack_vals[4] = { 0 };
1891 GLfloat *values = stack_vals;
1892 unsigned int i;
1893
1894 /* Unfortunately, 4 floats is all we can get into
1895 * _mesa_add_unnamed_constant. So, make a temp to store an
1896 * aggregate constant and move each constant value into it. If we
1897 * get lucky, copy propagation will eliminate the extra moves.
1898 */
1899
1900 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1901 src_reg temp_base = get_temp(ir->type);
1902 dst_reg temp = dst_reg(temp_base);
1903
1904 foreach_in_list(ir_constant, field_value, &ir->components) {
1905 int size = type_size(field_value->type);
1906
1907 assert(size > 0);
1908
1909 field_value->accept(this);
1910 src = this->result;
1911
1912 for (i = 0; i < (unsigned int)size; i++) {
1913 emit(ir, OPCODE_MOV, temp, src);
1914
1915 src.index++;
1916 temp.index++;
1917 }
1918 }
1919 this->result = temp_base;
1920 return;
1921 }
1922
1923 if (ir->type->is_array()) {
1924 src_reg temp_base = get_temp(ir->type);
1925 dst_reg temp = dst_reg(temp_base);
1926 int size = type_size(ir->type->fields.array);
1927
1928 assert(size > 0);
1929
1930 for (i = 0; i < ir->type->length; i++) {
1931 ir->array_elements[i]->accept(this);
1932 src = this->result;
1933 for (int j = 0; j < size; j++) {
1934 emit(ir, OPCODE_MOV, temp, src);
1935
1936 src.index++;
1937 temp.index++;
1938 }
1939 }
1940 this->result = temp_base;
1941 return;
1942 }
1943
1944 if (ir->type->is_matrix()) {
1945 src_reg mat = get_temp(ir->type);
1946 dst_reg mat_column = dst_reg(mat);
1947
1948 for (i = 0; i < ir->type->matrix_columns; i++) {
1949 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1950 values = &ir->value.f[i * ir->type->vector_elements];
1951
1952 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1953 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1954 (gl_constant_value *) values,
1955 ir->type->vector_elements,
1956 &src.swizzle);
1957 emit(ir, OPCODE_MOV, mat_column, src);
1958
1959 mat_column.index++;
1960 }
1961
1962 this->result = mat;
1963 return;
1964 }
1965
1966 src.file = PROGRAM_CONSTANT;
1967 switch (ir->type->base_type) {
1968 case GLSL_TYPE_FLOAT:
1969 values = &ir->value.f[0];
1970 break;
1971 case GLSL_TYPE_UINT:
1972 for (i = 0; i < ir->type->vector_elements; i++) {
1973 values[i] = ir->value.u[i];
1974 }
1975 break;
1976 case GLSL_TYPE_INT:
1977 for (i = 0; i < ir->type->vector_elements; i++) {
1978 values[i] = ir->value.i[i];
1979 }
1980 break;
1981 case GLSL_TYPE_BOOL:
1982 for (i = 0; i < ir->type->vector_elements; i++) {
1983 values[i] = ir->value.b[i];
1984 }
1985 break;
1986 default:
1987 assert(!"Non-float/uint/int/bool constant");
1988 }
1989
1990 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1991 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1992 (gl_constant_value *) values,
1993 ir->type->vector_elements,
1994 &this->result.swizzle);
1995 }
1996
1997 void
1998 ir_to_mesa_visitor::visit(ir_call *)
1999 {
2000 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
2001 }
2002
2003 void
2004 ir_to_mesa_visitor::visit(ir_texture *ir)
2005 {
2006 src_reg result_src, coord, lod_info, projector, dx, dy;
2007 dst_reg result_dst, coord_dst;
2008 ir_to_mesa_instruction *inst = NULL;
2009 prog_opcode opcode = OPCODE_NOP;
2010
2011 if (ir->op == ir_txs)
2012 this->result = src_reg_for_float(0.0);
2013 else
2014 ir->coordinate->accept(this);
2015
2016 /* Put our coords in a temp. We'll need to modify them for shadow,
2017 * projection, or LOD, so the only case we'd use it as-is is if
2018 * we're doing plain old texturing. Mesa IR optimization should
2019 * handle cleaning up our mess in that case.
2020 */
2021 coord = get_temp(glsl_type::vec4_type);
2022 coord_dst = dst_reg(coord);
2023 emit(ir, OPCODE_MOV, coord_dst, this->result);
2024
2025 if (ir->projector) {
2026 ir->projector->accept(this);
2027 projector = this->result;
2028 }
2029
2030 /* Storage for our result. Ideally for an assignment we'd be using
2031 * the actual storage for the result here, instead.
2032 */
2033 result_src = get_temp(glsl_type::vec4_type);
2034 result_dst = dst_reg(result_src);
2035
2036 switch (ir->op) {
2037 case ir_tex:
2038 case ir_txs:
2039 opcode = OPCODE_TEX;
2040 break;
2041 case ir_txb:
2042 opcode = OPCODE_TXB;
2043 ir->lod_info.bias->accept(this);
2044 lod_info = this->result;
2045 break;
2046 case ir_txf:
2047 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2048 case ir_txl:
2049 opcode = OPCODE_TXL;
2050 ir->lod_info.lod->accept(this);
2051 lod_info = this->result;
2052 break;
2053 case ir_txd:
2054 opcode = OPCODE_TXD;
2055 ir->lod_info.grad.dPdx->accept(this);
2056 dx = this->result;
2057 ir->lod_info.grad.dPdy->accept(this);
2058 dy = this->result;
2059 break;
2060 case ir_txf_ms:
2061 assert(!"Unexpected ir_txf_ms opcode");
2062 break;
2063 case ir_lod:
2064 assert(!"Unexpected ir_lod opcode");
2065 break;
2066 case ir_tg4:
2067 assert(!"Unexpected ir_tg4 opcode");
2068 break;
2069 case ir_query_levels:
2070 assert(!"Unexpected ir_query_levels opcode");
2071 break;
2072 case ir_samples_identical:
2073 unreachable("Unexpected ir_samples_identical opcode");
2074 case ir_texture_samples:
2075 unreachable("Unexpected ir_texture_samples opcode");
2076 }
2077
2078 const glsl_type *sampler_type = ir->sampler->type;
2079
2080 if (ir->projector) {
2081 if (opcode == OPCODE_TEX) {
2082 /* Slot the projector in as the last component of the coord. */
2083 coord_dst.writemask = WRITEMASK_W;
2084 emit(ir, OPCODE_MOV, coord_dst, projector);
2085 coord_dst.writemask = WRITEMASK_XYZW;
2086 opcode = OPCODE_TXP;
2087 } else {
2088 src_reg coord_w = coord;
2089 coord_w.swizzle = SWIZZLE_WWWW;
2090
2091 /* For the other TEX opcodes there's no projective version
2092 * since the last slot is taken up by lod info. Do the
2093 * projective divide now.
2094 */
2095 coord_dst.writemask = WRITEMASK_W;
2096 emit(ir, OPCODE_RCP, coord_dst, projector);
2097
2098 /* In the case where we have to project the coordinates "by hand,"
2099 * the shadow comparator value must also be projected.
2100 */
2101 src_reg tmp_src = coord;
2102 if (ir->shadow_comparator) {
2103 /* Slot the shadow value in as the second to last component of the
2104 * coord.
2105 */
2106 ir->shadow_comparator->accept(this);
2107
2108 tmp_src = get_temp(glsl_type::vec4_type);
2109 dst_reg tmp_dst = dst_reg(tmp_src);
2110
2111 /* Projective division not allowed for array samplers. */
2112 assert(!sampler_type->sampler_array);
2113
2114 tmp_dst.writemask = WRITEMASK_Z;
2115 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2116
2117 tmp_dst.writemask = WRITEMASK_XY;
2118 emit(ir, OPCODE_MOV, tmp_dst, coord);
2119 }
2120
2121 coord_dst.writemask = WRITEMASK_XYZ;
2122 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2123
2124 coord_dst.writemask = WRITEMASK_XYZW;
2125 coord.swizzle = SWIZZLE_XYZW;
2126 }
2127 }
2128
2129 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2130 * comparator was put in the correct place (and projected) by the code,
2131 * above, that handles by-hand projection.
2132 */
2133 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2134 /* Slot the shadow value in as the second to last component of the
2135 * coord.
2136 */
2137 ir->shadow_comparator->accept(this);
2138
2139 /* XXX This will need to be updated for cubemap array samplers. */
2140 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2141 sampler_type->sampler_array) {
2142 coord_dst.writemask = WRITEMASK_W;
2143 } else {
2144 coord_dst.writemask = WRITEMASK_Z;
2145 }
2146
2147 emit(ir, OPCODE_MOV, coord_dst, this->result);
2148 coord_dst.writemask = WRITEMASK_XYZW;
2149 }
2150
2151 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2152 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2153 coord_dst.writemask = WRITEMASK_W;
2154 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2155 coord_dst.writemask = WRITEMASK_XYZW;
2156 }
2157
2158 if (opcode == OPCODE_TXD)
2159 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2160 else
2161 inst = emit(ir, opcode, result_dst, coord);
2162
2163 if (ir->shadow_comparator)
2164 inst->tex_shadow = GL_TRUE;
2165
2166 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2167 prog);
2168
2169 switch (sampler_type->sampler_dimensionality) {
2170 case GLSL_SAMPLER_DIM_1D:
2171 inst->tex_target = (sampler_type->sampler_array)
2172 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2173 break;
2174 case GLSL_SAMPLER_DIM_2D:
2175 inst->tex_target = (sampler_type->sampler_array)
2176 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2177 break;
2178 case GLSL_SAMPLER_DIM_3D:
2179 inst->tex_target = TEXTURE_3D_INDEX;
2180 break;
2181 case GLSL_SAMPLER_DIM_CUBE:
2182 inst->tex_target = TEXTURE_CUBE_INDEX;
2183 break;
2184 case GLSL_SAMPLER_DIM_RECT:
2185 inst->tex_target = TEXTURE_RECT_INDEX;
2186 break;
2187 case GLSL_SAMPLER_DIM_BUF:
2188 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2189 break;
2190 case GLSL_SAMPLER_DIM_EXTERNAL:
2191 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2192 break;
2193 default:
2194 assert(!"Should not get here.");
2195 }
2196
2197 this->result = result_src;
2198 }
2199
2200 void
2201 ir_to_mesa_visitor::visit(ir_return *ir)
2202 {
2203 /* Non-void functions should have been inlined. We may still emit RETs
2204 * from main() unless the EmitNoMainReturn option is set.
2205 */
2206 assert(!ir->get_value());
2207 emit(ir, OPCODE_RET);
2208 }
2209
2210 void
2211 ir_to_mesa_visitor::visit(ir_discard *ir)
2212 {
2213 if (!ir->condition)
2214 ir->condition = new(mem_ctx) ir_constant(true);
2215
2216 ir->condition->accept(this);
2217 this->result.negate = ~this->result.negate;
2218 emit(ir, OPCODE_KIL, undef_dst, this->result);
2219 }
2220
2221 void
2222 ir_to_mesa_visitor::visit(ir_if *ir)
2223 {
2224 ir_to_mesa_instruction *if_inst;
2225
2226 ir->condition->accept(this);
2227 assert(this->result.file != PROGRAM_UNDEFINED);
2228
2229 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2230
2231 this->instructions.push_tail(if_inst);
2232
2233 visit_exec_list(&ir->then_instructions, this);
2234
2235 if (!ir->else_instructions.is_empty()) {
2236 emit(ir->condition, OPCODE_ELSE);
2237 visit_exec_list(&ir->else_instructions, this);
2238 }
2239
2240 emit(ir->condition, OPCODE_ENDIF);
2241 }
2242
2243 void
2244 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2245 {
2246 assert(!"Geometry shaders not supported.");
2247 }
2248
2249 void
2250 ir_to_mesa_visitor::visit(ir_end_primitive *)
2251 {
2252 assert(!"Geometry shaders not supported.");
2253 }
2254
2255 void
2256 ir_to_mesa_visitor::visit(ir_barrier *)
2257 {
2258 unreachable("GLSL barrier() not supported.");
2259 }
2260
2261 ir_to_mesa_visitor::ir_to_mesa_visitor()
2262 {
2263 result.file = PROGRAM_UNDEFINED;
2264 next_temp = 1;
2265 next_signature_id = 1;
2266 current_function = NULL;
2267 mem_ctx = ralloc_context(NULL);
2268 }
2269
2270 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2271 {
2272 ralloc_free(mem_ctx);
2273 }
2274
2275 static struct prog_src_register
2276 mesa_src_reg_from_ir_src_reg(src_reg reg)
2277 {
2278 struct prog_src_register mesa_reg;
2279
2280 mesa_reg.File = reg.file;
2281 assert(reg.index < (1 << INST_INDEX_BITS));
2282 mesa_reg.Index = reg.index;
2283 mesa_reg.Swizzle = reg.swizzle;
2284 mesa_reg.RelAddr = reg.reladdr != NULL;
2285 mesa_reg.Negate = reg.negate;
2286
2287 return mesa_reg;
2288 }
2289
2290 static void
2291 set_branchtargets(ir_to_mesa_visitor *v,
2292 struct prog_instruction *mesa_instructions,
2293 int num_instructions)
2294 {
2295 int if_count = 0, loop_count = 0;
2296 int *if_stack, *loop_stack;
2297 int if_stack_pos = 0, loop_stack_pos = 0;
2298 int i, j;
2299
2300 for (i = 0; i < num_instructions; i++) {
2301 switch (mesa_instructions[i].Opcode) {
2302 case OPCODE_IF:
2303 if_count++;
2304 break;
2305 case OPCODE_BGNLOOP:
2306 loop_count++;
2307 break;
2308 case OPCODE_BRK:
2309 case OPCODE_CONT:
2310 mesa_instructions[i].BranchTarget = -1;
2311 break;
2312 default:
2313 break;
2314 }
2315 }
2316
2317 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2318 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2319
2320 for (i = 0; i < num_instructions; i++) {
2321 switch (mesa_instructions[i].Opcode) {
2322 case OPCODE_IF:
2323 if_stack[if_stack_pos] = i;
2324 if_stack_pos++;
2325 break;
2326 case OPCODE_ELSE:
2327 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2328 if_stack[if_stack_pos - 1] = i;
2329 break;
2330 case OPCODE_ENDIF:
2331 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2332 if_stack_pos--;
2333 break;
2334 case OPCODE_BGNLOOP:
2335 loop_stack[loop_stack_pos] = i;
2336 loop_stack_pos++;
2337 break;
2338 case OPCODE_ENDLOOP:
2339 loop_stack_pos--;
2340 /* Rewrite any breaks/conts at this nesting level (haven't
2341 * already had a BranchTarget assigned) to point to the end
2342 * of the loop.
2343 */
2344 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2345 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2346 mesa_instructions[j].Opcode == OPCODE_CONT) {
2347 if (mesa_instructions[j].BranchTarget == -1) {
2348 mesa_instructions[j].BranchTarget = i;
2349 }
2350 }
2351 }
2352 /* The loop ends point at each other. */
2353 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2354 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2355 break;
2356 case OPCODE_CAL:
2357 foreach_in_list(function_entry, entry, &v->function_signatures) {
2358 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2359 mesa_instructions[i].BranchTarget = entry->inst;
2360 break;
2361 }
2362 }
2363 break;
2364 default:
2365 break;
2366 }
2367 }
2368 }
2369
2370 static void
2371 print_program(struct prog_instruction *mesa_instructions,
2372 ir_instruction **mesa_instruction_annotation,
2373 int num_instructions)
2374 {
2375 ir_instruction *last_ir = NULL;
2376 int i;
2377 int indent = 0;
2378
2379 for (i = 0; i < num_instructions; i++) {
2380 struct prog_instruction *mesa_inst = mesa_instructions + i;
2381 ir_instruction *ir = mesa_instruction_annotation[i];
2382
2383 fprintf(stdout, "%3d: ", i);
2384
2385 if (last_ir != ir && ir) {
2386 int j;
2387
2388 for (j = 0; j < indent; j++) {
2389 fprintf(stdout, " ");
2390 }
2391 ir->print();
2392 printf("\n");
2393 last_ir = ir;
2394
2395 fprintf(stdout, " "); /* line number spacing. */
2396 }
2397
2398 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2399 PROG_PRINT_DEBUG, NULL);
2400 }
2401 }
2402
2403 namespace {
2404
2405 class add_uniform_to_shader : public program_resource_visitor {
2406 public:
2407 add_uniform_to_shader(struct gl_shader_program *shader_program,
2408 struct gl_program_parameter_list *params,
2409 gl_shader_stage shader_type)
2410 : shader_program(shader_program), params(params), idx(-1),
2411 shader_type(shader_type)
2412 {
2413 /* empty */
2414 }
2415
2416 void process(ir_variable *var)
2417 {
2418 this->idx = -1;
2419 this->program_resource_visitor::process(var);
2420 var->data.param_index = this->idx;
2421 }
2422
2423 private:
2424 virtual void visit_field(const glsl_type *type, const char *name,
2425 bool row_major, const glsl_type *record_type,
2426 const enum glsl_interface_packing packing,
2427 bool last_field);
2428
2429 struct gl_shader_program *shader_program;
2430 struct gl_program_parameter_list *params;
2431 int idx;
2432 gl_shader_stage shader_type;
2433 };
2434
2435 } /* anonymous namespace */
2436
2437 void
2438 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2439 bool /* row_major */,
2440 const glsl_type * /* record_type */,
2441 const enum glsl_interface_packing,
2442 bool /* last_field */)
2443 {
2444 unsigned int size;
2445
2446 /* atomics don't get real storage */
2447 if (type->contains_atomic())
2448 return;
2449
2450 if (type->is_vector() || type->is_scalar()) {
2451 size = type->vector_elements;
2452 if (type->is_64bit())
2453 size *= 2;
2454 } else {
2455 size = type_size(type) * 4;
2456 }
2457
2458 gl_register_file file;
2459 if (type->without_array()->is_sampler()) {
2460 file = PROGRAM_SAMPLER;
2461 } else {
2462 file = PROGRAM_UNIFORM;
2463 }
2464
2465 int index = _mesa_lookup_parameter_index(params, name);
2466 if (index < 0) {
2467 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2468 NULL, NULL);
2469
2470 /* Sampler uniform values are stored in prog->SamplerUnits,
2471 * and the entry in that array is selected by this index we
2472 * store in ParameterValues[].
2473 */
2474 if (file == PROGRAM_SAMPLER) {
2475 unsigned location;
2476 const bool found =
2477 this->shader_program->UniformHash->get(location,
2478 params->Parameters[index].Name);
2479 assert(found);
2480
2481 if (!found)
2482 return;
2483
2484 struct gl_uniform_storage *storage =
2485 &this->shader_program->data->UniformStorage[location];
2486
2487 assert(storage->type->is_sampler() &&
2488 storage->opaque[shader_type].active);
2489
2490 for (unsigned int j = 0; j < size / 4; j++)
2491 params->ParameterValues[index + j][0].f =
2492 storage->opaque[shader_type].index + j;
2493 }
2494 }
2495
2496 /* The first part of the uniform that's processed determines the base
2497 * location of the whole uniform (for structures).
2498 */
2499 if (this->idx < 0)
2500 this->idx = index;
2501 }
2502
2503 /**
2504 * Generate the program parameters list for the user uniforms in a shader
2505 *
2506 * \param shader_program Linked shader program. This is only used to
2507 * emit possible link errors to the info log.
2508 * \param sh Shader whose uniforms are to be processed.
2509 * \param params Parameter list to be filled in.
2510 */
2511 void
2512 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2513 *shader_program,
2514 struct gl_linked_shader *sh,
2515 struct gl_program_parameter_list
2516 *params)
2517 {
2518 add_uniform_to_shader add(shader_program, params, sh->Stage);
2519
2520 foreach_in_list(ir_instruction, node, sh->ir) {
2521 ir_variable *var = node->as_variable();
2522
2523 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2524 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2525 continue;
2526
2527 add.process(var);
2528 }
2529 }
2530
2531 void
2532 _mesa_associate_uniform_storage(struct gl_context *ctx,
2533 struct gl_shader_program *shader_program,
2534 struct gl_program_parameter_list *params)
2535 {
2536 /* After adding each uniform to the parameter list, connect the storage for
2537 * the parameter with the tracking structure used by the API for the
2538 * uniform.
2539 */
2540 unsigned last_location = unsigned(~0);
2541 for (unsigned i = 0; i < params->NumParameters; i++) {
2542 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2543 continue;
2544
2545 unsigned location;
2546 const bool found =
2547 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2548 assert(found);
2549
2550 if (!found)
2551 continue;
2552
2553 struct gl_uniform_storage *storage =
2554 &shader_program->data->UniformStorage[location];
2555
2556 /* Do not associate any uniform storage to built-in uniforms */
2557 if (storage->builtin)
2558 continue;
2559
2560 if (location != last_location) {
2561 enum gl_uniform_driver_format format = uniform_native;
2562
2563 unsigned columns = 0;
2564 int dmul = 4 * sizeof(float);
2565 switch (storage->type->base_type) {
2566 case GLSL_TYPE_UINT64:
2567 if (storage->type->vector_elements > 2)
2568 dmul *= 2;
2569 /* fallthrough */
2570 case GLSL_TYPE_UINT:
2571 assert(ctx->Const.NativeIntegers);
2572 format = uniform_native;
2573 columns = 1;
2574 break;
2575 case GLSL_TYPE_INT64:
2576 if (storage->type->vector_elements > 2)
2577 dmul *= 2;
2578 /* fallthrough */
2579 case GLSL_TYPE_INT:
2580 format =
2581 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2582 columns = 1;
2583 break;
2584
2585 case GLSL_TYPE_DOUBLE:
2586 if (storage->type->vector_elements > 2)
2587 dmul *= 2;
2588 /* fallthrough */
2589 case GLSL_TYPE_FLOAT:
2590 format = uniform_native;
2591 columns = storage->type->matrix_columns;
2592 break;
2593 case GLSL_TYPE_BOOL:
2594 format = uniform_native;
2595 columns = 1;
2596 break;
2597 case GLSL_TYPE_SAMPLER:
2598 case GLSL_TYPE_IMAGE:
2599 case GLSL_TYPE_SUBROUTINE:
2600 format = uniform_native;
2601 columns = 1;
2602 break;
2603 case GLSL_TYPE_ATOMIC_UINT:
2604 case GLSL_TYPE_ARRAY:
2605 case GLSL_TYPE_VOID:
2606 case GLSL_TYPE_STRUCT:
2607 case GLSL_TYPE_ERROR:
2608 case GLSL_TYPE_INTERFACE:
2609 case GLSL_TYPE_FUNCTION:
2610 assert(!"Should not get here.");
2611 break;
2612 }
2613
2614 _mesa_uniform_attach_driver_storage(storage,
2615 dmul * columns,
2616 dmul,
2617 format,
2618 &params->ParameterValues[i]);
2619
2620 /* After attaching the driver's storage to the uniform, propagate any
2621 * data from the linker's backing store. This will cause values from
2622 * initializers in the source code to be copied over.
2623 */
2624 _mesa_propagate_uniforms_to_driver_storage(storage,
2625 0,
2626 MAX2(1, storage->array_elements));
2627
2628 last_location = location;
2629 }
2630 }
2631 }
2632
2633 /*
2634 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2635 * channels for copy propagation and updates following instructions to
2636 * use the original versions.
2637 *
2638 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2639 * will occur. As an example, a TXP production before this pass:
2640 *
2641 * 0: MOV TEMP[1], INPUT[4].xyyy;
2642 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2643 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2644 *
2645 * and after:
2646 *
2647 * 0: MOV TEMP[1], INPUT[4].xyyy;
2648 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2649 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2650 *
2651 * which allows for dead code elimination on TEMP[1]'s writes.
2652 */
2653 void
2654 ir_to_mesa_visitor::copy_propagate(void)
2655 {
2656 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2657 ir_to_mesa_instruction *,
2658 this->next_temp * 4);
2659 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2660 int level = 0;
2661
2662 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2663 assert(inst->dst.file != PROGRAM_TEMPORARY
2664 || inst->dst.index < this->next_temp);
2665
2666 /* First, do any copy propagation possible into the src regs. */
2667 for (int r = 0; r < 3; r++) {
2668 ir_to_mesa_instruction *first = NULL;
2669 bool good = true;
2670 int acp_base = inst->src[r].index * 4;
2671
2672 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2673 inst->src[r].reladdr)
2674 continue;
2675
2676 /* See if we can find entries in the ACP consisting of MOVs
2677 * from the same src register for all the swizzled channels
2678 * of this src register reference.
2679 */
2680 for (int i = 0; i < 4; i++) {
2681 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2682 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2683
2684 if (!copy_chan) {
2685 good = false;
2686 break;
2687 }
2688
2689 assert(acp_level[acp_base + src_chan] <= level);
2690
2691 if (!first) {
2692 first = copy_chan;
2693 } else {
2694 if (first->src[0].file != copy_chan->src[0].file ||
2695 first->src[0].index != copy_chan->src[0].index) {
2696 good = false;
2697 break;
2698 }
2699 }
2700 }
2701
2702 if (good) {
2703 /* We've now validated that we can copy-propagate to
2704 * replace this src register reference. Do it.
2705 */
2706 inst->src[r].file = first->src[0].file;
2707 inst->src[r].index = first->src[0].index;
2708
2709 int swizzle = 0;
2710 for (int i = 0; i < 4; i++) {
2711 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2712 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2713 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2714 (3 * i));
2715 }
2716 inst->src[r].swizzle = swizzle;
2717 }
2718 }
2719
2720 switch (inst->op) {
2721 case OPCODE_BGNLOOP:
2722 case OPCODE_ENDLOOP:
2723 /* End of a basic block, clear the ACP entirely. */
2724 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2725 break;
2726
2727 case OPCODE_IF:
2728 ++level;
2729 break;
2730
2731 case OPCODE_ENDIF:
2732 case OPCODE_ELSE:
2733 /* Clear all channels written inside the block from the ACP, but
2734 * leaving those that were not touched.
2735 */
2736 for (int r = 0; r < this->next_temp; r++) {
2737 for (int c = 0; c < 4; c++) {
2738 if (!acp[4 * r + c])
2739 continue;
2740
2741 if (acp_level[4 * r + c] >= level)
2742 acp[4 * r + c] = NULL;
2743 }
2744 }
2745 if (inst->op == OPCODE_ENDIF)
2746 --level;
2747 break;
2748
2749 default:
2750 /* Continuing the block, clear any written channels from
2751 * the ACP.
2752 */
2753 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2754 /* Any temporary might be written, so no copy propagation
2755 * across this instruction.
2756 */
2757 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2758 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2759 inst->dst.reladdr) {
2760 /* Any output might be written, so no copy propagation
2761 * from outputs across this instruction.
2762 */
2763 for (int r = 0; r < this->next_temp; r++) {
2764 for (int c = 0; c < 4; c++) {
2765 if (!acp[4 * r + c])
2766 continue;
2767
2768 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2769 acp[4 * r + c] = NULL;
2770 }
2771 }
2772 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2773 inst->dst.file == PROGRAM_OUTPUT) {
2774 /* Clear where it's used as dst. */
2775 if (inst->dst.file == PROGRAM_TEMPORARY) {
2776 for (int c = 0; c < 4; c++) {
2777 if (inst->dst.writemask & (1 << c)) {
2778 acp[4 * inst->dst.index + c] = NULL;
2779 }
2780 }
2781 }
2782
2783 /* Clear where it's used as src. */
2784 for (int r = 0; r < this->next_temp; r++) {
2785 for (int c = 0; c < 4; c++) {
2786 if (!acp[4 * r + c])
2787 continue;
2788
2789 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2790
2791 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2792 acp[4 * r + c]->src[0].index == inst->dst.index &&
2793 inst->dst.writemask & (1 << src_chan))
2794 {
2795 acp[4 * r + c] = NULL;
2796 }
2797 }
2798 }
2799 }
2800 break;
2801 }
2802
2803 /* If this is a copy, add it to the ACP. */
2804 if (inst->op == OPCODE_MOV &&
2805 inst->dst.file == PROGRAM_TEMPORARY &&
2806 !(inst->dst.file == inst->src[0].file &&
2807 inst->dst.index == inst->src[0].index) &&
2808 !inst->dst.reladdr &&
2809 !inst->saturate &&
2810 !inst->src[0].reladdr &&
2811 !inst->src[0].negate) {
2812 for (int i = 0; i < 4; i++) {
2813 if (inst->dst.writemask & (1 << i)) {
2814 acp[4 * inst->dst.index + i] = inst;
2815 acp_level[4 * inst->dst.index + i] = level;
2816 }
2817 }
2818 }
2819 }
2820
2821 ralloc_free(acp_level);
2822 ralloc_free(acp);
2823 }
2824
2825
2826 /**
2827 * Convert a shader's GLSL IR into a Mesa gl_program.
2828 */
2829 static struct gl_program *
2830 get_mesa_program(struct gl_context *ctx,
2831 struct gl_shader_program *shader_program,
2832 struct gl_linked_shader *shader)
2833 {
2834 ir_to_mesa_visitor v;
2835 struct prog_instruction *mesa_instructions, *mesa_inst;
2836 ir_instruction **mesa_instruction_annotation;
2837 int i;
2838 struct gl_program *prog;
2839 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2840 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2841 struct gl_shader_compiler_options *options =
2842 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2843
2844 validate_ir_tree(shader->ir);
2845
2846 prog = shader->Program;
2847 prog->Parameters = _mesa_new_parameter_list();
2848 v.ctx = ctx;
2849 v.prog = prog;
2850 v.shader_program = shader_program;
2851 v.options = options;
2852
2853 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2854 prog->Parameters);
2855
2856 /* Emit Mesa IR for main(). */
2857 visit_exec_list(shader->ir, &v);
2858 v.emit(NULL, OPCODE_END);
2859
2860 prog->arb.NumTemporaries = v.next_temp;
2861
2862 unsigned num_instructions = v.instructions.length();
2863
2864 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2865 num_instructions);
2866 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2867 num_instructions);
2868
2869 v.copy_propagate();
2870
2871 /* Convert ir_mesa_instructions into prog_instructions.
2872 */
2873 mesa_inst = mesa_instructions;
2874 i = 0;
2875 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2876 mesa_inst->Opcode = inst->op;
2877 if (inst->saturate)
2878 mesa_inst->Saturate = GL_TRUE;
2879 mesa_inst->DstReg.File = inst->dst.file;
2880 mesa_inst->DstReg.Index = inst->dst.index;
2881 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2882 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2883 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2884 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2885 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2886 mesa_inst->TexSrcUnit = inst->sampler;
2887 mesa_inst->TexSrcTarget = inst->tex_target;
2888 mesa_inst->TexShadow = inst->tex_shadow;
2889 mesa_instruction_annotation[i] = inst->ir;
2890
2891 /* Set IndirectRegisterFiles. */
2892 if (mesa_inst->DstReg.RelAddr)
2893 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2894
2895 /* Update program's bitmask of indirectly accessed register files */
2896 for (unsigned src = 0; src < 3; src++)
2897 if (mesa_inst->SrcReg[src].RelAddr)
2898 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2899
2900 switch (mesa_inst->Opcode) {
2901 case OPCODE_IF:
2902 if (options->MaxIfDepth == 0) {
2903 linker_warning(shader_program,
2904 "Couldn't flatten if-statement. "
2905 "This will likely result in software "
2906 "rasterization.\n");
2907 }
2908 break;
2909 case OPCODE_BGNLOOP:
2910 if (options->EmitNoLoops) {
2911 linker_warning(shader_program,
2912 "Couldn't unroll loop. "
2913 "This will likely result in software "
2914 "rasterization.\n");
2915 }
2916 break;
2917 case OPCODE_CONT:
2918 if (options->EmitNoCont) {
2919 linker_warning(shader_program,
2920 "Couldn't lower continue-statement. "
2921 "This will likely result in software "
2922 "rasterization.\n");
2923 }
2924 break;
2925 case OPCODE_ARL:
2926 prog->arb.NumAddressRegs = 1;
2927 break;
2928 default:
2929 break;
2930 }
2931
2932 mesa_inst++;
2933 i++;
2934
2935 if (!shader_program->data->LinkStatus)
2936 break;
2937 }
2938
2939 if (!shader_program->data->LinkStatus) {
2940 goto fail_exit;
2941 }
2942
2943 set_branchtargets(&v, mesa_instructions, num_instructions);
2944
2945 if (ctx->_Shader->Flags & GLSL_DUMP) {
2946 fprintf(stderr, "\n");
2947 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2948 shader_program->Name);
2949 _mesa_print_ir(stderr, shader->ir, NULL);
2950 fprintf(stderr, "\n");
2951 fprintf(stderr, "\n");
2952 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2953 shader_program->Name);
2954 print_program(mesa_instructions, mesa_instruction_annotation,
2955 num_instructions);
2956 fflush(stderr);
2957 }
2958
2959 prog->arb.Instructions = mesa_instructions;
2960 prog->arb.NumInstructions = num_instructions;
2961
2962 /* Setting this to NULL prevents a possible double free in the fail_exit
2963 * path (far below).
2964 */
2965 mesa_instructions = NULL;
2966
2967 do_set_program_inouts(shader->ir, prog, shader->Stage);
2968
2969 prog->ShadowSamplers = shader->shadow_samplers;
2970 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2971 _mesa_update_shader_textures_used(shader_program, prog);
2972
2973 /* Set the gl_FragDepth layout. */
2974 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2975 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2976 }
2977
2978 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2979 _mesa_optimize_program(ctx, prog, prog);
2980 }
2981
2982 /* This has to be done last. Any operation that can cause
2983 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2984 * program constant) has to happen before creating this linkage.
2985 */
2986 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2987 if (!shader_program->data->LinkStatus) {
2988 goto fail_exit;
2989 }
2990
2991 return prog;
2992
2993 fail_exit:
2994 ralloc_free(mesa_instructions);
2995 _mesa_reference_program(ctx, &shader->Program, NULL);
2996 return NULL;
2997 }
2998
2999 extern "C" {
3000
3001 /**
3002 * Link a shader.
3003 * Called via ctx->Driver.LinkShader()
3004 * This actually involves converting GLSL IR into Mesa gl_programs with
3005 * code lowering and other optimizations.
3006 */
3007 GLboolean
3008 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3009 {
3010 assert(prog->data->LinkStatus);
3011
3012 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3013 if (prog->_LinkedShaders[i] == NULL)
3014 continue;
3015
3016 bool progress;
3017 exec_list *ir = prog->_LinkedShaders[i]->ir;
3018 const struct gl_shader_compiler_options *options =
3019 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3020
3021 do {
3022 progress = false;
3023
3024 /* Lowering */
3025 do_mat_op_to_vec(ir);
3026 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3027 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3028 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3029
3030 progress = do_common_optimization(ir, true, true,
3031 options, ctx->Const.NativeIntegers)
3032 || progress;
3033
3034 progress = lower_quadop_vector(ir, true) || progress;
3035
3036 if (options->MaxIfDepth == 0)
3037 progress = lower_discard(ir) || progress;
3038
3039 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3040 options->MaxIfDepth) || progress;
3041
3042 progress = lower_noise(ir) || progress;
3043
3044 /* If there are forms of indirect addressing that the driver
3045 * cannot handle, perform the lowering pass.
3046 */
3047 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3048 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3049 progress =
3050 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3051 options->EmitNoIndirectInput,
3052 options->EmitNoIndirectOutput,
3053 options->EmitNoIndirectTemp,
3054 options->EmitNoIndirectUniform)
3055 || progress;
3056
3057 progress = do_vec_index_to_cond_assign(ir) || progress;
3058 progress = lower_vector_insert(ir, true) || progress;
3059 } while (progress);
3060
3061 validate_ir_tree(ir);
3062 }
3063
3064 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3065 struct gl_program *linked_prog;
3066
3067 if (prog->_LinkedShaders[i] == NULL)
3068 continue;
3069
3070 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3071
3072 if (linked_prog) {
3073 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3074
3075 if (!ctx->Driver.ProgramStringNotify(ctx,
3076 _mesa_shader_stage_to_program(i),
3077 linked_prog)) {
3078 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3079 NULL);
3080 return GL_FALSE;
3081 }
3082 }
3083 }
3084
3085 build_program_resource_list(ctx, prog);
3086 return prog->data->LinkStatus;
3087 }
3088
3089 /**
3090 * Link a GLSL shader program. Called via glLinkProgram().
3091 */
3092 void
3093 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3094 {
3095 unsigned int i;
3096
3097 _mesa_clear_shader_program_data(ctx, prog);
3098
3099 prog->data->LinkStatus = linking_success;
3100
3101 for (i = 0; i < prog->NumShaders; i++) {
3102 if (!prog->Shaders[i]->CompileStatus) {
3103 linker_error(prog, "linking with uncompiled shader");
3104 }
3105 }
3106
3107 if (prog->data->LinkStatus) {
3108 link_shaders(ctx, prog);
3109 }
3110
3111 if (prog->data->LinkStatus) {
3112 if (!ctx->Driver.LinkShader(ctx, prog)) {
3113 prog->data->LinkStatus = linking_failure;
3114 }
3115 }
3116
3117 if (ctx->_Shader->Flags & GLSL_DUMP) {
3118 if (!prog->data->LinkStatus) {
3119 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3120 }
3121
3122 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3123 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3124 fprintf(stderr, "%s\n", prog->data->InfoLog);
3125 }
3126 }
3127 }
3128
3129 } /* extern "C" */