glsl: Add support for ldexp.
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderobj.h"
47 #include "program/hash_table.h"
48
49 extern "C" {
50 #include "main/shaderapi.h"
51 #include "main/uniforms.h"
52 #include "program/prog_instruction.h"
53 #include "program/prog_optimize.h"
54 #include "program/prog_print.h"
55 #include "program/program.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58 }
59
60 class src_reg;
61 class dst_reg;
62
63 static int swizzle_for_size(int size);
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->cond_mask = COND_TR;
110 this->reladdr = NULL;
111 }
112
113 dst_reg()
114 {
115 this->file = PROGRAM_UNDEFINED;
116 this->index = 0;
117 this->writemask = 0;
118 this->cond_mask = COND_TR;
119 this->reladdr = NULL;
120 }
121
122 explicit dst_reg(src_reg reg);
123
124 gl_register_file file; /**< PROGRAM_* from Mesa */
125 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
126 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
127 GLuint cond_mask:4;
128 /** Register index should be offset by the integer in this reg. */
129 src_reg *reladdr;
130 };
131
132 src_reg::src_reg(dst_reg reg)
133 {
134 this->file = reg.file;
135 this->index = reg.index;
136 this->swizzle = SWIZZLE_XYZW;
137 this->negate = 0;
138 this->reladdr = reg.reladdr;
139 }
140
141 dst_reg::dst_reg(src_reg reg)
142 {
143 this->file = reg.file;
144 this->index = reg.index;
145 this->writemask = WRITEMASK_XYZW;
146 this->cond_mask = COND_TR;
147 this->reladdr = reg.reladdr;
148 }
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 /* Callers of this ralloc-based new need not call delete. It's
153 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
154 static void* operator new(size_t size, void *ctx)
155 {
156 void *node;
157
158 node = rzalloc_size(ctx, size);
159 assert(node != NULL);
160
161 return node;
162 }
163
164 enum prog_opcode op;
165 dst_reg dst;
166 src_reg src[3];
167 /** Pointer to the ir source this tree came from for debugging */
168 ir_instruction *ir;
169 GLboolean cond_update;
170 bool saturate;
171 int sampler; /**< sampler index */
172 int tex_target; /**< One of TEXTURE_*_INDEX */
173 GLboolean tex_shadow;
174 };
175
176 class variable_storage : public exec_node {
177 public:
178 variable_storage(ir_variable *var, gl_register_file file, int index)
179 : file(file), index(index), var(var)
180 {
181 /* empty */
182 }
183
184 gl_register_file file;
185 int index;
186 ir_variable *var; /* variable that maps to this, if any */
187 };
188
189 class function_entry : public exec_node {
190 public:
191 ir_function_signature *sig;
192
193 /**
194 * identifier of this function signature used by the program.
195 *
196 * At the point that Mesa instructions for function calls are
197 * generated, we don't know the address of the first instruction of
198 * the function body. So we make the BranchTarget that is called a
199 * small integer and rewrite them during set_branchtargets().
200 */
201 int sig_id;
202
203 /**
204 * Pointer to first instruction of the function body.
205 *
206 * Set during function body emits after main() is processed.
207 */
208 ir_to_mesa_instruction *bgn_inst;
209
210 /**
211 * Index of the first instruction of the function body in actual
212 * Mesa IR.
213 *
214 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
215 */
216 int inst;
217
218 /** Storage for the return value. */
219 src_reg return_reg;
220 };
221
222 class ir_to_mesa_visitor : public ir_visitor {
223 public:
224 ir_to_mesa_visitor();
225 ~ir_to_mesa_visitor();
226
227 function_entry *current_function;
228
229 struct gl_context *ctx;
230 struct gl_program *prog;
231 struct gl_shader_program *shader_program;
232 struct gl_shader_compiler_options *options;
233
234 int next_temp;
235
236 variable_storage *find_variable_storage(ir_variable *var);
237
238 src_reg get_temp(const glsl_type *type);
239 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
240
241 src_reg src_reg_for_float(float val);
242
243 /**
244 * \name Visit methods
245 *
246 * As typical for the visitor pattern, there must be one \c visit method for
247 * each concrete subclass of \c ir_instruction. Virtual base classes within
248 * the hierarchy should not have \c visit methods.
249 */
250 /*@{*/
251 virtual void visit(ir_variable *);
252 virtual void visit(ir_loop *);
253 virtual void visit(ir_loop_jump *);
254 virtual void visit(ir_function_signature *);
255 virtual void visit(ir_function *);
256 virtual void visit(ir_expression *);
257 virtual void visit(ir_swizzle *);
258 virtual void visit(ir_dereference_variable *);
259 virtual void visit(ir_dereference_array *);
260 virtual void visit(ir_dereference_record *);
261 virtual void visit(ir_assignment *);
262 virtual void visit(ir_constant *);
263 virtual void visit(ir_call *);
264 virtual void visit(ir_return *);
265 virtual void visit(ir_discard *);
266 virtual void visit(ir_texture *);
267 virtual void visit(ir_if *);
268 virtual void visit(ir_emit_vertex *);
269 virtual void visit(ir_end_primitive *);
270 /*@}*/
271
272 src_reg result;
273
274 /** List of variable_storage */
275 exec_list variables;
276
277 /** List of function_entry */
278 exec_list function_signatures;
279 int next_signature_id;
280
281 /** List of ir_to_mesa_instruction */
282 exec_list instructions;
283
284 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
285
286 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
287 dst_reg dst, src_reg src0);
288
289 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
290 dst_reg dst, src_reg src0, src_reg src1);
291
292 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
293 dst_reg dst,
294 src_reg src0, src_reg src1, src_reg src2);
295
296 /**
297 * Emit the correct dot-product instruction for the type of arguments
298 */
299 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
300 dst_reg dst,
301 src_reg src0,
302 src_reg src1,
303 unsigned elements);
304
305 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
306 dst_reg dst, src_reg src0);
307
308 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
309 dst_reg dst, src_reg src0, src_reg src1);
310
311 void emit_scs(ir_instruction *ir, enum prog_opcode op,
312 dst_reg dst, const src_reg &src);
313
314 bool try_emit_mad(ir_expression *ir,
315 int mul_operand);
316 bool try_emit_mad_for_and_not(ir_expression *ir,
317 int mul_operand);
318 bool try_emit_sat(ir_expression *ir);
319
320 void emit_swz(ir_expression *ir);
321
322 bool process_move_condition(ir_rvalue *ir);
323
324 void copy_propagate(void);
325
326 void *mem_ctx;
327 };
328
329 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
330
331 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
332
333 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
334
335 static int
336 swizzle_for_size(int size)
337 {
338 static const int size_swizzles[4] = {
339 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
340 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
341 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
342 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
343 };
344
345 assert((size >= 1) && (size <= 4));
346 return size_swizzles[size - 1];
347 }
348
349 ir_to_mesa_instruction *
350 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
351 dst_reg dst,
352 src_reg src0, src_reg src1, src_reg src2)
353 {
354 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
355 int num_reladdr = 0;
356
357 /* If we have to do relative addressing, we want to load the ARL
358 * reg directly for one of the regs, and preload the other reladdr
359 * sources into temps.
360 */
361 num_reladdr += dst.reladdr != NULL;
362 num_reladdr += src0.reladdr != NULL;
363 num_reladdr += src1.reladdr != NULL;
364 num_reladdr += src2.reladdr != NULL;
365
366 reladdr_to_temp(ir, &src2, &num_reladdr);
367 reladdr_to_temp(ir, &src1, &num_reladdr);
368 reladdr_to_temp(ir, &src0, &num_reladdr);
369
370 if (dst.reladdr) {
371 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
372 num_reladdr--;
373 }
374 assert(num_reladdr == 0);
375
376 inst->op = op;
377 inst->dst = dst;
378 inst->src[0] = src0;
379 inst->src[1] = src1;
380 inst->src[2] = src2;
381 inst->ir = ir;
382
383 this->instructions.push_tail(inst);
384
385 return inst;
386 }
387
388
389 ir_to_mesa_instruction *
390 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
391 dst_reg dst, src_reg src0, src_reg src1)
392 {
393 return emit(ir, op, dst, src0, src1, undef_src);
394 }
395
396 ir_to_mesa_instruction *
397 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
398 dst_reg dst, src_reg src0)
399 {
400 assert(dst.writemask != 0);
401 return emit(ir, op, dst, src0, undef_src, undef_src);
402 }
403
404 ir_to_mesa_instruction *
405 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
406 {
407 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
408 }
409
410 ir_to_mesa_instruction *
411 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
412 dst_reg dst, src_reg src0, src_reg src1,
413 unsigned elements)
414 {
415 static const gl_inst_opcode dot_opcodes[] = {
416 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
417 };
418
419 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
420 }
421
422 /**
423 * Emits Mesa scalar opcodes to produce unique answers across channels.
424 *
425 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
426 * channel determines the result across all channels. So to do a vec4
427 * of this operation, we want to emit a scalar per source channel used
428 * to produce dest channels.
429 */
430 void
431 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
432 dst_reg dst,
433 src_reg orig_src0, src_reg orig_src1)
434 {
435 int i, j;
436 int done_mask = ~dst.writemask;
437
438 /* Mesa RCP is a scalar operation splatting results to all channels,
439 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
440 * dst channels.
441 */
442 for (i = 0; i < 4; i++) {
443 GLuint this_mask = (1 << i);
444 ir_to_mesa_instruction *inst;
445 src_reg src0 = orig_src0;
446 src_reg src1 = orig_src1;
447
448 if (done_mask & this_mask)
449 continue;
450
451 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
452 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
453 for (j = i + 1; j < 4; j++) {
454 /* If there is another enabled component in the destination that is
455 * derived from the same inputs, generate its value on this pass as
456 * well.
457 */
458 if (!(done_mask & (1 << j)) &&
459 GET_SWZ(src0.swizzle, j) == src0_swiz &&
460 GET_SWZ(src1.swizzle, j) == src1_swiz) {
461 this_mask |= (1 << j);
462 }
463 }
464 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
465 src0_swiz, src0_swiz);
466 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
467 src1_swiz, src1_swiz);
468
469 inst = emit(ir, op, dst, src0, src1);
470 inst->dst.writemask = this_mask;
471 done_mask |= this_mask;
472 }
473 }
474
475 void
476 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
477 dst_reg dst, src_reg src0)
478 {
479 src_reg undef = undef_src;
480
481 undef.swizzle = SWIZZLE_XXXX;
482
483 emit_scalar(ir, op, dst, src0, undef);
484 }
485
486 /**
487 * Emit an OPCODE_SCS instruction
488 *
489 * The \c SCS opcode functions a bit differently than the other Mesa (or
490 * ARB_fragment_program) opcodes. Instead of splatting its result across all
491 * four components of the destination, it writes one value to the \c x
492 * component and another value to the \c y component.
493 *
494 * \param ir IR instruction being processed
495 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
496 * value is desired.
497 * \param dst Destination register
498 * \param src Source register
499 */
500 void
501 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
502 dst_reg dst,
503 const src_reg &src)
504 {
505 /* Vertex programs cannot use the SCS opcode.
506 */
507 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
508 emit_scalar(ir, op, dst, src);
509 return;
510 }
511
512 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
513 const unsigned scs_mask = (1U << component);
514 int done_mask = ~dst.writemask;
515 src_reg tmp;
516
517 assert(op == OPCODE_SIN || op == OPCODE_COS);
518
519 /* If there are compnents in the destination that differ from the component
520 * that will be written by the SCS instrution, we'll need a temporary.
521 */
522 if (scs_mask != unsigned(dst.writemask)) {
523 tmp = get_temp(glsl_type::vec4_type);
524 }
525
526 for (unsigned i = 0; i < 4; i++) {
527 unsigned this_mask = (1U << i);
528 src_reg src0 = src;
529
530 if ((done_mask & this_mask) != 0)
531 continue;
532
533 /* The source swizzle specified which component of the source generates
534 * sine / cosine for the current component in the destination. The SCS
535 * instruction requires that this value be swizzle to the X component.
536 * Replace the current swizzle with a swizzle that puts the source in
537 * the X component.
538 */
539 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
540
541 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
542 src0_swiz, src0_swiz);
543 for (unsigned j = i + 1; j < 4; j++) {
544 /* If there is another enabled component in the destination that is
545 * derived from the same inputs, generate its value on this pass as
546 * well.
547 */
548 if (!(done_mask & (1 << j)) &&
549 GET_SWZ(src0.swizzle, j) == src0_swiz) {
550 this_mask |= (1 << j);
551 }
552 }
553
554 if (this_mask != scs_mask) {
555 ir_to_mesa_instruction *inst;
556 dst_reg tmp_dst = dst_reg(tmp);
557
558 /* Emit the SCS instruction.
559 */
560 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
561 inst->dst.writemask = scs_mask;
562
563 /* Move the result of the SCS instruction to the desired location in
564 * the destination.
565 */
566 tmp.swizzle = MAKE_SWIZZLE4(component, component,
567 component, component);
568 inst = emit(ir, OPCODE_SCS, dst, tmp);
569 inst->dst.writemask = this_mask;
570 } else {
571 /* Emit the SCS instruction to write directly to the destination.
572 */
573 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
574 inst->dst.writemask = scs_mask;
575 }
576
577 done_mask |= this_mask;
578 }
579 }
580
581 src_reg
582 ir_to_mesa_visitor::src_reg_for_float(float val)
583 {
584 src_reg src(PROGRAM_CONSTANT, -1, NULL);
585
586 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
587 (const gl_constant_value *)&val, 1, &src.swizzle);
588
589 return src;
590 }
591
592 static int
593 type_size(const struct glsl_type *type)
594 {
595 unsigned int i;
596 int size;
597
598 switch (type->base_type) {
599 case GLSL_TYPE_UINT:
600 case GLSL_TYPE_INT:
601 case GLSL_TYPE_FLOAT:
602 case GLSL_TYPE_BOOL:
603 if (type->is_matrix()) {
604 return type->matrix_columns;
605 } else {
606 /* Regardless of size of vector, it gets a vec4. This is bad
607 * packing for things like floats, but otherwise arrays become a
608 * mess. Hopefully a later pass over the code can pack scalars
609 * down if appropriate.
610 */
611 return 1;
612 }
613 case GLSL_TYPE_ARRAY:
614 assert(type->length > 0);
615 return type_size(type->fields.array) * type->length;
616 case GLSL_TYPE_STRUCT:
617 size = 0;
618 for (i = 0; i < type->length; i++) {
619 size += type_size(type->fields.structure[i].type);
620 }
621 return size;
622 case GLSL_TYPE_SAMPLER:
623 /* Samplers take up one slot in UNIFORMS[], but they're baked in
624 * at link time.
625 */
626 return 1;
627 case GLSL_TYPE_VOID:
628 case GLSL_TYPE_ERROR:
629 case GLSL_TYPE_INTERFACE:
630 assert(!"Invalid type in type_size");
631 break;
632 }
633
634 return 0;
635 }
636
637 /**
638 * In the initial pass of codegen, we assign temporary numbers to
639 * intermediate results. (not SSA -- variable assignments will reuse
640 * storage). Actual register allocation for the Mesa VM occurs in a
641 * pass over the Mesa IR later.
642 */
643 src_reg
644 ir_to_mesa_visitor::get_temp(const glsl_type *type)
645 {
646 src_reg src;
647
648 src.file = PROGRAM_TEMPORARY;
649 src.index = next_temp;
650 src.reladdr = NULL;
651 next_temp += type_size(type);
652
653 if (type->is_array() || type->is_record()) {
654 src.swizzle = SWIZZLE_NOOP;
655 } else {
656 src.swizzle = swizzle_for_size(type->vector_elements);
657 }
658 src.negate = 0;
659
660 return src;
661 }
662
663 variable_storage *
664 ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
665 {
666
667 variable_storage *entry;
668
669 foreach_iter(exec_list_iterator, iter, this->variables) {
670 entry = (variable_storage *)iter.get();
671
672 if (entry->var == var)
673 return entry;
674 }
675
676 return NULL;
677 }
678
679 void
680 ir_to_mesa_visitor::visit(ir_variable *ir)
681 {
682 if (strcmp(ir->name, "gl_FragCoord") == 0) {
683 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
684
685 fp->OriginUpperLeft = ir->origin_upper_left;
686 fp->PixelCenterInteger = ir->pixel_center_integer;
687 }
688
689 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
690 unsigned int i;
691 const ir_state_slot *const slots = ir->state_slots;
692 assert(ir->state_slots != NULL);
693
694 /* Check if this statevar's setup in the STATE file exactly
695 * matches how we'll want to reference it as a
696 * struct/array/whatever. If not, then we need to move it into
697 * temporary storage and hope that it'll get copy-propagated
698 * out.
699 */
700 for (i = 0; i < ir->num_state_slots; i++) {
701 if (slots[i].swizzle != SWIZZLE_XYZW) {
702 break;
703 }
704 }
705
706 variable_storage *storage;
707 dst_reg dst;
708 if (i == ir->num_state_slots) {
709 /* We'll set the index later. */
710 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
711 this->variables.push_tail(storage);
712
713 dst = undef_dst;
714 } else {
715 /* The variable_storage constructor allocates slots based on the size
716 * of the type. However, this had better match the number of state
717 * elements that we're going to copy into the new temporary.
718 */
719 assert((int) ir->num_state_slots == type_size(ir->type));
720
721 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
722 this->next_temp);
723 this->variables.push_tail(storage);
724 this->next_temp += type_size(ir->type);
725
726 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
727 }
728
729
730 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
731 int index = _mesa_add_state_reference(this->prog->Parameters,
732 (gl_state_index *)slots[i].tokens);
733
734 if (storage->file == PROGRAM_STATE_VAR) {
735 if (storage->index == -1) {
736 storage->index = index;
737 } else {
738 assert(index == storage->index + (int)i);
739 }
740 } else {
741 src_reg src(PROGRAM_STATE_VAR, index, NULL);
742 src.swizzle = slots[i].swizzle;
743 emit(ir, OPCODE_MOV, dst, src);
744 /* even a float takes up a whole vec4 reg in a struct/array. */
745 dst.index++;
746 }
747 }
748
749 if (storage->file == PROGRAM_TEMPORARY &&
750 dst.index != storage->index + (int) ir->num_state_slots) {
751 linker_error(this->shader_program,
752 "failed to load builtin uniform `%s' "
753 "(%d/%d regs loaded)\n",
754 ir->name, dst.index - storage->index,
755 type_size(ir->type));
756 }
757 }
758 }
759
760 void
761 ir_to_mesa_visitor::visit(ir_loop *ir)
762 {
763 ir_dereference_variable *counter = NULL;
764
765 if (ir->counter != NULL)
766 counter = new(mem_ctx) ir_dereference_variable(ir->counter);
767
768 if (ir->from != NULL) {
769 assert(ir->counter != NULL);
770
771 ir_assignment *a =
772 new(mem_ctx) ir_assignment(counter, ir->from, NULL);
773
774 a->accept(this);
775 }
776
777 emit(NULL, OPCODE_BGNLOOP);
778
779 if (ir->to) {
780 ir_expression *e =
781 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
782 counter, ir->to);
783 ir_if *if_stmt = new(mem_ctx) ir_if(e);
784
785 ir_loop_jump *brk =
786 new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
787
788 if_stmt->then_instructions.push_tail(brk);
789
790 if_stmt->accept(this);
791 }
792
793 visit_exec_list(&ir->body_instructions, this);
794
795 if (ir->increment) {
796 ir_expression *e =
797 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
798 counter, ir->increment);
799
800 ir_assignment *a =
801 new(mem_ctx) ir_assignment(counter, e, NULL);
802
803 a->accept(this);
804 }
805
806 emit(NULL, OPCODE_ENDLOOP);
807 }
808
809 void
810 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
811 {
812 switch (ir->mode) {
813 case ir_loop_jump::jump_break:
814 emit(NULL, OPCODE_BRK);
815 break;
816 case ir_loop_jump::jump_continue:
817 emit(NULL, OPCODE_CONT);
818 break;
819 }
820 }
821
822
823 void
824 ir_to_mesa_visitor::visit(ir_function_signature *ir)
825 {
826 assert(0);
827 (void)ir;
828 }
829
830 void
831 ir_to_mesa_visitor::visit(ir_function *ir)
832 {
833 /* Ignore function bodies other than main() -- we shouldn't see calls to
834 * them since they should all be inlined before we get to ir_to_mesa.
835 */
836 if (strcmp(ir->name, "main") == 0) {
837 const ir_function_signature *sig;
838 exec_list empty;
839
840 sig = ir->matching_signature(NULL, &empty);
841
842 assert(sig);
843
844 foreach_iter(exec_list_iterator, iter, sig->body) {
845 ir_instruction *ir = (ir_instruction *)iter.get();
846
847 ir->accept(this);
848 }
849 }
850 }
851
852 bool
853 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
854 {
855 int nonmul_operand = 1 - mul_operand;
856 src_reg a, b, c;
857
858 ir_expression *expr = ir->operands[mul_operand]->as_expression();
859 if (!expr || expr->operation != ir_binop_mul)
860 return false;
861
862 expr->operands[0]->accept(this);
863 a = this->result;
864 expr->operands[1]->accept(this);
865 b = this->result;
866 ir->operands[nonmul_operand]->accept(this);
867 c = this->result;
868
869 this->result = get_temp(ir->type);
870 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
871
872 return true;
873 }
874
875 /**
876 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
877 *
878 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
879 * implemented using multiplication, and logical-or is implemented using
880 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
881 * As result, the logical expression (a & !b) can be rewritten as:
882 *
883 * - a * !b
884 * - a * (1 - b)
885 * - (a * 1) - (a * b)
886 * - a + -(a * b)
887 * - a + (a * -b)
888 *
889 * This final expression can be implemented as a single MAD(a, -b, a)
890 * instruction.
891 */
892 bool
893 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
894 {
895 const int other_operand = 1 - try_operand;
896 src_reg a, b;
897
898 ir_expression *expr = ir->operands[try_operand]->as_expression();
899 if (!expr || expr->operation != ir_unop_logic_not)
900 return false;
901
902 ir->operands[other_operand]->accept(this);
903 a = this->result;
904 expr->operands[0]->accept(this);
905 b = this->result;
906
907 b.negate = ~b.negate;
908
909 this->result = get_temp(ir->type);
910 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
911
912 return true;
913 }
914
915 bool
916 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
917 {
918 /* Saturates were only introduced to vertex programs in
919 * NV_vertex_program3, so don't give them to drivers in the VP.
920 */
921 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
922 return false;
923
924 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
925 if (!sat_src)
926 return false;
927
928 sat_src->accept(this);
929 src_reg src = this->result;
930
931 /* If we generated an expression instruction into a temporary in
932 * processing the saturate's operand, apply the saturate to that
933 * instruction. Otherwise, generate a MOV to do the saturate.
934 *
935 * Note that we have to be careful to only do this optimization if
936 * the instruction in question was what generated src->result. For
937 * example, ir_dereference_array might generate a MUL instruction
938 * to create the reladdr, and return us a src reg using that
939 * reladdr. That MUL result is not the value we're trying to
940 * saturate.
941 */
942 ir_expression *sat_src_expr = sat_src->as_expression();
943 ir_to_mesa_instruction *new_inst;
944 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
945 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
946 sat_src_expr->operation == ir_binop_add ||
947 sat_src_expr->operation == ir_binop_dot)) {
948 new_inst->saturate = true;
949 } else {
950 this->result = get_temp(ir->type);
951 ir_to_mesa_instruction *inst;
952 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
953 inst->saturate = true;
954 }
955
956 return true;
957 }
958
959 void
960 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
961 src_reg *reg, int *num_reladdr)
962 {
963 if (!reg->reladdr)
964 return;
965
966 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
967
968 if (*num_reladdr != 1) {
969 src_reg temp = get_temp(glsl_type::vec4_type);
970
971 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
972 *reg = temp;
973 }
974
975 (*num_reladdr)--;
976 }
977
978 void
979 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
980 {
981 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
982 * This means that each of the operands is either an immediate value of -1,
983 * 0, or 1, or is a component from one source register (possibly with
984 * negation).
985 */
986 uint8_t components[4] = { 0 };
987 bool negate[4] = { false };
988 ir_variable *var = NULL;
989
990 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
991 ir_rvalue *op = ir->operands[i];
992
993 assert(op->type->is_scalar());
994
995 while (op != NULL) {
996 switch (op->ir_type) {
997 case ir_type_constant: {
998
999 assert(op->type->is_scalar());
1000
1001 const ir_constant *const c = op->as_constant();
1002 if (c->is_one()) {
1003 components[i] = SWIZZLE_ONE;
1004 } else if (c->is_zero()) {
1005 components[i] = SWIZZLE_ZERO;
1006 } else if (c->is_negative_one()) {
1007 components[i] = SWIZZLE_ONE;
1008 negate[i] = true;
1009 } else {
1010 assert(!"SWZ constant must be 0.0 or 1.0.");
1011 }
1012
1013 op = NULL;
1014 break;
1015 }
1016
1017 case ir_type_dereference_variable: {
1018 ir_dereference_variable *const deref =
1019 (ir_dereference_variable *) op;
1020
1021 assert((var == NULL) || (deref->var == var));
1022 components[i] = SWIZZLE_X;
1023 var = deref->var;
1024 op = NULL;
1025 break;
1026 }
1027
1028 case ir_type_expression: {
1029 ir_expression *const expr = (ir_expression *) op;
1030
1031 assert(expr->operation == ir_unop_neg);
1032 negate[i] = true;
1033
1034 op = expr->operands[0];
1035 break;
1036 }
1037
1038 case ir_type_swizzle: {
1039 ir_swizzle *const swiz = (ir_swizzle *) op;
1040
1041 components[i] = swiz->mask.x;
1042 op = swiz->val;
1043 break;
1044 }
1045
1046 default:
1047 assert(!"Should not get here.");
1048 return;
1049 }
1050 }
1051 }
1052
1053 assert(var != NULL);
1054
1055 ir_dereference_variable *const deref =
1056 new(mem_ctx) ir_dereference_variable(var);
1057
1058 this->result.file = PROGRAM_UNDEFINED;
1059 deref->accept(this);
1060 if (this->result.file == PROGRAM_UNDEFINED) {
1061 printf("Failed to get tree for expression operand:\n");
1062 deref->print();
1063 printf("\n");
1064 exit(1);
1065 }
1066
1067 src_reg src;
1068
1069 src = this->result;
1070 src.swizzle = MAKE_SWIZZLE4(components[0],
1071 components[1],
1072 components[2],
1073 components[3]);
1074 src.negate = ((unsigned(negate[0]) << 0)
1075 | (unsigned(negate[1]) << 1)
1076 | (unsigned(negate[2]) << 2)
1077 | (unsigned(negate[3]) << 3));
1078
1079 /* Storage for our result. Ideally for an assignment we'd be using the
1080 * actual storage for the result here, instead.
1081 */
1082 const src_reg result_src = get_temp(ir->type);
1083 dst_reg result_dst = dst_reg(result_src);
1084
1085 /* Limit writes to the channels that will be used by result_src later.
1086 * This does limit this temp's use as a temporary for multi-instruction
1087 * sequences.
1088 */
1089 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1090
1091 emit(ir, OPCODE_SWZ, result_dst, src);
1092 this->result = result_src;
1093 }
1094
1095 void
1096 ir_to_mesa_visitor::visit(ir_expression *ir)
1097 {
1098 unsigned int operand;
1099 src_reg op[Elements(ir->operands)];
1100 src_reg result_src;
1101 dst_reg result_dst;
1102
1103 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1104 */
1105 if (ir->operation == ir_binop_add) {
1106 if (try_emit_mad(ir, 1))
1107 return;
1108 if (try_emit_mad(ir, 0))
1109 return;
1110 }
1111
1112 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1113 */
1114 if (ir->operation == ir_binop_logic_and) {
1115 if (try_emit_mad_for_and_not(ir, 1))
1116 return;
1117 if (try_emit_mad_for_and_not(ir, 0))
1118 return;
1119 }
1120
1121 if (try_emit_sat(ir))
1122 return;
1123
1124 if (ir->operation == ir_quadop_vector) {
1125 this->emit_swz(ir);
1126 return;
1127 }
1128
1129 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1130 this->result.file = PROGRAM_UNDEFINED;
1131 ir->operands[operand]->accept(this);
1132 if (this->result.file == PROGRAM_UNDEFINED) {
1133 printf("Failed to get tree for expression operand:\n");
1134 ir->operands[operand]->print();
1135 printf("\n");
1136 exit(1);
1137 }
1138 op[operand] = this->result;
1139
1140 /* Matrix expression operands should have been broken down to vector
1141 * operations already.
1142 */
1143 assert(!ir->operands[operand]->type->is_matrix());
1144 }
1145
1146 int vector_elements = ir->operands[0]->type->vector_elements;
1147 if (ir->operands[1]) {
1148 vector_elements = MAX2(vector_elements,
1149 ir->operands[1]->type->vector_elements);
1150 }
1151
1152 this->result.file = PROGRAM_UNDEFINED;
1153
1154 /* Storage for our result. Ideally for an assignment we'd be using
1155 * the actual storage for the result here, instead.
1156 */
1157 result_src = get_temp(ir->type);
1158 /* convenience for the emit functions below. */
1159 result_dst = dst_reg(result_src);
1160 /* Limit writes to the channels that will be used by result_src later.
1161 * This does limit this temp's use as a temporary for multi-instruction
1162 * sequences.
1163 */
1164 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1165
1166 switch (ir->operation) {
1167 case ir_unop_logic_not:
1168 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1169 * older GPUs implement SEQ using multiple instructions (i915 uses two
1170 * SGE instructions and a MUL instruction). Since our logic values are
1171 * 0.0 and 1.0, 1-x also implements !x.
1172 */
1173 op[0].negate = ~op[0].negate;
1174 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1175 break;
1176 case ir_unop_neg:
1177 op[0].negate = ~op[0].negate;
1178 result_src = op[0];
1179 break;
1180 case ir_unop_abs:
1181 emit(ir, OPCODE_ABS, result_dst, op[0]);
1182 break;
1183 case ir_unop_sign:
1184 emit(ir, OPCODE_SSG, result_dst, op[0]);
1185 break;
1186 case ir_unop_rcp:
1187 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1188 break;
1189
1190 case ir_unop_exp2:
1191 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1192 break;
1193 case ir_unop_exp:
1194 case ir_unop_log:
1195 assert(!"not reached: should be handled by ir_explog_to_explog2");
1196 break;
1197 case ir_unop_log2:
1198 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1199 break;
1200 case ir_unop_sin:
1201 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1202 break;
1203 case ir_unop_cos:
1204 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1205 break;
1206 case ir_unop_sin_reduced:
1207 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1208 break;
1209 case ir_unop_cos_reduced:
1210 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1211 break;
1212
1213 case ir_unop_dFdx:
1214 emit(ir, OPCODE_DDX, result_dst, op[0]);
1215 break;
1216 case ir_unop_dFdy:
1217 emit(ir, OPCODE_DDY, result_dst, op[0]);
1218 break;
1219
1220 case ir_unop_noise: {
1221 const enum prog_opcode opcode =
1222 prog_opcode(OPCODE_NOISE1
1223 + (ir->operands[0]->type->vector_elements) - 1);
1224 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1225
1226 emit(ir, opcode, result_dst, op[0]);
1227 break;
1228 }
1229
1230 case ir_binop_add:
1231 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1232 break;
1233 case ir_binop_sub:
1234 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1235 break;
1236
1237 case ir_binop_mul:
1238 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1239 break;
1240 case ir_binop_div:
1241 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1242 break;
1243 case ir_binop_mod:
1244 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1245 assert(ir->type->is_integer());
1246 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1247 break;
1248
1249 case ir_binop_less:
1250 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1251 break;
1252 case ir_binop_greater:
1253 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1254 break;
1255 case ir_binop_lequal:
1256 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1257 break;
1258 case ir_binop_gequal:
1259 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1260 break;
1261 case ir_binop_equal:
1262 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1263 break;
1264 case ir_binop_nequal:
1265 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1266 break;
1267 case ir_binop_all_equal:
1268 /* "==" operator producing a scalar boolean. */
1269 if (ir->operands[0]->type->is_vector() ||
1270 ir->operands[1]->type->is_vector()) {
1271 src_reg temp = get_temp(glsl_type::vec4_type);
1272 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1273
1274 /* After the dot-product, the value will be an integer on the
1275 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1276 */
1277 emit_dp(ir, result_dst, temp, temp, vector_elements);
1278
1279 /* Negating the result of the dot-product gives values on the range
1280 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1281 * achieved using SGE.
1282 */
1283 src_reg sge_src = result_src;
1284 sge_src.negate = ~sge_src.negate;
1285 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1286 } else {
1287 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1288 }
1289 break;
1290 case ir_binop_any_nequal:
1291 /* "!=" operator producing a scalar boolean. */
1292 if (ir->operands[0]->type->is_vector() ||
1293 ir->operands[1]->type->is_vector()) {
1294 src_reg temp = get_temp(glsl_type::vec4_type);
1295 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1296
1297 /* After the dot-product, the value will be an integer on the
1298 * range [0,4]. Zero stays zero, and positive values become 1.0.
1299 */
1300 ir_to_mesa_instruction *const dp =
1301 emit_dp(ir, result_dst, temp, temp, vector_elements);
1302 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1303 /* The clamping to [0,1] can be done for free in the fragment
1304 * shader with a saturate.
1305 */
1306 dp->saturate = true;
1307 } else {
1308 /* Negating the result of the dot-product gives values on the range
1309 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1310 * achieved using SLT.
1311 */
1312 src_reg slt_src = result_src;
1313 slt_src.negate = ~slt_src.negate;
1314 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1315 }
1316 } else {
1317 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1318 }
1319 break;
1320
1321 case ir_unop_any: {
1322 assert(ir->operands[0]->type->is_vector());
1323
1324 /* After the dot-product, the value will be an integer on the
1325 * range [0,4]. Zero stays zero, and positive values become 1.0.
1326 */
1327 ir_to_mesa_instruction *const dp =
1328 emit_dp(ir, result_dst, op[0], op[0],
1329 ir->operands[0]->type->vector_elements);
1330 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1331 /* The clamping to [0,1] can be done for free in the fragment
1332 * shader with a saturate.
1333 */
1334 dp->saturate = true;
1335 } else {
1336 /* Negating the result of the dot-product gives values on the range
1337 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1338 * is achieved using SLT.
1339 */
1340 src_reg slt_src = result_src;
1341 slt_src.negate = ~slt_src.negate;
1342 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1343 }
1344 break;
1345 }
1346
1347 case ir_binop_logic_xor:
1348 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1349 break;
1350
1351 case ir_binop_logic_or: {
1352 /* After the addition, the value will be an integer on the
1353 * range [0,2]. Zero stays zero, and positive values become 1.0.
1354 */
1355 ir_to_mesa_instruction *add =
1356 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1357 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1358 /* The clamping to [0,1] can be done for free in the fragment
1359 * shader with a saturate.
1360 */
1361 add->saturate = true;
1362 } else {
1363 /* Negating the result of the addition gives values on the range
1364 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1365 * is achieved using SLT.
1366 */
1367 src_reg slt_src = result_src;
1368 slt_src.negate = ~slt_src.negate;
1369 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1370 }
1371 break;
1372 }
1373
1374 case ir_binop_logic_and:
1375 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1376 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1377 break;
1378
1379 case ir_binop_dot:
1380 assert(ir->operands[0]->type->is_vector());
1381 assert(ir->operands[0]->type == ir->operands[1]->type);
1382 emit_dp(ir, result_dst, op[0], op[1],
1383 ir->operands[0]->type->vector_elements);
1384 break;
1385
1386 case ir_unop_sqrt:
1387 /* sqrt(x) = x * rsq(x). */
1388 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1389 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1390 /* For incoming channels <= 0, set the result to 0. */
1391 op[0].negate = ~op[0].negate;
1392 emit(ir, OPCODE_CMP, result_dst,
1393 op[0], result_src, src_reg_for_float(0.0));
1394 break;
1395 case ir_unop_rsq:
1396 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1397 break;
1398 case ir_unop_i2f:
1399 case ir_unop_u2f:
1400 case ir_unop_b2f:
1401 case ir_unop_b2i:
1402 case ir_unop_i2u:
1403 case ir_unop_u2i:
1404 /* Mesa IR lacks types, ints are stored as truncated floats. */
1405 result_src = op[0];
1406 break;
1407 case ir_unop_f2i:
1408 case ir_unop_f2u:
1409 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1410 break;
1411 case ir_unop_f2b:
1412 case ir_unop_i2b:
1413 emit(ir, OPCODE_SNE, result_dst,
1414 op[0], src_reg_for_float(0.0));
1415 break;
1416 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1417 case ir_unop_bitcast_f2u:
1418 case ir_unop_bitcast_i2f:
1419 case ir_unop_bitcast_u2f:
1420 break;
1421 case ir_unop_trunc:
1422 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1423 break;
1424 case ir_unop_ceil:
1425 op[0].negate = ~op[0].negate;
1426 emit(ir, OPCODE_FLR, result_dst, op[0]);
1427 result_src.negate = ~result_src.negate;
1428 break;
1429 case ir_unop_floor:
1430 emit(ir, OPCODE_FLR, result_dst, op[0]);
1431 break;
1432 case ir_unop_fract:
1433 emit(ir, OPCODE_FRC, result_dst, op[0]);
1434 break;
1435 case ir_unop_pack_snorm_2x16:
1436 case ir_unop_pack_snorm_4x8:
1437 case ir_unop_pack_unorm_2x16:
1438 case ir_unop_pack_unorm_4x8:
1439 case ir_unop_pack_half_2x16:
1440 case ir_unop_unpack_snorm_2x16:
1441 case ir_unop_unpack_snorm_4x8:
1442 case ir_unop_unpack_unorm_2x16:
1443 case ir_unop_unpack_unorm_4x8:
1444 case ir_unop_unpack_half_2x16:
1445 case ir_unop_unpack_half_2x16_split_x:
1446 case ir_unop_unpack_half_2x16_split_y:
1447 case ir_binop_pack_half_2x16_split:
1448 case ir_unop_bitfield_reverse:
1449 case ir_unop_bit_count:
1450 case ir_unop_find_msb:
1451 case ir_unop_find_lsb:
1452 assert(!"not supported");
1453 break;
1454 case ir_binop_min:
1455 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1456 break;
1457 case ir_binop_max:
1458 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1459 break;
1460 case ir_binop_pow:
1461 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1462 break;
1463
1464 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1465 * hardware backends have no way to avoid Mesa IR generation
1466 * even if they don't use it, we need to emit "something" and
1467 * continue.
1468 */
1469 case ir_binop_lshift:
1470 case ir_binop_rshift:
1471 case ir_binop_bit_and:
1472 case ir_binop_bit_xor:
1473 case ir_binop_bit_or:
1474 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1475 break;
1476
1477 case ir_unop_bit_not:
1478 case ir_unop_round_even:
1479 emit(ir, OPCODE_MOV, result_dst, op[0]);
1480 break;
1481
1482 case ir_binop_ubo_load:
1483 assert(!"not supported");
1484 break;
1485
1486 case ir_triop_lrp:
1487 /* ir_triop_lrp operands are (x, y, a) while
1488 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1489 */
1490 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1491 break;
1492
1493 case ir_binop_vector_extract:
1494 case ir_binop_bfm:
1495 case ir_triop_fma:
1496 case ir_triop_bfi:
1497 case ir_triop_bitfield_extract:
1498 case ir_triop_vector_insert:
1499 case ir_quadop_bitfield_insert:
1500 case ir_binop_ldexp:
1501 case ir_triop_csel:
1502 assert(!"not supported");
1503 break;
1504
1505 case ir_quadop_vector:
1506 /* This operation should have already been handled.
1507 */
1508 assert(!"Should not get here.");
1509 break;
1510 }
1511
1512 this->result = result_src;
1513 }
1514
1515
1516 void
1517 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1518 {
1519 src_reg src;
1520 int i;
1521 int swizzle[4];
1522
1523 /* Note that this is only swizzles in expressions, not those on the left
1524 * hand side of an assignment, which do write masking. See ir_assignment
1525 * for that.
1526 */
1527
1528 ir->val->accept(this);
1529 src = this->result;
1530 assert(src.file != PROGRAM_UNDEFINED);
1531
1532 for (i = 0; i < 4; i++) {
1533 if (i < ir->type->vector_elements) {
1534 switch (i) {
1535 case 0:
1536 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1537 break;
1538 case 1:
1539 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1540 break;
1541 case 2:
1542 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1543 break;
1544 case 3:
1545 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1546 break;
1547 }
1548 } else {
1549 /* If the type is smaller than a vec4, replicate the last
1550 * channel out.
1551 */
1552 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1553 }
1554 }
1555
1556 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1557
1558 this->result = src;
1559 }
1560
1561 void
1562 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1563 {
1564 variable_storage *entry = find_variable_storage(ir->var);
1565 ir_variable *var = ir->var;
1566
1567 if (!entry) {
1568 switch (var->mode) {
1569 case ir_var_uniform:
1570 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1571 var->location);
1572 this->variables.push_tail(entry);
1573 break;
1574 case ir_var_shader_in:
1575 /* The linker assigns locations for varyings and attributes,
1576 * including deprecated builtins (like gl_Color),
1577 * user-assigned generic attributes (glBindVertexLocation),
1578 * and user-defined varyings.
1579 */
1580 assert(var->location != -1);
1581 entry = new(mem_ctx) variable_storage(var,
1582 PROGRAM_INPUT,
1583 var->location);
1584 break;
1585 case ir_var_shader_out:
1586 assert(var->location != -1);
1587 entry = new(mem_ctx) variable_storage(var,
1588 PROGRAM_OUTPUT,
1589 var->location);
1590 break;
1591 case ir_var_system_value:
1592 entry = new(mem_ctx) variable_storage(var,
1593 PROGRAM_SYSTEM_VALUE,
1594 var->location);
1595 break;
1596 case ir_var_auto:
1597 case ir_var_temporary:
1598 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1599 this->next_temp);
1600 this->variables.push_tail(entry);
1601
1602 next_temp += type_size(var->type);
1603 break;
1604 }
1605
1606 if (!entry) {
1607 printf("Failed to make storage for %s\n", var->name);
1608 exit(1);
1609 }
1610 }
1611
1612 this->result = src_reg(entry->file, entry->index, var->type);
1613 }
1614
1615 void
1616 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1617 {
1618 ir_constant *index;
1619 src_reg src;
1620 int element_size = type_size(ir->type);
1621
1622 index = ir->array_index->constant_expression_value();
1623
1624 ir->array->accept(this);
1625 src = this->result;
1626
1627 if (index) {
1628 src.index += index->value.i[0] * element_size;
1629 } else {
1630 /* Variable index array dereference. It eats the "vec4" of the
1631 * base of the array and an index that offsets the Mesa register
1632 * index.
1633 */
1634 ir->array_index->accept(this);
1635
1636 src_reg index_reg;
1637
1638 if (element_size == 1) {
1639 index_reg = this->result;
1640 } else {
1641 index_reg = get_temp(glsl_type::float_type);
1642
1643 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1644 this->result, src_reg_for_float(element_size));
1645 }
1646
1647 /* If there was already a relative address register involved, add the
1648 * new and the old together to get the new offset.
1649 */
1650 if (src.reladdr != NULL) {
1651 src_reg accum_reg = get_temp(glsl_type::float_type);
1652
1653 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1654 index_reg, *src.reladdr);
1655
1656 index_reg = accum_reg;
1657 }
1658
1659 src.reladdr = ralloc(mem_ctx, src_reg);
1660 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1661 }
1662
1663 /* If the type is smaller than a vec4, replicate the last channel out. */
1664 if (ir->type->is_scalar() || ir->type->is_vector())
1665 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1666 else
1667 src.swizzle = SWIZZLE_NOOP;
1668
1669 this->result = src;
1670 }
1671
1672 void
1673 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1674 {
1675 unsigned int i;
1676 const glsl_type *struct_type = ir->record->type;
1677 int offset = 0;
1678
1679 ir->record->accept(this);
1680
1681 for (i = 0; i < struct_type->length; i++) {
1682 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1683 break;
1684 offset += type_size(struct_type->fields.structure[i].type);
1685 }
1686
1687 /* If the type is smaller than a vec4, replicate the last channel out. */
1688 if (ir->type->is_scalar() || ir->type->is_vector())
1689 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1690 else
1691 this->result.swizzle = SWIZZLE_NOOP;
1692
1693 this->result.index += offset;
1694 }
1695
1696 /**
1697 * We want to be careful in assignment setup to hit the actual storage
1698 * instead of potentially using a temporary like we might with the
1699 * ir_dereference handler.
1700 */
1701 static dst_reg
1702 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1703 {
1704 /* The LHS must be a dereference. If the LHS is a variable indexed array
1705 * access of a vector, it must be separated into a series conditional moves
1706 * before reaching this point (see ir_vec_index_to_cond_assign).
1707 */
1708 assert(ir->as_dereference());
1709 ir_dereference_array *deref_array = ir->as_dereference_array();
1710 if (deref_array) {
1711 assert(!deref_array->array->type->is_vector());
1712 }
1713
1714 /* Use the rvalue deref handler for the most part. We'll ignore
1715 * swizzles in it and write swizzles using writemask, though.
1716 */
1717 ir->accept(v);
1718 return dst_reg(v->result);
1719 }
1720
1721 /**
1722 * Process the condition of a conditional assignment
1723 *
1724 * Examines the condition of a conditional assignment to generate the optimal
1725 * first operand of a \c CMP instruction. If the condition is a relational
1726 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1727 * used as the source for the \c CMP instruction. Otherwise the comparison
1728 * is processed to a boolean result, and the boolean result is used as the
1729 * operand to the CMP instruction.
1730 */
1731 bool
1732 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1733 {
1734 ir_rvalue *src_ir = ir;
1735 bool negate = true;
1736 bool switch_order = false;
1737
1738 ir_expression *const expr = ir->as_expression();
1739 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1740 bool zero_on_left = false;
1741
1742 if (expr->operands[0]->is_zero()) {
1743 src_ir = expr->operands[1];
1744 zero_on_left = true;
1745 } else if (expr->operands[1]->is_zero()) {
1746 src_ir = expr->operands[0];
1747 zero_on_left = false;
1748 }
1749
1750 /* a is - 0 + - 0 +
1751 * (a < 0) T F F ( a < 0) T F F
1752 * (0 < a) F F T (-a < 0) F F T
1753 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1754 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1755 * (a > 0) F F T (-a < 0) F F T
1756 * (0 > a) T F F ( a < 0) T F F
1757 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1758 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1759 *
1760 * Note that exchanging the order of 0 and 'a' in the comparison simply
1761 * means that the value of 'a' should be negated.
1762 */
1763 if (src_ir != ir) {
1764 switch (expr->operation) {
1765 case ir_binop_less:
1766 switch_order = false;
1767 negate = zero_on_left;
1768 break;
1769
1770 case ir_binop_greater:
1771 switch_order = false;
1772 negate = !zero_on_left;
1773 break;
1774
1775 case ir_binop_lequal:
1776 switch_order = true;
1777 negate = !zero_on_left;
1778 break;
1779
1780 case ir_binop_gequal:
1781 switch_order = true;
1782 negate = zero_on_left;
1783 break;
1784
1785 default:
1786 /* This isn't the right kind of comparison afterall, so make sure
1787 * the whole condition is visited.
1788 */
1789 src_ir = ir;
1790 break;
1791 }
1792 }
1793 }
1794
1795 src_ir->accept(this);
1796
1797 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1798 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1799 * choose which value OPCODE_CMP produces without an extra instruction
1800 * computing the condition.
1801 */
1802 if (negate)
1803 this->result.negate = ~this->result.negate;
1804
1805 return switch_order;
1806 }
1807
1808 void
1809 ir_to_mesa_visitor::visit(ir_assignment *ir)
1810 {
1811 dst_reg l;
1812 src_reg r;
1813 int i;
1814
1815 ir->rhs->accept(this);
1816 r = this->result;
1817
1818 l = get_assignment_lhs(ir->lhs, this);
1819
1820 /* FINISHME: This should really set to the correct maximal writemask for each
1821 * FINISHME: component written (in the loops below). This case can only
1822 * FINISHME: occur for matrices, arrays, and structures.
1823 */
1824 if (ir->write_mask == 0) {
1825 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1826 l.writemask = WRITEMASK_XYZW;
1827 } else if (ir->lhs->type->is_scalar()) {
1828 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1829 * FINISHME: W component of fragment shader output zero, work correctly.
1830 */
1831 l.writemask = WRITEMASK_XYZW;
1832 } else {
1833 int swizzles[4];
1834 int first_enabled_chan = 0;
1835 int rhs_chan = 0;
1836
1837 assert(ir->lhs->type->is_vector());
1838 l.writemask = ir->write_mask;
1839
1840 for (int i = 0; i < 4; i++) {
1841 if (l.writemask & (1 << i)) {
1842 first_enabled_chan = GET_SWZ(r.swizzle, i);
1843 break;
1844 }
1845 }
1846
1847 /* Swizzle a small RHS vector into the channels being written.
1848 *
1849 * glsl ir treats write_mask as dictating how many channels are
1850 * present on the RHS while Mesa IR treats write_mask as just
1851 * showing which channels of the vec4 RHS get written.
1852 */
1853 for (int i = 0; i < 4; i++) {
1854 if (l.writemask & (1 << i))
1855 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1856 else
1857 swizzles[i] = first_enabled_chan;
1858 }
1859 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1860 swizzles[2], swizzles[3]);
1861 }
1862
1863 assert(l.file != PROGRAM_UNDEFINED);
1864 assert(r.file != PROGRAM_UNDEFINED);
1865
1866 if (ir->condition) {
1867 const bool switch_order = this->process_move_condition(ir->condition);
1868 src_reg condition = this->result;
1869
1870 for (i = 0; i < type_size(ir->lhs->type); i++) {
1871 if (switch_order) {
1872 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1873 } else {
1874 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1875 }
1876
1877 l.index++;
1878 r.index++;
1879 }
1880 } else {
1881 for (i = 0; i < type_size(ir->lhs->type); i++) {
1882 emit(ir, OPCODE_MOV, l, r);
1883 l.index++;
1884 r.index++;
1885 }
1886 }
1887 }
1888
1889
1890 void
1891 ir_to_mesa_visitor::visit(ir_constant *ir)
1892 {
1893 src_reg src;
1894 GLfloat stack_vals[4] = { 0 };
1895 GLfloat *values = stack_vals;
1896 unsigned int i;
1897
1898 /* Unfortunately, 4 floats is all we can get into
1899 * _mesa_add_unnamed_constant. So, make a temp to store an
1900 * aggregate constant and move each constant value into it. If we
1901 * get lucky, copy propagation will eliminate the extra moves.
1902 */
1903
1904 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1905 src_reg temp_base = get_temp(ir->type);
1906 dst_reg temp = dst_reg(temp_base);
1907
1908 foreach_iter(exec_list_iterator, iter, ir->components) {
1909 ir_constant *field_value = (ir_constant *)iter.get();
1910 int size = type_size(field_value->type);
1911
1912 assert(size > 0);
1913
1914 field_value->accept(this);
1915 src = this->result;
1916
1917 for (i = 0; i < (unsigned int)size; i++) {
1918 emit(ir, OPCODE_MOV, temp, src);
1919
1920 src.index++;
1921 temp.index++;
1922 }
1923 }
1924 this->result = temp_base;
1925 return;
1926 }
1927
1928 if (ir->type->is_array()) {
1929 src_reg temp_base = get_temp(ir->type);
1930 dst_reg temp = dst_reg(temp_base);
1931 int size = type_size(ir->type->fields.array);
1932
1933 assert(size > 0);
1934
1935 for (i = 0; i < ir->type->length; i++) {
1936 ir->array_elements[i]->accept(this);
1937 src = this->result;
1938 for (int j = 0; j < size; j++) {
1939 emit(ir, OPCODE_MOV, temp, src);
1940
1941 src.index++;
1942 temp.index++;
1943 }
1944 }
1945 this->result = temp_base;
1946 return;
1947 }
1948
1949 if (ir->type->is_matrix()) {
1950 src_reg mat = get_temp(ir->type);
1951 dst_reg mat_column = dst_reg(mat);
1952
1953 for (i = 0; i < ir->type->matrix_columns; i++) {
1954 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1955 values = &ir->value.f[i * ir->type->vector_elements];
1956
1957 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1958 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1959 (gl_constant_value *) values,
1960 ir->type->vector_elements,
1961 &src.swizzle);
1962 emit(ir, OPCODE_MOV, mat_column, src);
1963
1964 mat_column.index++;
1965 }
1966
1967 this->result = mat;
1968 return;
1969 }
1970
1971 src.file = PROGRAM_CONSTANT;
1972 switch (ir->type->base_type) {
1973 case GLSL_TYPE_FLOAT:
1974 values = &ir->value.f[0];
1975 break;
1976 case GLSL_TYPE_UINT:
1977 for (i = 0; i < ir->type->vector_elements; i++) {
1978 values[i] = ir->value.u[i];
1979 }
1980 break;
1981 case GLSL_TYPE_INT:
1982 for (i = 0; i < ir->type->vector_elements; i++) {
1983 values[i] = ir->value.i[i];
1984 }
1985 break;
1986 case GLSL_TYPE_BOOL:
1987 for (i = 0; i < ir->type->vector_elements; i++) {
1988 values[i] = ir->value.b[i];
1989 }
1990 break;
1991 default:
1992 assert(!"Non-float/uint/int/bool constant");
1993 }
1994
1995 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1996 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1997 (gl_constant_value *) values,
1998 ir->type->vector_elements,
1999 &this->result.swizzle);
2000 }
2001
2002 void
2003 ir_to_mesa_visitor::visit(ir_call *ir)
2004 {
2005 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
2006 }
2007
2008 void
2009 ir_to_mesa_visitor::visit(ir_texture *ir)
2010 {
2011 src_reg result_src, coord, lod_info, projector, dx, dy;
2012 dst_reg result_dst, coord_dst;
2013 ir_to_mesa_instruction *inst = NULL;
2014 prog_opcode opcode = OPCODE_NOP;
2015
2016 if (ir->op == ir_txs)
2017 this->result = src_reg_for_float(0.0);
2018 else
2019 ir->coordinate->accept(this);
2020
2021 /* Put our coords in a temp. We'll need to modify them for shadow,
2022 * projection, or LOD, so the only case we'd use it as is is if
2023 * we're doing plain old texturing. Mesa IR optimization should
2024 * handle cleaning up our mess in that case.
2025 */
2026 coord = get_temp(glsl_type::vec4_type);
2027 coord_dst = dst_reg(coord);
2028 emit(ir, OPCODE_MOV, coord_dst, this->result);
2029
2030 if (ir->projector) {
2031 ir->projector->accept(this);
2032 projector = this->result;
2033 }
2034
2035 /* Storage for our result. Ideally for an assignment we'd be using
2036 * the actual storage for the result here, instead.
2037 */
2038 result_src = get_temp(glsl_type::vec4_type);
2039 result_dst = dst_reg(result_src);
2040
2041 switch (ir->op) {
2042 case ir_tex:
2043 case ir_txs:
2044 opcode = OPCODE_TEX;
2045 break;
2046 case ir_txb:
2047 opcode = OPCODE_TXB;
2048 ir->lod_info.bias->accept(this);
2049 lod_info = this->result;
2050 break;
2051 case ir_txf:
2052 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2053 case ir_txl:
2054 opcode = OPCODE_TXL;
2055 ir->lod_info.lod->accept(this);
2056 lod_info = this->result;
2057 break;
2058 case ir_txd:
2059 opcode = OPCODE_TXD;
2060 ir->lod_info.grad.dPdx->accept(this);
2061 dx = this->result;
2062 ir->lod_info.grad.dPdy->accept(this);
2063 dy = this->result;
2064 break;
2065 case ir_txf_ms:
2066 assert(!"Unexpected ir_txf_ms opcode");
2067 break;
2068 case ir_lod:
2069 assert(!"Unexpected ir_lod opcode");
2070 break;
2071 }
2072
2073 const glsl_type *sampler_type = ir->sampler->type;
2074
2075 if (ir->projector) {
2076 if (opcode == OPCODE_TEX) {
2077 /* Slot the projector in as the last component of the coord. */
2078 coord_dst.writemask = WRITEMASK_W;
2079 emit(ir, OPCODE_MOV, coord_dst, projector);
2080 coord_dst.writemask = WRITEMASK_XYZW;
2081 opcode = OPCODE_TXP;
2082 } else {
2083 src_reg coord_w = coord;
2084 coord_w.swizzle = SWIZZLE_WWWW;
2085
2086 /* For the other TEX opcodes there's no projective version
2087 * since the last slot is taken up by lod info. Do the
2088 * projective divide now.
2089 */
2090 coord_dst.writemask = WRITEMASK_W;
2091 emit(ir, OPCODE_RCP, coord_dst, projector);
2092
2093 /* In the case where we have to project the coordinates "by hand,"
2094 * the shadow comparitor value must also be projected.
2095 */
2096 src_reg tmp_src = coord;
2097 if (ir->shadow_comparitor) {
2098 /* Slot the shadow value in as the second to last component of the
2099 * coord.
2100 */
2101 ir->shadow_comparitor->accept(this);
2102
2103 tmp_src = get_temp(glsl_type::vec4_type);
2104 dst_reg tmp_dst = dst_reg(tmp_src);
2105
2106 /* Projective division not allowed for array samplers. */
2107 assert(!sampler_type->sampler_array);
2108
2109 tmp_dst.writemask = WRITEMASK_Z;
2110 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2111
2112 tmp_dst.writemask = WRITEMASK_XY;
2113 emit(ir, OPCODE_MOV, tmp_dst, coord);
2114 }
2115
2116 coord_dst.writemask = WRITEMASK_XYZ;
2117 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2118
2119 coord_dst.writemask = WRITEMASK_XYZW;
2120 coord.swizzle = SWIZZLE_XYZW;
2121 }
2122 }
2123
2124 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2125 * comparitor was put in the correct place (and projected) by the code,
2126 * above, that handles by-hand projection.
2127 */
2128 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2129 /* Slot the shadow value in as the second to last component of the
2130 * coord.
2131 */
2132 ir->shadow_comparitor->accept(this);
2133
2134 /* XXX This will need to be updated for cubemap array samplers. */
2135 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2136 sampler_type->sampler_array) {
2137 coord_dst.writemask = WRITEMASK_W;
2138 } else {
2139 coord_dst.writemask = WRITEMASK_Z;
2140 }
2141
2142 emit(ir, OPCODE_MOV, coord_dst, this->result);
2143 coord_dst.writemask = WRITEMASK_XYZW;
2144 }
2145
2146 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2147 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2148 coord_dst.writemask = WRITEMASK_W;
2149 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2150 coord_dst.writemask = WRITEMASK_XYZW;
2151 }
2152
2153 if (opcode == OPCODE_TXD)
2154 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2155 else
2156 inst = emit(ir, opcode, result_dst, coord);
2157
2158 if (ir->shadow_comparitor)
2159 inst->tex_shadow = GL_TRUE;
2160
2161 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2162 this->shader_program,
2163 this->prog);
2164
2165 switch (sampler_type->sampler_dimensionality) {
2166 case GLSL_SAMPLER_DIM_1D:
2167 inst->tex_target = (sampler_type->sampler_array)
2168 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2169 break;
2170 case GLSL_SAMPLER_DIM_2D:
2171 inst->tex_target = (sampler_type->sampler_array)
2172 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2173 break;
2174 case GLSL_SAMPLER_DIM_3D:
2175 inst->tex_target = TEXTURE_3D_INDEX;
2176 break;
2177 case GLSL_SAMPLER_DIM_CUBE:
2178 inst->tex_target = TEXTURE_CUBE_INDEX;
2179 break;
2180 case GLSL_SAMPLER_DIM_RECT:
2181 inst->tex_target = TEXTURE_RECT_INDEX;
2182 break;
2183 case GLSL_SAMPLER_DIM_BUF:
2184 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2185 break;
2186 case GLSL_SAMPLER_DIM_EXTERNAL:
2187 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2188 break;
2189 default:
2190 assert(!"Should not get here.");
2191 }
2192
2193 this->result = result_src;
2194 }
2195
2196 void
2197 ir_to_mesa_visitor::visit(ir_return *ir)
2198 {
2199 /* Non-void functions should have been inlined. We may still emit RETs
2200 * from main() unless the EmitNoMainReturn option is set.
2201 */
2202 assert(!ir->get_value());
2203 emit(ir, OPCODE_RET);
2204 }
2205
2206 void
2207 ir_to_mesa_visitor::visit(ir_discard *ir)
2208 {
2209 if (ir->condition) {
2210 ir->condition->accept(this);
2211 this->result.negate = ~this->result.negate;
2212 emit(ir, OPCODE_KIL, undef_dst, this->result);
2213 } else {
2214 emit(ir, OPCODE_KIL_NV);
2215 }
2216 }
2217
2218 void
2219 ir_to_mesa_visitor::visit(ir_if *ir)
2220 {
2221 ir_to_mesa_instruction *cond_inst, *if_inst;
2222 ir_to_mesa_instruction *prev_inst;
2223
2224 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2225
2226 ir->condition->accept(this);
2227 assert(this->result.file != PROGRAM_UNDEFINED);
2228
2229 if (this->options->EmitCondCodes) {
2230 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2231
2232 /* See if we actually generated any instruction for generating
2233 * the condition. If not, then cook up a move to a temp so we
2234 * have something to set cond_update on.
2235 */
2236 if (cond_inst == prev_inst) {
2237 src_reg temp = get_temp(glsl_type::bool_type);
2238 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2239 }
2240 cond_inst->cond_update = GL_TRUE;
2241
2242 if_inst = emit(ir->condition, OPCODE_IF);
2243 if_inst->dst.cond_mask = COND_NE;
2244 } else {
2245 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2246 }
2247
2248 this->instructions.push_tail(if_inst);
2249
2250 visit_exec_list(&ir->then_instructions, this);
2251
2252 if (!ir->else_instructions.is_empty()) {
2253 emit(ir->condition, OPCODE_ELSE);
2254 visit_exec_list(&ir->else_instructions, this);
2255 }
2256
2257 if_inst = emit(ir->condition, OPCODE_ENDIF);
2258 }
2259
2260 void
2261 ir_to_mesa_visitor::visit(ir_emit_vertex *ir)
2262 {
2263 assert(!"Geometry shaders not supported.");
2264 }
2265
2266 void
2267 ir_to_mesa_visitor::visit(ir_end_primitive *ir)
2268 {
2269 assert(!"Geometry shaders not supported.");
2270 }
2271
2272 ir_to_mesa_visitor::ir_to_mesa_visitor()
2273 {
2274 result.file = PROGRAM_UNDEFINED;
2275 next_temp = 1;
2276 next_signature_id = 1;
2277 current_function = NULL;
2278 mem_ctx = ralloc_context(NULL);
2279 }
2280
2281 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2282 {
2283 ralloc_free(mem_ctx);
2284 }
2285
2286 static struct prog_src_register
2287 mesa_src_reg_from_ir_src_reg(src_reg reg)
2288 {
2289 struct prog_src_register mesa_reg;
2290
2291 mesa_reg.File = reg.file;
2292 assert(reg.index < (1 << INST_INDEX_BITS));
2293 mesa_reg.Index = reg.index;
2294 mesa_reg.Swizzle = reg.swizzle;
2295 mesa_reg.RelAddr = reg.reladdr != NULL;
2296 mesa_reg.Negate = reg.negate;
2297 mesa_reg.Abs = 0;
2298 mesa_reg.HasIndex2 = GL_FALSE;
2299 mesa_reg.RelAddr2 = 0;
2300 mesa_reg.Index2 = 0;
2301
2302 return mesa_reg;
2303 }
2304
2305 static void
2306 set_branchtargets(ir_to_mesa_visitor *v,
2307 struct prog_instruction *mesa_instructions,
2308 int num_instructions)
2309 {
2310 int if_count = 0, loop_count = 0;
2311 int *if_stack, *loop_stack;
2312 int if_stack_pos = 0, loop_stack_pos = 0;
2313 int i, j;
2314
2315 for (i = 0; i < num_instructions; i++) {
2316 switch (mesa_instructions[i].Opcode) {
2317 case OPCODE_IF:
2318 if_count++;
2319 break;
2320 case OPCODE_BGNLOOP:
2321 loop_count++;
2322 break;
2323 case OPCODE_BRK:
2324 case OPCODE_CONT:
2325 mesa_instructions[i].BranchTarget = -1;
2326 break;
2327 default:
2328 break;
2329 }
2330 }
2331
2332 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2333 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2334
2335 for (i = 0; i < num_instructions; i++) {
2336 switch (mesa_instructions[i].Opcode) {
2337 case OPCODE_IF:
2338 if_stack[if_stack_pos] = i;
2339 if_stack_pos++;
2340 break;
2341 case OPCODE_ELSE:
2342 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2343 if_stack[if_stack_pos - 1] = i;
2344 break;
2345 case OPCODE_ENDIF:
2346 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2347 if_stack_pos--;
2348 break;
2349 case OPCODE_BGNLOOP:
2350 loop_stack[loop_stack_pos] = i;
2351 loop_stack_pos++;
2352 break;
2353 case OPCODE_ENDLOOP:
2354 loop_stack_pos--;
2355 /* Rewrite any breaks/conts at this nesting level (haven't
2356 * already had a BranchTarget assigned) to point to the end
2357 * of the loop.
2358 */
2359 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2360 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2361 mesa_instructions[j].Opcode == OPCODE_CONT) {
2362 if (mesa_instructions[j].BranchTarget == -1) {
2363 mesa_instructions[j].BranchTarget = i;
2364 }
2365 }
2366 }
2367 /* The loop ends point at each other. */
2368 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2369 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2370 break;
2371 case OPCODE_CAL:
2372 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2373 function_entry *entry = (function_entry *)iter.get();
2374
2375 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2376 mesa_instructions[i].BranchTarget = entry->inst;
2377 break;
2378 }
2379 }
2380 break;
2381 default:
2382 break;
2383 }
2384 }
2385 }
2386
2387 static void
2388 print_program(struct prog_instruction *mesa_instructions,
2389 ir_instruction **mesa_instruction_annotation,
2390 int num_instructions)
2391 {
2392 ir_instruction *last_ir = NULL;
2393 int i;
2394 int indent = 0;
2395
2396 for (i = 0; i < num_instructions; i++) {
2397 struct prog_instruction *mesa_inst = mesa_instructions + i;
2398 ir_instruction *ir = mesa_instruction_annotation[i];
2399
2400 fprintf(stdout, "%3d: ", i);
2401
2402 if (last_ir != ir && ir) {
2403 int j;
2404
2405 for (j = 0; j < indent; j++) {
2406 fprintf(stdout, " ");
2407 }
2408 ir->print();
2409 printf("\n");
2410 last_ir = ir;
2411
2412 fprintf(stdout, " "); /* line number spacing. */
2413 }
2414
2415 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2416 PROG_PRINT_DEBUG, NULL);
2417 }
2418 }
2419
2420 class add_uniform_to_shader : public program_resource_visitor {
2421 public:
2422 add_uniform_to_shader(struct gl_shader_program *shader_program,
2423 struct gl_program_parameter_list *params,
2424 gl_shader_type shader_type)
2425 : shader_program(shader_program), params(params), idx(-1),
2426 shader_type(shader_type)
2427 {
2428 /* empty */
2429 }
2430
2431 void process(ir_variable *var)
2432 {
2433 this->idx = -1;
2434 this->program_resource_visitor::process(var);
2435
2436 var->location = this->idx;
2437 }
2438
2439 private:
2440 virtual void visit_field(const glsl_type *type, const char *name,
2441 bool row_major);
2442
2443 struct gl_shader_program *shader_program;
2444 struct gl_program_parameter_list *params;
2445 int idx;
2446 gl_shader_type shader_type;
2447 };
2448
2449 void
2450 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2451 bool row_major)
2452 {
2453 unsigned int size;
2454
2455 (void) row_major;
2456
2457 if (type->is_vector() || type->is_scalar()) {
2458 size = type->vector_elements;
2459 } else {
2460 size = type_size(type) * 4;
2461 }
2462
2463 gl_register_file file;
2464 if (type->is_sampler() ||
2465 (type->is_array() && type->fields.array->is_sampler())) {
2466 file = PROGRAM_SAMPLER;
2467 } else {
2468 file = PROGRAM_UNIFORM;
2469 }
2470
2471 int index = _mesa_lookup_parameter_index(params, -1, name);
2472 if (index < 0) {
2473 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2474 NULL, NULL);
2475
2476 /* Sampler uniform values are stored in prog->SamplerUnits,
2477 * and the entry in that array is selected by this index we
2478 * store in ParameterValues[].
2479 */
2480 if (file == PROGRAM_SAMPLER) {
2481 unsigned location;
2482 const bool found =
2483 this->shader_program->UniformHash->get(location,
2484 params->Parameters[index].Name);
2485 assert(found);
2486
2487 if (!found)
2488 return;
2489
2490 struct gl_uniform_storage *storage =
2491 &this->shader_program->UniformStorage[location];
2492
2493 assert(storage->sampler[shader_type].active);
2494
2495 for (unsigned int j = 0; j < size / 4; j++)
2496 params->ParameterValues[index + j][0].f =
2497 storage->sampler[shader_type].index + j;
2498 }
2499 }
2500
2501 /* The first part of the uniform that's processed determines the base
2502 * location of the whole uniform (for structures).
2503 */
2504 if (this->idx < 0)
2505 this->idx = index;
2506 }
2507
2508 /**
2509 * Generate the program parameters list for the user uniforms in a shader
2510 *
2511 * \param shader_program Linked shader program. This is only used to
2512 * emit possible link errors to the info log.
2513 * \param sh Shader whose uniforms are to be processed.
2514 * \param params Parameter list to be filled in.
2515 */
2516 void
2517 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2518 *shader_program,
2519 struct gl_shader *sh,
2520 struct gl_program_parameter_list
2521 *params)
2522 {
2523 add_uniform_to_shader add(shader_program, params,
2524 _mesa_shader_type_to_index(sh->Type));
2525
2526 foreach_list(node, sh->ir) {
2527 ir_variable *var = ((ir_instruction *) node)->as_variable();
2528
2529 if ((var == NULL) || (var->mode != ir_var_uniform)
2530 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2531 continue;
2532
2533 add.process(var);
2534 }
2535 }
2536
2537 void
2538 _mesa_associate_uniform_storage(struct gl_context *ctx,
2539 struct gl_shader_program *shader_program,
2540 struct gl_program_parameter_list *params)
2541 {
2542 /* After adding each uniform to the parameter list, connect the storage for
2543 * the parameter with the tracking structure used by the API for the
2544 * uniform.
2545 */
2546 unsigned last_location = unsigned(~0);
2547 for (unsigned i = 0; i < params->NumParameters; i++) {
2548 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2549 continue;
2550
2551 unsigned location;
2552 const bool found =
2553 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2554 assert(found);
2555
2556 if (!found)
2557 continue;
2558
2559 if (location != last_location) {
2560 struct gl_uniform_storage *storage =
2561 &shader_program->UniformStorage[location];
2562 enum gl_uniform_driver_format format = uniform_native;
2563
2564 unsigned columns = 0;
2565 switch (storage->type->base_type) {
2566 case GLSL_TYPE_UINT:
2567 assert(ctx->Const.NativeIntegers);
2568 format = uniform_native;
2569 columns = 1;
2570 break;
2571 case GLSL_TYPE_INT:
2572 format =
2573 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2574 columns = 1;
2575 break;
2576 case GLSL_TYPE_FLOAT:
2577 format = uniform_native;
2578 columns = storage->type->matrix_columns;
2579 break;
2580 case GLSL_TYPE_BOOL:
2581 if (ctx->Const.NativeIntegers) {
2582 format = (ctx->Const.UniformBooleanTrue == 1)
2583 ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2584 } else {
2585 format = uniform_bool_float;
2586 }
2587 columns = 1;
2588 break;
2589 case GLSL_TYPE_SAMPLER:
2590 format = uniform_native;
2591 columns = 1;
2592 break;
2593 case GLSL_TYPE_ARRAY:
2594 case GLSL_TYPE_VOID:
2595 case GLSL_TYPE_STRUCT:
2596 case GLSL_TYPE_ERROR:
2597 case GLSL_TYPE_INTERFACE:
2598 assert(!"Should not get here.");
2599 break;
2600 }
2601
2602 _mesa_uniform_attach_driver_storage(storage,
2603 4 * sizeof(float) * columns,
2604 4 * sizeof(float),
2605 format,
2606 &params->ParameterValues[i]);
2607
2608 /* After attaching the driver's storage to the uniform, propagate any
2609 * data from the linker's backing store. This will cause values from
2610 * initializers in the source code to be copied over.
2611 */
2612 _mesa_propagate_uniforms_to_driver_storage(storage,
2613 0,
2614 MAX2(1, storage->array_elements));
2615
2616 last_location = location;
2617 }
2618 }
2619 }
2620
2621 /*
2622 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2623 * channels for copy propagation and updates following instructions to
2624 * use the original versions.
2625 *
2626 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2627 * will occur. As an example, a TXP production before this pass:
2628 *
2629 * 0: MOV TEMP[1], INPUT[4].xyyy;
2630 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2631 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2632 *
2633 * and after:
2634 *
2635 * 0: MOV TEMP[1], INPUT[4].xyyy;
2636 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2637 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2638 *
2639 * which allows for dead code elimination on TEMP[1]'s writes.
2640 */
2641 void
2642 ir_to_mesa_visitor::copy_propagate(void)
2643 {
2644 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2645 ir_to_mesa_instruction *,
2646 this->next_temp * 4);
2647 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2648 int level = 0;
2649
2650 foreach_iter(exec_list_iterator, iter, this->instructions) {
2651 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2652
2653 assert(inst->dst.file != PROGRAM_TEMPORARY
2654 || inst->dst.index < this->next_temp);
2655
2656 /* First, do any copy propagation possible into the src regs. */
2657 for (int r = 0; r < 3; r++) {
2658 ir_to_mesa_instruction *first = NULL;
2659 bool good = true;
2660 int acp_base = inst->src[r].index * 4;
2661
2662 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2663 inst->src[r].reladdr)
2664 continue;
2665
2666 /* See if we can find entries in the ACP consisting of MOVs
2667 * from the same src register for all the swizzled channels
2668 * of this src register reference.
2669 */
2670 for (int i = 0; i < 4; i++) {
2671 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2672 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2673
2674 if (!copy_chan) {
2675 good = false;
2676 break;
2677 }
2678
2679 assert(acp_level[acp_base + src_chan] <= level);
2680
2681 if (!first) {
2682 first = copy_chan;
2683 } else {
2684 if (first->src[0].file != copy_chan->src[0].file ||
2685 first->src[0].index != copy_chan->src[0].index) {
2686 good = false;
2687 break;
2688 }
2689 }
2690 }
2691
2692 if (good) {
2693 /* We've now validated that we can copy-propagate to
2694 * replace this src register reference. Do it.
2695 */
2696 inst->src[r].file = first->src[0].file;
2697 inst->src[r].index = first->src[0].index;
2698
2699 int swizzle = 0;
2700 for (int i = 0; i < 4; i++) {
2701 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2702 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2703 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2704 (3 * i));
2705 }
2706 inst->src[r].swizzle = swizzle;
2707 }
2708 }
2709
2710 switch (inst->op) {
2711 case OPCODE_BGNLOOP:
2712 case OPCODE_ENDLOOP:
2713 /* End of a basic block, clear the ACP entirely. */
2714 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2715 break;
2716
2717 case OPCODE_IF:
2718 ++level;
2719 break;
2720
2721 case OPCODE_ENDIF:
2722 case OPCODE_ELSE:
2723 /* Clear all channels written inside the block from the ACP, but
2724 * leaving those that were not touched.
2725 */
2726 for (int r = 0; r < this->next_temp; r++) {
2727 for (int c = 0; c < 4; c++) {
2728 if (!acp[4 * r + c])
2729 continue;
2730
2731 if (acp_level[4 * r + c] >= level)
2732 acp[4 * r + c] = NULL;
2733 }
2734 }
2735 if (inst->op == OPCODE_ENDIF)
2736 --level;
2737 break;
2738
2739 default:
2740 /* Continuing the block, clear any written channels from
2741 * the ACP.
2742 */
2743 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2744 /* Any temporary might be written, so no copy propagation
2745 * across this instruction.
2746 */
2747 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2748 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2749 inst->dst.reladdr) {
2750 /* Any output might be written, so no copy propagation
2751 * from outputs across this instruction.
2752 */
2753 for (int r = 0; r < this->next_temp; r++) {
2754 for (int c = 0; c < 4; c++) {
2755 if (!acp[4 * r + c])
2756 continue;
2757
2758 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2759 acp[4 * r + c] = NULL;
2760 }
2761 }
2762 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2763 inst->dst.file == PROGRAM_OUTPUT) {
2764 /* Clear where it's used as dst. */
2765 if (inst->dst.file == PROGRAM_TEMPORARY) {
2766 for (int c = 0; c < 4; c++) {
2767 if (inst->dst.writemask & (1 << c)) {
2768 acp[4 * inst->dst.index + c] = NULL;
2769 }
2770 }
2771 }
2772
2773 /* Clear where it's used as src. */
2774 for (int r = 0; r < this->next_temp; r++) {
2775 for (int c = 0; c < 4; c++) {
2776 if (!acp[4 * r + c])
2777 continue;
2778
2779 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2780
2781 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2782 acp[4 * r + c]->src[0].index == inst->dst.index &&
2783 inst->dst.writemask & (1 << src_chan))
2784 {
2785 acp[4 * r + c] = NULL;
2786 }
2787 }
2788 }
2789 }
2790 break;
2791 }
2792
2793 /* If this is a copy, add it to the ACP. */
2794 if (inst->op == OPCODE_MOV &&
2795 inst->dst.file == PROGRAM_TEMPORARY &&
2796 !(inst->dst.file == inst->src[0].file &&
2797 inst->dst.index == inst->src[0].index) &&
2798 !inst->dst.reladdr &&
2799 !inst->saturate &&
2800 !inst->src[0].reladdr &&
2801 !inst->src[0].negate) {
2802 for (int i = 0; i < 4; i++) {
2803 if (inst->dst.writemask & (1 << i)) {
2804 acp[4 * inst->dst.index + i] = inst;
2805 acp_level[4 * inst->dst.index + i] = level;
2806 }
2807 }
2808 }
2809 }
2810
2811 ralloc_free(acp_level);
2812 ralloc_free(acp);
2813 }
2814
2815
2816 /**
2817 * Convert a shader's GLSL IR into a Mesa gl_program.
2818 */
2819 static struct gl_program *
2820 get_mesa_program(struct gl_context *ctx,
2821 struct gl_shader_program *shader_program,
2822 struct gl_shader *shader)
2823 {
2824 ir_to_mesa_visitor v;
2825 struct prog_instruction *mesa_instructions, *mesa_inst;
2826 ir_instruction **mesa_instruction_annotation;
2827 int i;
2828 struct gl_program *prog;
2829 GLenum target;
2830 const char *target_string = _mesa_glsl_shader_target_name(shader->Type);
2831 struct gl_shader_compiler_options *options =
2832 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2833
2834 switch (shader->Type) {
2835 case GL_VERTEX_SHADER:
2836 target = GL_VERTEX_PROGRAM_ARB;
2837 break;
2838 case GL_FRAGMENT_SHADER:
2839 target = GL_FRAGMENT_PROGRAM_ARB;
2840 break;
2841 case GL_GEOMETRY_SHADER:
2842 target = GL_GEOMETRY_PROGRAM_NV;
2843 break;
2844 default:
2845 assert(!"should not be reached");
2846 return NULL;
2847 }
2848
2849 validate_ir_tree(shader->ir);
2850
2851 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2852 if (!prog)
2853 return NULL;
2854 prog->Parameters = _mesa_new_parameter_list();
2855 v.ctx = ctx;
2856 v.prog = prog;
2857 v.shader_program = shader_program;
2858 v.options = options;
2859
2860 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2861 prog->Parameters);
2862
2863 /* Emit Mesa IR for main(). */
2864 visit_exec_list(shader->ir, &v);
2865 v.emit(NULL, OPCODE_END);
2866
2867 prog->NumTemporaries = v.next_temp;
2868
2869 int num_instructions = 0;
2870 foreach_iter(exec_list_iterator, iter, v.instructions) {
2871 num_instructions++;
2872 }
2873
2874 mesa_instructions =
2875 (struct prog_instruction *)calloc(num_instructions,
2876 sizeof(*mesa_instructions));
2877 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2878 num_instructions);
2879
2880 v.copy_propagate();
2881
2882 /* Convert ir_mesa_instructions into prog_instructions.
2883 */
2884 mesa_inst = mesa_instructions;
2885 i = 0;
2886 foreach_iter(exec_list_iterator, iter, v.instructions) {
2887 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2888
2889 mesa_inst->Opcode = inst->op;
2890 mesa_inst->CondUpdate = inst->cond_update;
2891 if (inst->saturate)
2892 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2893 mesa_inst->DstReg.File = inst->dst.file;
2894 mesa_inst->DstReg.Index = inst->dst.index;
2895 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2896 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2897 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2898 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2899 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2900 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2901 mesa_inst->TexSrcUnit = inst->sampler;
2902 mesa_inst->TexSrcTarget = inst->tex_target;
2903 mesa_inst->TexShadow = inst->tex_shadow;
2904 mesa_instruction_annotation[i] = inst->ir;
2905
2906 /* Set IndirectRegisterFiles. */
2907 if (mesa_inst->DstReg.RelAddr)
2908 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2909
2910 /* Update program's bitmask of indirectly accessed register files */
2911 for (unsigned src = 0; src < 3; src++)
2912 if (mesa_inst->SrcReg[src].RelAddr)
2913 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2914
2915 switch (mesa_inst->Opcode) {
2916 case OPCODE_IF:
2917 if (options->MaxIfDepth == 0) {
2918 linker_warning(shader_program,
2919 "Couldn't flatten if-statement. "
2920 "This will likely result in software "
2921 "rasterization.\n");
2922 }
2923 break;
2924 case OPCODE_BGNLOOP:
2925 if (options->EmitNoLoops) {
2926 linker_warning(shader_program,
2927 "Couldn't unroll loop. "
2928 "This will likely result in software "
2929 "rasterization.\n");
2930 }
2931 break;
2932 case OPCODE_CONT:
2933 if (options->EmitNoCont) {
2934 linker_warning(shader_program,
2935 "Couldn't lower continue-statement. "
2936 "This will likely result in software "
2937 "rasterization.\n");
2938 }
2939 break;
2940 case OPCODE_ARL:
2941 prog->NumAddressRegs = 1;
2942 break;
2943 default:
2944 break;
2945 }
2946
2947 mesa_inst++;
2948 i++;
2949
2950 if (!shader_program->LinkStatus)
2951 break;
2952 }
2953
2954 if (!shader_program->LinkStatus) {
2955 goto fail_exit;
2956 }
2957
2958 set_branchtargets(&v, mesa_instructions, num_instructions);
2959
2960 if (ctx->Shader.Flags & GLSL_DUMP) {
2961 printf("\n");
2962 printf("GLSL IR for linked %s program %d:\n", target_string,
2963 shader_program->Name);
2964 _mesa_print_ir(shader->ir, NULL);
2965 printf("\n");
2966 printf("\n");
2967 printf("Mesa IR for linked %s program %d:\n", target_string,
2968 shader_program->Name);
2969 print_program(mesa_instructions, mesa_instruction_annotation,
2970 num_instructions);
2971 }
2972
2973 prog->Instructions = mesa_instructions;
2974 prog->NumInstructions = num_instructions;
2975
2976 /* Setting this to NULL prevents a possible double free in the fail_exit
2977 * path (far below).
2978 */
2979 mesa_instructions = NULL;
2980
2981 do_set_program_inouts(shader->ir, prog, shader->Type);
2982
2983 prog->SamplersUsed = shader->active_samplers;
2984 prog->ShadowSamplers = shader->shadow_samplers;
2985 _mesa_update_shader_textures_used(shader_program, prog);
2986
2987 /* Set the gl_FragDepth layout. */
2988 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2989 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2990 fp->FragDepthLayout = shader_program->FragDepthLayout;
2991 }
2992
2993 _mesa_reference_program(ctx, &shader->Program, prog);
2994
2995 if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
2996 _mesa_optimize_program(ctx, prog);
2997 }
2998
2999 /* This has to be done last. Any operation that can cause
3000 * prog->ParameterValues to get reallocated (e.g., anything that adds a
3001 * program constant) has to happen before creating this linkage.
3002 */
3003 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
3004 if (!shader_program->LinkStatus) {
3005 goto fail_exit;
3006 }
3007
3008 return prog;
3009
3010 fail_exit:
3011 free(mesa_instructions);
3012 _mesa_reference_program(ctx, &shader->Program, NULL);
3013 return NULL;
3014 }
3015
3016 extern "C" {
3017
3018 /**
3019 * Link a shader.
3020 * Called via ctx->Driver.LinkShader()
3021 * This actually involves converting GLSL IR into Mesa gl_programs with
3022 * code lowering and other optimizations.
3023 */
3024 GLboolean
3025 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3026 {
3027 assert(prog->LinkStatus);
3028
3029 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3030 if (prog->_LinkedShaders[i] == NULL)
3031 continue;
3032
3033 bool progress;
3034 exec_list *ir = prog->_LinkedShaders[i]->ir;
3035 const struct gl_shader_compiler_options *options =
3036 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
3037
3038 do {
3039 progress = false;
3040
3041 /* Lowering */
3042 do_mat_op_to_vec(ir);
3043 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3044 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3045 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3046
3047 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3048
3049 progress = do_common_optimization(ir, true, true,
3050 options->MaxUnrollIterations,
3051 options)
3052 || progress;
3053
3054 progress = lower_quadop_vector(ir, true) || progress;
3055
3056 if (options->MaxIfDepth == 0)
3057 progress = lower_discard(ir) || progress;
3058
3059 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3060
3061 if (options->EmitNoNoise)
3062 progress = lower_noise(ir) || progress;
3063
3064 /* If there are forms of indirect addressing that the driver
3065 * cannot handle, perform the lowering pass.
3066 */
3067 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3068 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3069 progress =
3070 lower_variable_index_to_cond_assign(ir,
3071 options->EmitNoIndirectInput,
3072 options->EmitNoIndirectOutput,
3073 options->EmitNoIndirectTemp,
3074 options->EmitNoIndirectUniform)
3075 || progress;
3076
3077 progress = do_vec_index_to_cond_assign(ir) || progress;
3078 progress = lower_vector_insert(ir, true) || progress;
3079 } while (progress);
3080
3081 validate_ir_tree(ir);
3082 }
3083
3084 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3085 struct gl_program *linked_prog;
3086
3087 if (prog->_LinkedShaders[i] == NULL)
3088 continue;
3089
3090 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3091
3092 if (linked_prog) {
3093 _mesa_copy_linked_program_data((gl_shader_type) i, prog, linked_prog);
3094
3095 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3096 linked_prog);
3097 if (!ctx->Driver.ProgramStringNotify(ctx,
3098 _mesa_program_index_to_target(i),
3099 linked_prog)) {
3100 return GL_FALSE;
3101 }
3102 }
3103
3104 _mesa_reference_program(ctx, &linked_prog, NULL);
3105 }
3106
3107 return prog->LinkStatus;
3108 }
3109
3110 /**
3111 * Link a GLSL shader program. Called via glLinkProgram().
3112 */
3113 void
3114 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3115 {
3116 unsigned int i;
3117
3118 _mesa_clear_shader_program_data(ctx, prog);
3119
3120 prog->LinkStatus = GL_TRUE;
3121
3122 for (i = 0; i < prog->NumShaders; i++) {
3123 if (!prog->Shaders[i]->CompileStatus) {
3124 linker_error(prog, "linking with uncompiled shader");
3125 }
3126 }
3127
3128 if (prog->LinkStatus) {
3129 link_shaders(ctx, prog);
3130 }
3131
3132 if (prog->LinkStatus) {
3133 if (!ctx->Driver.LinkShader(ctx, prog)) {
3134 prog->LinkStatus = GL_FALSE;
3135 }
3136 }
3137
3138 if (ctx->Shader.Flags & GLSL_DUMP) {
3139 if (!prog->LinkStatus) {
3140 printf("GLSL shader program %d failed to link\n", prog->Name);
3141 }
3142
3143 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3144 printf("GLSL shader program %d info log:\n", prog->Name);
3145 printf("%s\n", prog->InfoLog);
3146 }
3147 }
3148 }
3149
3150 } /* extern "C" */