ir_to_mesa: Propagate initial values in _mesa_associate_uniform_storage
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_print_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "ir_uniform.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44 #include "linker.h"
45
46 #include "main/mtypes.h"
47 #include "main/shaderobj.h"
48 #include "program/hash_table.h"
49
50 extern "C" {
51 #include "main/shaderapi.h"
52 #include "main/uniforms.h"
53 #include "program/prog_instruction.h"
54 #include "program/prog_optimize.h"
55 #include "program/prog_print.h"
56 #include "program/program.h"
57 #include "program/prog_parameter.h"
58 #include "program/sampler.h"
59 }
60
61 class src_reg;
62 class dst_reg;
63
64 static int swizzle_for_size(int size);
65
66 /**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70 class src_reg {
71 public:
72 src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->reladdr = NULL;
82 }
83
84 src_reg()
85 {
86 this->file = PROGRAM_UNDEFINED;
87 this->index = 0;
88 this->swizzle = 0;
89 this->negate = 0;
90 this->reladdr = NULL;
91 }
92
93 explicit src_reg(dst_reg reg);
94
95 gl_register_file file; /**< PROGRAM_* from Mesa */
96 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
97 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98 int negate; /**< NEGATE_XYZW mask from mesa */
99 /** Register index should be offset by the integer in this reg. */
100 src_reg *reladdr;
101 };
102
103 class dst_reg {
104 public:
105 dst_reg(gl_register_file file, int writemask)
106 {
107 this->file = file;
108 this->index = 0;
109 this->writemask = writemask;
110 this->cond_mask = COND_TR;
111 this->reladdr = NULL;
112 }
113
114 dst_reg()
115 {
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->writemask = 0;
119 this->cond_mask = COND_TR;
120 this->reladdr = NULL;
121 }
122
123 explicit dst_reg(src_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
127 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128 GLuint cond_mask:4;
129 /** Register index should be offset by the integer in this reg. */
130 src_reg *reladdr;
131 };
132
133 src_reg::src_reg(dst_reg reg)
134 {
135 this->file = reg.file;
136 this->index = reg.index;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = reg.reladdr;
140 }
141
142 dst_reg::dst_reg(src_reg reg)
143 {
144 this->file = reg.file;
145 this->index = reg.index;
146 this->writemask = WRITEMASK_XYZW;
147 this->cond_mask = COND_TR;
148 this->reladdr = reg.reladdr;
149 }
150
151 class ir_to_mesa_instruction : public exec_node {
152 public:
153 /* Callers of this ralloc-based new need not call delete. It's
154 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
155 static void* operator new(size_t size, void *ctx)
156 {
157 void *node;
158
159 node = rzalloc_size(ctx, size);
160 assert(node != NULL);
161
162 return node;
163 }
164
165 enum prog_opcode op;
166 dst_reg dst;
167 src_reg src[3];
168 /** Pointer to the ir source this tree came from for debugging */
169 ir_instruction *ir;
170 GLboolean cond_update;
171 bool saturate;
172 int sampler; /**< sampler index */
173 int tex_target; /**< One of TEXTURE_*_INDEX */
174 GLboolean tex_shadow;
175 };
176
177 class variable_storage : public exec_node {
178 public:
179 variable_storage(ir_variable *var, gl_register_file file, int index)
180 : file(file), index(index), var(var)
181 {
182 /* empty */
183 }
184
185 gl_register_file file;
186 int index;
187 ir_variable *var; /* variable that maps to this, if any */
188 };
189
190 class function_entry : public exec_node {
191 public:
192 ir_function_signature *sig;
193
194 /**
195 * identifier of this function signature used by the program.
196 *
197 * At the point that Mesa instructions for function calls are
198 * generated, we don't know the address of the first instruction of
199 * the function body. So we make the BranchTarget that is called a
200 * small integer and rewrite them during set_branchtargets().
201 */
202 int sig_id;
203
204 /**
205 * Pointer to first instruction of the function body.
206 *
207 * Set during function body emits after main() is processed.
208 */
209 ir_to_mesa_instruction *bgn_inst;
210
211 /**
212 * Index of the first instruction of the function body in actual
213 * Mesa IR.
214 *
215 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
216 */
217 int inst;
218
219 /** Storage for the return value. */
220 src_reg return_reg;
221 };
222
223 class ir_to_mesa_visitor : public ir_visitor {
224 public:
225 ir_to_mesa_visitor();
226 ~ir_to_mesa_visitor();
227
228 function_entry *current_function;
229
230 struct gl_context *ctx;
231 struct gl_program *prog;
232 struct gl_shader_program *shader_program;
233 struct gl_shader_compiler_options *options;
234
235 int next_temp;
236
237 variable_storage *find_variable_storage(ir_variable *var);
238
239 src_reg get_temp(const glsl_type *type);
240 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
241
242 src_reg src_reg_for_float(float val);
243
244 /**
245 * \name Visit methods
246 *
247 * As typical for the visitor pattern, there must be one \c visit method for
248 * each concrete subclass of \c ir_instruction. Virtual base classes within
249 * the hierarchy should not have \c visit methods.
250 */
251 /*@{*/
252 virtual void visit(ir_variable *);
253 virtual void visit(ir_loop *);
254 virtual void visit(ir_loop_jump *);
255 virtual void visit(ir_function_signature *);
256 virtual void visit(ir_function *);
257 virtual void visit(ir_expression *);
258 virtual void visit(ir_swizzle *);
259 virtual void visit(ir_dereference_variable *);
260 virtual void visit(ir_dereference_array *);
261 virtual void visit(ir_dereference_record *);
262 virtual void visit(ir_assignment *);
263 virtual void visit(ir_constant *);
264 virtual void visit(ir_call *);
265 virtual void visit(ir_return *);
266 virtual void visit(ir_discard *);
267 virtual void visit(ir_texture *);
268 virtual void visit(ir_if *);
269 /*@}*/
270
271 src_reg result;
272
273 /** List of variable_storage */
274 exec_list variables;
275
276 /** List of function_entry */
277 exec_list function_signatures;
278 int next_signature_id;
279
280 /** List of ir_to_mesa_instruction */
281 exec_list instructions;
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286 dst_reg dst, src_reg src0);
287
288 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
289 dst_reg dst, src_reg src0, src_reg src1);
290
291 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
292 dst_reg dst,
293 src_reg src0, src_reg src1, src_reg src2);
294
295 /**
296 * Emit the correct dot-product instruction for the type of arguments
297 */
298 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
299 dst_reg dst,
300 src_reg src0,
301 src_reg src1,
302 unsigned elements);
303
304 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
305 dst_reg dst, src_reg src0);
306
307 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
308 dst_reg dst, src_reg src0, src_reg src1);
309
310 void emit_scs(ir_instruction *ir, enum prog_opcode op,
311 dst_reg dst, const src_reg &src);
312
313 bool try_emit_mad(ir_expression *ir,
314 int mul_operand);
315 bool try_emit_mad_for_and_not(ir_expression *ir,
316 int mul_operand);
317 bool try_emit_sat(ir_expression *ir);
318
319 void emit_swz(ir_expression *ir);
320
321 bool process_move_condition(ir_rvalue *ir);
322
323 void copy_propagate(void);
324
325 void *mem_ctx;
326 };
327
328 src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
329
330 dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
331
332 dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
333
334 static int
335 swizzle_for_size(int size)
336 {
337 int size_swizzles[4] = {
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
339 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
340 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
341 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
342 };
343
344 assert((size >= 1) && (size <= 4));
345 return size_swizzles[size - 1];
346 }
347
348 ir_to_mesa_instruction *
349 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
350 dst_reg dst,
351 src_reg src0, src_reg src1, src_reg src2)
352 {
353 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
354 int num_reladdr = 0;
355
356 /* If we have to do relative addressing, we want to load the ARL
357 * reg directly for one of the regs, and preload the other reladdr
358 * sources into temps.
359 */
360 num_reladdr += dst.reladdr != NULL;
361 num_reladdr += src0.reladdr != NULL;
362 num_reladdr += src1.reladdr != NULL;
363 num_reladdr += src2.reladdr != NULL;
364
365 reladdr_to_temp(ir, &src2, &num_reladdr);
366 reladdr_to_temp(ir, &src1, &num_reladdr);
367 reladdr_to_temp(ir, &src0, &num_reladdr);
368
369 if (dst.reladdr) {
370 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
371 num_reladdr--;
372 }
373 assert(num_reladdr == 0);
374
375 inst->op = op;
376 inst->dst = dst;
377 inst->src[0] = src0;
378 inst->src[1] = src1;
379 inst->src[2] = src2;
380 inst->ir = ir;
381
382 this->instructions.push_tail(inst);
383
384 return inst;
385 }
386
387
388 ir_to_mesa_instruction *
389 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
390 dst_reg dst, src_reg src0, src_reg src1)
391 {
392 return emit(ir, op, dst, src0, src1, undef_src);
393 }
394
395 ir_to_mesa_instruction *
396 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
397 dst_reg dst, src_reg src0)
398 {
399 assert(dst.writemask != 0);
400 return emit(ir, op, dst, src0, undef_src, undef_src);
401 }
402
403 ir_to_mesa_instruction *
404 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
405 {
406 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
407 }
408
409 ir_to_mesa_instruction *
410 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
411 dst_reg dst, src_reg src0, src_reg src1,
412 unsigned elements)
413 {
414 static const gl_inst_opcode dot_opcodes[] = {
415 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
416 };
417
418 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
419 }
420
421 /**
422 * Emits Mesa scalar opcodes to produce unique answers across channels.
423 *
424 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
425 * channel determines the result across all channels. So to do a vec4
426 * of this operation, we want to emit a scalar per source channel used
427 * to produce dest channels.
428 */
429 void
430 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
431 dst_reg dst,
432 src_reg orig_src0, src_reg orig_src1)
433 {
434 int i, j;
435 int done_mask = ~dst.writemask;
436
437 /* Mesa RCP is a scalar operation splatting results to all channels,
438 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
439 * dst channels.
440 */
441 for (i = 0; i < 4; i++) {
442 GLuint this_mask = (1 << i);
443 ir_to_mesa_instruction *inst;
444 src_reg src0 = orig_src0;
445 src_reg src1 = orig_src1;
446
447 if (done_mask & this_mask)
448 continue;
449
450 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
451 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
452 for (j = i + 1; j < 4; j++) {
453 /* If there is another enabled component in the destination that is
454 * derived from the same inputs, generate its value on this pass as
455 * well.
456 */
457 if (!(done_mask & (1 << j)) &&
458 GET_SWZ(src0.swizzle, j) == src0_swiz &&
459 GET_SWZ(src1.swizzle, j) == src1_swiz) {
460 this_mask |= (1 << j);
461 }
462 }
463 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
464 src0_swiz, src0_swiz);
465 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
466 src1_swiz, src1_swiz);
467
468 inst = emit(ir, op, dst, src0, src1);
469 inst->dst.writemask = this_mask;
470 done_mask |= this_mask;
471 }
472 }
473
474 void
475 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
476 dst_reg dst, src_reg src0)
477 {
478 src_reg undef = undef_src;
479
480 undef.swizzle = SWIZZLE_XXXX;
481
482 emit_scalar(ir, op, dst, src0, undef);
483 }
484
485 /**
486 * Emit an OPCODE_SCS instruction
487 *
488 * The \c SCS opcode functions a bit differently than the other Mesa (or
489 * ARB_fragment_program) opcodes. Instead of splatting its result across all
490 * four components of the destination, it writes one value to the \c x
491 * component and another value to the \c y component.
492 *
493 * \param ir IR instruction being processed
494 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
495 * value is desired.
496 * \param dst Destination register
497 * \param src Source register
498 */
499 void
500 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
501 dst_reg dst,
502 const src_reg &src)
503 {
504 /* Vertex programs cannot use the SCS opcode.
505 */
506 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
507 emit_scalar(ir, op, dst, src);
508 return;
509 }
510
511 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
512 const unsigned scs_mask = (1U << component);
513 int done_mask = ~dst.writemask;
514 src_reg tmp;
515
516 assert(op == OPCODE_SIN || op == OPCODE_COS);
517
518 /* If there are compnents in the destination that differ from the component
519 * that will be written by the SCS instrution, we'll need a temporary.
520 */
521 if (scs_mask != unsigned(dst.writemask)) {
522 tmp = get_temp(glsl_type::vec4_type);
523 }
524
525 for (unsigned i = 0; i < 4; i++) {
526 unsigned this_mask = (1U << i);
527 src_reg src0 = src;
528
529 if ((done_mask & this_mask) != 0)
530 continue;
531
532 /* The source swizzle specified which component of the source generates
533 * sine / cosine for the current component in the destination. The SCS
534 * instruction requires that this value be swizzle to the X component.
535 * Replace the current swizzle with a swizzle that puts the source in
536 * the X component.
537 */
538 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
539
540 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
541 src0_swiz, src0_swiz);
542 for (unsigned j = i + 1; j < 4; j++) {
543 /* If there is another enabled component in the destination that is
544 * derived from the same inputs, generate its value on this pass as
545 * well.
546 */
547 if (!(done_mask & (1 << j)) &&
548 GET_SWZ(src0.swizzle, j) == src0_swiz) {
549 this_mask |= (1 << j);
550 }
551 }
552
553 if (this_mask != scs_mask) {
554 ir_to_mesa_instruction *inst;
555 dst_reg tmp_dst = dst_reg(tmp);
556
557 /* Emit the SCS instruction.
558 */
559 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
560 inst->dst.writemask = scs_mask;
561
562 /* Move the result of the SCS instruction to the desired location in
563 * the destination.
564 */
565 tmp.swizzle = MAKE_SWIZZLE4(component, component,
566 component, component);
567 inst = emit(ir, OPCODE_SCS, dst, tmp);
568 inst->dst.writemask = this_mask;
569 } else {
570 /* Emit the SCS instruction to write directly to the destination.
571 */
572 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
573 inst->dst.writemask = scs_mask;
574 }
575
576 done_mask |= this_mask;
577 }
578 }
579
580 src_reg
581 ir_to_mesa_visitor::src_reg_for_float(float val)
582 {
583 src_reg src(PROGRAM_CONSTANT, -1, NULL);
584
585 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
586 (const gl_constant_value *)&val, 1, &src.swizzle);
587
588 return src;
589 }
590
591 static int
592 type_size(const struct glsl_type *type)
593 {
594 unsigned int i;
595 int size;
596
597 switch (type->base_type) {
598 case GLSL_TYPE_UINT:
599 case GLSL_TYPE_INT:
600 case GLSL_TYPE_FLOAT:
601 case GLSL_TYPE_BOOL:
602 if (type->is_matrix()) {
603 return type->matrix_columns;
604 } else {
605 /* Regardless of size of vector, it gets a vec4. This is bad
606 * packing for things like floats, but otherwise arrays become a
607 * mess. Hopefully a later pass over the code can pack scalars
608 * down if appropriate.
609 */
610 return 1;
611 }
612 case GLSL_TYPE_ARRAY:
613 assert(type->length > 0);
614 return type_size(type->fields.array) * type->length;
615 case GLSL_TYPE_STRUCT:
616 size = 0;
617 for (i = 0; i < type->length; i++) {
618 size += type_size(type->fields.structure[i].type);
619 }
620 return size;
621 case GLSL_TYPE_SAMPLER:
622 /* Samplers take up one slot in UNIFORMS[], but they're baked in
623 * at link time.
624 */
625 return 1;
626 default:
627 assert(0);
628 return 0;
629 }
630 }
631
632 /**
633 * In the initial pass of codegen, we assign temporary numbers to
634 * intermediate results. (not SSA -- variable assignments will reuse
635 * storage). Actual register allocation for the Mesa VM occurs in a
636 * pass over the Mesa IR later.
637 */
638 src_reg
639 ir_to_mesa_visitor::get_temp(const glsl_type *type)
640 {
641 src_reg src;
642
643 src.file = PROGRAM_TEMPORARY;
644 src.index = next_temp;
645 src.reladdr = NULL;
646 next_temp += type_size(type);
647
648 if (type->is_array() || type->is_record()) {
649 src.swizzle = SWIZZLE_NOOP;
650 } else {
651 src.swizzle = swizzle_for_size(type->vector_elements);
652 }
653 src.negate = 0;
654
655 return src;
656 }
657
658 variable_storage *
659 ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
660 {
661
662 variable_storage *entry;
663
664 foreach_iter(exec_list_iterator, iter, this->variables) {
665 entry = (variable_storage *)iter.get();
666
667 if (entry->var == var)
668 return entry;
669 }
670
671 return NULL;
672 }
673
674 void
675 ir_to_mesa_visitor::visit(ir_variable *ir)
676 {
677 if (strcmp(ir->name, "gl_FragCoord") == 0) {
678 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
679
680 fp->OriginUpperLeft = ir->origin_upper_left;
681 fp->PixelCenterInteger = ir->pixel_center_integer;
682 }
683
684 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
685 unsigned int i;
686 const ir_state_slot *const slots = ir->state_slots;
687 assert(ir->state_slots != NULL);
688
689 /* Check if this statevar's setup in the STATE file exactly
690 * matches how we'll want to reference it as a
691 * struct/array/whatever. If not, then we need to move it into
692 * temporary storage and hope that it'll get copy-propagated
693 * out.
694 */
695 for (i = 0; i < ir->num_state_slots; i++) {
696 if (slots[i].swizzle != SWIZZLE_XYZW) {
697 break;
698 }
699 }
700
701 variable_storage *storage;
702 dst_reg dst;
703 if (i == ir->num_state_slots) {
704 /* We'll set the index later. */
705 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
706 this->variables.push_tail(storage);
707
708 dst = undef_dst;
709 } else {
710 /* The variable_storage constructor allocates slots based on the size
711 * of the type. However, this had better match the number of state
712 * elements that we're going to copy into the new temporary.
713 */
714 assert((int) ir->num_state_slots == type_size(ir->type));
715
716 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
717 this->next_temp);
718 this->variables.push_tail(storage);
719 this->next_temp += type_size(ir->type);
720
721 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
722 }
723
724
725 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
726 int index = _mesa_add_state_reference(this->prog->Parameters,
727 (gl_state_index *)slots[i].tokens);
728
729 if (storage->file == PROGRAM_STATE_VAR) {
730 if (storage->index == -1) {
731 storage->index = index;
732 } else {
733 assert(index == storage->index + (int)i);
734 }
735 } else {
736 src_reg src(PROGRAM_STATE_VAR, index, NULL);
737 src.swizzle = slots[i].swizzle;
738 emit(ir, OPCODE_MOV, dst, src);
739 /* even a float takes up a whole vec4 reg in a struct/array. */
740 dst.index++;
741 }
742 }
743
744 if (storage->file == PROGRAM_TEMPORARY &&
745 dst.index != storage->index + (int) ir->num_state_slots) {
746 linker_error(this->shader_program,
747 "failed to load builtin uniform `%s' "
748 "(%d/%d regs loaded)\n",
749 ir->name, dst.index - storage->index,
750 type_size(ir->type));
751 }
752 }
753 }
754
755 void
756 ir_to_mesa_visitor::visit(ir_loop *ir)
757 {
758 ir_dereference_variable *counter = NULL;
759
760 if (ir->counter != NULL)
761 counter = new(mem_ctx) ir_dereference_variable(ir->counter);
762
763 if (ir->from != NULL) {
764 assert(ir->counter != NULL);
765
766 ir_assignment *a =
767 new(mem_ctx) ir_assignment(counter, ir->from, NULL);
768
769 a->accept(this);
770 }
771
772 emit(NULL, OPCODE_BGNLOOP);
773
774 if (ir->to) {
775 ir_expression *e =
776 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
777 counter, ir->to);
778 ir_if *if_stmt = new(mem_ctx) ir_if(e);
779
780 ir_loop_jump *brk =
781 new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
782
783 if_stmt->then_instructions.push_tail(brk);
784
785 if_stmt->accept(this);
786 }
787
788 visit_exec_list(&ir->body_instructions, this);
789
790 if (ir->increment) {
791 ir_expression *e =
792 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
793 counter, ir->increment);
794
795 ir_assignment *a =
796 new(mem_ctx) ir_assignment(counter, e, NULL);
797
798 a->accept(this);
799 }
800
801 emit(NULL, OPCODE_ENDLOOP);
802 }
803
804 void
805 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
806 {
807 switch (ir->mode) {
808 case ir_loop_jump::jump_break:
809 emit(NULL, OPCODE_BRK);
810 break;
811 case ir_loop_jump::jump_continue:
812 emit(NULL, OPCODE_CONT);
813 break;
814 }
815 }
816
817
818 void
819 ir_to_mesa_visitor::visit(ir_function_signature *ir)
820 {
821 assert(0);
822 (void)ir;
823 }
824
825 void
826 ir_to_mesa_visitor::visit(ir_function *ir)
827 {
828 /* Ignore function bodies other than main() -- we shouldn't see calls to
829 * them since they should all be inlined before we get to ir_to_mesa.
830 */
831 if (strcmp(ir->name, "main") == 0) {
832 const ir_function_signature *sig;
833 exec_list empty;
834
835 sig = ir->matching_signature(&empty);
836
837 assert(sig);
838
839 foreach_iter(exec_list_iterator, iter, sig->body) {
840 ir_instruction *ir = (ir_instruction *)iter.get();
841
842 ir->accept(this);
843 }
844 }
845 }
846
847 bool
848 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
849 {
850 int nonmul_operand = 1 - mul_operand;
851 src_reg a, b, c;
852
853 ir_expression *expr = ir->operands[mul_operand]->as_expression();
854 if (!expr || expr->operation != ir_binop_mul)
855 return false;
856
857 expr->operands[0]->accept(this);
858 a = this->result;
859 expr->operands[1]->accept(this);
860 b = this->result;
861 ir->operands[nonmul_operand]->accept(this);
862 c = this->result;
863
864 this->result = get_temp(ir->type);
865 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
866
867 return true;
868 }
869
870 /**
871 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
872 *
873 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
874 * implemented using multiplication, and logical-or is implemented using
875 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
876 * As result, the logical expression (a & !b) can be rewritten as:
877 *
878 * - a * !b
879 * - a * (1 - b)
880 * - (a * 1) - (a * b)
881 * - a + -(a * b)
882 * - a + (a * -b)
883 *
884 * This final expression can be implemented as a single MAD(a, -b, a)
885 * instruction.
886 */
887 bool
888 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
889 {
890 const int other_operand = 1 - try_operand;
891 src_reg a, b;
892
893 ir_expression *expr = ir->operands[try_operand]->as_expression();
894 if (!expr || expr->operation != ir_unop_logic_not)
895 return false;
896
897 ir->operands[other_operand]->accept(this);
898 a = this->result;
899 expr->operands[0]->accept(this);
900 b = this->result;
901
902 b.negate = ~b.negate;
903
904 this->result = get_temp(ir->type);
905 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
906
907 return true;
908 }
909
910 bool
911 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
912 {
913 /* Saturates were only introduced to vertex programs in
914 * NV_vertex_program3, so don't give them to drivers in the VP.
915 */
916 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
917 return false;
918
919 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
920 if (!sat_src)
921 return false;
922
923 sat_src->accept(this);
924 src_reg src = this->result;
925
926 /* If we generated an expression instruction into a temporary in
927 * processing the saturate's operand, apply the saturate to that
928 * instruction. Otherwise, generate a MOV to do the saturate.
929 *
930 * Note that we have to be careful to only do this optimization if
931 * the instruction in question was what generated src->result. For
932 * example, ir_dereference_array might generate a MUL instruction
933 * to create the reladdr, and return us a src reg using that
934 * reladdr. That MUL result is not the value we're trying to
935 * saturate.
936 */
937 ir_expression *sat_src_expr = sat_src->as_expression();
938 ir_to_mesa_instruction *new_inst;
939 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
940 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
941 sat_src_expr->operation == ir_binop_add ||
942 sat_src_expr->operation == ir_binop_dot)) {
943 new_inst->saturate = true;
944 } else {
945 this->result = get_temp(ir->type);
946 ir_to_mesa_instruction *inst;
947 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
948 inst->saturate = true;
949 }
950
951 return true;
952 }
953
954 void
955 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
956 src_reg *reg, int *num_reladdr)
957 {
958 if (!reg->reladdr)
959 return;
960
961 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
962
963 if (*num_reladdr != 1) {
964 src_reg temp = get_temp(glsl_type::vec4_type);
965
966 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
967 *reg = temp;
968 }
969
970 (*num_reladdr)--;
971 }
972
973 void
974 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
975 {
976 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
977 * This means that each of the operands is either an immediate value of -1,
978 * 0, or 1, or is a component from one source register (possibly with
979 * negation).
980 */
981 uint8_t components[4] = { 0 };
982 bool negate[4] = { false };
983 ir_variable *var = NULL;
984
985 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
986 ir_rvalue *op = ir->operands[i];
987
988 assert(op->type->is_scalar());
989
990 while (op != NULL) {
991 switch (op->ir_type) {
992 case ir_type_constant: {
993
994 assert(op->type->is_scalar());
995
996 const ir_constant *const c = op->as_constant();
997 if (c->is_one()) {
998 components[i] = SWIZZLE_ONE;
999 } else if (c->is_zero()) {
1000 components[i] = SWIZZLE_ZERO;
1001 } else if (c->is_negative_one()) {
1002 components[i] = SWIZZLE_ONE;
1003 negate[i] = true;
1004 } else {
1005 assert(!"SWZ constant must be 0.0 or 1.0.");
1006 }
1007
1008 op = NULL;
1009 break;
1010 }
1011
1012 case ir_type_dereference_variable: {
1013 ir_dereference_variable *const deref =
1014 (ir_dereference_variable *) op;
1015
1016 assert((var == NULL) || (deref->var == var));
1017 components[i] = SWIZZLE_X;
1018 var = deref->var;
1019 op = NULL;
1020 break;
1021 }
1022
1023 case ir_type_expression: {
1024 ir_expression *const expr = (ir_expression *) op;
1025
1026 assert(expr->operation == ir_unop_neg);
1027 negate[i] = true;
1028
1029 op = expr->operands[0];
1030 break;
1031 }
1032
1033 case ir_type_swizzle: {
1034 ir_swizzle *const swiz = (ir_swizzle *) op;
1035
1036 components[i] = swiz->mask.x;
1037 op = swiz->val;
1038 break;
1039 }
1040
1041 default:
1042 assert(!"Should not get here.");
1043 return;
1044 }
1045 }
1046 }
1047
1048 assert(var != NULL);
1049
1050 ir_dereference_variable *const deref =
1051 new(mem_ctx) ir_dereference_variable(var);
1052
1053 this->result.file = PROGRAM_UNDEFINED;
1054 deref->accept(this);
1055 if (this->result.file == PROGRAM_UNDEFINED) {
1056 ir_print_visitor v;
1057 printf("Failed to get tree for expression operand:\n");
1058 deref->accept(&v);
1059 exit(1);
1060 }
1061
1062 src_reg src;
1063
1064 src = this->result;
1065 src.swizzle = MAKE_SWIZZLE4(components[0],
1066 components[1],
1067 components[2],
1068 components[3]);
1069 src.negate = ((unsigned(negate[0]) << 0)
1070 | (unsigned(negate[1]) << 1)
1071 | (unsigned(negate[2]) << 2)
1072 | (unsigned(negate[3]) << 3));
1073
1074 /* Storage for our result. Ideally for an assignment we'd be using the
1075 * actual storage for the result here, instead.
1076 */
1077 const src_reg result_src = get_temp(ir->type);
1078 dst_reg result_dst = dst_reg(result_src);
1079
1080 /* Limit writes to the channels that will be used by result_src later.
1081 * This does limit this temp's use as a temporary for multi-instruction
1082 * sequences.
1083 */
1084 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1085
1086 emit(ir, OPCODE_SWZ, result_dst, src);
1087 this->result = result_src;
1088 }
1089
1090 void
1091 ir_to_mesa_visitor::visit(ir_expression *ir)
1092 {
1093 unsigned int operand;
1094 src_reg op[Elements(ir->operands)];
1095 src_reg result_src;
1096 dst_reg result_dst;
1097
1098 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1099 */
1100 if (ir->operation == ir_binop_add) {
1101 if (try_emit_mad(ir, 1))
1102 return;
1103 if (try_emit_mad(ir, 0))
1104 return;
1105 }
1106
1107 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1108 */
1109 if (ir->operation == ir_binop_logic_and) {
1110 if (try_emit_mad_for_and_not(ir, 1))
1111 return;
1112 if (try_emit_mad_for_and_not(ir, 0))
1113 return;
1114 }
1115
1116 if (try_emit_sat(ir))
1117 return;
1118
1119 if (ir->operation == ir_quadop_vector) {
1120 this->emit_swz(ir);
1121 return;
1122 }
1123
1124 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1125 this->result.file = PROGRAM_UNDEFINED;
1126 ir->operands[operand]->accept(this);
1127 if (this->result.file == PROGRAM_UNDEFINED) {
1128 ir_print_visitor v;
1129 printf("Failed to get tree for expression operand:\n");
1130 ir->operands[operand]->accept(&v);
1131 exit(1);
1132 }
1133 op[operand] = this->result;
1134
1135 /* Matrix expression operands should have been broken down to vector
1136 * operations already.
1137 */
1138 assert(!ir->operands[operand]->type->is_matrix());
1139 }
1140
1141 int vector_elements = ir->operands[0]->type->vector_elements;
1142 if (ir->operands[1]) {
1143 vector_elements = MAX2(vector_elements,
1144 ir->operands[1]->type->vector_elements);
1145 }
1146
1147 this->result.file = PROGRAM_UNDEFINED;
1148
1149 /* Storage for our result. Ideally for an assignment we'd be using
1150 * the actual storage for the result here, instead.
1151 */
1152 result_src = get_temp(ir->type);
1153 /* convenience for the emit functions below. */
1154 result_dst = dst_reg(result_src);
1155 /* Limit writes to the channels that will be used by result_src later.
1156 * This does limit this temp's use as a temporary for multi-instruction
1157 * sequences.
1158 */
1159 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1160
1161 switch (ir->operation) {
1162 case ir_unop_logic_not:
1163 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1164 * older GPUs implement SEQ using multiple instructions (i915 uses two
1165 * SGE instructions and a MUL instruction). Since our logic values are
1166 * 0.0 and 1.0, 1-x also implements !x.
1167 */
1168 op[0].negate = ~op[0].negate;
1169 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1170 break;
1171 case ir_unop_neg:
1172 op[0].negate = ~op[0].negate;
1173 result_src = op[0];
1174 break;
1175 case ir_unop_abs:
1176 emit(ir, OPCODE_ABS, result_dst, op[0]);
1177 break;
1178 case ir_unop_sign:
1179 emit(ir, OPCODE_SSG, result_dst, op[0]);
1180 break;
1181 case ir_unop_rcp:
1182 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1183 break;
1184
1185 case ir_unop_exp2:
1186 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1187 break;
1188 case ir_unop_exp:
1189 case ir_unop_log:
1190 assert(!"not reached: should be handled by ir_explog_to_explog2");
1191 break;
1192 case ir_unop_log2:
1193 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1194 break;
1195 case ir_unop_sin:
1196 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1197 break;
1198 case ir_unop_cos:
1199 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1200 break;
1201 case ir_unop_sin_reduced:
1202 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1203 break;
1204 case ir_unop_cos_reduced:
1205 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1206 break;
1207
1208 case ir_unop_dFdx:
1209 emit(ir, OPCODE_DDX, result_dst, op[0]);
1210 break;
1211 case ir_unop_dFdy:
1212 emit(ir, OPCODE_DDY, result_dst, op[0]);
1213 break;
1214
1215 case ir_unop_noise: {
1216 const enum prog_opcode opcode =
1217 prog_opcode(OPCODE_NOISE1
1218 + (ir->operands[0]->type->vector_elements) - 1);
1219 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1220
1221 emit(ir, opcode, result_dst, op[0]);
1222 break;
1223 }
1224
1225 case ir_binop_add:
1226 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1227 break;
1228 case ir_binop_sub:
1229 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1230 break;
1231
1232 case ir_binop_mul:
1233 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1234 break;
1235 case ir_binop_div:
1236 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1237 break;
1238 case ir_binop_mod:
1239 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1240 assert(ir->type->is_integer());
1241 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1242 break;
1243
1244 case ir_binop_less:
1245 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1246 break;
1247 case ir_binop_greater:
1248 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1249 break;
1250 case ir_binop_lequal:
1251 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1252 break;
1253 case ir_binop_gequal:
1254 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1255 break;
1256 case ir_binop_equal:
1257 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1258 break;
1259 case ir_binop_nequal:
1260 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1261 break;
1262 case ir_binop_all_equal:
1263 /* "==" operator producing a scalar boolean. */
1264 if (ir->operands[0]->type->is_vector() ||
1265 ir->operands[1]->type->is_vector()) {
1266 src_reg temp = get_temp(glsl_type::vec4_type);
1267 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1268
1269 /* After the dot-product, the value will be an integer on the
1270 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1271 */
1272 emit_dp(ir, result_dst, temp, temp, vector_elements);
1273
1274 /* Negating the result of the dot-product gives values on the range
1275 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1276 * achieved using SGE.
1277 */
1278 src_reg sge_src = result_src;
1279 sge_src.negate = ~sge_src.negate;
1280 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1281 } else {
1282 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1283 }
1284 break;
1285 case ir_binop_any_nequal:
1286 /* "!=" operator producing a scalar boolean. */
1287 if (ir->operands[0]->type->is_vector() ||
1288 ir->operands[1]->type->is_vector()) {
1289 src_reg temp = get_temp(glsl_type::vec4_type);
1290 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1291
1292 /* After the dot-product, the value will be an integer on the
1293 * range [0,4]. Zero stays zero, and positive values become 1.0.
1294 */
1295 ir_to_mesa_instruction *const dp =
1296 emit_dp(ir, result_dst, temp, temp, vector_elements);
1297 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1298 /* The clamping to [0,1] can be done for free in the fragment
1299 * shader with a saturate.
1300 */
1301 dp->saturate = true;
1302 } else {
1303 /* Negating the result of the dot-product gives values on the range
1304 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1305 * achieved using SLT.
1306 */
1307 src_reg slt_src = result_src;
1308 slt_src.negate = ~slt_src.negate;
1309 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1310 }
1311 } else {
1312 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1313 }
1314 break;
1315
1316 case ir_unop_any: {
1317 assert(ir->operands[0]->type->is_vector());
1318
1319 /* After the dot-product, the value will be an integer on the
1320 * range [0,4]. Zero stays zero, and positive values become 1.0.
1321 */
1322 ir_to_mesa_instruction *const dp =
1323 emit_dp(ir, result_dst, op[0], op[0],
1324 ir->operands[0]->type->vector_elements);
1325 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1326 /* The clamping to [0,1] can be done for free in the fragment
1327 * shader with a saturate.
1328 */
1329 dp->saturate = true;
1330 } else {
1331 /* Negating the result of the dot-product gives values on the range
1332 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1333 * is achieved using SLT.
1334 */
1335 src_reg slt_src = result_src;
1336 slt_src.negate = ~slt_src.negate;
1337 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1338 }
1339 break;
1340 }
1341
1342 case ir_binop_logic_xor:
1343 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1344 break;
1345
1346 case ir_binop_logic_or: {
1347 /* After the addition, the value will be an integer on the
1348 * range [0,2]. Zero stays zero, and positive values become 1.0.
1349 */
1350 ir_to_mesa_instruction *add =
1351 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1352 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1353 /* The clamping to [0,1] can be done for free in the fragment
1354 * shader with a saturate.
1355 */
1356 add->saturate = true;
1357 } else {
1358 /* Negating the result of the addition gives values on the range
1359 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1360 * is achieved using SLT.
1361 */
1362 src_reg slt_src = result_src;
1363 slt_src.negate = ~slt_src.negate;
1364 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1365 }
1366 break;
1367 }
1368
1369 case ir_binop_logic_and:
1370 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1371 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1372 break;
1373
1374 case ir_binop_dot:
1375 assert(ir->operands[0]->type->is_vector());
1376 assert(ir->operands[0]->type == ir->operands[1]->type);
1377 emit_dp(ir, result_dst, op[0], op[1],
1378 ir->operands[0]->type->vector_elements);
1379 break;
1380
1381 case ir_unop_sqrt:
1382 /* sqrt(x) = x * rsq(x). */
1383 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1384 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1385 /* For incoming channels <= 0, set the result to 0. */
1386 op[0].negate = ~op[0].negate;
1387 emit(ir, OPCODE_CMP, result_dst,
1388 op[0], result_src, src_reg_for_float(0.0));
1389 break;
1390 case ir_unop_rsq:
1391 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1392 break;
1393 case ir_unop_i2f:
1394 case ir_unop_u2f:
1395 case ir_unop_b2f:
1396 case ir_unop_b2i:
1397 case ir_unop_i2u:
1398 case ir_unop_u2i:
1399 /* Mesa IR lacks types, ints are stored as truncated floats. */
1400 result_src = op[0];
1401 break;
1402 case ir_unop_f2i:
1403 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1404 break;
1405 case ir_unop_f2b:
1406 case ir_unop_i2b:
1407 emit(ir, OPCODE_SNE, result_dst,
1408 op[0], src_reg_for_float(0.0));
1409 break;
1410 case ir_unop_trunc:
1411 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1412 break;
1413 case ir_unop_ceil:
1414 op[0].negate = ~op[0].negate;
1415 emit(ir, OPCODE_FLR, result_dst, op[0]);
1416 result_src.negate = ~result_src.negate;
1417 break;
1418 case ir_unop_floor:
1419 emit(ir, OPCODE_FLR, result_dst, op[0]);
1420 break;
1421 case ir_unop_fract:
1422 emit(ir, OPCODE_FRC, result_dst, op[0]);
1423 break;
1424
1425 case ir_binop_min:
1426 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1427 break;
1428 case ir_binop_max:
1429 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1430 break;
1431 case ir_binop_pow:
1432 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1433 break;
1434
1435 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1436 * hardware backends have no way to avoid Mesa IR generation
1437 * even if they don't use it, we need to emit "something" and
1438 * continue.
1439 */
1440 case ir_binop_lshift:
1441 case ir_binop_rshift:
1442 case ir_binop_bit_and:
1443 case ir_binop_bit_xor:
1444 case ir_binop_bit_or:
1445 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1446 break;
1447
1448 case ir_unop_bit_not:
1449 case ir_unop_round_even:
1450 emit(ir, OPCODE_MOV, result_dst, op[0]);
1451 break;
1452
1453 case ir_quadop_vector:
1454 /* This operation should have already been handled.
1455 */
1456 assert(!"Should not get here.");
1457 break;
1458 }
1459
1460 this->result = result_src;
1461 }
1462
1463
1464 void
1465 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1466 {
1467 src_reg src;
1468 int i;
1469 int swizzle[4];
1470
1471 /* Note that this is only swizzles in expressions, not those on the left
1472 * hand side of an assignment, which do write masking. See ir_assignment
1473 * for that.
1474 */
1475
1476 ir->val->accept(this);
1477 src = this->result;
1478 assert(src.file != PROGRAM_UNDEFINED);
1479
1480 for (i = 0; i < 4; i++) {
1481 if (i < ir->type->vector_elements) {
1482 switch (i) {
1483 case 0:
1484 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1485 break;
1486 case 1:
1487 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1488 break;
1489 case 2:
1490 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1491 break;
1492 case 3:
1493 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1494 break;
1495 }
1496 } else {
1497 /* If the type is smaller than a vec4, replicate the last
1498 * channel out.
1499 */
1500 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1501 }
1502 }
1503
1504 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1505
1506 this->result = src;
1507 }
1508
1509 void
1510 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1511 {
1512 variable_storage *entry = find_variable_storage(ir->var);
1513 ir_variable *var = ir->var;
1514
1515 if (!entry) {
1516 switch (var->mode) {
1517 case ir_var_uniform:
1518 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1519 var->location);
1520 this->variables.push_tail(entry);
1521 break;
1522 case ir_var_in:
1523 case ir_var_inout:
1524 /* The linker assigns locations for varyings and attributes,
1525 * including deprecated builtins (like gl_Color),
1526 * user-assigned generic attributes (glBindVertexLocation),
1527 * and user-defined varyings.
1528 *
1529 * FINISHME: We would hit this path for function arguments. Fix!
1530 */
1531 assert(var->location != -1);
1532 entry = new(mem_ctx) variable_storage(var,
1533 PROGRAM_INPUT,
1534 var->location);
1535 break;
1536 case ir_var_out:
1537 assert(var->location != -1);
1538 entry = new(mem_ctx) variable_storage(var,
1539 PROGRAM_OUTPUT,
1540 var->location);
1541 break;
1542 case ir_var_system_value:
1543 entry = new(mem_ctx) variable_storage(var,
1544 PROGRAM_SYSTEM_VALUE,
1545 var->location);
1546 break;
1547 case ir_var_auto:
1548 case ir_var_temporary:
1549 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1550 this->next_temp);
1551 this->variables.push_tail(entry);
1552
1553 next_temp += type_size(var->type);
1554 break;
1555 }
1556
1557 if (!entry) {
1558 printf("Failed to make storage for %s\n", var->name);
1559 exit(1);
1560 }
1561 }
1562
1563 this->result = src_reg(entry->file, entry->index, var->type);
1564 }
1565
1566 void
1567 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1568 {
1569 ir_constant *index;
1570 src_reg src;
1571 int element_size = type_size(ir->type);
1572
1573 index = ir->array_index->constant_expression_value();
1574
1575 ir->array->accept(this);
1576 src = this->result;
1577
1578 if (index) {
1579 src.index += index->value.i[0] * element_size;
1580 } else {
1581 /* Variable index array dereference. It eats the "vec4" of the
1582 * base of the array and an index that offsets the Mesa register
1583 * index.
1584 */
1585 ir->array_index->accept(this);
1586
1587 src_reg index_reg;
1588
1589 if (element_size == 1) {
1590 index_reg = this->result;
1591 } else {
1592 index_reg = get_temp(glsl_type::float_type);
1593
1594 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1595 this->result, src_reg_for_float(element_size));
1596 }
1597
1598 /* If there was already a relative address register involved, add the
1599 * new and the old together to get the new offset.
1600 */
1601 if (src.reladdr != NULL) {
1602 src_reg accum_reg = get_temp(glsl_type::float_type);
1603
1604 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1605 index_reg, *src.reladdr);
1606
1607 index_reg = accum_reg;
1608 }
1609
1610 src.reladdr = ralloc(mem_ctx, src_reg);
1611 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1612 }
1613
1614 /* If the type is smaller than a vec4, replicate the last channel out. */
1615 if (ir->type->is_scalar() || ir->type->is_vector())
1616 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1617 else
1618 src.swizzle = SWIZZLE_NOOP;
1619
1620 this->result = src;
1621 }
1622
1623 void
1624 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1625 {
1626 unsigned int i;
1627 const glsl_type *struct_type = ir->record->type;
1628 int offset = 0;
1629
1630 ir->record->accept(this);
1631
1632 for (i = 0; i < struct_type->length; i++) {
1633 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1634 break;
1635 offset += type_size(struct_type->fields.structure[i].type);
1636 }
1637
1638 /* If the type is smaller than a vec4, replicate the last channel out. */
1639 if (ir->type->is_scalar() || ir->type->is_vector())
1640 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1641 else
1642 this->result.swizzle = SWIZZLE_NOOP;
1643
1644 this->result.index += offset;
1645 }
1646
1647 /**
1648 * We want to be careful in assignment setup to hit the actual storage
1649 * instead of potentially using a temporary like we might with the
1650 * ir_dereference handler.
1651 */
1652 static dst_reg
1653 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1654 {
1655 /* The LHS must be a dereference. If the LHS is a variable indexed array
1656 * access of a vector, it must be separated into a series conditional moves
1657 * before reaching this point (see ir_vec_index_to_cond_assign).
1658 */
1659 assert(ir->as_dereference());
1660 ir_dereference_array *deref_array = ir->as_dereference_array();
1661 if (deref_array) {
1662 assert(!deref_array->array->type->is_vector());
1663 }
1664
1665 /* Use the rvalue deref handler for the most part. We'll ignore
1666 * swizzles in it and write swizzles using writemask, though.
1667 */
1668 ir->accept(v);
1669 return dst_reg(v->result);
1670 }
1671
1672 /**
1673 * Process the condition of a conditional assignment
1674 *
1675 * Examines the condition of a conditional assignment to generate the optimal
1676 * first operand of a \c CMP instruction. If the condition is a relational
1677 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1678 * used as the source for the \c CMP instruction. Otherwise the comparison
1679 * is processed to a boolean result, and the boolean result is used as the
1680 * operand to the CMP instruction.
1681 */
1682 bool
1683 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1684 {
1685 ir_rvalue *src_ir = ir;
1686 bool negate = true;
1687 bool switch_order = false;
1688
1689 ir_expression *const expr = ir->as_expression();
1690 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1691 bool zero_on_left = false;
1692
1693 if (expr->operands[0]->is_zero()) {
1694 src_ir = expr->operands[1];
1695 zero_on_left = true;
1696 } else if (expr->operands[1]->is_zero()) {
1697 src_ir = expr->operands[0];
1698 zero_on_left = false;
1699 }
1700
1701 /* a is - 0 + - 0 +
1702 * (a < 0) T F F ( a < 0) T F F
1703 * (0 < a) F F T (-a < 0) F F T
1704 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1705 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1706 * (a > 0) F F T (-a < 0) F F T
1707 * (0 > a) T F F ( a < 0) T F F
1708 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1709 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1710 *
1711 * Note that exchanging the order of 0 and 'a' in the comparison simply
1712 * means that the value of 'a' should be negated.
1713 */
1714 if (src_ir != ir) {
1715 switch (expr->operation) {
1716 case ir_binop_less:
1717 switch_order = false;
1718 negate = zero_on_left;
1719 break;
1720
1721 case ir_binop_greater:
1722 switch_order = false;
1723 negate = !zero_on_left;
1724 break;
1725
1726 case ir_binop_lequal:
1727 switch_order = true;
1728 negate = !zero_on_left;
1729 break;
1730
1731 case ir_binop_gequal:
1732 switch_order = true;
1733 negate = zero_on_left;
1734 break;
1735
1736 default:
1737 /* This isn't the right kind of comparison afterall, so make sure
1738 * the whole condition is visited.
1739 */
1740 src_ir = ir;
1741 break;
1742 }
1743 }
1744 }
1745
1746 src_ir->accept(this);
1747
1748 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1749 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1750 * choose which value OPCODE_CMP produces without an extra instruction
1751 * computing the condition.
1752 */
1753 if (negate)
1754 this->result.negate = ~this->result.negate;
1755
1756 return switch_order;
1757 }
1758
1759 void
1760 ir_to_mesa_visitor::visit(ir_assignment *ir)
1761 {
1762 dst_reg l;
1763 src_reg r;
1764 int i;
1765
1766 ir->rhs->accept(this);
1767 r = this->result;
1768
1769 l = get_assignment_lhs(ir->lhs, this);
1770
1771 /* FINISHME: This should really set to the correct maximal writemask for each
1772 * FINISHME: component written (in the loops below). This case can only
1773 * FINISHME: occur for matrices, arrays, and structures.
1774 */
1775 if (ir->write_mask == 0) {
1776 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1777 l.writemask = WRITEMASK_XYZW;
1778 } else if (ir->lhs->type->is_scalar()) {
1779 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1780 * FINISHME: W component of fragment shader output zero, work correctly.
1781 */
1782 l.writemask = WRITEMASK_XYZW;
1783 } else {
1784 int swizzles[4];
1785 int first_enabled_chan = 0;
1786 int rhs_chan = 0;
1787
1788 assert(ir->lhs->type->is_vector());
1789 l.writemask = ir->write_mask;
1790
1791 for (int i = 0; i < 4; i++) {
1792 if (l.writemask & (1 << i)) {
1793 first_enabled_chan = GET_SWZ(r.swizzle, i);
1794 break;
1795 }
1796 }
1797
1798 /* Swizzle a small RHS vector into the channels being written.
1799 *
1800 * glsl ir treats write_mask as dictating how many channels are
1801 * present on the RHS while Mesa IR treats write_mask as just
1802 * showing which channels of the vec4 RHS get written.
1803 */
1804 for (int i = 0; i < 4; i++) {
1805 if (l.writemask & (1 << i))
1806 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1807 else
1808 swizzles[i] = first_enabled_chan;
1809 }
1810 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1811 swizzles[2], swizzles[3]);
1812 }
1813
1814 assert(l.file != PROGRAM_UNDEFINED);
1815 assert(r.file != PROGRAM_UNDEFINED);
1816
1817 if (ir->condition) {
1818 const bool switch_order = this->process_move_condition(ir->condition);
1819 src_reg condition = this->result;
1820
1821 for (i = 0; i < type_size(ir->lhs->type); i++) {
1822 if (switch_order) {
1823 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1824 } else {
1825 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1826 }
1827
1828 l.index++;
1829 r.index++;
1830 }
1831 } else {
1832 for (i = 0; i < type_size(ir->lhs->type); i++) {
1833 emit(ir, OPCODE_MOV, l, r);
1834 l.index++;
1835 r.index++;
1836 }
1837 }
1838 }
1839
1840
1841 void
1842 ir_to_mesa_visitor::visit(ir_constant *ir)
1843 {
1844 src_reg src;
1845 GLfloat stack_vals[4] = { 0 };
1846 GLfloat *values = stack_vals;
1847 unsigned int i;
1848
1849 /* Unfortunately, 4 floats is all we can get into
1850 * _mesa_add_unnamed_constant. So, make a temp to store an
1851 * aggregate constant and move each constant value into it. If we
1852 * get lucky, copy propagation will eliminate the extra moves.
1853 */
1854
1855 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1856 src_reg temp_base = get_temp(ir->type);
1857 dst_reg temp = dst_reg(temp_base);
1858
1859 foreach_iter(exec_list_iterator, iter, ir->components) {
1860 ir_constant *field_value = (ir_constant *)iter.get();
1861 int size = type_size(field_value->type);
1862
1863 assert(size > 0);
1864
1865 field_value->accept(this);
1866 src = this->result;
1867
1868 for (i = 0; i < (unsigned int)size; i++) {
1869 emit(ir, OPCODE_MOV, temp, src);
1870
1871 src.index++;
1872 temp.index++;
1873 }
1874 }
1875 this->result = temp_base;
1876 return;
1877 }
1878
1879 if (ir->type->is_array()) {
1880 src_reg temp_base = get_temp(ir->type);
1881 dst_reg temp = dst_reg(temp_base);
1882 int size = type_size(ir->type->fields.array);
1883
1884 assert(size > 0);
1885
1886 for (i = 0; i < ir->type->length; i++) {
1887 ir->array_elements[i]->accept(this);
1888 src = this->result;
1889 for (int j = 0; j < size; j++) {
1890 emit(ir, OPCODE_MOV, temp, src);
1891
1892 src.index++;
1893 temp.index++;
1894 }
1895 }
1896 this->result = temp_base;
1897 return;
1898 }
1899
1900 if (ir->type->is_matrix()) {
1901 src_reg mat = get_temp(ir->type);
1902 dst_reg mat_column = dst_reg(mat);
1903
1904 for (i = 0; i < ir->type->matrix_columns; i++) {
1905 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1906 values = &ir->value.f[i * ir->type->vector_elements];
1907
1908 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1909 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1910 (gl_constant_value *) values,
1911 ir->type->vector_elements,
1912 &src.swizzle);
1913 emit(ir, OPCODE_MOV, mat_column, src);
1914
1915 mat_column.index++;
1916 }
1917
1918 this->result = mat;
1919 return;
1920 }
1921
1922 src.file = PROGRAM_CONSTANT;
1923 switch (ir->type->base_type) {
1924 case GLSL_TYPE_FLOAT:
1925 values = &ir->value.f[0];
1926 break;
1927 case GLSL_TYPE_UINT:
1928 for (i = 0; i < ir->type->vector_elements; i++) {
1929 values[i] = ir->value.u[i];
1930 }
1931 break;
1932 case GLSL_TYPE_INT:
1933 for (i = 0; i < ir->type->vector_elements; i++) {
1934 values[i] = ir->value.i[i];
1935 }
1936 break;
1937 case GLSL_TYPE_BOOL:
1938 for (i = 0; i < ir->type->vector_elements; i++) {
1939 values[i] = ir->value.b[i];
1940 }
1941 break;
1942 default:
1943 assert(!"Non-float/uint/int/bool constant");
1944 }
1945
1946 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1947 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1948 (gl_constant_value *) values,
1949 ir->type->vector_elements,
1950 &this->result.swizzle);
1951 }
1952
1953 void
1954 ir_to_mesa_visitor::visit(ir_call *ir)
1955 {
1956 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1957 }
1958
1959 void
1960 ir_to_mesa_visitor::visit(ir_texture *ir)
1961 {
1962 src_reg result_src, coord, lod_info, projector, dx, dy;
1963 dst_reg result_dst, coord_dst;
1964 ir_to_mesa_instruction *inst = NULL;
1965 prog_opcode opcode = OPCODE_NOP;
1966
1967 if (ir->op == ir_txs)
1968 this->result = src_reg_for_float(0.0);
1969 else
1970 ir->coordinate->accept(this);
1971
1972 /* Put our coords in a temp. We'll need to modify them for shadow,
1973 * projection, or LOD, so the only case we'd use it as is is if
1974 * we're doing plain old texturing. Mesa IR optimization should
1975 * handle cleaning up our mess in that case.
1976 */
1977 coord = get_temp(glsl_type::vec4_type);
1978 coord_dst = dst_reg(coord);
1979 emit(ir, OPCODE_MOV, coord_dst, this->result);
1980
1981 if (ir->projector) {
1982 ir->projector->accept(this);
1983 projector = this->result;
1984 }
1985
1986 /* Storage for our result. Ideally for an assignment we'd be using
1987 * the actual storage for the result here, instead.
1988 */
1989 result_src = get_temp(glsl_type::vec4_type);
1990 result_dst = dst_reg(result_src);
1991
1992 switch (ir->op) {
1993 case ir_tex:
1994 case ir_txs:
1995 opcode = OPCODE_TEX;
1996 break;
1997 case ir_txb:
1998 opcode = OPCODE_TXB;
1999 ir->lod_info.bias->accept(this);
2000 lod_info = this->result;
2001 break;
2002 case ir_txf:
2003 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2004 case ir_txl:
2005 opcode = OPCODE_TXL;
2006 ir->lod_info.lod->accept(this);
2007 lod_info = this->result;
2008 break;
2009 case ir_txd:
2010 opcode = OPCODE_TXD;
2011 ir->lod_info.grad.dPdx->accept(this);
2012 dx = this->result;
2013 ir->lod_info.grad.dPdy->accept(this);
2014 dy = this->result;
2015 break;
2016 }
2017
2018 const glsl_type *sampler_type = ir->sampler->type;
2019
2020 if (ir->projector) {
2021 if (opcode == OPCODE_TEX) {
2022 /* Slot the projector in as the last component of the coord. */
2023 coord_dst.writemask = WRITEMASK_W;
2024 emit(ir, OPCODE_MOV, coord_dst, projector);
2025 coord_dst.writemask = WRITEMASK_XYZW;
2026 opcode = OPCODE_TXP;
2027 } else {
2028 src_reg coord_w = coord;
2029 coord_w.swizzle = SWIZZLE_WWWW;
2030
2031 /* For the other TEX opcodes there's no projective version
2032 * since the last slot is taken up by lod info. Do the
2033 * projective divide now.
2034 */
2035 coord_dst.writemask = WRITEMASK_W;
2036 emit(ir, OPCODE_RCP, coord_dst, projector);
2037
2038 /* In the case where we have to project the coordinates "by hand,"
2039 * the shadow comparitor value must also be projected.
2040 */
2041 src_reg tmp_src = coord;
2042 if (ir->shadow_comparitor) {
2043 /* Slot the shadow value in as the second to last component of the
2044 * coord.
2045 */
2046 ir->shadow_comparitor->accept(this);
2047
2048 tmp_src = get_temp(glsl_type::vec4_type);
2049 dst_reg tmp_dst = dst_reg(tmp_src);
2050
2051 /* Projective division not allowed for array samplers. */
2052 assert(!sampler_type->sampler_array);
2053
2054 tmp_dst.writemask = WRITEMASK_Z;
2055 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2056
2057 tmp_dst.writemask = WRITEMASK_XY;
2058 emit(ir, OPCODE_MOV, tmp_dst, coord);
2059 }
2060
2061 coord_dst.writemask = WRITEMASK_XYZ;
2062 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2063
2064 coord_dst.writemask = WRITEMASK_XYZW;
2065 coord.swizzle = SWIZZLE_XYZW;
2066 }
2067 }
2068
2069 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2070 * comparitor was put in the correct place (and projected) by the code,
2071 * above, that handles by-hand projection.
2072 */
2073 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2074 /* Slot the shadow value in as the second to last component of the
2075 * coord.
2076 */
2077 ir->shadow_comparitor->accept(this);
2078
2079 /* XXX This will need to be updated for cubemap array samplers. */
2080 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2081 sampler_type->sampler_array) {
2082 coord_dst.writemask = WRITEMASK_W;
2083 } else {
2084 coord_dst.writemask = WRITEMASK_Z;
2085 }
2086
2087 emit(ir, OPCODE_MOV, coord_dst, this->result);
2088 coord_dst.writemask = WRITEMASK_XYZW;
2089 }
2090
2091 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2092 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2093 coord_dst.writemask = WRITEMASK_W;
2094 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2095 coord_dst.writemask = WRITEMASK_XYZW;
2096 }
2097
2098 if (opcode == OPCODE_TXD)
2099 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2100 else
2101 inst = emit(ir, opcode, result_dst, coord);
2102
2103 if (ir->shadow_comparitor)
2104 inst->tex_shadow = GL_TRUE;
2105
2106 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2107 this->shader_program,
2108 this->prog);
2109
2110 switch (sampler_type->sampler_dimensionality) {
2111 case GLSL_SAMPLER_DIM_1D:
2112 inst->tex_target = (sampler_type->sampler_array)
2113 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2114 break;
2115 case GLSL_SAMPLER_DIM_2D:
2116 inst->tex_target = (sampler_type->sampler_array)
2117 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2118 break;
2119 case GLSL_SAMPLER_DIM_3D:
2120 inst->tex_target = TEXTURE_3D_INDEX;
2121 break;
2122 case GLSL_SAMPLER_DIM_CUBE:
2123 inst->tex_target = TEXTURE_CUBE_INDEX;
2124 break;
2125 case GLSL_SAMPLER_DIM_RECT:
2126 inst->tex_target = TEXTURE_RECT_INDEX;
2127 break;
2128 case GLSL_SAMPLER_DIM_BUF:
2129 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2130 break;
2131 case GLSL_SAMPLER_DIM_EXTERNAL:
2132 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2133 break;
2134 default:
2135 assert(!"Should not get here.");
2136 }
2137
2138 this->result = result_src;
2139 }
2140
2141 void
2142 ir_to_mesa_visitor::visit(ir_return *ir)
2143 {
2144 /* Non-void functions should have been inlined. We may still emit RETs
2145 * from main() unless the EmitNoMainReturn option is set.
2146 */
2147 assert(!ir->get_value());
2148 emit(ir, OPCODE_RET);
2149 }
2150
2151 void
2152 ir_to_mesa_visitor::visit(ir_discard *ir)
2153 {
2154 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2155
2156 if (ir->condition) {
2157 ir->condition->accept(this);
2158 this->result.negate = ~this->result.negate;
2159 emit(ir, OPCODE_KIL, undef_dst, this->result);
2160 } else {
2161 emit(ir, OPCODE_KIL_NV);
2162 }
2163
2164 fp->UsesKill = GL_TRUE;
2165 }
2166
2167 void
2168 ir_to_mesa_visitor::visit(ir_if *ir)
2169 {
2170 ir_to_mesa_instruction *cond_inst, *if_inst;
2171 ir_to_mesa_instruction *prev_inst;
2172
2173 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2174
2175 ir->condition->accept(this);
2176 assert(this->result.file != PROGRAM_UNDEFINED);
2177
2178 if (this->options->EmitCondCodes) {
2179 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2180
2181 /* See if we actually generated any instruction for generating
2182 * the condition. If not, then cook up a move to a temp so we
2183 * have something to set cond_update on.
2184 */
2185 if (cond_inst == prev_inst) {
2186 src_reg temp = get_temp(glsl_type::bool_type);
2187 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2188 }
2189 cond_inst->cond_update = GL_TRUE;
2190
2191 if_inst = emit(ir->condition, OPCODE_IF);
2192 if_inst->dst.cond_mask = COND_NE;
2193 } else {
2194 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2195 }
2196
2197 this->instructions.push_tail(if_inst);
2198
2199 visit_exec_list(&ir->then_instructions, this);
2200
2201 if (!ir->else_instructions.is_empty()) {
2202 emit(ir->condition, OPCODE_ELSE);
2203 visit_exec_list(&ir->else_instructions, this);
2204 }
2205
2206 if_inst = emit(ir->condition, OPCODE_ENDIF);
2207 }
2208
2209 ir_to_mesa_visitor::ir_to_mesa_visitor()
2210 {
2211 result.file = PROGRAM_UNDEFINED;
2212 next_temp = 1;
2213 next_signature_id = 1;
2214 current_function = NULL;
2215 mem_ctx = ralloc_context(NULL);
2216 }
2217
2218 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2219 {
2220 ralloc_free(mem_ctx);
2221 }
2222
2223 static struct prog_src_register
2224 mesa_src_reg_from_ir_src_reg(src_reg reg)
2225 {
2226 struct prog_src_register mesa_reg;
2227
2228 mesa_reg.File = reg.file;
2229 assert(reg.index < (1 << INST_INDEX_BITS));
2230 mesa_reg.Index = reg.index;
2231 mesa_reg.Swizzle = reg.swizzle;
2232 mesa_reg.RelAddr = reg.reladdr != NULL;
2233 mesa_reg.Negate = reg.negate;
2234 mesa_reg.Abs = 0;
2235 mesa_reg.HasIndex2 = GL_FALSE;
2236 mesa_reg.RelAddr2 = 0;
2237 mesa_reg.Index2 = 0;
2238
2239 return mesa_reg;
2240 }
2241
2242 static void
2243 set_branchtargets(ir_to_mesa_visitor *v,
2244 struct prog_instruction *mesa_instructions,
2245 int num_instructions)
2246 {
2247 int if_count = 0, loop_count = 0;
2248 int *if_stack, *loop_stack;
2249 int if_stack_pos = 0, loop_stack_pos = 0;
2250 int i, j;
2251
2252 for (i = 0; i < num_instructions; i++) {
2253 switch (mesa_instructions[i].Opcode) {
2254 case OPCODE_IF:
2255 if_count++;
2256 break;
2257 case OPCODE_BGNLOOP:
2258 loop_count++;
2259 break;
2260 case OPCODE_BRK:
2261 case OPCODE_CONT:
2262 mesa_instructions[i].BranchTarget = -1;
2263 break;
2264 default:
2265 break;
2266 }
2267 }
2268
2269 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2270 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2271
2272 for (i = 0; i < num_instructions; i++) {
2273 switch (mesa_instructions[i].Opcode) {
2274 case OPCODE_IF:
2275 if_stack[if_stack_pos] = i;
2276 if_stack_pos++;
2277 break;
2278 case OPCODE_ELSE:
2279 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2280 if_stack[if_stack_pos - 1] = i;
2281 break;
2282 case OPCODE_ENDIF:
2283 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2284 if_stack_pos--;
2285 break;
2286 case OPCODE_BGNLOOP:
2287 loop_stack[loop_stack_pos] = i;
2288 loop_stack_pos++;
2289 break;
2290 case OPCODE_ENDLOOP:
2291 loop_stack_pos--;
2292 /* Rewrite any breaks/conts at this nesting level (haven't
2293 * already had a BranchTarget assigned) to point to the end
2294 * of the loop.
2295 */
2296 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2297 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2298 mesa_instructions[j].Opcode == OPCODE_CONT) {
2299 if (mesa_instructions[j].BranchTarget == -1) {
2300 mesa_instructions[j].BranchTarget = i;
2301 }
2302 }
2303 }
2304 /* The loop ends point at each other. */
2305 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2306 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2307 break;
2308 case OPCODE_CAL:
2309 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2310 function_entry *entry = (function_entry *)iter.get();
2311
2312 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2313 mesa_instructions[i].BranchTarget = entry->inst;
2314 break;
2315 }
2316 }
2317 break;
2318 default:
2319 break;
2320 }
2321 }
2322 }
2323
2324 static void
2325 print_program(struct prog_instruction *mesa_instructions,
2326 ir_instruction **mesa_instruction_annotation,
2327 int num_instructions)
2328 {
2329 ir_instruction *last_ir = NULL;
2330 int i;
2331 int indent = 0;
2332
2333 for (i = 0; i < num_instructions; i++) {
2334 struct prog_instruction *mesa_inst = mesa_instructions + i;
2335 ir_instruction *ir = mesa_instruction_annotation[i];
2336
2337 fprintf(stdout, "%3d: ", i);
2338
2339 if (last_ir != ir && ir) {
2340 int j;
2341
2342 for (j = 0; j < indent; j++) {
2343 fprintf(stdout, " ");
2344 }
2345 ir->print();
2346 printf("\n");
2347 last_ir = ir;
2348
2349 fprintf(stdout, " "); /* line number spacing. */
2350 }
2351
2352 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2353 PROG_PRINT_DEBUG, NULL);
2354 }
2355 }
2356
2357 class add_uniform_to_shader : public uniform_field_visitor {
2358 public:
2359 add_uniform_to_shader(struct gl_shader_program *shader_program,
2360 struct gl_program_parameter_list *params)
2361 : shader_program(shader_program), params(params), idx(-1)
2362 {
2363 /* empty */
2364 }
2365
2366 void process(ir_variable *var)
2367 {
2368 this->idx = -1;
2369 this->uniform_field_visitor::process(var);
2370
2371 var->location = this->idx;
2372 }
2373
2374 private:
2375 virtual void visit_field(const glsl_type *type, const char *name);
2376
2377 struct gl_shader_program *shader_program;
2378 struct gl_program_parameter_list *params;
2379 int idx;
2380 };
2381
2382 void
2383 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name)
2384 {
2385 unsigned int size;
2386
2387 if (type->is_vector() || type->is_scalar()) {
2388 size = type->vector_elements;
2389 } else {
2390 size = type_size(type) * 4;
2391 }
2392
2393 gl_register_file file;
2394 if (type->is_sampler() ||
2395 (type->is_array() && type->fields.array->is_sampler())) {
2396 file = PROGRAM_SAMPLER;
2397 } else {
2398 file = PROGRAM_UNIFORM;
2399 }
2400
2401 int index = _mesa_lookup_parameter_index(params, -1, name);
2402 if (index < 0) {
2403 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2404 NULL, NULL, 0x0);
2405
2406 /* Sampler uniform values are stored in prog->SamplerUnits,
2407 * and the entry in that array is selected by this index we
2408 * store in ParameterValues[].
2409 */
2410 if (file == PROGRAM_SAMPLER) {
2411 unsigned location;
2412 const bool found =
2413 this->shader_program->UniformHash->get(location,
2414 params->Parameters[index].Name);
2415 assert(found);
2416
2417 if (!found)
2418 return;
2419
2420 struct gl_uniform_storage *storage =
2421 &this->shader_program->UniformStorage[location];
2422
2423 for (unsigned int j = 0; j < size / 4; j++)
2424 params->ParameterValues[index + j][0].f = storage->sampler + j;
2425 }
2426 }
2427
2428 /* The first part of the uniform that's processed determines the base
2429 * location of the whole uniform (for structures).
2430 */
2431 if (this->idx < 0)
2432 this->idx = index;
2433 }
2434
2435 /**
2436 * Generate the program parameters list for the user uniforms in a shader
2437 *
2438 * \param shader_program Linked shader program. This is only used to
2439 * emit possible link errors to the info log.
2440 * \param sh Shader whose uniforms are to be processed.
2441 * \param params Parameter list to be filled in.
2442 */
2443 void
2444 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2445 *shader_program,
2446 struct gl_shader *sh,
2447 struct gl_program_parameter_list
2448 *params)
2449 {
2450 add_uniform_to_shader add(shader_program, params);
2451
2452 foreach_list(node, sh->ir) {
2453 ir_variable *var = ((ir_instruction *) node)->as_variable();
2454
2455 if ((var == NULL) || (var->mode != ir_var_uniform)
2456 || (strncmp(var->name, "gl_", 3) == 0))
2457 continue;
2458
2459 add.process(var);
2460 }
2461 }
2462
2463 void
2464 _mesa_associate_uniform_storage(struct gl_context *ctx,
2465 struct gl_shader_program *shader_program,
2466 struct gl_program_parameter_list *params)
2467 {
2468 /* After adding each uniform to the parameter list, connect the storage for
2469 * the parameter with the tracking structure used by the API for the
2470 * uniform.
2471 */
2472 unsigned last_location = unsigned(~0);
2473 for (unsigned i = 0; i < params->NumParameters; i++) {
2474 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2475 continue;
2476
2477 unsigned location;
2478 const bool found =
2479 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2480 assert(found);
2481
2482 if (!found)
2483 continue;
2484
2485 if (location != last_location) {
2486 struct gl_uniform_storage *storage =
2487 &shader_program->UniformStorage[location];
2488 enum gl_uniform_driver_format format = uniform_native;
2489
2490 unsigned columns = 0;
2491 switch (storage->type->base_type) {
2492 case GLSL_TYPE_UINT:
2493 assert(ctx->Const.NativeIntegers);
2494 format = uniform_native;
2495 columns = 1;
2496 break;
2497 case GLSL_TYPE_INT:
2498 format =
2499 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2500 columns = 1;
2501 break;
2502 case GLSL_TYPE_FLOAT:
2503 format = uniform_native;
2504 columns = storage->type->matrix_columns;
2505 break;
2506 case GLSL_TYPE_BOOL:
2507 if (ctx->Const.NativeIntegers) {
2508 format = (ctx->Const.UniformBooleanTrue == 1)
2509 ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2510 } else {
2511 format = uniform_bool_float;
2512 }
2513 columns = 1;
2514 break;
2515 case GLSL_TYPE_SAMPLER:
2516 format = uniform_native;
2517 columns = 1;
2518 break;
2519 default:
2520 assert(!"Should not get here.");
2521 break;
2522 }
2523
2524 _mesa_uniform_attach_driver_storage(storage,
2525 4 * sizeof(float) * columns,
2526 4 * sizeof(float),
2527 format,
2528 &params->ParameterValues[i]);
2529
2530 /* After attaching the driver's storage to the uniform, propagate any
2531 * data from the linker's backing store. This will cause values from
2532 * initializers in the source code to be copied over.
2533 */
2534 _mesa_propagate_uniforms_to_driver_storage(storage,
2535 0,
2536 MAX2(1, storage->array_elements));
2537
2538 last_location = location;
2539 }
2540 }
2541 }
2542
2543 static void
2544 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2545 struct gl_shader_program *shader_program,
2546 const char *name, const glsl_type *type,
2547 ir_constant *val)
2548 {
2549 if (type->is_record()) {
2550 ir_constant *field_constant;
2551
2552 field_constant = (ir_constant *)val->components.get_head();
2553
2554 for (unsigned int i = 0; i < type->length; i++) {
2555 const glsl_type *field_type = type->fields.structure[i].type;
2556 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2557 type->fields.structure[i].name);
2558 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2559 field_type, field_constant);
2560 field_constant = (ir_constant *)field_constant->next;
2561 }
2562 return;
2563 }
2564
2565 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2566
2567 if (loc == -1) {
2568 linker_error(shader_program,
2569 "Couldn't find uniform for initializer %s\n", name);
2570 return;
2571 }
2572
2573 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2574 ir_constant *element;
2575 const glsl_type *element_type;
2576 if (type->is_array()) {
2577 element = val->array_elements[i];
2578 element_type = type->fields.array;
2579 } else {
2580 element = val;
2581 element_type = type;
2582 }
2583
2584 void *values;
2585
2586 if (element_type->base_type == GLSL_TYPE_BOOL) {
2587 int *conv = ralloc_array(mem_ctx, int, element_type->components());
2588 for (unsigned int j = 0; j < element_type->components(); j++) {
2589 conv[j] = element->value.b[j];
2590 }
2591 values = (void *)conv;
2592 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2593 element_type->vector_elements,
2594 1);
2595 } else {
2596 values = &element->value;
2597 }
2598
2599 if (element_type->is_matrix()) {
2600 _mesa_uniform_matrix(ctx, shader_program,
2601 element_type->matrix_columns,
2602 element_type->vector_elements,
2603 loc, 1, GL_FALSE, (GLfloat *)values);
2604 } else {
2605 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2606 values, element_type->gl_type);
2607 }
2608
2609 loc++;
2610 }
2611 }
2612
2613 static void
2614 set_uniform_initializers(struct gl_context *ctx,
2615 struct gl_shader_program *shader_program)
2616 {
2617 void *mem_ctx = NULL;
2618
2619 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2620 struct gl_shader *shader = shader_program->_LinkedShaders[i];
2621
2622 if (shader == NULL)
2623 continue;
2624
2625 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2626 ir_instruction *ir = (ir_instruction *)iter.get();
2627 ir_variable *var = ir->as_variable();
2628
2629 if (!var || var->mode != ir_var_uniform || !var->constant_value)
2630 continue;
2631
2632 if (!mem_ctx)
2633 mem_ctx = ralloc_context(NULL);
2634
2635 set_uniform_initializer(ctx, mem_ctx, shader_program, var->name,
2636 var->type, var->constant_value);
2637 }
2638 }
2639
2640 ralloc_free(mem_ctx);
2641 }
2642
2643 /*
2644 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2645 * channels for copy propagation and updates following instructions to
2646 * use the original versions.
2647 *
2648 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2649 * will occur. As an example, a TXP production before this pass:
2650 *
2651 * 0: MOV TEMP[1], INPUT[4].xyyy;
2652 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2653 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2654 *
2655 * and after:
2656 *
2657 * 0: MOV TEMP[1], INPUT[4].xyyy;
2658 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2659 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2660 *
2661 * which allows for dead code elimination on TEMP[1]'s writes.
2662 */
2663 void
2664 ir_to_mesa_visitor::copy_propagate(void)
2665 {
2666 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2667 ir_to_mesa_instruction *,
2668 this->next_temp * 4);
2669 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2670 int level = 0;
2671
2672 foreach_iter(exec_list_iterator, iter, this->instructions) {
2673 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2674
2675 assert(inst->dst.file != PROGRAM_TEMPORARY
2676 || inst->dst.index < this->next_temp);
2677
2678 /* First, do any copy propagation possible into the src regs. */
2679 for (int r = 0; r < 3; r++) {
2680 ir_to_mesa_instruction *first = NULL;
2681 bool good = true;
2682 int acp_base = inst->src[r].index * 4;
2683
2684 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2685 inst->src[r].reladdr)
2686 continue;
2687
2688 /* See if we can find entries in the ACP consisting of MOVs
2689 * from the same src register for all the swizzled channels
2690 * of this src register reference.
2691 */
2692 for (int i = 0; i < 4; i++) {
2693 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2694 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2695
2696 if (!copy_chan) {
2697 good = false;
2698 break;
2699 }
2700
2701 assert(acp_level[acp_base + src_chan] <= level);
2702
2703 if (!first) {
2704 first = copy_chan;
2705 } else {
2706 if (first->src[0].file != copy_chan->src[0].file ||
2707 first->src[0].index != copy_chan->src[0].index) {
2708 good = false;
2709 break;
2710 }
2711 }
2712 }
2713
2714 if (good) {
2715 /* We've now validated that we can copy-propagate to
2716 * replace this src register reference. Do it.
2717 */
2718 inst->src[r].file = first->src[0].file;
2719 inst->src[r].index = first->src[0].index;
2720
2721 int swizzle = 0;
2722 for (int i = 0; i < 4; i++) {
2723 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2724 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2725 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2726 (3 * i));
2727 }
2728 inst->src[r].swizzle = swizzle;
2729 }
2730 }
2731
2732 switch (inst->op) {
2733 case OPCODE_BGNLOOP:
2734 case OPCODE_ENDLOOP:
2735 /* End of a basic block, clear the ACP entirely. */
2736 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2737 break;
2738
2739 case OPCODE_IF:
2740 ++level;
2741 break;
2742
2743 case OPCODE_ENDIF:
2744 case OPCODE_ELSE:
2745 /* Clear all channels written inside the block from the ACP, but
2746 * leaving those that were not touched.
2747 */
2748 for (int r = 0; r < this->next_temp; r++) {
2749 for (int c = 0; c < 4; c++) {
2750 if (!acp[4 * r + c])
2751 continue;
2752
2753 if (acp_level[4 * r + c] >= level)
2754 acp[4 * r + c] = NULL;
2755 }
2756 }
2757 if (inst->op == OPCODE_ENDIF)
2758 --level;
2759 break;
2760
2761 default:
2762 /* Continuing the block, clear any written channels from
2763 * the ACP.
2764 */
2765 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2766 /* Any temporary might be written, so no copy propagation
2767 * across this instruction.
2768 */
2769 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2770 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2771 inst->dst.reladdr) {
2772 /* Any output might be written, so no copy propagation
2773 * from outputs across this instruction.
2774 */
2775 for (int r = 0; r < this->next_temp; r++) {
2776 for (int c = 0; c < 4; c++) {
2777 if (!acp[4 * r + c])
2778 continue;
2779
2780 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2781 acp[4 * r + c] = NULL;
2782 }
2783 }
2784 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2785 inst->dst.file == PROGRAM_OUTPUT) {
2786 /* Clear where it's used as dst. */
2787 if (inst->dst.file == PROGRAM_TEMPORARY) {
2788 for (int c = 0; c < 4; c++) {
2789 if (inst->dst.writemask & (1 << c)) {
2790 acp[4 * inst->dst.index + c] = NULL;
2791 }
2792 }
2793 }
2794
2795 /* Clear where it's used as src. */
2796 for (int r = 0; r < this->next_temp; r++) {
2797 for (int c = 0; c < 4; c++) {
2798 if (!acp[4 * r + c])
2799 continue;
2800
2801 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2802
2803 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2804 acp[4 * r + c]->src[0].index == inst->dst.index &&
2805 inst->dst.writemask & (1 << src_chan))
2806 {
2807 acp[4 * r + c] = NULL;
2808 }
2809 }
2810 }
2811 }
2812 break;
2813 }
2814
2815 /* If this is a copy, add it to the ACP. */
2816 if (inst->op == OPCODE_MOV &&
2817 inst->dst.file == PROGRAM_TEMPORARY &&
2818 !inst->dst.reladdr &&
2819 !inst->saturate &&
2820 !inst->src[0].reladdr &&
2821 !inst->src[0].negate) {
2822 for (int i = 0; i < 4; i++) {
2823 if (inst->dst.writemask & (1 << i)) {
2824 acp[4 * inst->dst.index + i] = inst;
2825 acp_level[4 * inst->dst.index + i] = level;
2826 }
2827 }
2828 }
2829 }
2830
2831 ralloc_free(acp_level);
2832 ralloc_free(acp);
2833 }
2834
2835
2836 /**
2837 * Convert a shader's GLSL IR into a Mesa gl_program.
2838 */
2839 static struct gl_program *
2840 get_mesa_program(struct gl_context *ctx,
2841 struct gl_shader_program *shader_program,
2842 struct gl_shader *shader)
2843 {
2844 ir_to_mesa_visitor v;
2845 struct prog_instruction *mesa_instructions, *mesa_inst;
2846 ir_instruction **mesa_instruction_annotation;
2847 int i;
2848 struct gl_program *prog;
2849 GLenum target;
2850 const char *target_string;
2851 struct gl_shader_compiler_options *options =
2852 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2853
2854 switch (shader->Type) {
2855 case GL_VERTEX_SHADER:
2856 target = GL_VERTEX_PROGRAM_ARB;
2857 target_string = "vertex";
2858 break;
2859 case GL_FRAGMENT_SHADER:
2860 target = GL_FRAGMENT_PROGRAM_ARB;
2861 target_string = "fragment";
2862 break;
2863 case GL_GEOMETRY_SHADER:
2864 target = GL_GEOMETRY_PROGRAM_NV;
2865 target_string = "geometry";
2866 break;
2867 default:
2868 assert(!"should not be reached");
2869 return NULL;
2870 }
2871
2872 validate_ir_tree(shader->ir);
2873
2874 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2875 if (!prog)
2876 return NULL;
2877 prog->Parameters = _mesa_new_parameter_list();
2878 v.ctx = ctx;
2879 v.prog = prog;
2880 v.shader_program = shader_program;
2881 v.options = options;
2882
2883 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2884 prog->Parameters);
2885
2886 /* Emit Mesa IR for main(). */
2887 visit_exec_list(shader->ir, &v);
2888 v.emit(NULL, OPCODE_END);
2889
2890 prog->NumTemporaries = v.next_temp;
2891
2892 int num_instructions = 0;
2893 foreach_iter(exec_list_iterator, iter, v.instructions) {
2894 num_instructions++;
2895 }
2896
2897 mesa_instructions =
2898 (struct prog_instruction *)calloc(num_instructions,
2899 sizeof(*mesa_instructions));
2900 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2901 num_instructions);
2902
2903 v.copy_propagate();
2904
2905 /* Convert ir_mesa_instructions into prog_instructions.
2906 */
2907 mesa_inst = mesa_instructions;
2908 i = 0;
2909 foreach_iter(exec_list_iterator, iter, v.instructions) {
2910 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2911
2912 mesa_inst->Opcode = inst->op;
2913 mesa_inst->CondUpdate = inst->cond_update;
2914 if (inst->saturate)
2915 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2916 mesa_inst->DstReg.File = inst->dst.file;
2917 mesa_inst->DstReg.Index = inst->dst.index;
2918 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2919 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2920 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2921 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2922 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2923 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2924 mesa_inst->TexSrcUnit = inst->sampler;
2925 mesa_inst->TexSrcTarget = inst->tex_target;
2926 mesa_inst->TexShadow = inst->tex_shadow;
2927 mesa_instruction_annotation[i] = inst->ir;
2928
2929 /* Set IndirectRegisterFiles. */
2930 if (mesa_inst->DstReg.RelAddr)
2931 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2932
2933 /* Update program's bitmask of indirectly accessed register files */
2934 for (unsigned src = 0; src < 3; src++)
2935 if (mesa_inst->SrcReg[src].RelAddr)
2936 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2937
2938 switch (mesa_inst->Opcode) {
2939 case OPCODE_IF:
2940 if (options->MaxIfDepth == 0) {
2941 linker_warning(shader_program,
2942 "Couldn't flatten if-statement. "
2943 "This will likely result in software "
2944 "rasterization.\n");
2945 }
2946 break;
2947 case OPCODE_BGNLOOP:
2948 if (options->EmitNoLoops) {
2949 linker_warning(shader_program,
2950 "Couldn't unroll loop. "
2951 "This will likely result in software "
2952 "rasterization.\n");
2953 }
2954 break;
2955 case OPCODE_CONT:
2956 if (options->EmitNoCont) {
2957 linker_warning(shader_program,
2958 "Couldn't lower continue-statement. "
2959 "This will likely result in software "
2960 "rasterization.\n");
2961 }
2962 break;
2963 case OPCODE_ARL:
2964 prog->NumAddressRegs = 1;
2965 break;
2966 default:
2967 break;
2968 }
2969
2970 mesa_inst++;
2971 i++;
2972
2973 if (!shader_program->LinkStatus)
2974 break;
2975 }
2976
2977 if (!shader_program->LinkStatus) {
2978 goto fail_exit;
2979 }
2980
2981 set_branchtargets(&v, mesa_instructions, num_instructions);
2982
2983 if (ctx->Shader.Flags & GLSL_DUMP) {
2984 printf("\n");
2985 printf("GLSL IR for linked %s program %d:\n", target_string,
2986 shader_program->Name);
2987 _mesa_print_ir(shader->ir, NULL);
2988 printf("\n");
2989 printf("\n");
2990 printf("Mesa IR for linked %s program %d:\n", target_string,
2991 shader_program->Name);
2992 print_program(mesa_instructions, mesa_instruction_annotation,
2993 num_instructions);
2994 }
2995
2996 prog->Instructions = mesa_instructions;
2997 prog->NumInstructions = num_instructions;
2998
2999 /* Setting this to NULL prevents a possible double free in the fail_exit
3000 * path (far below).
3001 */
3002 mesa_instructions = NULL;
3003
3004 do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
3005
3006 prog->SamplersUsed = shader->active_samplers;
3007 prog->ShadowSamplers = shader->shadow_samplers;
3008 _mesa_update_shader_textures_used(shader_program, prog);
3009
3010 /* Set the gl_FragDepth layout. */
3011 if (target == GL_FRAGMENT_PROGRAM_ARB) {
3012 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
3013 fp->FragDepthLayout = shader_program->FragDepthLayout;
3014 }
3015
3016 _mesa_reference_program(ctx, &shader->Program, prog);
3017
3018 if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
3019 _mesa_optimize_program(ctx, prog);
3020 }
3021
3022 /* This has to be done last. Any operation that can cause
3023 * prog->ParameterValues to get reallocated (e.g., anything that adds a
3024 * program constant) has to happen before creating this linkage.
3025 */
3026 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
3027 if (!shader_program->LinkStatus) {
3028 goto fail_exit;
3029 }
3030
3031 return prog;
3032
3033 fail_exit:
3034 free(mesa_instructions);
3035 _mesa_reference_program(ctx, &shader->Program, NULL);
3036 return NULL;
3037 }
3038
3039 extern "C" {
3040
3041 /**
3042 * Link a shader.
3043 * Called via ctx->Driver.LinkShader()
3044 * This actually involves converting GLSL IR into Mesa gl_programs with
3045 * code lowering and other optimizations.
3046 */
3047 GLboolean
3048 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3049 {
3050 assert(prog->LinkStatus);
3051
3052 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3053 if (prog->_LinkedShaders[i] == NULL)
3054 continue;
3055
3056 bool progress;
3057 exec_list *ir = prog->_LinkedShaders[i]->ir;
3058 const struct gl_shader_compiler_options *options =
3059 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
3060
3061 do {
3062 progress = false;
3063
3064 /* Lowering */
3065 do_mat_op_to_vec(ir);
3066 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3067 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3068 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3069
3070 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3071
3072 progress = do_common_optimization(ir, true, true,
3073 options->MaxUnrollIterations)
3074 || progress;
3075
3076 progress = lower_quadop_vector(ir, true) || progress;
3077
3078 if (options->MaxIfDepth == 0)
3079 progress = lower_discard(ir) || progress;
3080
3081 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3082
3083 if (options->EmitNoNoise)
3084 progress = lower_noise(ir) || progress;
3085
3086 /* If there are forms of indirect addressing that the driver
3087 * cannot handle, perform the lowering pass.
3088 */
3089 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3090 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3091 progress =
3092 lower_variable_index_to_cond_assign(ir,
3093 options->EmitNoIndirectInput,
3094 options->EmitNoIndirectOutput,
3095 options->EmitNoIndirectTemp,
3096 options->EmitNoIndirectUniform)
3097 || progress;
3098
3099 progress = do_vec_index_to_cond_assign(ir) || progress;
3100 } while (progress);
3101
3102 validate_ir_tree(ir);
3103 }
3104
3105 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3106 struct gl_program *linked_prog;
3107
3108 if (prog->_LinkedShaders[i] == NULL)
3109 continue;
3110
3111 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3112
3113 if (linked_prog) {
3114 static const GLenum targets[] = {
3115 GL_VERTEX_PROGRAM_ARB,
3116 GL_FRAGMENT_PROGRAM_ARB,
3117 GL_GEOMETRY_PROGRAM_NV
3118 };
3119
3120 if (i == MESA_SHADER_VERTEX) {
3121 ((struct gl_vertex_program *)linked_prog)->UsesClipDistance
3122 = prog->Vert.UsesClipDistance;
3123 }
3124
3125 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3126 linked_prog);
3127 if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
3128 return GL_FALSE;
3129 }
3130 }
3131
3132 _mesa_reference_program(ctx, &linked_prog, NULL);
3133 }
3134
3135 return prog->LinkStatus;
3136 }
3137
3138
3139 /**
3140 * Compile a GLSL shader. Called via glCompileShader().
3141 */
3142 void
3143 _mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
3144 {
3145 struct _mesa_glsl_parse_state *state =
3146 new(shader) _mesa_glsl_parse_state(ctx, shader->Type, shader);
3147
3148 const char *source = shader->Source;
3149 /* Check if the user called glCompileShader without first calling
3150 * glShaderSource. This should fail to compile, but not raise a GL_ERROR.
3151 */
3152 if (source == NULL) {
3153 shader->CompileStatus = GL_FALSE;
3154 return;
3155 }
3156
3157 state->error = preprocess(state, &source, &state->info_log,
3158 &ctx->Extensions, ctx->API);
3159
3160 if (ctx->Shader.Flags & GLSL_DUMP) {
3161 printf("GLSL source for %s shader %d:\n",
3162 _mesa_glsl_shader_target_name(state->target), shader->Name);
3163 printf("%s\n", shader->Source);
3164 }
3165
3166 if (!state->error) {
3167 _mesa_glsl_lexer_ctor(state, source);
3168 _mesa_glsl_parse(state);
3169 _mesa_glsl_lexer_dtor(state);
3170 }
3171
3172 ralloc_free(shader->ir);
3173 shader->ir = new(shader) exec_list;
3174 if (!state->error && !state->translation_unit.is_empty())
3175 _mesa_ast_to_hir(shader->ir, state);
3176
3177 if (!state->error && !shader->ir->is_empty()) {
3178 validate_ir_tree(shader->ir);
3179
3180 /* Do some optimization at compile time to reduce shader IR size
3181 * and reduce later work if the same shader is linked multiple times
3182 */
3183 while (do_common_optimization(shader->ir, false, false, 32))
3184 ;
3185
3186 validate_ir_tree(shader->ir);
3187 }
3188
3189 shader->symbols = state->symbols;
3190
3191 shader->CompileStatus = !state->error;
3192 shader->InfoLog = state->info_log;
3193 shader->Version = state->language_version;
3194 memcpy(shader->builtins_to_link, state->builtins_to_link,
3195 sizeof(shader->builtins_to_link[0]) * state->num_builtins_to_link);
3196 shader->num_builtins_to_link = state->num_builtins_to_link;
3197
3198 if (ctx->Shader.Flags & GLSL_LOG) {
3199 _mesa_write_shader_to_file(shader);
3200 }
3201
3202 if (ctx->Shader.Flags & GLSL_DUMP) {
3203 if (shader->CompileStatus) {
3204 printf("GLSL IR for shader %d:\n", shader->Name);
3205 _mesa_print_ir(shader->ir, NULL);
3206 printf("\n\n");
3207 } else {
3208 printf("GLSL shader %d failed to compile.\n", shader->Name);
3209 }
3210 if (shader->InfoLog && shader->InfoLog[0] != 0) {
3211 printf("GLSL shader %d info log:\n", shader->Name);
3212 printf("%s\n", shader->InfoLog);
3213 }
3214 }
3215
3216 /* Retain any live IR, but trash the rest. */
3217 reparent_ir(shader->ir, shader->ir);
3218
3219 ralloc_free(state);
3220 }
3221
3222
3223 /**
3224 * Link a GLSL shader program. Called via glLinkProgram().
3225 */
3226 void
3227 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3228 {
3229 unsigned int i;
3230
3231 _mesa_clear_shader_program_data(ctx, prog);
3232
3233 prog->LinkStatus = GL_TRUE;
3234
3235 for (i = 0; i < prog->NumShaders; i++) {
3236 if (!prog->Shaders[i]->CompileStatus) {
3237 linker_error(prog, "linking with uncompiled shader");
3238 prog->LinkStatus = GL_FALSE;
3239 }
3240 }
3241
3242 if (prog->LinkStatus) {
3243 link_shaders(ctx, prog);
3244 }
3245
3246 if (prog->LinkStatus) {
3247 if (!ctx->Driver.LinkShader(ctx, prog)) {
3248 prog->LinkStatus = GL_FALSE;
3249 }
3250 }
3251
3252 if (prog->LinkStatus) {
3253 set_uniform_initializers(ctx, prog);
3254 }
3255
3256 if (ctx->Shader.Flags & GLSL_DUMP) {
3257 if (!prog->LinkStatus) {
3258 printf("GLSL shader program %d failed to link\n", prog->Name);
3259 }
3260
3261 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3262 printf("GLSL shader program %d info log:\n", prog->Name);
3263 printf("%s\n", prog->InfoLog);
3264 }
3265 }
3266 }
3267
3268 } /* extern "C" */