mesa/program: replace Elements() with ARRAY_SIZE()
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderapi.h"
47 #include "main/shaderobj.h"
48 #include "main/uniforms.h"
49
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58
59 static int swizzle_for_size(int size);
60
61 namespace {
62
63 class src_reg;
64 class dst_reg;
65
66 /**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70 class src_reg {
71 public:
72 src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->reladdr = NULL;
82 }
83
84 src_reg()
85 {
86 this->file = PROGRAM_UNDEFINED;
87 this->index = 0;
88 this->swizzle = 0;
89 this->negate = 0;
90 this->reladdr = NULL;
91 }
92
93 explicit src_reg(dst_reg reg);
94
95 gl_register_file file; /**< PROGRAM_* from Mesa */
96 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
97 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98 int negate; /**< NEGATE_XYZW mask from mesa */
99 /** Register index should be offset by the integer in this reg. */
100 src_reg *reladdr;
101 };
102
103 class dst_reg {
104 public:
105 dst_reg(gl_register_file file, int writemask)
106 {
107 this->file = file;
108 this->index = 0;
109 this->writemask = writemask;
110 this->cond_mask = COND_TR;
111 this->reladdr = NULL;
112 }
113
114 dst_reg()
115 {
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->writemask = 0;
119 this->cond_mask = COND_TR;
120 this->reladdr = NULL;
121 }
122
123 explicit dst_reg(src_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
127 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128 GLuint cond_mask:4;
129 /** Register index should be offset by the integer in this reg. */
130 src_reg *reladdr;
131 };
132
133 } /* anonymous namespace */
134
135 src_reg::src_reg(dst_reg reg)
136 {
137 this->file = reg.file;
138 this->index = reg.index;
139 this->swizzle = SWIZZLE_XYZW;
140 this->negate = 0;
141 this->reladdr = reg.reladdr;
142 }
143
144 dst_reg::dst_reg(src_reg reg)
145 {
146 this->file = reg.file;
147 this->index = reg.index;
148 this->writemask = WRITEMASK_XYZW;
149 this->cond_mask = COND_TR;
150 this->reladdr = reg.reladdr;
151 }
152
153 namespace {
154
155 class ir_to_mesa_instruction : public exec_node {
156 public:
157 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
158
159 enum prog_opcode op;
160 dst_reg dst;
161 src_reg src[3];
162 /** Pointer to the ir source this tree came from for debugging */
163 ir_instruction *ir;
164 GLboolean cond_update;
165 bool saturate;
166 int sampler; /**< sampler index */
167 int tex_target; /**< One of TEXTURE_*_INDEX */
168 GLboolean tex_shadow;
169 };
170
171 class variable_storage : public exec_node {
172 public:
173 variable_storage(ir_variable *var, gl_register_file file, int index)
174 : file(file), index(index), var(var)
175 {
176 /* empty */
177 }
178
179 gl_register_file file;
180 int index;
181 ir_variable *var; /* variable that maps to this, if any */
182 };
183
184 class function_entry : public exec_node {
185 public:
186 ir_function_signature *sig;
187
188 /**
189 * identifier of this function signature used by the program.
190 *
191 * At the point that Mesa instructions for function calls are
192 * generated, we don't know the address of the first instruction of
193 * the function body. So we make the BranchTarget that is called a
194 * small integer and rewrite them during set_branchtargets().
195 */
196 int sig_id;
197
198 /**
199 * Pointer to first instruction of the function body.
200 *
201 * Set during function body emits after main() is processed.
202 */
203 ir_to_mesa_instruction *bgn_inst;
204
205 /**
206 * Index of the first instruction of the function body in actual
207 * Mesa IR.
208 *
209 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
210 */
211 int inst;
212
213 /** Storage for the return value. */
214 src_reg return_reg;
215 };
216
217 class ir_to_mesa_visitor : public ir_visitor {
218 public:
219 ir_to_mesa_visitor();
220 ~ir_to_mesa_visitor();
221
222 function_entry *current_function;
223
224 struct gl_context *ctx;
225 struct gl_program *prog;
226 struct gl_shader_program *shader_program;
227 struct gl_shader_compiler_options *options;
228
229 int next_temp;
230
231 variable_storage *find_variable_storage(const ir_variable *var);
232
233 src_reg get_temp(const glsl_type *type);
234 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
235
236 src_reg src_reg_for_float(float val);
237
238 /**
239 * \name Visit methods
240 *
241 * As typical for the visitor pattern, there must be one \c visit method for
242 * each concrete subclass of \c ir_instruction. Virtual base classes within
243 * the hierarchy should not have \c visit methods.
244 */
245 /*@{*/
246 virtual void visit(ir_variable *);
247 virtual void visit(ir_loop *);
248 virtual void visit(ir_loop_jump *);
249 virtual void visit(ir_function_signature *);
250 virtual void visit(ir_function *);
251 virtual void visit(ir_expression *);
252 virtual void visit(ir_swizzle *);
253 virtual void visit(ir_dereference_variable *);
254 virtual void visit(ir_dereference_array *);
255 virtual void visit(ir_dereference_record *);
256 virtual void visit(ir_assignment *);
257 virtual void visit(ir_constant *);
258 virtual void visit(ir_call *);
259 virtual void visit(ir_return *);
260 virtual void visit(ir_discard *);
261 virtual void visit(ir_texture *);
262 virtual void visit(ir_if *);
263 virtual void visit(ir_emit_vertex *);
264 virtual void visit(ir_end_primitive *);
265 /*@}*/
266
267 src_reg result;
268
269 /** List of variable_storage */
270 exec_list variables;
271
272 /** List of function_entry */
273 exec_list function_signatures;
274 int next_signature_id;
275
276 /** List of ir_to_mesa_instruction */
277 exec_list instructions;
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst, src_reg src0);
283
284 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
285 dst_reg dst, src_reg src0, src_reg src1);
286
287 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
288 dst_reg dst,
289 src_reg src0, src_reg src1, src_reg src2);
290
291 /**
292 * Emit the correct dot-product instruction for the type of arguments
293 */
294 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
295 dst_reg dst,
296 src_reg src0,
297 src_reg src1,
298 unsigned elements);
299
300 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
301 dst_reg dst, src_reg src0);
302
303 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
304 dst_reg dst, src_reg src0, src_reg src1);
305
306 void emit_scs(ir_instruction *ir, enum prog_opcode op,
307 dst_reg dst, const src_reg &src);
308
309 bool try_emit_mad(ir_expression *ir,
310 int mul_operand);
311 bool try_emit_mad_for_and_not(ir_expression *ir,
312 int mul_operand);
313
314 void emit_swz(ir_expression *ir);
315
316 bool process_move_condition(ir_rvalue *ir);
317
318 void copy_propagate(void);
319
320 void *mem_ctx;
321 };
322
323 } /* anonymous namespace */
324
325 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
326
327 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
328
329 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
330
331 static int
332 swizzle_for_size(int size)
333 {
334 static const int size_swizzles[4] = {
335 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
336 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
337 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
339 };
340
341 assert((size >= 1) && (size <= 4));
342 return size_swizzles[size - 1];
343 }
344
345 ir_to_mesa_instruction *
346 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
347 dst_reg dst,
348 src_reg src0, src_reg src1, src_reg src2)
349 {
350 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
351 int num_reladdr = 0;
352
353 /* If we have to do relative addressing, we want to load the ARL
354 * reg directly for one of the regs, and preload the other reladdr
355 * sources into temps.
356 */
357 num_reladdr += dst.reladdr != NULL;
358 num_reladdr += src0.reladdr != NULL;
359 num_reladdr += src1.reladdr != NULL;
360 num_reladdr += src2.reladdr != NULL;
361
362 reladdr_to_temp(ir, &src2, &num_reladdr);
363 reladdr_to_temp(ir, &src1, &num_reladdr);
364 reladdr_to_temp(ir, &src0, &num_reladdr);
365
366 if (dst.reladdr) {
367 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
368 num_reladdr--;
369 }
370 assert(num_reladdr == 0);
371
372 inst->op = op;
373 inst->dst = dst;
374 inst->src[0] = src0;
375 inst->src[1] = src1;
376 inst->src[2] = src2;
377 inst->ir = ir;
378
379 this->instructions.push_tail(inst);
380
381 return inst;
382 }
383
384
385 ir_to_mesa_instruction *
386 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
387 dst_reg dst, src_reg src0, src_reg src1)
388 {
389 return emit(ir, op, dst, src0, src1, undef_src);
390 }
391
392 ir_to_mesa_instruction *
393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
394 dst_reg dst, src_reg src0)
395 {
396 assert(dst.writemask != 0);
397 return emit(ir, op, dst, src0, undef_src, undef_src);
398 }
399
400 ir_to_mesa_instruction *
401 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
402 {
403 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
404 }
405
406 ir_to_mesa_instruction *
407 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
408 dst_reg dst, src_reg src0, src_reg src1,
409 unsigned elements)
410 {
411 static const gl_inst_opcode dot_opcodes[] = {
412 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
413 };
414
415 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
416 }
417
418 /**
419 * Emits Mesa scalar opcodes to produce unique answers across channels.
420 *
421 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
422 * channel determines the result across all channels. So to do a vec4
423 * of this operation, we want to emit a scalar per source channel used
424 * to produce dest channels.
425 */
426 void
427 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
428 dst_reg dst,
429 src_reg orig_src0, src_reg orig_src1)
430 {
431 int i, j;
432 int done_mask = ~dst.writemask;
433
434 /* Mesa RCP is a scalar operation splatting results to all channels,
435 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
436 * dst channels.
437 */
438 for (i = 0; i < 4; i++) {
439 GLuint this_mask = (1 << i);
440 ir_to_mesa_instruction *inst;
441 src_reg src0 = orig_src0;
442 src_reg src1 = orig_src1;
443
444 if (done_mask & this_mask)
445 continue;
446
447 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
448 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
449 for (j = i + 1; j < 4; j++) {
450 /* If there is another enabled component in the destination that is
451 * derived from the same inputs, generate its value on this pass as
452 * well.
453 */
454 if (!(done_mask & (1 << j)) &&
455 GET_SWZ(src0.swizzle, j) == src0_swiz &&
456 GET_SWZ(src1.swizzle, j) == src1_swiz) {
457 this_mask |= (1 << j);
458 }
459 }
460 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
461 src0_swiz, src0_swiz);
462 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
463 src1_swiz, src1_swiz);
464
465 inst = emit(ir, op, dst, src0, src1);
466 inst->dst.writemask = this_mask;
467 done_mask |= this_mask;
468 }
469 }
470
471 void
472 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
473 dst_reg dst, src_reg src0)
474 {
475 src_reg undef = undef_src;
476
477 undef.swizzle = SWIZZLE_XXXX;
478
479 emit_scalar(ir, op, dst, src0, undef);
480 }
481
482 /**
483 * Emit an OPCODE_SCS instruction
484 *
485 * The \c SCS opcode functions a bit differently than the other Mesa (or
486 * ARB_fragment_program) opcodes. Instead of splatting its result across all
487 * four components of the destination, it writes one value to the \c x
488 * component and another value to the \c y component.
489 *
490 * \param ir IR instruction being processed
491 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
492 * value is desired.
493 * \param dst Destination register
494 * \param src Source register
495 */
496 void
497 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
498 dst_reg dst,
499 const src_reg &src)
500 {
501 /* Vertex programs cannot use the SCS opcode.
502 */
503 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
504 emit_scalar(ir, op, dst, src);
505 return;
506 }
507
508 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
509 const unsigned scs_mask = (1U << component);
510 int done_mask = ~dst.writemask;
511 src_reg tmp;
512
513 assert(op == OPCODE_SIN || op == OPCODE_COS);
514
515 /* If there are compnents in the destination that differ from the component
516 * that will be written by the SCS instrution, we'll need a temporary.
517 */
518 if (scs_mask != unsigned(dst.writemask)) {
519 tmp = get_temp(glsl_type::vec4_type);
520 }
521
522 for (unsigned i = 0; i < 4; i++) {
523 unsigned this_mask = (1U << i);
524 src_reg src0 = src;
525
526 if ((done_mask & this_mask) != 0)
527 continue;
528
529 /* The source swizzle specified which component of the source generates
530 * sine / cosine for the current component in the destination. The SCS
531 * instruction requires that this value be swizzle to the X component.
532 * Replace the current swizzle with a swizzle that puts the source in
533 * the X component.
534 */
535 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
536
537 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
538 src0_swiz, src0_swiz);
539 for (unsigned j = i + 1; j < 4; j++) {
540 /* If there is another enabled component in the destination that is
541 * derived from the same inputs, generate its value on this pass as
542 * well.
543 */
544 if (!(done_mask & (1 << j)) &&
545 GET_SWZ(src0.swizzle, j) == src0_swiz) {
546 this_mask |= (1 << j);
547 }
548 }
549
550 if (this_mask != scs_mask) {
551 ir_to_mesa_instruction *inst;
552 dst_reg tmp_dst = dst_reg(tmp);
553
554 /* Emit the SCS instruction.
555 */
556 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
557 inst->dst.writemask = scs_mask;
558
559 /* Move the result of the SCS instruction to the desired location in
560 * the destination.
561 */
562 tmp.swizzle = MAKE_SWIZZLE4(component, component,
563 component, component);
564 inst = emit(ir, OPCODE_SCS, dst, tmp);
565 inst->dst.writemask = this_mask;
566 } else {
567 /* Emit the SCS instruction to write directly to the destination.
568 */
569 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
570 inst->dst.writemask = scs_mask;
571 }
572
573 done_mask |= this_mask;
574 }
575 }
576
577 src_reg
578 ir_to_mesa_visitor::src_reg_for_float(float val)
579 {
580 src_reg src(PROGRAM_CONSTANT, -1, NULL);
581
582 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
583 (const gl_constant_value *)&val, 1, &src.swizzle);
584
585 return src;
586 }
587
588 static int
589 type_size(const struct glsl_type *type)
590 {
591 unsigned int i;
592 int size;
593
594 switch (type->base_type) {
595 case GLSL_TYPE_UINT:
596 case GLSL_TYPE_INT:
597 case GLSL_TYPE_FLOAT:
598 case GLSL_TYPE_BOOL:
599 if (type->is_matrix()) {
600 return type->matrix_columns;
601 } else {
602 /* Regardless of size of vector, it gets a vec4. This is bad
603 * packing for things like floats, but otherwise arrays become a
604 * mess. Hopefully a later pass over the code can pack scalars
605 * down if appropriate.
606 */
607 return 1;
608 }
609 break;
610 case GLSL_TYPE_DOUBLE:
611 if (type->is_matrix()) {
612 if (type->vector_elements > 2)
613 return type->matrix_columns * 2;
614 else
615 return type->matrix_columns;
616 } else {
617 if (type->vector_elements > 2)
618 return 2;
619 else
620 return 1;
621 }
622 break;
623 case GLSL_TYPE_ARRAY:
624 assert(type->length > 0);
625 return type_size(type->fields.array) * type->length;
626 case GLSL_TYPE_STRUCT:
627 size = 0;
628 for (i = 0; i < type->length; i++) {
629 size += type_size(type->fields.structure[i].type);
630 }
631 return size;
632 case GLSL_TYPE_SAMPLER:
633 case GLSL_TYPE_IMAGE:
634 /* Samplers take up one slot in UNIFORMS[], but they're baked in
635 * at link time.
636 */
637 return 1;
638 case GLSL_TYPE_ATOMIC_UINT:
639 case GLSL_TYPE_VOID:
640 case GLSL_TYPE_ERROR:
641 case GLSL_TYPE_INTERFACE:
642 assert(!"Invalid type in type_size");
643 break;
644 }
645
646 return 0;
647 }
648
649 /**
650 * In the initial pass of codegen, we assign temporary numbers to
651 * intermediate results. (not SSA -- variable assignments will reuse
652 * storage). Actual register allocation for the Mesa VM occurs in a
653 * pass over the Mesa IR later.
654 */
655 src_reg
656 ir_to_mesa_visitor::get_temp(const glsl_type *type)
657 {
658 src_reg src;
659
660 src.file = PROGRAM_TEMPORARY;
661 src.index = next_temp;
662 src.reladdr = NULL;
663 next_temp += type_size(type);
664
665 if (type->is_array() || type->is_record()) {
666 src.swizzle = SWIZZLE_NOOP;
667 } else {
668 src.swizzle = swizzle_for_size(type->vector_elements);
669 }
670 src.negate = 0;
671
672 return src;
673 }
674
675 variable_storage *
676 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
677 {
678 foreach_in_list(variable_storage, entry, &this->variables) {
679 if (entry->var == var)
680 return entry;
681 }
682
683 return NULL;
684 }
685
686 void
687 ir_to_mesa_visitor::visit(ir_variable *ir)
688 {
689 if (strcmp(ir->name, "gl_FragCoord") == 0) {
690 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
691
692 fp->OriginUpperLeft = ir->data.origin_upper_left;
693 fp->PixelCenterInteger = ir->data.pixel_center_integer;
694 }
695
696 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
697 unsigned int i;
698 const ir_state_slot *const slots = ir->get_state_slots();
699 assert(slots != NULL);
700
701 /* Check if this statevar's setup in the STATE file exactly
702 * matches how we'll want to reference it as a
703 * struct/array/whatever. If not, then we need to move it into
704 * temporary storage and hope that it'll get copy-propagated
705 * out.
706 */
707 for (i = 0; i < ir->get_num_state_slots(); i++) {
708 if (slots[i].swizzle != SWIZZLE_XYZW) {
709 break;
710 }
711 }
712
713 variable_storage *storage;
714 dst_reg dst;
715 if (i == ir->get_num_state_slots()) {
716 /* We'll set the index later. */
717 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
718 this->variables.push_tail(storage);
719
720 dst = undef_dst;
721 } else {
722 /* The variable_storage constructor allocates slots based on the size
723 * of the type. However, this had better match the number of state
724 * elements that we're going to copy into the new temporary.
725 */
726 assert((int) ir->get_num_state_slots() == type_size(ir->type));
727
728 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
729 this->next_temp);
730 this->variables.push_tail(storage);
731 this->next_temp += type_size(ir->type);
732
733 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
734 }
735
736
737 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
738 int index = _mesa_add_state_reference(this->prog->Parameters,
739 (gl_state_index *)slots[i].tokens);
740
741 if (storage->file == PROGRAM_STATE_VAR) {
742 if (storage->index == -1) {
743 storage->index = index;
744 } else {
745 assert(index == storage->index + (int)i);
746 }
747 } else {
748 src_reg src(PROGRAM_STATE_VAR, index, NULL);
749 src.swizzle = slots[i].swizzle;
750 emit(ir, OPCODE_MOV, dst, src);
751 /* even a float takes up a whole vec4 reg in a struct/array. */
752 dst.index++;
753 }
754 }
755
756 if (storage->file == PROGRAM_TEMPORARY &&
757 dst.index != storage->index + (int) ir->get_num_state_slots()) {
758 linker_error(this->shader_program,
759 "failed to load builtin uniform `%s' "
760 "(%d/%d regs loaded)\n",
761 ir->name, dst.index - storage->index,
762 type_size(ir->type));
763 }
764 }
765 }
766
767 void
768 ir_to_mesa_visitor::visit(ir_loop *ir)
769 {
770 emit(NULL, OPCODE_BGNLOOP);
771
772 visit_exec_list(&ir->body_instructions, this);
773
774 emit(NULL, OPCODE_ENDLOOP);
775 }
776
777 void
778 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
779 {
780 switch (ir->mode) {
781 case ir_loop_jump::jump_break:
782 emit(NULL, OPCODE_BRK);
783 break;
784 case ir_loop_jump::jump_continue:
785 emit(NULL, OPCODE_CONT);
786 break;
787 }
788 }
789
790
791 void
792 ir_to_mesa_visitor::visit(ir_function_signature *ir)
793 {
794 assert(0);
795 (void)ir;
796 }
797
798 void
799 ir_to_mesa_visitor::visit(ir_function *ir)
800 {
801 /* Ignore function bodies other than main() -- we shouldn't see calls to
802 * them since they should all be inlined before we get to ir_to_mesa.
803 */
804 if (strcmp(ir->name, "main") == 0) {
805 const ir_function_signature *sig;
806 exec_list empty;
807
808 sig = ir->matching_signature(NULL, &empty, false);
809
810 assert(sig);
811
812 foreach_in_list(ir_instruction, ir, &sig->body) {
813 ir->accept(this);
814 }
815 }
816 }
817
818 bool
819 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
820 {
821 int nonmul_operand = 1 - mul_operand;
822 src_reg a, b, c;
823
824 ir_expression *expr = ir->operands[mul_operand]->as_expression();
825 if (!expr || expr->operation != ir_binop_mul)
826 return false;
827
828 expr->operands[0]->accept(this);
829 a = this->result;
830 expr->operands[1]->accept(this);
831 b = this->result;
832 ir->operands[nonmul_operand]->accept(this);
833 c = this->result;
834
835 this->result = get_temp(ir->type);
836 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
837
838 return true;
839 }
840
841 /**
842 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
843 *
844 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
845 * implemented using multiplication, and logical-or is implemented using
846 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
847 * As result, the logical expression (a & !b) can be rewritten as:
848 *
849 * - a * !b
850 * - a * (1 - b)
851 * - (a * 1) - (a * b)
852 * - a + -(a * b)
853 * - a + (a * -b)
854 *
855 * This final expression can be implemented as a single MAD(a, -b, a)
856 * instruction.
857 */
858 bool
859 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
860 {
861 const int other_operand = 1 - try_operand;
862 src_reg a, b;
863
864 ir_expression *expr = ir->operands[try_operand]->as_expression();
865 if (!expr || expr->operation != ir_unop_logic_not)
866 return false;
867
868 ir->operands[other_operand]->accept(this);
869 a = this->result;
870 expr->operands[0]->accept(this);
871 b = this->result;
872
873 b.negate = ~b.negate;
874
875 this->result = get_temp(ir->type);
876 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
877
878 return true;
879 }
880
881 void
882 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
883 src_reg *reg, int *num_reladdr)
884 {
885 if (!reg->reladdr)
886 return;
887
888 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
889
890 if (*num_reladdr != 1) {
891 src_reg temp = get_temp(glsl_type::vec4_type);
892
893 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
894 *reg = temp;
895 }
896
897 (*num_reladdr)--;
898 }
899
900 void
901 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
902 {
903 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
904 * This means that each of the operands is either an immediate value of -1,
905 * 0, or 1, or is a component from one source register (possibly with
906 * negation).
907 */
908 uint8_t components[4] = { 0 };
909 bool negate[4] = { false };
910 ir_variable *var = NULL;
911
912 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
913 ir_rvalue *op = ir->operands[i];
914
915 assert(op->type->is_scalar());
916
917 while (op != NULL) {
918 switch (op->ir_type) {
919 case ir_type_constant: {
920
921 assert(op->type->is_scalar());
922
923 const ir_constant *const c = op->as_constant();
924 if (c->is_one()) {
925 components[i] = SWIZZLE_ONE;
926 } else if (c->is_zero()) {
927 components[i] = SWIZZLE_ZERO;
928 } else if (c->is_negative_one()) {
929 components[i] = SWIZZLE_ONE;
930 negate[i] = true;
931 } else {
932 assert(!"SWZ constant must be 0.0 or 1.0.");
933 }
934
935 op = NULL;
936 break;
937 }
938
939 case ir_type_dereference_variable: {
940 ir_dereference_variable *const deref =
941 (ir_dereference_variable *) op;
942
943 assert((var == NULL) || (deref->var == var));
944 components[i] = SWIZZLE_X;
945 var = deref->var;
946 op = NULL;
947 break;
948 }
949
950 case ir_type_expression: {
951 ir_expression *const expr = (ir_expression *) op;
952
953 assert(expr->operation == ir_unop_neg);
954 negate[i] = true;
955
956 op = expr->operands[0];
957 break;
958 }
959
960 case ir_type_swizzle: {
961 ir_swizzle *const swiz = (ir_swizzle *) op;
962
963 components[i] = swiz->mask.x;
964 op = swiz->val;
965 break;
966 }
967
968 default:
969 assert(!"Should not get here.");
970 return;
971 }
972 }
973 }
974
975 assert(var != NULL);
976
977 ir_dereference_variable *const deref =
978 new(mem_ctx) ir_dereference_variable(var);
979
980 this->result.file = PROGRAM_UNDEFINED;
981 deref->accept(this);
982 if (this->result.file == PROGRAM_UNDEFINED) {
983 printf("Failed to get tree for expression operand:\n");
984 deref->print();
985 printf("\n");
986 exit(1);
987 }
988
989 src_reg src;
990
991 src = this->result;
992 src.swizzle = MAKE_SWIZZLE4(components[0],
993 components[1],
994 components[2],
995 components[3]);
996 src.negate = ((unsigned(negate[0]) << 0)
997 | (unsigned(negate[1]) << 1)
998 | (unsigned(negate[2]) << 2)
999 | (unsigned(negate[3]) << 3));
1000
1001 /* Storage for our result. Ideally for an assignment we'd be using the
1002 * actual storage for the result here, instead.
1003 */
1004 const src_reg result_src = get_temp(ir->type);
1005 dst_reg result_dst = dst_reg(result_src);
1006
1007 /* Limit writes to the channels that will be used by result_src later.
1008 * This does limit this temp's use as a temporary for multi-instruction
1009 * sequences.
1010 */
1011 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1012
1013 emit(ir, OPCODE_SWZ, result_dst, src);
1014 this->result = result_src;
1015 }
1016
1017 void
1018 ir_to_mesa_visitor::visit(ir_expression *ir)
1019 {
1020 unsigned int operand;
1021 src_reg op[ARRAY_SIZE(ir->operands)];
1022 src_reg result_src;
1023 dst_reg result_dst;
1024
1025 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1026 */
1027 if (ir->operation == ir_binop_add) {
1028 if (try_emit_mad(ir, 1))
1029 return;
1030 if (try_emit_mad(ir, 0))
1031 return;
1032 }
1033
1034 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1035 */
1036 if (ir->operation == ir_binop_logic_and) {
1037 if (try_emit_mad_for_and_not(ir, 1))
1038 return;
1039 if (try_emit_mad_for_and_not(ir, 0))
1040 return;
1041 }
1042
1043 if (ir->operation == ir_quadop_vector) {
1044 this->emit_swz(ir);
1045 return;
1046 }
1047
1048 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1049 this->result.file = PROGRAM_UNDEFINED;
1050 ir->operands[operand]->accept(this);
1051 if (this->result.file == PROGRAM_UNDEFINED) {
1052 printf("Failed to get tree for expression operand:\n");
1053 ir->operands[operand]->print();
1054 printf("\n");
1055 exit(1);
1056 }
1057 op[operand] = this->result;
1058
1059 /* Matrix expression operands should have been broken down to vector
1060 * operations already.
1061 */
1062 assert(!ir->operands[operand]->type->is_matrix());
1063 }
1064
1065 int vector_elements = ir->operands[0]->type->vector_elements;
1066 if (ir->operands[1]) {
1067 vector_elements = MAX2(vector_elements,
1068 ir->operands[1]->type->vector_elements);
1069 }
1070
1071 this->result.file = PROGRAM_UNDEFINED;
1072
1073 /* Storage for our result. Ideally for an assignment we'd be using
1074 * the actual storage for the result here, instead.
1075 */
1076 result_src = get_temp(ir->type);
1077 /* convenience for the emit functions below. */
1078 result_dst = dst_reg(result_src);
1079 /* Limit writes to the channels that will be used by result_src later.
1080 * This does limit this temp's use as a temporary for multi-instruction
1081 * sequences.
1082 */
1083 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1084
1085 switch (ir->operation) {
1086 case ir_unop_logic_not:
1087 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1088 * older GPUs implement SEQ using multiple instructions (i915 uses two
1089 * SGE instructions and a MUL instruction). Since our logic values are
1090 * 0.0 and 1.0, 1-x also implements !x.
1091 */
1092 op[0].negate = ~op[0].negate;
1093 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1094 break;
1095 case ir_unop_neg:
1096 op[0].negate = ~op[0].negate;
1097 result_src = op[0];
1098 break;
1099 case ir_unop_abs:
1100 emit(ir, OPCODE_ABS, result_dst, op[0]);
1101 break;
1102 case ir_unop_sign:
1103 emit(ir, OPCODE_SSG, result_dst, op[0]);
1104 break;
1105 case ir_unop_rcp:
1106 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1107 break;
1108
1109 case ir_unop_exp2:
1110 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1111 break;
1112 case ir_unop_exp:
1113 case ir_unop_log:
1114 assert(!"not reached: should be handled by ir_explog_to_explog2");
1115 break;
1116 case ir_unop_log2:
1117 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1118 break;
1119 case ir_unop_sin:
1120 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1121 break;
1122 case ir_unop_cos:
1123 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1124 break;
1125 case ir_unop_sin_reduced:
1126 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1127 break;
1128 case ir_unop_cos_reduced:
1129 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1130 break;
1131
1132 case ir_unop_dFdx:
1133 emit(ir, OPCODE_DDX, result_dst, op[0]);
1134 break;
1135 case ir_unop_dFdy:
1136 emit(ir, OPCODE_DDY, result_dst, op[0]);
1137 break;
1138
1139 case ir_unop_saturate: {
1140 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1141 result_dst, op[0]);
1142 inst->saturate = true;
1143 break;
1144 }
1145 case ir_unop_noise: {
1146 const enum prog_opcode opcode =
1147 prog_opcode(OPCODE_NOISE1
1148 + (ir->operands[0]->type->vector_elements) - 1);
1149 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1150
1151 emit(ir, opcode, result_dst, op[0]);
1152 break;
1153 }
1154
1155 case ir_binop_add:
1156 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1157 break;
1158 case ir_binop_sub:
1159 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1160 break;
1161
1162 case ir_binop_mul:
1163 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1164 break;
1165 case ir_binop_div:
1166 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1167 break;
1168 case ir_binop_mod:
1169 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1170 assert(ir->type->is_integer());
1171 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1172 break;
1173
1174 case ir_binop_less:
1175 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1176 break;
1177 case ir_binop_greater:
1178 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1179 break;
1180 case ir_binop_lequal:
1181 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1182 break;
1183 case ir_binop_gequal:
1184 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1185 break;
1186 case ir_binop_equal:
1187 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1188 break;
1189 case ir_binop_nequal:
1190 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1191 break;
1192 case ir_binop_all_equal:
1193 /* "==" operator producing a scalar boolean. */
1194 if (ir->operands[0]->type->is_vector() ||
1195 ir->operands[1]->type->is_vector()) {
1196 src_reg temp = get_temp(glsl_type::vec4_type);
1197 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1198
1199 /* After the dot-product, the value will be an integer on the
1200 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1201 */
1202 emit_dp(ir, result_dst, temp, temp, vector_elements);
1203
1204 /* Negating the result of the dot-product gives values on the range
1205 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1206 * achieved using SGE.
1207 */
1208 src_reg sge_src = result_src;
1209 sge_src.negate = ~sge_src.negate;
1210 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1211 } else {
1212 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1213 }
1214 break;
1215 case ir_binop_any_nequal:
1216 /* "!=" operator producing a scalar boolean. */
1217 if (ir->operands[0]->type->is_vector() ||
1218 ir->operands[1]->type->is_vector()) {
1219 src_reg temp = get_temp(glsl_type::vec4_type);
1220 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1221
1222 /* After the dot-product, the value will be an integer on the
1223 * range [0,4]. Zero stays zero, and positive values become 1.0.
1224 */
1225 ir_to_mesa_instruction *const dp =
1226 emit_dp(ir, result_dst, temp, temp, vector_elements);
1227 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1228 /* The clamping to [0,1] can be done for free in the fragment
1229 * shader with a saturate.
1230 */
1231 dp->saturate = true;
1232 } else {
1233 /* Negating the result of the dot-product gives values on the range
1234 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1235 * achieved using SLT.
1236 */
1237 src_reg slt_src = result_src;
1238 slt_src.negate = ~slt_src.negate;
1239 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1240 }
1241 } else {
1242 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1243 }
1244 break;
1245
1246 case ir_unop_any: {
1247 assert(ir->operands[0]->type->is_vector());
1248
1249 /* After the dot-product, the value will be an integer on the
1250 * range [0,4]. Zero stays zero, and positive values become 1.0.
1251 */
1252 ir_to_mesa_instruction *const dp =
1253 emit_dp(ir, result_dst, op[0], op[0],
1254 ir->operands[0]->type->vector_elements);
1255 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1256 /* The clamping to [0,1] can be done for free in the fragment
1257 * shader with a saturate.
1258 */
1259 dp->saturate = true;
1260 } else {
1261 /* Negating the result of the dot-product gives values on the range
1262 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1263 * is achieved using SLT.
1264 */
1265 src_reg slt_src = result_src;
1266 slt_src.negate = ~slt_src.negate;
1267 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1268 }
1269 break;
1270 }
1271
1272 case ir_binop_logic_xor:
1273 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1274 break;
1275
1276 case ir_binop_logic_or: {
1277 /* After the addition, the value will be an integer on the
1278 * range [0,2]. Zero stays zero, and positive values become 1.0.
1279 */
1280 ir_to_mesa_instruction *add =
1281 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1282 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1283 /* The clamping to [0,1] can be done for free in the fragment
1284 * shader with a saturate.
1285 */
1286 add->saturate = true;
1287 } else {
1288 /* Negating the result of the addition gives values on the range
1289 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1290 * is achieved using SLT.
1291 */
1292 src_reg slt_src = result_src;
1293 slt_src.negate = ~slt_src.negate;
1294 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1295 }
1296 break;
1297 }
1298
1299 case ir_binop_logic_and:
1300 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1301 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1302 break;
1303
1304 case ir_binop_dot:
1305 assert(ir->operands[0]->type->is_vector());
1306 assert(ir->operands[0]->type == ir->operands[1]->type);
1307 emit_dp(ir, result_dst, op[0], op[1],
1308 ir->operands[0]->type->vector_elements);
1309 break;
1310
1311 case ir_unop_sqrt:
1312 /* sqrt(x) = x * rsq(x). */
1313 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1314 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1315 /* For incoming channels <= 0, set the result to 0. */
1316 op[0].negate = ~op[0].negate;
1317 emit(ir, OPCODE_CMP, result_dst,
1318 op[0], result_src, src_reg_for_float(0.0));
1319 break;
1320 case ir_unop_rsq:
1321 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1322 break;
1323 case ir_unop_i2f:
1324 case ir_unop_u2f:
1325 case ir_unop_b2f:
1326 case ir_unop_b2i:
1327 case ir_unop_i2u:
1328 case ir_unop_u2i:
1329 /* Mesa IR lacks types, ints are stored as truncated floats. */
1330 result_src = op[0];
1331 break;
1332 case ir_unop_f2i:
1333 case ir_unop_f2u:
1334 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1335 break;
1336 case ir_unop_f2b:
1337 case ir_unop_i2b:
1338 emit(ir, OPCODE_SNE, result_dst,
1339 op[0], src_reg_for_float(0.0));
1340 break;
1341 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1342 case ir_unop_bitcast_f2u:
1343 case ir_unop_bitcast_i2f:
1344 case ir_unop_bitcast_u2f:
1345 break;
1346 case ir_unop_trunc:
1347 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1348 break;
1349 case ir_unop_ceil:
1350 op[0].negate = ~op[0].negate;
1351 emit(ir, OPCODE_FLR, result_dst, op[0]);
1352 result_src.negate = ~result_src.negate;
1353 break;
1354 case ir_unop_floor:
1355 emit(ir, OPCODE_FLR, result_dst, op[0]);
1356 break;
1357 case ir_unop_fract:
1358 emit(ir, OPCODE_FRC, result_dst, op[0]);
1359 break;
1360 case ir_unop_pack_snorm_2x16:
1361 case ir_unop_pack_snorm_4x8:
1362 case ir_unop_pack_unorm_2x16:
1363 case ir_unop_pack_unorm_4x8:
1364 case ir_unop_pack_half_2x16:
1365 case ir_unop_pack_double_2x32:
1366 case ir_unop_unpack_snorm_2x16:
1367 case ir_unop_unpack_snorm_4x8:
1368 case ir_unop_unpack_unorm_2x16:
1369 case ir_unop_unpack_unorm_4x8:
1370 case ir_unop_unpack_half_2x16:
1371 case ir_unop_unpack_half_2x16_split_x:
1372 case ir_unop_unpack_half_2x16_split_y:
1373 case ir_unop_unpack_double_2x32:
1374 case ir_binop_pack_half_2x16_split:
1375 case ir_unop_bitfield_reverse:
1376 case ir_unop_bit_count:
1377 case ir_unop_find_msb:
1378 case ir_unop_find_lsb:
1379 case ir_unop_d2f:
1380 case ir_unop_f2d:
1381 case ir_unop_d2i:
1382 case ir_unop_i2d:
1383 case ir_unop_d2u:
1384 case ir_unop_u2d:
1385 case ir_unop_d2b:
1386 case ir_unop_frexp_sig:
1387 case ir_unop_frexp_exp:
1388 assert(!"not supported");
1389 break;
1390 case ir_binop_min:
1391 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1392 break;
1393 case ir_binop_max:
1394 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1395 break;
1396 case ir_binop_pow:
1397 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1398 break;
1399
1400 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1401 * hardware backends have no way to avoid Mesa IR generation
1402 * even if they don't use it, we need to emit "something" and
1403 * continue.
1404 */
1405 case ir_binop_lshift:
1406 case ir_binop_rshift:
1407 case ir_binop_bit_and:
1408 case ir_binop_bit_xor:
1409 case ir_binop_bit_or:
1410 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1411 break;
1412
1413 case ir_unop_bit_not:
1414 case ir_unop_round_even:
1415 emit(ir, OPCODE_MOV, result_dst, op[0]);
1416 break;
1417
1418 case ir_binop_ubo_load:
1419 assert(!"not supported");
1420 break;
1421
1422 case ir_triop_lrp:
1423 /* ir_triop_lrp operands are (x, y, a) while
1424 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1425 */
1426 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1427 break;
1428
1429 case ir_binop_vector_extract:
1430 case ir_binop_bfm:
1431 case ir_triop_fma:
1432 case ir_triop_bfi:
1433 case ir_triop_bitfield_extract:
1434 case ir_triop_vector_insert:
1435 case ir_quadop_bitfield_insert:
1436 case ir_binop_ldexp:
1437 case ir_triop_csel:
1438 case ir_binop_carry:
1439 case ir_binop_borrow:
1440 case ir_binop_imul_high:
1441 case ir_unop_interpolate_at_centroid:
1442 case ir_binop_interpolate_at_offset:
1443 case ir_binop_interpolate_at_sample:
1444 case ir_unop_dFdx_coarse:
1445 case ir_unop_dFdx_fine:
1446 case ir_unop_dFdy_coarse:
1447 case ir_unop_dFdy_fine:
1448 assert(!"not supported");
1449 break;
1450
1451 case ir_quadop_vector:
1452 /* This operation should have already been handled.
1453 */
1454 assert(!"Should not get here.");
1455 break;
1456 }
1457
1458 this->result = result_src;
1459 }
1460
1461
1462 void
1463 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1464 {
1465 src_reg src;
1466 int i;
1467 int swizzle[4];
1468
1469 /* Note that this is only swizzles in expressions, not those on the left
1470 * hand side of an assignment, which do write masking. See ir_assignment
1471 * for that.
1472 */
1473
1474 ir->val->accept(this);
1475 src = this->result;
1476 assert(src.file != PROGRAM_UNDEFINED);
1477 assert(ir->type->vector_elements > 0);
1478
1479 for (i = 0; i < 4; i++) {
1480 if (i < ir->type->vector_elements) {
1481 switch (i) {
1482 case 0:
1483 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1484 break;
1485 case 1:
1486 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1487 break;
1488 case 2:
1489 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1490 break;
1491 case 3:
1492 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1493 break;
1494 }
1495 } else {
1496 /* If the type is smaller than a vec4, replicate the last
1497 * channel out.
1498 */
1499 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1500 }
1501 }
1502
1503 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1504
1505 this->result = src;
1506 }
1507
1508 void
1509 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1510 {
1511 variable_storage *entry = find_variable_storage(ir->var);
1512 ir_variable *var = ir->var;
1513
1514 if (!entry) {
1515 switch (var->data.mode) {
1516 case ir_var_uniform:
1517 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1518 var->data.location);
1519 this->variables.push_tail(entry);
1520 break;
1521 case ir_var_shader_in:
1522 /* The linker assigns locations for varyings and attributes,
1523 * including deprecated builtins (like gl_Color),
1524 * user-assigned generic attributes (glBindVertexLocation),
1525 * and user-defined varyings.
1526 */
1527 assert(var->data.location != -1);
1528 entry = new(mem_ctx) variable_storage(var,
1529 PROGRAM_INPUT,
1530 var->data.location);
1531 break;
1532 case ir_var_shader_out:
1533 assert(var->data.location != -1);
1534 entry = new(mem_ctx) variable_storage(var,
1535 PROGRAM_OUTPUT,
1536 var->data.location);
1537 break;
1538 case ir_var_system_value:
1539 entry = new(mem_ctx) variable_storage(var,
1540 PROGRAM_SYSTEM_VALUE,
1541 var->data.location);
1542 break;
1543 case ir_var_auto:
1544 case ir_var_temporary:
1545 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1546 this->next_temp);
1547 this->variables.push_tail(entry);
1548
1549 next_temp += type_size(var->type);
1550 break;
1551 }
1552
1553 if (!entry) {
1554 printf("Failed to make storage for %s\n", var->name);
1555 exit(1);
1556 }
1557 }
1558
1559 this->result = src_reg(entry->file, entry->index, var->type);
1560 }
1561
1562 void
1563 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1564 {
1565 ir_constant *index;
1566 src_reg src;
1567 int element_size = type_size(ir->type);
1568
1569 index = ir->array_index->constant_expression_value();
1570
1571 ir->array->accept(this);
1572 src = this->result;
1573
1574 if (index) {
1575 src.index += index->value.i[0] * element_size;
1576 } else {
1577 /* Variable index array dereference. It eats the "vec4" of the
1578 * base of the array and an index that offsets the Mesa register
1579 * index.
1580 */
1581 ir->array_index->accept(this);
1582
1583 src_reg index_reg;
1584
1585 if (element_size == 1) {
1586 index_reg = this->result;
1587 } else {
1588 index_reg = get_temp(glsl_type::float_type);
1589
1590 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1591 this->result, src_reg_for_float(element_size));
1592 }
1593
1594 /* If there was already a relative address register involved, add the
1595 * new and the old together to get the new offset.
1596 */
1597 if (src.reladdr != NULL) {
1598 src_reg accum_reg = get_temp(glsl_type::float_type);
1599
1600 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1601 index_reg, *src.reladdr);
1602
1603 index_reg = accum_reg;
1604 }
1605
1606 src.reladdr = ralloc(mem_ctx, src_reg);
1607 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1608 }
1609
1610 /* If the type is smaller than a vec4, replicate the last channel out. */
1611 if (ir->type->is_scalar() || ir->type->is_vector())
1612 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1613 else
1614 src.swizzle = SWIZZLE_NOOP;
1615
1616 this->result = src;
1617 }
1618
1619 void
1620 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1621 {
1622 unsigned int i;
1623 const glsl_type *struct_type = ir->record->type;
1624 int offset = 0;
1625
1626 ir->record->accept(this);
1627
1628 for (i = 0; i < struct_type->length; i++) {
1629 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1630 break;
1631 offset += type_size(struct_type->fields.structure[i].type);
1632 }
1633
1634 /* If the type is smaller than a vec4, replicate the last channel out. */
1635 if (ir->type->is_scalar() || ir->type->is_vector())
1636 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1637 else
1638 this->result.swizzle = SWIZZLE_NOOP;
1639
1640 this->result.index += offset;
1641 }
1642
1643 /**
1644 * We want to be careful in assignment setup to hit the actual storage
1645 * instead of potentially using a temporary like we might with the
1646 * ir_dereference handler.
1647 */
1648 static dst_reg
1649 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1650 {
1651 /* The LHS must be a dereference. If the LHS is a variable indexed array
1652 * access of a vector, it must be separated into a series conditional moves
1653 * before reaching this point (see ir_vec_index_to_cond_assign).
1654 */
1655 assert(ir->as_dereference());
1656 ir_dereference_array *deref_array = ir->as_dereference_array();
1657 if (deref_array) {
1658 assert(!deref_array->array->type->is_vector());
1659 }
1660
1661 /* Use the rvalue deref handler for the most part. We'll ignore
1662 * swizzles in it and write swizzles using writemask, though.
1663 */
1664 ir->accept(v);
1665 return dst_reg(v->result);
1666 }
1667
1668 /**
1669 * Process the condition of a conditional assignment
1670 *
1671 * Examines the condition of a conditional assignment to generate the optimal
1672 * first operand of a \c CMP instruction. If the condition is a relational
1673 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1674 * used as the source for the \c CMP instruction. Otherwise the comparison
1675 * is processed to a boolean result, and the boolean result is used as the
1676 * operand to the CMP instruction.
1677 */
1678 bool
1679 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1680 {
1681 ir_rvalue *src_ir = ir;
1682 bool negate = true;
1683 bool switch_order = false;
1684
1685 ir_expression *const expr = ir->as_expression();
1686 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1687 bool zero_on_left = false;
1688
1689 if (expr->operands[0]->is_zero()) {
1690 src_ir = expr->operands[1];
1691 zero_on_left = true;
1692 } else if (expr->operands[1]->is_zero()) {
1693 src_ir = expr->operands[0];
1694 zero_on_left = false;
1695 }
1696
1697 /* a is - 0 + - 0 +
1698 * (a < 0) T F F ( a < 0) T F F
1699 * (0 < a) F F T (-a < 0) F F T
1700 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1701 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1702 * (a > 0) F F T (-a < 0) F F T
1703 * (0 > a) T F F ( a < 0) T F F
1704 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1705 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1706 *
1707 * Note that exchanging the order of 0 and 'a' in the comparison simply
1708 * means that the value of 'a' should be negated.
1709 */
1710 if (src_ir != ir) {
1711 switch (expr->operation) {
1712 case ir_binop_less:
1713 switch_order = false;
1714 negate = zero_on_left;
1715 break;
1716
1717 case ir_binop_greater:
1718 switch_order = false;
1719 negate = !zero_on_left;
1720 break;
1721
1722 case ir_binop_lequal:
1723 switch_order = true;
1724 negate = !zero_on_left;
1725 break;
1726
1727 case ir_binop_gequal:
1728 switch_order = true;
1729 negate = zero_on_left;
1730 break;
1731
1732 default:
1733 /* This isn't the right kind of comparison afterall, so make sure
1734 * the whole condition is visited.
1735 */
1736 src_ir = ir;
1737 break;
1738 }
1739 }
1740 }
1741
1742 src_ir->accept(this);
1743
1744 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1745 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1746 * choose which value OPCODE_CMP produces without an extra instruction
1747 * computing the condition.
1748 */
1749 if (negate)
1750 this->result.negate = ~this->result.negate;
1751
1752 return switch_order;
1753 }
1754
1755 void
1756 ir_to_mesa_visitor::visit(ir_assignment *ir)
1757 {
1758 dst_reg l;
1759 src_reg r;
1760 int i;
1761
1762 ir->rhs->accept(this);
1763 r = this->result;
1764
1765 l = get_assignment_lhs(ir->lhs, this);
1766
1767 /* FINISHME: This should really set to the correct maximal writemask for each
1768 * FINISHME: component written (in the loops below). This case can only
1769 * FINISHME: occur for matrices, arrays, and structures.
1770 */
1771 if (ir->write_mask == 0) {
1772 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1773 l.writemask = WRITEMASK_XYZW;
1774 } else if (ir->lhs->type->is_scalar()) {
1775 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1776 * FINISHME: W component of fragment shader output zero, work correctly.
1777 */
1778 l.writemask = WRITEMASK_XYZW;
1779 } else {
1780 int swizzles[4];
1781 int first_enabled_chan = 0;
1782 int rhs_chan = 0;
1783
1784 assert(ir->lhs->type->is_vector());
1785 l.writemask = ir->write_mask;
1786
1787 for (int i = 0; i < 4; i++) {
1788 if (l.writemask & (1 << i)) {
1789 first_enabled_chan = GET_SWZ(r.swizzle, i);
1790 break;
1791 }
1792 }
1793
1794 /* Swizzle a small RHS vector into the channels being written.
1795 *
1796 * glsl ir treats write_mask as dictating how many channels are
1797 * present on the RHS while Mesa IR treats write_mask as just
1798 * showing which channels of the vec4 RHS get written.
1799 */
1800 for (int i = 0; i < 4; i++) {
1801 if (l.writemask & (1 << i))
1802 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1803 else
1804 swizzles[i] = first_enabled_chan;
1805 }
1806 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1807 swizzles[2], swizzles[3]);
1808 }
1809
1810 assert(l.file != PROGRAM_UNDEFINED);
1811 assert(r.file != PROGRAM_UNDEFINED);
1812
1813 if (ir->condition) {
1814 const bool switch_order = this->process_move_condition(ir->condition);
1815 src_reg condition = this->result;
1816
1817 for (i = 0; i < type_size(ir->lhs->type); i++) {
1818 if (switch_order) {
1819 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1820 } else {
1821 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1822 }
1823
1824 l.index++;
1825 r.index++;
1826 }
1827 } else {
1828 for (i = 0; i < type_size(ir->lhs->type); i++) {
1829 emit(ir, OPCODE_MOV, l, r);
1830 l.index++;
1831 r.index++;
1832 }
1833 }
1834 }
1835
1836
1837 void
1838 ir_to_mesa_visitor::visit(ir_constant *ir)
1839 {
1840 src_reg src;
1841 GLfloat stack_vals[4] = { 0 };
1842 GLfloat *values = stack_vals;
1843 unsigned int i;
1844
1845 /* Unfortunately, 4 floats is all we can get into
1846 * _mesa_add_unnamed_constant. So, make a temp to store an
1847 * aggregate constant and move each constant value into it. If we
1848 * get lucky, copy propagation will eliminate the extra moves.
1849 */
1850
1851 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1852 src_reg temp_base = get_temp(ir->type);
1853 dst_reg temp = dst_reg(temp_base);
1854
1855 foreach_in_list(ir_constant, field_value, &ir->components) {
1856 int size = type_size(field_value->type);
1857
1858 assert(size > 0);
1859
1860 field_value->accept(this);
1861 src = this->result;
1862
1863 for (i = 0; i < (unsigned int)size; i++) {
1864 emit(ir, OPCODE_MOV, temp, src);
1865
1866 src.index++;
1867 temp.index++;
1868 }
1869 }
1870 this->result = temp_base;
1871 return;
1872 }
1873
1874 if (ir->type->is_array()) {
1875 src_reg temp_base = get_temp(ir->type);
1876 dst_reg temp = dst_reg(temp_base);
1877 int size = type_size(ir->type->fields.array);
1878
1879 assert(size > 0);
1880
1881 for (i = 0; i < ir->type->length; i++) {
1882 ir->array_elements[i]->accept(this);
1883 src = this->result;
1884 for (int j = 0; j < size; j++) {
1885 emit(ir, OPCODE_MOV, temp, src);
1886
1887 src.index++;
1888 temp.index++;
1889 }
1890 }
1891 this->result = temp_base;
1892 return;
1893 }
1894
1895 if (ir->type->is_matrix()) {
1896 src_reg mat = get_temp(ir->type);
1897 dst_reg mat_column = dst_reg(mat);
1898
1899 for (i = 0; i < ir->type->matrix_columns; i++) {
1900 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1901 values = &ir->value.f[i * ir->type->vector_elements];
1902
1903 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1904 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1905 (gl_constant_value *) values,
1906 ir->type->vector_elements,
1907 &src.swizzle);
1908 emit(ir, OPCODE_MOV, mat_column, src);
1909
1910 mat_column.index++;
1911 }
1912
1913 this->result = mat;
1914 return;
1915 }
1916
1917 src.file = PROGRAM_CONSTANT;
1918 switch (ir->type->base_type) {
1919 case GLSL_TYPE_FLOAT:
1920 values = &ir->value.f[0];
1921 break;
1922 case GLSL_TYPE_UINT:
1923 for (i = 0; i < ir->type->vector_elements; i++) {
1924 values[i] = ir->value.u[i];
1925 }
1926 break;
1927 case GLSL_TYPE_INT:
1928 for (i = 0; i < ir->type->vector_elements; i++) {
1929 values[i] = ir->value.i[i];
1930 }
1931 break;
1932 case GLSL_TYPE_BOOL:
1933 for (i = 0; i < ir->type->vector_elements; i++) {
1934 values[i] = ir->value.b[i];
1935 }
1936 break;
1937 default:
1938 assert(!"Non-float/uint/int/bool constant");
1939 }
1940
1941 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1942 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1943 (gl_constant_value *) values,
1944 ir->type->vector_elements,
1945 &this->result.swizzle);
1946 }
1947
1948 void
1949 ir_to_mesa_visitor::visit(ir_call *)
1950 {
1951 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1952 }
1953
1954 void
1955 ir_to_mesa_visitor::visit(ir_texture *ir)
1956 {
1957 src_reg result_src, coord, lod_info, projector, dx, dy;
1958 dst_reg result_dst, coord_dst;
1959 ir_to_mesa_instruction *inst = NULL;
1960 prog_opcode opcode = OPCODE_NOP;
1961
1962 if (ir->op == ir_txs)
1963 this->result = src_reg_for_float(0.0);
1964 else
1965 ir->coordinate->accept(this);
1966
1967 /* Put our coords in a temp. We'll need to modify them for shadow,
1968 * projection, or LOD, so the only case we'd use it as is is if
1969 * we're doing plain old texturing. Mesa IR optimization should
1970 * handle cleaning up our mess in that case.
1971 */
1972 coord = get_temp(glsl_type::vec4_type);
1973 coord_dst = dst_reg(coord);
1974 emit(ir, OPCODE_MOV, coord_dst, this->result);
1975
1976 if (ir->projector) {
1977 ir->projector->accept(this);
1978 projector = this->result;
1979 }
1980
1981 /* Storage for our result. Ideally for an assignment we'd be using
1982 * the actual storage for the result here, instead.
1983 */
1984 result_src = get_temp(glsl_type::vec4_type);
1985 result_dst = dst_reg(result_src);
1986
1987 switch (ir->op) {
1988 case ir_tex:
1989 case ir_txs:
1990 opcode = OPCODE_TEX;
1991 break;
1992 case ir_txb:
1993 opcode = OPCODE_TXB;
1994 ir->lod_info.bias->accept(this);
1995 lod_info = this->result;
1996 break;
1997 case ir_txf:
1998 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1999 case ir_txl:
2000 opcode = OPCODE_TXL;
2001 ir->lod_info.lod->accept(this);
2002 lod_info = this->result;
2003 break;
2004 case ir_txd:
2005 opcode = OPCODE_TXD;
2006 ir->lod_info.grad.dPdx->accept(this);
2007 dx = this->result;
2008 ir->lod_info.grad.dPdy->accept(this);
2009 dy = this->result;
2010 break;
2011 case ir_txf_ms:
2012 assert(!"Unexpected ir_txf_ms opcode");
2013 break;
2014 case ir_lod:
2015 assert(!"Unexpected ir_lod opcode");
2016 break;
2017 case ir_tg4:
2018 assert(!"Unexpected ir_tg4 opcode");
2019 break;
2020 case ir_query_levels:
2021 assert(!"Unexpected ir_query_levels opcode");
2022 break;
2023 }
2024
2025 const glsl_type *sampler_type = ir->sampler->type;
2026
2027 if (ir->projector) {
2028 if (opcode == OPCODE_TEX) {
2029 /* Slot the projector in as the last component of the coord. */
2030 coord_dst.writemask = WRITEMASK_W;
2031 emit(ir, OPCODE_MOV, coord_dst, projector);
2032 coord_dst.writemask = WRITEMASK_XYZW;
2033 opcode = OPCODE_TXP;
2034 } else {
2035 src_reg coord_w = coord;
2036 coord_w.swizzle = SWIZZLE_WWWW;
2037
2038 /* For the other TEX opcodes there's no projective version
2039 * since the last slot is taken up by lod info. Do the
2040 * projective divide now.
2041 */
2042 coord_dst.writemask = WRITEMASK_W;
2043 emit(ir, OPCODE_RCP, coord_dst, projector);
2044
2045 /* In the case where we have to project the coordinates "by hand,"
2046 * the shadow comparitor value must also be projected.
2047 */
2048 src_reg tmp_src = coord;
2049 if (ir->shadow_comparitor) {
2050 /* Slot the shadow value in as the second to last component of the
2051 * coord.
2052 */
2053 ir->shadow_comparitor->accept(this);
2054
2055 tmp_src = get_temp(glsl_type::vec4_type);
2056 dst_reg tmp_dst = dst_reg(tmp_src);
2057
2058 /* Projective division not allowed for array samplers. */
2059 assert(!sampler_type->sampler_array);
2060
2061 tmp_dst.writemask = WRITEMASK_Z;
2062 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2063
2064 tmp_dst.writemask = WRITEMASK_XY;
2065 emit(ir, OPCODE_MOV, tmp_dst, coord);
2066 }
2067
2068 coord_dst.writemask = WRITEMASK_XYZ;
2069 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2070
2071 coord_dst.writemask = WRITEMASK_XYZW;
2072 coord.swizzle = SWIZZLE_XYZW;
2073 }
2074 }
2075
2076 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2077 * comparitor was put in the correct place (and projected) by the code,
2078 * above, that handles by-hand projection.
2079 */
2080 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2081 /* Slot the shadow value in as the second to last component of the
2082 * coord.
2083 */
2084 ir->shadow_comparitor->accept(this);
2085
2086 /* XXX This will need to be updated for cubemap array samplers. */
2087 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2088 sampler_type->sampler_array) {
2089 coord_dst.writemask = WRITEMASK_W;
2090 } else {
2091 coord_dst.writemask = WRITEMASK_Z;
2092 }
2093
2094 emit(ir, OPCODE_MOV, coord_dst, this->result);
2095 coord_dst.writemask = WRITEMASK_XYZW;
2096 }
2097
2098 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2099 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2100 coord_dst.writemask = WRITEMASK_W;
2101 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2102 coord_dst.writemask = WRITEMASK_XYZW;
2103 }
2104
2105 if (opcode == OPCODE_TXD)
2106 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2107 else
2108 inst = emit(ir, opcode, result_dst, coord);
2109
2110 if (ir->shadow_comparitor)
2111 inst->tex_shadow = GL_TRUE;
2112
2113 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2114 this->shader_program,
2115 this->prog);
2116
2117 switch (sampler_type->sampler_dimensionality) {
2118 case GLSL_SAMPLER_DIM_1D:
2119 inst->tex_target = (sampler_type->sampler_array)
2120 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2121 break;
2122 case GLSL_SAMPLER_DIM_2D:
2123 inst->tex_target = (sampler_type->sampler_array)
2124 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2125 break;
2126 case GLSL_SAMPLER_DIM_3D:
2127 inst->tex_target = TEXTURE_3D_INDEX;
2128 break;
2129 case GLSL_SAMPLER_DIM_CUBE:
2130 inst->tex_target = TEXTURE_CUBE_INDEX;
2131 break;
2132 case GLSL_SAMPLER_DIM_RECT:
2133 inst->tex_target = TEXTURE_RECT_INDEX;
2134 break;
2135 case GLSL_SAMPLER_DIM_BUF:
2136 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2137 break;
2138 case GLSL_SAMPLER_DIM_EXTERNAL:
2139 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2140 break;
2141 default:
2142 assert(!"Should not get here.");
2143 }
2144
2145 this->result = result_src;
2146 }
2147
2148 void
2149 ir_to_mesa_visitor::visit(ir_return *ir)
2150 {
2151 /* Non-void functions should have been inlined. We may still emit RETs
2152 * from main() unless the EmitNoMainReturn option is set.
2153 */
2154 assert(!ir->get_value());
2155 emit(ir, OPCODE_RET);
2156 }
2157
2158 void
2159 ir_to_mesa_visitor::visit(ir_discard *ir)
2160 {
2161 if (ir->condition) {
2162 ir->condition->accept(this);
2163 this->result.negate = ~this->result.negate;
2164 emit(ir, OPCODE_KIL, undef_dst, this->result);
2165 } else {
2166 emit(ir, OPCODE_KIL_NV);
2167 }
2168 }
2169
2170 void
2171 ir_to_mesa_visitor::visit(ir_if *ir)
2172 {
2173 ir_to_mesa_instruction *cond_inst, *if_inst;
2174 ir_to_mesa_instruction *prev_inst;
2175
2176 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2177
2178 ir->condition->accept(this);
2179 assert(this->result.file != PROGRAM_UNDEFINED);
2180
2181 if (this->options->EmitCondCodes) {
2182 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2183
2184 /* See if we actually generated any instruction for generating
2185 * the condition. If not, then cook up a move to a temp so we
2186 * have something to set cond_update on.
2187 */
2188 if (cond_inst == prev_inst) {
2189 src_reg temp = get_temp(glsl_type::bool_type);
2190 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2191 }
2192 cond_inst->cond_update = GL_TRUE;
2193
2194 if_inst = emit(ir->condition, OPCODE_IF);
2195 if_inst->dst.cond_mask = COND_NE;
2196 } else {
2197 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2198 }
2199
2200 this->instructions.push_tail(if_inst);
2201
2202 visit_exec_list(&ir->then_instructions, this);
2203
2204 if (!ir->else_instructions.is_empty()) {
2205 emit(ir->condition, OPCODE_ELSE);
2206 visit_exec_list(&ir->else_instructions, this);
2207 }
2208
2209 emit(ir->condition, OPCODE_ENDIF);
2210 }
2211
2212 void
2213 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2214 {
2215 assert(!"Geometry shaders not supported.");
2216 }
2217
2218 void
2219 ir_to_mesa_visitor::visit(ir_end_primitive *)
2220 {
2221 assert(!"Geometry shaders not supported.");
2222 }
2223
2224 ir_to_mesa_visitor::ir_to_mesa_visitor()
2225 {
2226 result.file = PROGRAM_UNDEFINED;
2227 next_temp = 1;
2228 next_signature_id = 1;
2229 current_function = NULL;
2230 mem_ctx = ralloc_context(NULL);
2231 }
2232
2233 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2234 {
2235 ralloc_free(mem_ctx);
2236 }
2237
2238 static struct prog_src_register
2239 mesa_src_reg_from_ir_src_reg(src_reg reg)
2240 {
2241 struct prog_src_register mesa_reg;
2242
2243 mesa_reg.File = reg.file;
2244 assert(reg.index < (1 << INST_INDEX_BITS));
2245 mesa_reg.Index = reg.index;
2246 mesa_reg.Swizzle = reg.swizzle;
2247 mesa_reg.RelAddr = reg.reladdr != NULL;
2248 mesa_reg.Negate = reg.negate;
2249 mesa_reg.Abs = 0;
2250 mesa_reg.HasIndex2 = GL_FALSE;
2251 mesa_reg.RelAddr2 = 0;
2252 mesa_reg.Index2 = 0;
2253
2254 return mesa_reg;
2255 }
2256
2257 static void
2258 set_branchtargets(ir_to_mesa_visitor *v,
2259 struct prog_instruction *mesa_instructions,
2260 int num_instructions)
2261 {
2262 int if_count = 0, loop_count = 0;
2263 int *if_stack, *loop_stack;
2264 int if_stack_pos = 0, loop_stack_pos = 0;
2265 int i, j;
2266
2267 for (i = 0; i < num_instructions; i++) {
2268 switch (mesa_instructions[i].Opcode) {
2269 case OPCODE_IF:
2270 if_count++;
2271 break;
2272 case OPCODE_BGNLOOP:
2273 loop_count++;
2274 break;
2275 case OPCODE_BRK:
2276 case OPCODE_CONT:
2277 mesa_instructions[i].BranchTarget = -1;
2278 break;
2279 default:
2280 break;
2281 }
2282 }
2283
2284 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2285 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2286
2287 for (i = 0; i < num_instructions; i++) {
2288 switch (mesa_instructions[i].Opcode) {
2289 case OPCODE_IF:
2290 if_stack[if_stack_pos] = i;
2291 if_stack_pos++;
2292 break;
2293 case OPCODE_ELSE:
2294 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2295 if_stack[if_stack_pos - 1] = i;
2296 break;
2297 case OPCODE_ENDIF:
2298 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2299 if_stack_pos--;
2300 break;
2301 case OPCODE_BGNLOOP:
2302 loop_stack[loop_stack_pos] = i;
2303 loop_stack_pos++;
2304 break;
2305 case OPCODE_ENDLOOP:
2306 loop_stack_pos--;
2307 /* Rewrite any breaks/conts at this nesting level (haven't
2308 * already had a BranchTarget assigned) to point to the end
2309 * of the loop.
2310 */
2311 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2312 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2313 mesa_instructions[j].Opcode == OPCODE_CONT) {
2314 if (mesa_instructions[j].BranchTarget == -1) {
2315 mesa_instructions[j].BranchTarget = i;
2316 }
2317 }
2318 }
2319 /* The loop ends point at each other. */
2320 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2321 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2322 break;
2323 case OPCODE_CAL:
2324 foreach_in_list(function_entry, entry, &v->function_signatures) {
2325 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2326 mesa_instructions[i].BranchTarget = entry->inst;
2327 break;
2328 }
2329 }
2330 break;
2331 default:
2332 break;
2333 }
2334 }
2335 }
2336
2337 static void
2338 print_program(struct prog_instruction *mesa_instructions,
2339 ir_instruction **mesa_instruction_annotation,
2340 int num_instructions)
2341 {
2342 ir_instruction *last_ir = NULL;
2343 int i;
2344 int indent = 0;
2345
2346 for (i = 0; i < num_instructions; i++) {
2347 struct prog_instruction *mesa_inst = mesa_instructions + i;
2348 ir_instruction *ir = mesa_instruction_annotation[i];
2349
2350 fprintf(stdout, "%3d: ", i);
2351
2352 if (last_ir != ir && ir) {
2353 int j;
2354
2355 for (j = 0; j < indent; j++) {
2356 fprintf(stdout, " ");
2357 }
2358 ir->print();
2359 printf("\n");
2360 last_ir = ir;
2361
2362 fprintf(stdout, " "); /* line number spacing. */
2363 }
2364
2365 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2366 PROG_PRINT_DEBUG, NULL);
2367 }
2368 }
2369
2370 namespace {
2371
2372 class add_uniform_to_shader : public program_resource_visitor {
2373 public:
2374 add_uniform_to_shader(struct gl_shader_program *shader_program,
2375 struct gl_program_parameter_list *params,
2376 gl_shader_stage shader_type)
2377 : shader_program(shader_program), params(params), idx(-1),
2378 shader_type(shader_type)
2379 {
2380 /* empty */
2381 }
2382
2383 void process(ir_variable *var)
2384 {
2385 this->idx = -1;
2386 this->program_resource_visitor::process(var);
2387
2388 var->data.location = this->idx;
2389 }
2390
2391 private:
2392 virtual void visit_field(const glsl_type *type, const char *name,
2393 bool row_major);
2394
2395 struct gl_shader_program *shader_program;
2396 struct gl_program_parameter_list *params;
2397 int idx;
2398 gl_shader_stage shader_type;
2399 };
2400
2401 } /* anonymous namespace */
2402
2403 void
2404 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2405 bool row_major)
2406 {
2407 unsigned int size;
2408
2409 (void) row_major;
2410
2411 if (type->is_vector() || type->is_scalar()) {
2412 size = type->vector_elements;
2413 if (type->is_double())
2414 size *= 2;
2415 } else {
2416 size = type_size(type) * 4;
2417 }
2418
2419 gl_register_file file;
2420 if (type->without_array()->is_sampler()) {
2421 file = PROGRAM_SAMPLER;
2422 } else {
2423 file = PROGRAM_UNIFORM;
2424 }
2425
2426 int index = _mesa_lookup_parameter_index(params, -1, name);
2427 if (index < 0) {
2428 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2429 NULL, NULL);
2430
2431 /* Sampler uniform values are stored in prog->SamplerUnits,
2432 * and the entry in that array is selected by this index we
2433 * store in ParameterValues[].
2434 */
2435 if (file == PROGRAM_SAMPLER) {
2436 unsigned location;
2437 const bool found =
2438 this->shader_program->UniformHash->get(location,
2439 params->Parameters[index].Name);
2440 assert(found);
2441
2442 if (!found)
2443 return;
2444
2445 struct gl_uniform_storage *storage =
2446 &this->shader_program->UniformStorage[location];
2447
2448 assert(storage->sampler[shader_type].active);
2449
2450 for (unsigned int j = 0; j < size / 4; j++)
2451 params->ParameterValues[index + j][0].f =
2452 storage->sampler[shader_type].index + j;
2453 }
2454 }
2455
2456 /* The first part of the uniform that's processed determines the base
2457 * location of the whole uniform (for structures).
2458 */
2459 if (this->idx < 0)
2460 this->idx = index;
2461 }
2462
2463 /**
2464 * Generate the program parameters list for the user uniforms in a shader
2465 *
2466 * \param shader_program Linked shader program. This is only used to
2467 * emit possible link errors to the info log.
2468 * \param sh Shader whose uniforms are to be processed.
2469 * \param params Parameter list to be filled in.
2470 */
2471 void
2472 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2473 *shader_program,
2474 struct gl_shader *sh,
2475 struct gl_program_parameter_list
2476 *params)
2477 {
2478 add_uniform_to_shader add(shader_program, params, sh->Stage);
2479
2480 foreach_in_list(ir_instruction, node, sh->ir) {
2481 ir_variable *var = node->as_variable();
2482
2483 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2484 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2485 continue;
2486
2487 add.process(var);
2488 }
2489 }
2490
2491 void
2492 _mesa_associate_uniform_storage(struct gl_context *ctx,
2493 struct gl_shader_program *shader_program,
2494 struct gl_program_parameter_list *params)
2495 {
2496 /* After adding each uniform to the parameter list, connect the storage for
2497 * the parameter with the tracking structure used by the API for the
2498 * uniform.
2499 */
2500 unsigned last_location = unsigned(~0);
2501 for (unsigned i = 0; i < params->NumParameters; i++) {
2502 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2503 continue;
2504
2505 unsigned location;
2506 const bool found =
2507 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2508 assert(found);
2509
2510 if (!found)
2511 continue;
2512
2513 if (location != last_location) {
2514 struct gl_uniform_storage *storage =
2515 &shader_program->UniformStorage[location];
2516 enum gl_uniform_driver_format format = uniform_native;
2517
2518 unsigned columns = 0;
2519 int dmul = 4 * sizeof(float);
2520 switch (storage->type->base_type) {
2521 case GLSL_TYPE_UINT:
2522 assert(ctx->Const.NativeIntegers);
2523 format = uniform_native;
2524 columns = 1;
2525 break;
2526 case GLSL_TYPE_INT:
2527 format =
2528 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2529 columns = 1;
2530 break;
2531
2532 case GLSL_TYPE_DOUBLE:
2533 if (storage->type->vector_elements > 2)
2534 dmul *= 2;
2535 /* fallthrough */
2536 case GLSL_TYPE_FLOAT:
2537 format = uniform_native;
2538 columns = storage->type->matrix_columns;
2539 break;
2540 case GLSL_TYPE_BOOL:
2541 format = uniform_native;
2542 columns = 1;
2543 break;
2544 case GLSL_TYPE_SAMPLER:
2545 case GLSL_TYPE_IMAGE:
2546 format = uniform_native;
2547 columns = 1;
2548 break;
2549 case GLSL_TYPE_ATOMIC_UINT:
2550 case GLSL_TYPE_ARRAY:
2551 case GLSL_TYPE_VOID:
2552 case GLSL_TYPE_STRUCT:
2553 case GLSL_TYPE_ERROR:
2554 case GLSL_TYPE_INTERFACE:
2555 assert(!"Should not get here.");
2556 break;
2557 }
2558
2559 _mesa_uniform_attach_driver_storage(storage,
2560 dmul * columns,
2561 dmul,
2562 format,
2563 &params->ParameterValues[i]);
2564
2565 /* After attaching the driver's storage to the uniform, propagate any
2566 * data from the linker's backing store. This will cause values from
2567 * initializers in the source code to be copied over.
2568 */
2569 _mesa_propagate_uniforms_to_driver_storage(storage,
2570 0,
2571 MAX2(1, storage->array_elements));
2572
2573 last_location = location;
2574 }
2575 }
2576 }
2577
2578 /*
2579 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2580 * channels for copy propagation and updates following instructions to
2581 * use the original versions.
2582 *
2583 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2584 * will occur. As an example, a TXP production before this pass:
2585 *
2586 * 0: MOV TEMP[1], INPUT[4].xyyy;
2587 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2588 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2589 *
2590 * and after:
2591 *
2592 * 0: MOV TEMP[1], INPUT[4].xyyy;
2593 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2594 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2595 *
2596 * which allows for dead code elimination on TEMP[1]'s writes.
2597 */
2598 void
2599 ir_to_mesa_visitor::copy_propagate(void)
2600 {
2601 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2602 ir_to_mesa_instruction *,
2603 this->next_temp * 4);
2604 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2605 int level = 0;
2606
2607 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2608 assert(inst->dst.file != PROGRAM_TEMPORARY
2609 || inst->dst.index < this->next_temp);
2610
2611 /* First, do any copy propagation possible into the src regs. */
2612 for (int r = 0; r < 3; r++) {
2613 ir_to_mesa_instruction *first = NULL;
2614 bool good = true;
2615 int acp_base = inst->src[r].index * 4;
2616
2617 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2618 inst->src[r].reladdr)
2619 continue;
2620
2621 /* See if we can find entries in the ACP consisting of MOVs
2622 * from the same src register for all the swizzled channels
2623 * of this src register reference.
2624 */
2625 for (int i = 0; i < 4; i++) {
2626 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2627 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2628
2629 if (!copy_chan) {
2630 good = false;
2631 break;
2632 }
2633
2634 assert(acp_level[acp_base + src_chan] <= level);
2635
2636 if (!first) {
2637 first = copy_chan;
2638 } else {
2639 if (first->src[0].file != copy_chan->src[0].file ||
2640 first->src[0].index != copy_chan->src[0].index) {
2641 good = false;
2642 break;
2643 }
2644 }
2645 }
2646
2647 if (good) {
2648 /* We've now validated that we can copy-propagate to
2649 * replace this src register reference. Do it.
2650 */
2651 inst->src[r].file = first->src[0].file;
2652 inst->src[r].index = first->src[0].index;
2653
2654 int swizzle = 0;
2655 for (int i = 0; i < 4; i++) {
2656 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2657 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2658 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2659 (3 * i));
2660 }
2661 inst->src[r].swizzle = swizzle;
2662 }
2663 }
2664
2665 switch (inst->op) {
2666 case OPCODE_BGNLOOP:
2667 case OPCODE_ENDLOOP:
2668 /* End of a basic block, clear the ACP entirely. */
2669 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2670 break;
2671
2672 case OPCODE_IF:
2673 ++level;
2674 break;
2675
2676 case OPCODE_ENDIF:
2677 case OPCODE_ELSE:
2678 /* Clear all channels written inside the block from the ACP, but
2679 * leaving those that were not touched.
2680 */
2681 for (int r = 0; r < this->next_temp; r++) {
2682 for (int c = 0; c < 4; c++) {
2683 if (!acp[4 * r + c])
2684 continue;
2685
2686 if (acp_level[4 * r + c] >= level)
2687 acp[4 * r + c] = NULL;
2688 }
2689 }
2690 if (inst->op == OPCODE_ENDIF)
2691 --level;
2692 break;
2693
2694 default:
2695 /* Continuing the block, clear any written channels from
2696 * the ACP.
2697 */
2698 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2699 /* Any temporary might be written, so no copy propagation
2700 * across this instruction.
2701 */
2702 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2703 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2704 inst->dst.reladdr) {
2705 /* Any output might be written, so no copy propagation
2706 * from outputs across this instruction.
2707 */
2708 for (int r = 0; r < this->next_temp; r++) {
2709 for (int c = 0; c < 4; c++) {
2710 if (!acp[4 * r + c])
2711 continue;
2712
2713 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2714 acp[4 * r + c] = NULL;
2715 }
2716 }
2717 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2718 inst->dst.file == PROGRAM_OUTPUT) {
2719 /* Clear where it's used as dst. */
2720 if (inst->dst.file == PROGRAM_TEMPORARY) {
2721 for (int c = 0; c < 4; c++) {
2722 if (inst->dst.writemask & (1 << c)) {
2723 acp[4 * inst->dst.index + c] = NULL;
2724 }
2725 }
2726 }
2727
2728 /* Clear where it's used as src. */
2729 for (int r = 0; r < this->next_temp; r++) {
2730 for (int c = 0; c < 4; c++) {
2731 if (!acp[4 * r + c])
2732 continue;
2733
2734 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2735
2736 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2737 acp[4 * r + c]->src[0].index == inst->dst.index &&
2738 inst->dst.writemask & (1 << src_chan))
2739 {
2740 acp[4 * r + c] = NULL;
2741 }
2742 }
2743 }
2744 }
2745 break;
2746 }
2747
2748 /* If this is a copy, add it to the ACP. */
2749 if (inst->op == OPCODE_MOV &&
2750 inst->dst.file == PROGRAM_TEMPORARY &&
2751 !(inst->dst.file == inst->src[0].file &&
2752 inst->dst.index == inst->src[0].index) &&
2753 !inst->dst.reladdr &&
2754 !inst->saturate &&
2755 !inst->src[0].reladdr &&
2756 !inst->src[0].negate) {
2757 for (int i = 0; i < 4; i++) {
2758 if (inst->dst.writemask & (1 << i)) {
2759 acp[4 * inst->dst.index + i] = inst;
2760 acp_level[4 * inst->dst.index + i] = level;
2761 }
2762 }
2763 }
2764 }
2765
2766 ralloc_free(acp_level);
2767 ralloc_free(acp);
2768 }
2769
2770
2771 /**
2772 * Convert a shader's GLSL IR into a Mesa gl_program.
2773 */
2774 static struct gl_program *
2775 get_mesa_program(struct gl_context *ctx,
2776 struct gl_shader_program *shader_program,
2777 struct gl_shader *shader)
2778 {
2779 ir_to_mesa_visitor v;
2780 struct prog_instruction *mesa_instructions, *mesa_inst;
2781 ir_instruction **mesa_instruction_annotation;
2782 int i;
2783 struct gl_program *prog;
2784 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2785 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2786 struct gl_shader_compiler_options *options =
2787 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2788
2789 validate_ir_tree(shader->ir);
2790
2791 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2792 if (!prog)
2793 return NULL;
2794 prog->Parameters = _mesa_new_parameter_list();
2795 v.ctx = ctx;
2796 v.prog = prog;
2797 v.shader_program = shader_program;
2798 v.options = options;
2799
2800 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2801 prog->Parameters);
2802
2803 /* Emit Mesa IR for main(). */
2804 visit_exec_list(shader->ir, &v);
2805 v.emit(NULL, OPCODE_END);
2806
2807 prog->NumTemporaries = v.next_temp;
2808
2809 unsigned num_instructions = v.instructions.length();
2810
2811 mesa_instructions =
2812 (struct prog_instruction *)calloc(num_instructions,
2813 sizeof(*mesa_instructions));
2814 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2815 num_instructions);
2816
2817 v.copy_propagate();
2818
2819 /* Convert ir_mesa_instructions into prog_instructions.
2820 */
2821 mesa_inst = mesa_instructions;
2822 i = 0;
2823 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2824 mesa_inst->Opcode = inst->op;
2825 mesa_inst->CondUpdate = inst->cond_update;
2826 if (inst->saturate)
2827 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2828 mesa_inst->DstReg.File = inst->dst.file;
2829 mesa_inst->DstReg.Index = inst->dst.index;
2830 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2831 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2832 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2833 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2834 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2835 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2836 mesa_inst->TexSrcUnit = inst->sampler;
2837 mesa_inst->TexSrcTarget = inst->tex_target;
2838 mesa_inst->TexShadow = inst->tex_shadow;
2839 mesa_instruction_annotation[i] = inst->ir;
2840
2841 /* Set IndirectRegisterFiles. */
2842 if (mesa_inst->DstReg.RelAddr)
2843 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2844
2845 /* Update program's bitmask of indirectly accessed register files */
2846 for (unsigned src = 0; src < 3; src++)
2847 if (mesa_inst->SrcReg[src].RelAddr)
2848 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2849
2850 switch (mesa_inst->Opcode) {
2851 case OPCODE_IF:
2852 if (options->MaxIfDepth == 0) {
2853 linker_warning(shader_program,
2854 "Couldn't flatten if-statement. "
2855 "This will likely result in software "
2856 "rasterization.\n");
2857 }
2858 break;
2859 case OPCODE_BGNLOOP:
2860 if (options->EmitNoLoops) {
2861 linker_warning(shader_program,
2862 "Couldn't unroll loop. "
2863 "This will likely result in software "
2864 "rasterization.\n");
2865 }
2866 break;
2867 case OPCODE_CONT:
2868 if (options->EmitNoCont) {
2869 linker_warning(shader_program,
2870 "Couldn't lower continue-statement. "
2871 "This will likely result in software "
2872 "rasterization.\n");
2873 }
2874 break;
2875 case OPCODE_ARL:
2876 prog->NumAddressRegs = 1;
2877 break;
2878 default:
2879 break;
2880 }
2881
2882 mesa_inst++;
2883 i++;
2884
2885 if (!shader_program->LinkStatus)
2886 break;
2887 }
2888
2889 if (!shader_program->LinkStatus) {
2890 goto fail_exit;
2891 }
2892
2893 set_branchtargets(&v, mesa_instructions, num_instructions);
2894
2895 if (ctx->_Shader->Flags & GLSL_DUMP) {
2896 fprintf(stderr, "\n");
2897 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2898 shader_program->Name);
2899 _mesa_print_ir(stderr, shader->ir, NULL);
2900 fprintf(stderr, "\n");
2901 fprintf(stderr, "\n");
2902 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2903 shader_program->Name);
2904 print_program(mesa_instructions, mesa_instruction_annotation,
2905 num_instructions);
2906 fflush(stderr);
2907 }
2908
2909 prog->Instructions = mesa_instructions;
2910 prog->NumInstructions = num_instructions;
2911
2912 /* Setting this to NULL prevents a possible double free in the fail_exit
2913 * path (far below).
2914 */
2915 mesa_instructions = NULL;
2916
2917 do_set_program_inouts(shader->ir, prog, shader->Stage);
2918
2919 prog->SamplersUsed = shader->active_samplers;
2920 prog->ShadowSamplers = shader->shadow_samplers;
2921 _mesa_update_shader_textures_used(shader_program, prog);
2922
2923 /* Set the gl_FragDepth layout. */
2924 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2925 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2926 fp->FragDepthLayout = shader_program->FragDepthLayout;
2927 }
2928
2929 _mesa_reference_program(ctx, &shader->Program, prog);
2930
2931 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2932 _mesa_optimize_program(ctx, prog);
2933 }
2934
2935 /* This has to be done last. Any operation that can cause
2936 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2937 * program constant) has to happen before creating this linkage.
2938 */
2939 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2940 if (!shader_program->LinkStatus) {
2941 goto fail_exit;
2942 }
2943
2944 return prog;
2945
2946 fail_exit:
2947 free(mesa_instructions);
2948 _mesa_reference_program(ctx, &shader->Program, NULL);
2949 return NULL;
2950 }
2951
2952 extern "C" {
2953
2954 /**
2955 * Link a shader.
2956 * Called via ctx->Driver.LinkShader()
2957 * This actually involves converting GLSL IR into Mesa gl_programs with
2958 * code lowering and other optimizations.
2959 */
2960 GLboolean
2961 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2962 {
2963 assert(prog->LinkStatus);
2964
2965 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2966 if (prog->_LinkedShaders[i] == NULL)
2967 continue;
2968
2969 bool progress;
2970 exec_list *ir = prog->_LinkedShaders[i]->ir;
2971 const struct gl_shader_compiler_options *options =
2972 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2973
2974 do {
2975 progress = false;
2976
2977 /* Lowering */
2978 do_mat_op_to_vec(ir);
2979 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2980 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2981 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2982
2983 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2984
2985 progress = do_common_optimization(ir, true, true,
2986 options, ctx->Const.NativeIntegers)
2987 || progress;
2988
2989 progress = lower_quadop_vector(ir, true) || progress;
2990
2991 if (options->MaxIfDepth == 0)
2992 progress = lower_discard(ir) || progress;
2993
2994 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2995
2996 if (options->EmitNoNoise)
2997 progress = lower_noise(ir) || progress;
2998
2999 /* If there are forms of indirect addressing that the driver
3000 * cannot handle, perform the lowering pass.
3001 */
3002 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3003 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3004 progress =
3005 lower_variable_index_to_cond_assign(ir,
3006 options->EmitNoIndirectInput,
3007 options->EmitNoIndirectOutput,
3008 options->EmitNoIndirectTemp,
3009 options->EmitNoIndirectUniform)
3010 || progress;
3011
3012 progress = do_vec_index_to_cond_assign(ir) || progress;
3013 progress = lower_vector_insert(ir, true) || progress;
3014 } while (progress);
3015
3016 validate_ir_tree(ir);
3017 }
3018
3019 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3020 struct gl_program *linked_prog;
3021
3022 if (prog->_LinkedShaders[i] == NULL)
3023 continue;
3024
3025 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3026
3027 if (linked_prog) {
3028 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
3029
3030 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3031 linked_prog);
3032 if (!ctx->Driver.ProgramStringNotify(ctx,
3033 _mesa_shader_stage_to_program(i),
3034 linked_prog)) {
3035 return GL_FALSE;
3036 }
3037 }
3038
3039 _mesa_reference_program(ctx, &linked_prog, NULL);
3040 }
3041
3042 return prog->LinkStatus;
3043 }
3044
3045 /**
3046 * Link a GLSL shader program. Called via glLinkProgram().
3047 */
3048 void
3049 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3050 {
3051 unsigned int i;
3052
3053 _mesa_clear_shader_program_data(prog);
3054
3055 prog->LinkStatus = GL_TRUE;
3056
3057 for (i = 0; i < prog->NumShaders; i++) {
3058 if (!prog->Shaders[i]->CompileStatus) {
3059 linker_error(prog, "linking with uncompiled shader");
3060 }
3061 }
3062
3063 if (prog->LinkStatus) {
3064 link_shaders(ctx, prog);
3065 }
3066
3067 if (prog->LinkStatus) {
3068 if (!ctx->Driver.LinkShader(ctx, prog)) {
3069 prog->LinkStatus = GL_FALSE;
3070 }
3071 }
3072
3073 if (ctx->_Shader->Flags & GLSL_DUMP) {
3074 if (!prog->LinkStatus) {
3075 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3076 }
3077
3078 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3079 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3080 fprintf(stderr, "%s\n", prog->InfoLog);
3081 }
3082 }
3083 }
3084
3085 } /* extern "C" */