mesa,glsl,nir: reduce gl_state_index size to 2 bytes
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/macros.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "compiler/glsl/ast.h"
39 #include "compiler/glsl/ir.h"
40 #include "compiler/glsl/ir_expression_flattening.h"
41 #include "compiler/glsl/ir_visitor.h"
42 #include "compiler/glsl/ir_optimization.h"
43 #include "compiler/glsl/ir_uniform.h"
44 #include "compiler/glsl/glsl_parser_extras.h"
45 #include "compiler/glsl_types.h"
46 #include "compiler/glsl/linker.h"
47 #include "compiler/glsl/program.h"
48 #include "compiler/glsl/shader_cache.h"
49 #include "compiler/glsl/string_to_uint_map.h"
50 #include "program/prog_instruction.h"
51 #include "program/prog_optimize.h"
52 #include "program/prog_print.h"
53 #include "program/program.h"
54 #include "program/prog_parameter.h"
55
56
57 static int swizzle_for_size(int size);
58
59 namespace {
60
61 class src_reg;
62 class dst_reg;
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->reladdr = NULL;
109 }
110
111 dst_reg()
112 {
113 this->file = PROGRAM_UNDEFINED;
114 this->index = 0;
115 this->writemask = 0;
116 this->reladdr = NULL;
117 }
118
119 explicit dst_reg(src_reg reg);
120
121 gl_register_file file; /**< PROGRAM_* from Mesa */
122 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
123 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
124 /** Register index should be offset by the integer in this reg. */
125 src_reg *reladdr;
126 };
127
128 } /* anonymous namespace */
129
130 src_reg::src_reg(dst_reg reg)
131 {
132 this->file = reg.file;
133 this->index = reg.index;
134 this->swizzle = SWIZZLE_XYZW;
135 this->negate = 0;
136 this->reladdr = reg.reladdr;
137 }
138
139 dst_reg::dst_reg(src_reg reg)
140 {
141 this->file = reg.file;
142 this->index = reg.index;
143 this->writemask = WRITEMASK_XYZW;
144 this->reladdr = reg.reladdr;
145 }
146
147 namespace {
148
149 class ir_to_mesa_instruction : public exec_node {
150 public:
151 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
152
153 enum prog_opcode op;
154 dst_reg dst;
155 src_reg src[3];
156 /** Pointer to the ir source this tree came from for debugging */
157 ir_instruction *ir;
158 bool saturate;
159 int sampler; /**< sampler index */
160 int tex_target; /**< One of TEXTURE_*_INDEX */
161 GLboolean tex_shadow;
162 };
163
164 class variable_storage : public exec_node {
165 public:
166 variable_storage(ir_variable *var, gl_register_file file, int index)
167 : file(file), index(index), var(var)
168 {
169 /* empty */
170 }
171
172 gl_register_file file;
173 int index;
174 ir_variable *var; /* variable that maps to this, if any */
175 };
176
177 class function_entry : public exec_node {
178 public:
179 ir_function_signature *sig;
180
181 /**
182 * identifier of this function signature used by the program.
183 *
184 * At the point that Mesa instructions for function calls are
185 * generated, we don't know the address of the first instruction of
186 * the function body. So we make the BranchTarget that is called a
187 * small integer and rewrite them during set_branchtargets().
188 */
189 int sig_id;
190
191 /**
192 * Pointer to first instruction of the function body.
193 *
194 * Set during function body emits after main() is processed.
195 */
196 ir_to_mesa_instruction *bgn_inst;
197
198 /**
199 * Index of the first instruction of the function body in actual
200 * Mesa IR.
201 *
202 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
203 */
204 int inst;
205
206 /** Storage for the return value. */
207 src_reg return_reg;
208 };
209
210 class ir_to_mesa_visitor : public ir_visitor {
211 public:
212 ir_to_mesa_visitor();
213 ~ir_to_mesa_visitor();
214
215 function_entry *current_function;
216
217 struct gl_context *ctx;
218 struct gl_program *prog;
219 struct gl_shader_program *shader_program;
220 struct gl_shader_compiler_options *options;
221
222 int next_temp;
223
224 variable_storage *find_variable_storage(const ir_variable *var);
225
226 src_reg get_temp(const glsl_type *type);
227 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
228
229 src_reg src_reg_for_float(float val);
230
231 /**
232 * \name Visit methods
233 *
234 * As typical for the visitor pattern, there must be one \c visit method for
235 * each concrete subclass of \c ir_instruction. Virtual base classes within
236 * the hierarchy should not have \c visit methods.
237 */
238 /*@{*/
239 virtual void visit(ir_variable *);
240 virtual void visit(ir_loop *);
241 virtual void visit(ir_loop_jump *);
242 virtual void visit(ir_function_signature *);
243 virtual void visit(ir_function *);
244 virtual void visit(ir_expression *);
245 virtual void visit(ir_swizzle *);
246 virtual void visit(ir_dereference_variable *);
247 virtual void visit(ir_dereference_array *);
248 virtual void visit(ir_dereference_record *);
249 virtual void visit(ir_assignment *);
250 virtual void visit(ir_constant *);
251 virtual void visit(ir_call *);
252 virtual void visit(ir_return *);
253 virtual void visit(ir_discard *);
254 virtual void visit(ir_texture *);
255 virtual void visit(ir_if *);
256 virtual void visit(ir_emit_vertex *);
257 virtual void visit(ir_end_primitive *);
258 virtual void visit(ir_barrier *);
259 /*@}*/
260
261 src_reg result;
262
263 /** List of variable_storage */
264 exec_list variables;
265
266 /** List of function_entry */
267 exec_list function_signatures;
268 int next_signature_id;
269
270 /** List of ir_to_mesa_instruction */
271 exec_list instructions;
272
273 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
276 dst_reg dst, src_reg src0);
277
278 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
279 dst_reg dst, src_reg src0, src_reg src1);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst,
283 src_reg src0, src_reg src1, src_reg src2);
284
285 /**
286 * Emit the correct dot-product instruction for the type of arguments
287 */
288 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
289 dst_reg dst,
290 src_reg src0,
291 src_reg src1,
292 unsigned elements);
293
294 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
295 dst_reg dst, src_reg src0);
296
297 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
298 dst_reg dst, src_reg src0, src_reg src1);
299
300 bool try_emit_mad(ir_expression *ir,
301 int mul_operand);
302 bool try_emit_mad_for_and_not(ir_expression *ir,
303 int mul_operand);
304
305 void emit_swz(ir_expression *ir);
306
307 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
308 dst_reg dst,
309 const src_reg &src0, const src_reg &src1);
310
311 inline void emit_sne(ir_expression *ir, dst_reg dst,
312 const src_reg &src0, const src_reg &src1)
313 {
314 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
315 }
316
317 inline void emit_seq(ir_expression *ir, dst_reg dst,
318 const src_reg &src0, const src_reg &src1)
319 {
320 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
321 }
322
323 bool process_move_condition(ir_rvalue *ir);
324
325 void copy_propagate(void);
326
327 void *mem_ctx;
328 };
329
330 } /* anonymous namespace */
331
332 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
333
334 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
335
336 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
337
338 static int
339 swizzle_for_size(int size)
340 {
341 static const int size_swizzles[4] = {
342 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
346 };
347
348 assert((size >= 1) && (size <= 4));
349 return size_swizzles[size - 1];
350 }
351
352 ir_to_mesa_instruction *
353 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
354 dst_reg dst,
355 src_reg src0, src_reg src1, src_reg src2)
356 {
357 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
358 int num_reladdr = 0;
359
360 /* If we have to do relative addressing, we want to load the ARL
361 * reg directly for one of the regs, and preload the other reladdr
362 * sources into temps.
363 */
364 num_reladdr += dst.reladdr != NULL;
365 num_reladdr += src0.reladdr != NULL;
366 num_reladdr += src1.reladdr != NULL;
367 num_reladdr += src2.reladdr != NULL;
368
369 reladdr_to_temp(ir, &src2, &num_reladdr);
370 reladdr_to_temp(ir, &src1, &num_reladdr);
371 reladdr_to_temp(ir, &src0, &num_reladdr);
372
373 if (dst.reladdr) {
374 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
375 num_reladdr--;
376 }
377 assert(num_reladdr == 0);
378
379 inst->op = op;
380 inst->dst = dst;
381 inst->src[0] = src0;
382 inst->src[1] = src1;
383 inst->src[2] = src2;
384 inst->ir = ir;
385
386 this->instructions.push_tail(inst);
387
388 return inst;
389 }
390
391
392 ir_to_mesa_instruction *
393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
394 dst_reg dst, src_reg src0, src_reg src1)
395 {
396 return emit(ir, op, dst, src0, src1, undef_src);
397 }
398
399 ir_to_mesa_instruction *
400 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
401 dst_reg dst, src_reg src0)
402 {
403 assert(dst.writemask != 0);
404 return emit(ir, op, dst, src0, undef_src, undef_src);
405 }
406
407 ir_to_mesa_instruction *
408 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
409 {
410 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
411 }
412
413 ir_to_mesa_instruction *
414 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
415 dst_reg dst, src_reg src0, src_reg src1,
416 unsigned elements)
417 {
418 static const enum prog_opcode dot_opcodes[] = {
419 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
420 };
421
422 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
423 }
424
425 /**
426 * Emits Mesa scalar opcodes to produce unique answers across channels.
427 *
428 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
429 * channel determines the result across all channels. So to do a vec4
430 * of this operation, we want to emit a scalar per source channel used
431 * to produce dest channels.
432 */
433 void
434 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
435 dst_reg dst,
436 src_reg orig_src0, src_reg orig_src1)
437 {
438 int i, j;
439 int done_mask = ~dst.writemask;
440
441 /* Mesa RCP is a scalar operation splatting results to all channels,
442 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
443 * dst channels.
444 */
445 for (i = 0; i < 4; i++) {
446 GLuint this_mask = (1 << i);
447 ir_to_mesa_instruction *inst;
448 src_reg src0 = orig_src0;
449 src_reg src1 = orig_src1;
450
451 if (done_mask & this_mask)
452 continue;
453
454 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
455 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
456 for (j = i + 1; j < 4; j++) {
457 /* If there is another enabled component in the destination that is
458 * derived from the same inputs, generate its value on this pass as
459 * well.
460 */
461 if (!(done_mask & (1 << j)) &&
462 GET_SWZ(src0.swizzle, j) == src0_swiz &&
463 GET_SWZ(src1.swizzle, j) == src1_swiz) {
464 this_mask |= (1 << j);
465 }
466 }
467 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
468 src0_swiz, src0_swiz);
469 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
470 src1_swiz, src1_swiz);
471
472 inst = emit(ir, op, dst, src0, src1);
473 inst->dst.writemask = this_mask;
474 done_mask |= this_mask;
475 }
476 }
477
478 void
479 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
480 dst_reg dst, src_reg src0)
481 {
482 src_reg undef = undef_src;
483
484 undef.swizzle = SWIZZLE_XXXX;
485
486 emit_scalar(ir, op, dst, src0, undef);
487 }
488
489 src_reg
490 ir_to_mesa_visitor::src_reg_for_float(float val)
491 {
492 src_reg src(PROGRAM_CONSTANT, -1, NULL);
493
494 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
495 (const gl_constant_value *)&val, 1, &src.swizzle);
496
497 return src;
498 }
499
500 static int
501 storage_type_size(const struct glsl_type *type, bool bindless)
502 {
503 unsigned int i;
504 int size;
505
506 switch (type->base_type) {
507 case GLSL_TYPE_UINT:
508 case GLSL_TYPE_INT:
509 case GLSL_TYPE_UINT16:
510 case GLSL_TYPE_INT16:
511 case GLSL_TYPE_FLOAT:
512 case GLSL_TYPE_FLOAT16:
513 case GLSL_TYPE_BOOL:
514 if (type->is_matrix()) {
515 return type->matrix_columns;
516 } else {
517 /* Regardless of size of vector, it gets a vec4. This is bad
518 * packing for things like floats, but otherwise arrays become a
519 * mess. Hopefully a later pass over the code can pack scalars
520 * down if appropriate.
521 */
522 return 1;
523 }
524 break;
525 case GLSL_TYPE_DOUBLE:
526 if (type->is_matrix()) {
527 if (type->vector_elements > 2)
528 return type->matrix_columns * 2;
529 else
530 return type->matrix_columns;
531 } else {
532 if (type->vector_elements > 2)
533 return 2;
534 else
535 return 1;
536 }
537 break;
538 case GLSL_TYPE_UINT64:
539 case GLSL_TYPE_INT64:
540 if (type->vector_elements > 2)
541 return 2;
542 else
543 return 1;
544 case GLSL_TYPE_ARRAY:
545 assert(type->length > 0);
546 return storage_type_size(type->fields.array, bindless) * type->length;
547 case GLSL_TYPE_STRUCT:
548 size = 0;
549 for (i = 0; i < type->length; i++) {
550 size += storage_type_size(type->fields.structure[i].type, bindless);
551 }
552 return size;
553 case GLSL_TYPE_SAMPLER:
554 case GLSL_TYPE_IMAGE:
555 if (!bindless)
556 return 0;
557 /* fall through */
558 case GLSL_TYPE_SUBROUTINE:
559 return 1;
560 case GLSL_TYPE_ATOMIC_UINT:
561 case GLSL_TYPE_VOID:
562 case GLSL_TYPE_ERROR:
563 case GLSL_TYPE_INTERFACE:
564 case GLSL_TYPE_FUNCTION:
565 assert(!"Invalid type in type_size");
566 break;
567 }
568
569 return 0;
570 }
571
572 static int
573 type_size(const struct glsl_type *type)
574 {
575 return storage_type_size(type, false);
576 }
577
578 /**
579 * In the initial pass of codegen, we assign temporary numbers to
580 * intermediate results. (not SSA -- variable assignments will reuse
581 * storage). Actual register allocation for the Mesa VM occurs in a
582 * pass over the Mesa IR later.
583 */
584 src_reg
585 ir_to_mesa_visitor::get_temp(const glsl_type *type)
586 {
587 src_reg src;
588
589 src.file = PROGRAM_TEMPORARY;
590 src.index = next_temp;
591 src.reladdr = NULL;
592 next_temp += type_size(type);
593
594 if (type->is_array() || type->is_record()) {
595 src.swizzle = SWIZZLE_NOOP;
596 } else {
597 src.swizzle = swizzle_for_size(type->vector_elements);
598 }
599 src.negate = 0;
600
601 return src;
602 }
603
604 variable_storage *
605 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
606 {
607 foreach_in_list(variable_storage, entry, &this->variables) {
608 if (entry->var == var)
609 return entry;
610 }
611
612 return NULL;
613 }
614
615 void
616 ir_to_mesa_visitor::visit(ir_variable *ir)
617 {
618 if (strcmp(ir->name, "gl_FragCoord") == 0) {
619 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
620 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
621 }
622
623 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
624 unsigned int i;
625 const ir_state_slot *const slots = ir->get_state_slots();
626 assert(slots != NULL);
627
628 /* Check if this statevar's setup in the STATE file exactly
629 * matches how we'll want to reference it as a
630 * struct/array/whatever. If not, then we need to move it into
631 * temporary storage and hope that it'll get copy-propagated
632 * out.
633 */
634 for (i = 0; i < ir->get_num_state_slots(); i++) {
635 if (slots[i].swizzle != SWIZZLE_XYZW) {
636 break;
637 }
638 }
639
640 variable_storage *storage;
641 dst_reg dst;
642 if (i == ir->get_num_state_slots()) {
643 /* We'll set the index later. */
644 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
645 this->variables.push_tail(storage);
646
647 dst = undef_dst;
648 } else {
649 /* The variable_storage constructor allocates slots based on the size
650 * of the type. However, this had better match the number of state
651 * elements that we're going to copy into the new temporary.
652 */
653 assert((int) ir->get_num_state_slots() == type_size(ir->type));
654
655 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
656 this->next_temp);
657 this->variables.push_tail(storage);
658 this->next_temp += type_size(ir->type);
659
660 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
661 }
662
663
664 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
665 int index = _mesa_add_state_reference(this->prog->Parameters,
666 slots[i].tokens);
667
668 if (storage->file == PROGRAM_STATE_VAR) {
669 if (storage->index == -1) {
670 storage->index = index;
671 } else {
672 assert(index == storage->index + (int)i);
673 }
674 } else {
675 src_reg src(PROGRAM_STATE_VAR, index, NULL);
676 src.swizzle = slots[i].swizzle;
677 emit(ir, OPCODE_MOV, dst, src);
678 /* even a float takes up a whole vec4 reg in a struct/array. */
679 dst.index++;
680 }
681 }
682
683 if (storage->file == PROGRAM_TEMPORARY &&
684 dst.index != storage->index + (int) ir->get_num_state_slots()) {
685 linker_error(this->shader_program,
686 "failed to load builtin uniform `%s' "
687 "(%d/%d regs loaded)\n",
688 ir->name, dst.index - storage->index,
689 type_size(ir->type));
690 }
691 }
692 }
693
694 void
695 ir_to_mesa_visitor::visit(ir_loop *ir)
696 {
697 emit(NULL, OPCODE_BGNLOOP);
698
699 visit_exec_list(&ir->body_instructions, this);
700
701 emit(NULL, OPCODE_ENDLOOP);
702 }
703
704 void
705 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
706 {
707 switch (ir->mode) {
708 case ir_loop_jump::jump_break:
709 emit(NULL, OPCODE_BRK);
710 break;
711 case ir_loop_jump::jump_continue:
712 emit(NULL, OPCODE_CONT);
713 break;
714 }
715 }
716
717
718 void
719 ir_to_mesa_visitor::visit(ir_function_signature *ir)
720 {
721 assert(0);
722 (void)ir;
723 }
724
725 void
726 ir_to_mesa_visitor::visit(ir_function *ir)
727 {
728 /* Ignore function bodies other than main() -- we shouldn't see calls to
729 * them since they should all be inlined before we get to ir_to_mesa.
730 */
731 if (strcmp(ir->name, "main") == 0) {
732 const ir_function_signature *sig;
733 exec_list empty;
734
735 sig = ir->matching_signature(NULL, &empty, false);
736
737 assert(sig);
738
739 foreach_in_list(ir_instruction, ir, &sig->body) {
740 ir->accept(this);
741 }
742 }
743 }
744
745 bool
746 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
747 {
748 int nonmul_operand = 1 - mul_operand;
749 src_reg a, b, c;
750
751 ir_expression *expr = ir->operands[mul_operand]->as_expression();
752 if (!expr || expr->operation != ir_binop_mul)
753 return false;
754
755 expr->operands[0]->accept(this);
756 a = this->result;
757 expr->operands[1]->accept(this);
758 b = this->result;
759 ir->operands[nonmul_operand]->accept(this);
760 c = this->result;
761
762 this->result = get_temp(ir->type);
763 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
764
765 return true;
766 }
767
768 /**
769 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
770 *
771 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
772 * implemented using multiplication, and logical-or is implemented using
773 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
774 * As result, the logical expression (a & !b) can be rewritten as:
775 *
776 * - a * !b
777 * - a * (1 - b)
778 * - (a * 1) - (a * b)
779 * - a + -(a * b)
780 * - a + (a * -b)
781 *
782 * This final expression can be implemented as a single MAD(a, -b, a)
783 * instruction.
784 */
785 bool
786 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
787 {
788 const int other_operand = 1 - try_operand;
789 src_reg a, b;
790
791 ir_expression *expr = ir->operands[try_operand]->as_expression();
792 if (!expr || expr->operation != ir_unop_logic_not)
793 return false;
794
795 ir->operands[other_operand]->accept(this);
796 a = this->result;
797 expr->operands[0]->accept(this);
798 b = this->result;
799
800 b.negate = ~b.negate;
801
802 this->result = get_temp(ir->type);
803 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
804
805 return true;
806 }
807
808 void
809 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
810 src_reg *reg, int *num_reladdr)
811 {
812 if (!reg->reladdr)
813 return;
814
815 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
816
817 if (*num_reladdr != 1) {
818 src_reg temp = get_temp(glsl_type::vec4_type);
819
820 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
821 *reg = temp;
822 }
823
824 (*num_reladdr)--;
825 }
826
827 void
828 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
829 {
830 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
831 * This means that each of the operands is either an immediate value of -1,
832 * 0, or 1, or is a component from one source register (possibly with
833 * negation).
834 */
835 uint8_t components[4] = { 0 };
836 bool negate[4] = { false };
837 ir_variable *var = NULL;
838
839 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
840 ir_rvalue *op = ir->operands[i];
841
842 assert(op->type->is_scalar());
843
844 while (op != NULL) {
845 switch (op->ir_type) {
846 case ir_type_constant: {
847
848 assert(op->type->is_scalar());
849
850 const ir_constant *const c = op->as_constant();
851 if (c->is_one()) {
852 components[i] = SWIZZLE_ONE;
853 } else if (c->is_zero()) {
854 components[i] = SWIZZLE_ZERO;
855 } else if (c->is_negative_one()) {
856 components[i] = SWIZZLE_ONE;
857 negate[i] = true;
858 } else {
859 assert(!"SWZ constant must be 0.0 or 1.0.");
860 }
861
862 op = NULL;
863 break;
864 }
865
866 case ir_type_dereference_variable: {
867 ir_dereference_variable *const deref =
868 (ir_dereference_variable *) op;
869
870 assert((var == NULL) || (deref->var == var));
871 components[i] = SWIZZLE_X;
872 var = deref->var;
873 op = NULL;
874 break;
875 }
876
877 case ir_type_expression: {
878 ir_expression *const expr = (ir_expression *) op;
879
880 assert(expr->operation == ir_unop_neg);
881 negate[i] = true;
882
883 op = expr->operands[0];
884 break;
885 }
886
887 case ir_type_swizzle: {
888 ir_swizzle *const swiz = (ir_swizzle *) op;
889
890 components[i] = swiz->mask.x;
891 op = swiz->val;
892 break;
893 }
894
895 default:
896 assert(!"Should not get here.");
897 return;
898 }
899 }
900 }
901
902 assert(var != NULL);
903
904 ir_dereference_variable *const deref =
905 new(mem_ctx) ir_dereference_variable(var);
906
907 this->result.file = PROGRAM_UNDEFINED;
908 deref->accept(this);
909 if (this->result.file == PROGRAM_UNDEFINED) {
910 printf("Failed to get tree for expression operand:\n");
911 deref->print();
912 printf("\n");
913 exit(1);
914 }
915
916 src_reg src;
917
918 src = this->result;
919 src.swizzle = MAKE_SWIZZLE4(components[0],
920 components[1],
921 components[2],
922 components[3]);
923 src.negate = ((unsigned(negate[0]) << 0)
924 | (unsigned(negate[1]) << 1)
925 | (unsigned(negate[2]) << 2)
926 | (unsigned(negate[3]) << 3));
927
928 /* Storage for our result. Ideally for an assignment we'd be using the
929 * actual storage for the result here, instead.
930 */
931 const src_reg result_src = get_temp(ir->type);
932 dst_reg result_dst = dst_reg(result_src);
933
934 /* Limit writes to the channels that will be used by result_src later.
935 * This does limit this temp's use as a temporary for multi-instruction
936 * sequences.
937 */
938 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
939
940 emit(ir, OPCODE_SWZ, result_dst, src);
941 this->result = result_src;
942 }
943
944 void
945 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
946 enum prog_opcode op,
947 dst_reg dst,
948 const src_reg &src0,
949 const src_reg &src1)
950 {
951 src_reg difference;
952 src_reg abs_difference = get_temp(glsl_type::vec4_type);
953 const src_reg zero = src_reg_for_float(0.0);
954
955 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
956 * consumes the generated IR is pretty dumb, take special care when one
957 * of the operands is zero.
958 *
959 * Similarly, x != y is equivalent to -abs(x-y) < 0.
960 */
961 if (src0.file == zero.file &&
962 src0.index == zero.index &&
963 src0.swizzle == zero.swizzle) {
964 difference = src1;
965 } else if (src1.file == zero.file &&
966 src1.index == zero.index &&
967 src1.swizzle == zero.swizzle) {
968 difference = src0;
969 } else {
970 difference = get_temp(glsl_type::vec4_type);
971
972 src_reg tmp_src = src0;
973 tmp_src.negate = ~tmp_src.negate;
974
975 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
976 }
977
978 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
979
980 abs_difference.negate = ~abs_difference.negate;
981 emit(ir, op, dst, abs_difference, zero);
982 }
983
984 void
985 ir_to_mesa_visitor::visit(ir_expression *ir)
986 {
987 unsigned int operand;
988 src_reg op[ARRAY_SIZE(ir->operands)];
989 src_reg result_src;
990 dst_reg result_dst;
991
992 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
993 */
994 if (ir->operation == ir_binop_add) {
995 if (try_emit_mad(ir, 1))
996 return;
997 if (try_emit_mad(ir, 0))
998 return;
999 }
1000
1001 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1002 */
1003 if (ir->operation == ir_binop_logic_and) {
1004 if (try_emit_mad_for_and_not(ir, 1))
1005 return;
1006 if (try_emit_mad_for_and_not(ir, 0))
1007 return;
1008 }
1009
1010 if (ir->operation == ir_quadop_vector) {
1011 this->emit_swz(ir);
1012 return;
1013 }
1014
1015 for (operand = 0; operand < ir->num_operands; operand++) {
1016 this->result.file = PROGRAM_UNDEFINED;
1017 ir->operands[operand]->accept(this);
1018 if (this->result.file == PROGRAM_UNDEFINED) {
1019 printf("Failed to get tree for expression operand:\n");
1020 ir->operands[operand]->print();
1021 printf("\n");
1022 exit(1);
1023 }
1024 op[operand] = this->result;
1025
1026 /* Matrix expression operands should have been broken down to vector
1027 * operations already.
1028 */
1029 assert(!ir->operands[operand]->type->is_matrix());
1030 }
1031
1032 int vector_elements = ir->operands[0]->type->vector_elements;
1033 if (ir->operands[1]) {
1034 vector_elements = MAX2(vector_elements,
1035 ir->operands[1]->type->vector_elements);
1036 }
1037
1038 this->result.file = PROGRAM_UNDEFINED;
1039
1040 /* Storage for our result. Ideally for an assignment we'd be using
1041 * the actual storage for the result here, instead.
1042 */
1043 result_src = get_temp(ir->type);
1044 /* convenience for the emit functions below. */
1045 result_dst = dst_reg(result_src);
1046 /* Limit writes to the channels that will be used by result_src later.
1047 * This does limit this temp's use as a temporary for multi-instruction
1048 * sequences.
1049 */
1050 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1051
1052 switch (ir->operation) {
1053 case ir_unop_logic_not:
1054 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1055 * older GPUs implement SEQ using multiple instructions (i915 uses two
1056 * SGE instructions and a MUL instruction). Since our logic values are
1057 * 0.0 and 1.0, 1-x also implements !x.
1058 */
1059 op[0].negate = ~op[0].negate;
1060 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1061 break;
1062 case ir_unop_neg:
1063 op[0].negate = ~op[0].negate;
1064 result_src = op[0];
1065 break;
1066 case ir_unop_abs:
1067 emit(ir, OPCODE_ABS, result_dst, op[0]);
1068 break;
1069 case ir_unop_sign:
1070 emit(ir, OPCODE_SSG, result_dst, op[0]);
1071 break;
1072 case ir_unop_rcp:
1073 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1074 break;
1075
1076 case ir_unop_exp2:
1077 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1078 break;
1079 case ir_unop_exp:
1080 assert(!"not reached: should be handled by exp_to_exp2");
1081 break;
1082 case ir_unop_log:
1083 assert(!"not reached: should be handled by log_to_log2");
1084 break;
1085 case ir_unop_log2:
1086 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1087 break;
1088 case ir_unop_sin:
1089 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1090 break;
1091 case ir_unop_cos:
1092 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1093 break;
1094
1095 case ir_unop_dFdx:
1096 emit(ir, OPCODE_DDX, result_dst, op[0]);
1097 break;
1098 case ir_unop_dFdy:
1099 emit(ir, OPCODE_DDY, result_dst, op[0]);
1100 break;
1101
1102 case ir_unop_saturate: {
1103 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1104 result_dst, op[0]);
1105 inst->saturate = true;
1106 break;
1107 }
1108 case ir_unop_noise: {
1109 const enum prog_opcode opcode =
1110 prog_opcode(OPCODE_NOISE1
1111 + (ir->operands[0]->type->vector_elements) - 1);
1112 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1113
1114 emit(ir, opcode, result_dst, op[0]);
1115 break;
1116 }
1117
1118 case ir_binop_add:
1119 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1120 break;
1121 case ir_binop_sub:
1122 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1123 break;
1124
1125 case ir_binop_mul:
1126 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1127 break;
1128 case ir_binop_div:
1129 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1130 break;
1131 case ir_binop_mod:
1132 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1133 assert(ir->type->is_integer());
1134 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1135 break;
1136
1137 case ir_binop_less:
1138 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1139 break;
1140 case ir_binop_gequal:
1141 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1142 break;
1143 case ir_binop_equal:
1144 emit_seq(ir, result_dst, op[0], op[1]);
1145 break;
1146 case ir_binop_nequal:
1147 emit_sne(ir, result_dst, op[0], op[1]);
1148 break;
1149 case ir_binop_all_equal:
1150 /* "==" operator producing a scalar boolean. */
1151 if (ir->operands[0]->type->is_vector() ||
1152 ir->operands[1]->type->is_vector()) {
1153 src_reg temp = get_temp(glsl_type::vec4_type);
1154 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1155
1156 /* After the dot-product, the value will be an integer on the
1157 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1158 */
1159 emit_dp(ir, result_dst, temp, temp, vector_elements);
1160
1161 /* Negating the result of the dot-product gives values on the range
1162 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1163 * achieved using SGE.
1164 */
1165 src_reg sge_src = result_src;
1166 sge_src.negate = ~sge_src.negate;
1167 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1168 } else {
1169 emit_seq(ir, result_dst, op[0], op[1]);
1170 }
1171 break;
1172 case ir_binop_any_nequal:
1173 /* "!=" operator producing a scalar boolean. */
1174 if (ir->operands[0]->type->is_vector() ||
1175 ir->operands[1]->type->is_vector()) {
1176 src_reg temp = get_temp(glsl_type::vec4_type);
1177 if (ir->operands[0]->type->is_boolean() &&
1178 ir->operands[1]->as_constant() &&
1179 ir->operands[1]->as_constant()->is_zero()) {
1180 temp = op[0];
1181 } else {
1182 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1183 }
1184
1185 /* After the dot-product, the value will be an integer on the
1186 * range [0,4]. Zero stays zero, and positive values become 1.0.
1187 */
1188 ir_to_mesa_instruction *const dp =
1189 emit_dp(ir, result_dst, temp, temp, vector_elements);
1190 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1191 /* The clamping to [0,1] can be done for free in the fragment
1192 * shader with a saturate.
1193 */
1194 dp->saturate = true;
1195 } else {
1196 /* Negating the result of the dot-product gives values on the range
1197 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1198 * achieved using SLT.
1199 */
1200 src_reg slt_src = result_src;
1201 slt_src.negate = ~slt_src.negate;
1202 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1203 }
1204 } else {
1205 emit_sne(ir, result_dst, op[0], op[1]);
1206 }
1207 break;
1208
1209 case ir_binop_logic_xor:
1210 emit_sne(ir, result_dst, op[0], op[1]);
1211 break;
1212
1213 case ir_binop_logic_or: {
1214 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1215 /* After the addition, the value will be an integer on the
1216 * range [0,2]. Zero stays zero, and positive values become 1.0.
1217 */
1218 ir_to_mesa_instruction *add =
1219 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1220 add->saturate = true;
1221 } else {
1222 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1223 * value is 1.0, the result of the logcal-or should be 1.0. If both
1224 * values are 0.0, the result should be 0.0. This is exactly what
1225 * MAX does.
1226 */
1227 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1228 }
1229 break;
1230 }
1231
1232 case ir_binop_logic_and:
1233 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1234 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1235 break;
1236
1237 case ir_binop_dot:
1238 assert(ir->operands[0]->type->is_vector());
1239 assert(ir->operands[0]->type == ir->operands[1]->type);
1240 emit_dp(ir, result_dst, op[0], op[1],
1241 ir->operands[0]->type->vector_elements);
1242 break;
1243
1244 case ir_unop_sqrt:
1245 /* sqrt(x) = x * rsq(x). */
1246 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1247 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1248 /* For incoming channels <= 0, set the result to 0. */
1249 op[0].negate = ~op[0].negate;
1250 emit(ir, OPCODE_CMP, result_dst,
1251 op[0], result_src, src_reg_for_float(0.0));
1252 break;
1253 case ir_unop_rsq:
1254 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1255 break;
1256 case ir_unop_i2f:
1257 case ir_unop_u2f:
1258 case ir_unop_b2f:
1259 case ir_unop_b2i:
1260 case ir_unop_i2u:
1261 case ir_unop_u2i:
1262 /* Mesa IR lacks types, ints are stored as truncated floats. */
1263 result_src = op[0];
1264 break;
1265 case ir_unop_f2i:
1266 case ir_unop_f2u:
1267 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1268 break;
1269 case ir_unop_f2b:
1270 case ir_unop_i2b:
1271 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1272 break;
1273 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1274 case ir_unop_bitcast_f2u:
1275 case ir_unop_bitcast_i2f:
1276 case ir_unop_bitcast_u2f:
1277 break;
1278 case ir_unop_trunc:
1279 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1280 break;
1281 case ir_unop_ceil:
1282 op[0].negate = ~op[0].negate;
1283 emit(ir, OPCODE_FLR, result_dst, op[0]);
1284 result_src.negate = ~result_src.negate;
1285 break;
1286 case ir_unop_floor:
1287 emit(ir, OPCODE_FLR, result_dst, op[0]);
1288 break;
1289 case ir_unop_fract:
1290 emit(ir, OPCODE_FRC, result_dst, op[0]);
1291 break;
1292 case ir_unop_pack_snorm_2x16:
1293 case ir_unop_pack_snorm_4x8:
1294 case ir_unop_pack_unorm_2x16:
1295 case ir_unop_pack_unorm_4x8:
1296 case ir_unop_pack_half_2x16:
1297 case ir_unop_pack_double_2x32:
1298 case ir_unop_unpack_snorm_2x16:
1299 case ir_unop_unpack_snorm_4x8:
1300 case ir_unop_unpack_unorm_2x16:
1301 case ir_unop_unpack_unorm_4x8:
1302 case ir_unop_unpack_half_2x16:
1303 case ir_unop_unpack_double_2x32:
1304 case ir_unop_bitfield_reverse:
1305 case ir_unop_bit_count:
1306 case ir_unop_find_msb:
1307 case ir_unop_find_lsb:
1308 case ir_unop_d2f:
1309 case ir_unop_f2d:
1310 case ir_unop_d2i:
1311 case ir_unop_i2d:
1312 case ir_unop_d2u:
1313 case ir_unop_u2d:
1314 case ir_unop_d2b:
1315 case ir_unop_frexp_sig:
1316 case ir_unop_frexp_exp:
1317 assert(!"not supported");
1318 break;
1319 case ir_binop_min:
1320 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1321 break;
1322 case ir_binop_max:
1323 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1324 break;
1325 case ir_binop_pow:
1326 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1327 break;
1328
1329 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1330 * hardware backends have no way to avoid Mesa IR generation
1331 * even if they don't use it, we need to emit "something" and
1332 * continue.
1333 */
1334 case ir_binop_lshift:
1335 case ir_binop_rshift:
1336 case ir_binop_bit_and:
1337 case ir_binop_bit_xor:
1338 case ir_binop_bit_or:
1339 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1340 break;
1341
1342 case ir_unop_bit_not:
1343 case ir_unop_round_even:
1344 emit(ir, OPCODE_MOV, result_dst, op[0]);
1345 break;
1346
1347 case ir_binop_ubo_load:
1348 assert(!"not supported");
1349 break;
1350
1351 case ir_triop_lrp:
1352 /* ir_triop_lrp operands are (x, y, a) while
1353 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1354 */
1355 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1356 break;
1357
1358 case ir_triop_csel:
1359 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1360 * selects src1 if src0 is < 0, src2 otherwise.
1361 */
1362 op[0].negate = ~op[0].negate;
1363 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1364 break;
1365
1366 case ir_binop_vector_extract:
1367 case ir_triop_fma:
1368 case ir_triop_bitfield_extract:
1369 case ir_triop_vector_insert:
1370 case ir_quadop_bitfield_insert:
1371 case ir_binop_ldexp:
1372 case ir_binop_carry:
1373 case ir_binop_borrow:
1374 case ir_binop_imul_high:
1375 case ir_unop_interpolate_at_centroid:
1376 case ir_binop_interpolate_at_offset:
1377 case ir_binop_interpolate_at_sample:
1378 case ir_unop_dFdx_coarse:
1379 case ir_unop_dFdx_fine:
1380 case ir_unop_dFdy_coarse:
1381 case ir_unop_dFdy_fine:
1382 case ir_unop_subroutine_to_int:
1383 case ir_unop_get_buffer_size:
1384 case ir_unop_bitcast_u642d:
1385 case ir_unop_bitcast_i642d:
1386 case ir_unop_bitcast_d2u64:
1387 case ir_unop_bitcast_d2i64:
1388 case ir_unop_i642i:
1389 case ir_unop_u642i:
1390 case ir_unop_i642u:
1391 case ir_unop_u642u:
1392 case ir_unop_i642b:
1393 case ir_unop_i642f:
1394 case ir_unop_u642f:
1395 case ir_unop_i642d:
1396 case ir_unop_u642d:
1397 case ir_unop_i2i64:
1398 case ir_unop_u2i64:
1399 case ir_unop_b2i64:
1400 case ir_unop_f2i64:
1401 case ir_unop_d2i64:
1402 case ir_unop_i2u64:
1403 case ir_unop_u2u64:
1404 case ir_unop_f2u64:
1405 case ir_unop_d2u64:
1406 case ir_unop_u642i64:
1407 case ir_unop_i642u64:
1408 case ir_unop_pack_int_2x32:
1409 case ir_unop_unpack_int_2x32:
1410 case ir_unop_pack_uint_2x32:
1411 case ir_unop_unpack_uint_2x32:
1412 case ir_unop_pack_sampler_2x32:
1413 case ir_unop_unpack_sampler_2x32:
1414 case ir_unop_pack_image_2x32:
1415 case ir_unop_unpack_image_2x32:
1416 assert(!"not supported");
1417 break;
1418
1419 case ir_unop_ssbo_unsized_array_length:
1420 case ir_quadop_vector:
1421 /* This operation should have already been handled.
1422 */
1423 assert(!"Should not get here.");
1424 break;
1425 }
1426
1427 this->result = result_src;
1428 }
1429
1430
1431 void
1432 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1433 {
1434 src_reg src;
1435 int i;
1436 int swizzle[4];
1437
1438 /* Note that this is only swizzles in expressions, not those on the left
1439 * hand side of an assignment, which do write masking. See ir_assignment
1440 * for that.
1441 */
1442
1443 ir->val->accept(this);
1444 src = this->result;
1445 assert(src.file != PROGRAM_UNDEFINED);
1446 assert(ir->type->vector_elements > 0);
1447
1448 for (i = 0; i < 4; i++) {
1449 if (i < ir->type->vector_elements) {
1450 switch (i) {
1451 case 0:
1452 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1453 break;
1454 case 1:
1455 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1456 break;
1457 case 2:
1458 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1459 break;
1460 case 3:
1461 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1462 break;
1463 }
1464 } else {
1465 /* If the type is smaller than a vec4, replicate the last
1466 * channel out.
1467 */
1468 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1469 }
1470 }
1471
1472 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1473
1474 this->result = src;
1475 }
1476
1477 void
1478 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1479 {
1480 variable_storage *entry = find_variable_storage(ir->var);
1481 ir_variable *var = ir->var;
1482
1483 if (!entry) {
1484 switch (var->data.mode) {
1485 case ir_var_uniform:
1486 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1487 var->data.param_index);
1488 this->variables.push_tail(entry);
1489 break;
1490 case ir_var_shader_in:
1491 /* The linker assigns locations for varyings and attributes,
1492 * including deprecated builtins (like gl_Color),
1493 * user-assigned generic attributes (glBindVertexLocation),
1494 * and user-defined varyings.
1495 */
1496 assert(var->data.location != -1);
1497 entry = new(mem_ctx) variable_storage(var,
1498 PROGRAM_INPUT,
1499 var->data.location);
1500 break;
1501 case ir_var_shader_out:
1502 assert(var->data.location != -1);
1503 entry = new(mem_ctx) variable_storage(var,
1504 PROGRAM_OUTPUT,
1505 var->data.location);
1506 break;
1507 case ir_var_system_value:
1508 entry = new(mem_ctx) variable_storage(var,
1509 PROGRAM_SYSTEM_VALUE,
1510 var->data.location);
1511 break;
1512 case ir_var_auto:
1513 case ir_var_temporary:
1514 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1515 this->next_temp);
1516 this->variables.push_tail(entry);
1517
1518 next_temp += type_size(var->type);
1519 break;
1520 }
1521
1522 if (!entry) {
1523 printf("Failed to make storage for %s\n", var->name);
1524 exit(1);
1525 }
1526 }
1527
1528 this->result = src_reg(entry->file, entry->index, var->type);
1529 }
1530
1531 void
1532 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1533 {
1534 ir_constant *index;
1535 src_reg src;
1536 int element_size = type_size(ir->type);
1537
1538 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1539
1540 ir->array->accept(this);
1541 src = this->result;
1542
1543 if (index) {
1544 src.index += index->value.i[0] * element_size;
1545 } else {
1546 /* Variable index array dereference. It eats the "vec4" of the
1547 * base of the array and an index that offsets the Mesa register
1548 * index.
1549 */
1550 ir->array_index->accept(this);
1551
1552 src_reg index_reg;
1553
1554 if (element_size == 1) {
1555 index_reg = this->result;
1556 } else {
1557 index_reg = get_temp(glsl_type::float_type);
1558
1559 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1560 this->result, src_reg_for_float(element_size));
1561 }
1562
1563 /* If there was already a relative address register involved, add the
1564 * new and the old together to get the new offset.
1565 */
1566 if (src.reladdr != NULL) {
1567 src_reg accum_reg = get_temp(glsl_type::float_type);
1568
1569 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1570 index_reg, *src.reladdr);
1571
1572 index_reg = accum_reg;
1573 }
1574
1575 src.reladdr = ralloc(mem_ctx, src_reg);
1576 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1577 }
1578
1579 /* If the type is smaller than a vec4, replicate the last channel out. */
1580 if (ir->type->is_scalar() || ir->type->is_vector())
1581 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1582 else
1583 src.swizzle = SWIZZLE_NOOP;
1584
1585 this->result = src;
1586 }
1587
1588 void
1589 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1590 {
1591 unsigned int i;
1592 const glsl_type *struct_type = ir->record->type;
1593 int offset = 0;
1594
1595 ir->record->accept(this);
1596
1597 assert(ir->field_idx >= 0);
1598 for (i = 0; i < struct_type->length; i++) {
1599 if (i == (unsigned) ir->field_idx)
1600 break;
1601 offset += type_size(struct_type->fields.structure[i].type);
1602 }
1603
1604 /* If the type is smaller than a vec4, replicate the last channel out. */
1605 if (ir->type->is_scalar() || ir->type->is_vector())
1606 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1607 else
1608 this->result.swizzle = SWIZZLE_NOOP;
1609
1610 this->result.index += offset;
1611 }
1612
1613 /**
1614 * We want to be careful in assignment setup to hit the actual storage
1615 * instead of potentially using a temporary like we might with the
1616 * ir_dereference handler.
1617 */
1618 static dst_reg
1619 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1620 {
1621 /* The LHS must be a dereference. If the LHS is a variable indexed array
1622 * access of a vector, it must be separated into a series conditional moves
1623 * before reaching this point (see ir_vec_index_to_cond_assign).
1624 */
1625 assert(ir->as_dereference());
1626 ir_dereference_array *deref_array = ir->as_dereference_array();
1627 if (deref_array) {
1628 assert(!deref_array->array->type->is_vector());
1629 }
1630
1631 /* Use the rvalue deref handler for the most part. We'll ignore
1632 * swizzles in it and write swizzles using writemask, though.
1633 */
1634 ir->accept(v);
1635 return dst_reg(v->result);
1636 }
1637
1638 /* Calculate the sampler index and also calculate the base uniform location
1639 * for struct members.
1640 */
1641 static void
1642 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1643 unsigned *offset, unsigned *array_elements,
1644 unsigned *location)
1645 {
1646 if (deref->ir_type == ir_type_dereference_variable)
1647 return;
1648
1649 switch (deref->ir_type) {
1650 case ir_type_dereference_array: {
1651 ir_dereference_array *deref_arr = deref->as_dereference_array();
1652
1653 void *mem_ctx = ralloc_parent(deref_arr);
1654 ir_constant *array_index =
1655 deref_arr->array_index->constant_expression_value(mem_ctx);
1656
1657 if (!array_index) {
1658 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1659 * while GLSL 1.30 requires that the array indices be
1660 * constant integer expressions. We don't expect any driver
1661 * to actually work with a really variable array index, so
1662 * all that would work would be an unrolled loop counter that ends
1663 * up being constant above.
1664 */
1665 ralloc_strcat(&prog->data->InfoLog,
1666 "warning: Variable sampler array index unsupported.\n"
1667 "This feature of the language was removed in GLSL 1.20 "
1668 "and is unlikely to be supported for 1.10 in Mesa.\n");
1669 } else {
1670 *offset += array_index->value.u[0] * *array_elements;
1671 }
1672
1673 *array_elements *= deref_arr->array->type->length;
1674
1675 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1676 offset, array_elements, location);
1677 break;
1678 }
1679
1680 case ir_type_dereference_record: {
1681 ir_dereference_record *deref_record = deref->as_dereference_record();
1682 unsigned field_index = deref_record->field_idx;
1683 *location +=
1684 deref_record->record->type->record_location_offset(field_index);
1685 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1686 offset, array_elements, location);
1687 break;
1688 }
1689
1690 default:
1691 unreachable("Invalid deref type");
1692 break;
1693 }
1694 }
1695
1696 static int
1697 get_sampler_uniform_value(class ir_dereference *sampler,
1698 struct gl_shader_program *shader_program,
1699 const struct gl_program *prog)
1700 {
1701 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1702 ir_variable *var = sampler->variable_referenced();
1703 unsigned location = var->data.location;
1704 unsigned array_elements = 1;
1705 unsigned offset = 0;
1706
1707 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1708 &location);
1709
1710 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1711 return shader_program->data->UniformStorage[location].opaque[shader].index +
1712 offset;
1713 }
1714
1715 /**
1716 * Process the condition of a conditional assignment
1717 *
1718 * Examines the condition of a conditional assignment to generate the optimal
1719 * first operand of a \c CMP instruction. If the condition is a relational
1720 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1721 * used as the source for the \c CMP instruction. Otherwise the comparison
1722 * is processed to a boolean result, and the boolean result is used as the
1723 * operand to the CMP instruction.
1724 */
1725 bool
1726 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1727 {
1728 ir_rvalue *src_ir = ir;
1729 bool negate = true;
1730 bool switch_order = false;
1731
1732 ir_expression *const expr = ir->as_expression();
1733 if ((expr != NULL) && (expr->num_operands == 2)) {
1734 bool zero_on_left = false;
1735
1736 if (expr->operands[0]->is_zero()) {
1737 src_ir = expr->operands[1];
1738 zero_on_left = true;
1739 } else if (expr->operands[1]->is_zero()) {
1740 src_ir = expr->operands[0];
1741 zero_on_left = false;
1742 }
1743
1744 /* a is - 0 + - 0 +
1745 * (a < 0) T F F ( a < 0) T F F
1746 * (0 < a) F F T (-a < 0) F F T
1747 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1748 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1749 *
1750 * Note that exchanging the order of 0 and 'a' in the comparison simply
1751 * means that the value of 'a' should be negated.
1752 */
1753 if (src_ir != ir) {
1754 switch (expr->operation) {
1755 case ir_binop_less:
1756 switch_order = false;
1757 negate = zero_on_left;
1758 break;
1759
1760 case ir_binop_gequal:
1761 switch_order = true;
1762 negate = zero_on_left;
1763 break;
1764
1765 default:
1766 /* This isn't the right kind of comparison afterall, so make sure
1767 * the whole condition is visited.
1768 */
1769 src_ir = ir;
1770 break;
1771 }
1772 }
1773 }
1774
1775 src_ir->accept(this);
1776
1777 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1778 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1779 * choose which value OPCODE_CMP produces without an extra instruction
1780 * computing the condition.
1781 */
1782 if (negate)
1783 this->result.negate = ~this->result.negate;
1784
1785 return switch_order;
1786 }
1787
1788 void
1789 ir_to_mesa_visitor::visit(ir_assignment *ir)
1790 {
1791 dst_reg l;
1792 src_reg r;
1793 int i;
1794
1795 ir->rhs->accept(this);
1796 r = this->result;
1797
1798 l = get_assignment_lhs(ir->lhs, this);
1799
1800 /* FINISHME: This should really set to the correct maximal writemask for each
1801 * FINISHME: component written (in the loops below). This case can only
1802 * FINISHME: occur for matrices, arrays, and structures.
1803 */
1804 if (ir->write_mask == 0) {
1805 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1806 l.writemask = WRITEMASK_XYZW;
1807 } else if (ir->lhs->type->is_scalar()) {
1808 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1809 * FINISHME: W component of fragment shader output zero, work correctly.
1810 */
1811 l.writemask = WRITEMASK_XYZW;
1812 } else {
1813 int swizzles[4];
1814 int first_enabled_chan = 0;
1815 int rhs_chan = 0;
1816
1817 assert(ir->lhs->type->is_vector());
1818 l.writemask = ir->write_mask;
1819
1820 for (int i = 0; i < 4; i++) {
1821 if (l.writemask & (1 << i)) {
1822 first_enabled_chan = GET_SWZ(r.swizzle, i);
1823 break;
1824 }
1825 }
1826
1827 /* Swizzle a small RHS vector into the channels being written.
1828 *
1829 * glsl ir treats write_mask as dictating how many channels are
1830 * present on the RHS while Mesa IR treats write_mask as just
1831 * showing which channels of the vec4 RHS get written.
1832 */
1833 for (int i = 0; i < 4; i++) {
1834 if (l.writemask & (1 << i))
1835 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1836 else
1837 swizzles[i] = first_enabled_chan;
1838 }
1839 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1840 swizzles[2], swizzles[3]);
1841 }
1842
1843 assert(l.file != PROGRAM_UNDEFINED);
1844 assert(r.file != PROGRAM_UNDEFINED);
1845
1846 if (ir->condition) {
1847 const bool switch_order = this->process_move_condition(ir->condition);
1848 src_reg condition = this->result;
1849
1850 for (i = 0; i < type_size(ir->lhs->type); i++) {
1851 if (switch_order) {
1852 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1853 } else {
1854 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1855 }
1856
1857 l.index++;
1858 r.index++;
1859 }
1860 } else {
1861 for (i = 0; i < type_size(ir->lhs->type); i++) {
1862 emit(ir, OPCODE_MOV, l, r);
1863 l.index++;
1864 r.index++;
1865 }
1866 }
1867 }
1868
1869
1870 void
1871 ir_to_mesa_visitor::visit(ir_constant *ir)
1872 {
1873 src_reg src;
1874 GLfloat stack_vals[4] = { 0 };
1875 GLfloat *values = stack_vals;
1876 unsigned int i;
1877
1878 /* Unfortunately, 4 floats is all we can get into
1879 * _mesa_add_unnamed_constant. So, make a temp to store an
1880 * aggregate constant and move each constant value into it. If we
1881 * get lucky, copy propagation will eliminate the extra moves.
1882 */
1883
1884 if (ir->type->is_record()) {
1885 src_reg temp_base = get_temp(ir->type);
1886 dst_reg temp = dst_reg(temp_base);
1887
1888 for (i = 0; i < ir->type->length; i++) {
1889 ir_constant *const field_value = ir->get_record_field(i);
1890 int size = type_size(field_value->type);
1891
1892 assert(size > 0);
1893
1894 field_value->accept(this);
1895 src = this->result;
1896
1897 for (unsigned j = 0; j < (unsigned int)size; j++) {
1898 emit(ir, OPCODE_MOV, temp, src);
1899
1900 src.index++;
1901 temp.index++;
1902 }
1903 }
1904 this->result = temp_base;
1905 return;
1906 }
1907
1908 if (ir->type->is_array()) {
1909 src_reg temp_base = get_temp(ir->type);
1910 dst_reg temp = dst_reg(temp_base);
1911 int size = type_size(ir->type->fields.array);
1912
1913 assert(size > 0);
1914
1915 for (i = 0; i < ir->type->length; i++) {
1916 ir->const_elements[i]->accept(this);
1917 src = this->result;
1918 for (int j = 0; j < size; j++) {
1919 emit(ir, OPCODE_MOV, temp, src);
1920
1921 src.index++;
1922 temp.index++;
1923 }
1924 }
1925 this->result = temp_base;
1926 return;
1927 }
1928
1929 if (ir->type->is_matrix()) {
1930 src_reg mat = get_temp(ir->type);
1931 dst_reg mat_column = dst_reg(mat);
1932
1933 for (i = 0; i < ir->type->matrix_columns; i++) {
1934 assert(ir->type->is_float());
1935 values = &ir->value.f[i * ir->type->vector_elements];
1936
1937 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1938 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1939 (gl_constant_value *) values,
1940 ir->type->vector_elements,
1941 &src.swizzle);
1942 emit(ir, OPCODE_MOV, mat_column, src);
1943
1944 mat_column.index++;
1945 }
1946
1947 this->result = mat;
1948 return;
1949 }
1950
1951 src.file = PROGRAM_CONSTANT;
1952 switch (ir->type->base_type) {
1953 case GLSL_TYPE_FLOAT:
1954 values = &ir->value.f[0];
1955 break;
1956 case GLSL_TYPE_UINT:
1957 for (i = 0; i < ir->type->vector_elements; i++) {
1958 values[i] = ir->value.u[i];
1959 }
1960 break;
1961 case GLSL_TYPE_INT:
1962 for (i = 0; i < ir->type->vector_elements; i++) {
1963 values[i] = ir->value.i[i];
1964 }
1965 break;
1966 case GLSL_TYPE_BOOL:
1967 for (i = 0; i < ir->type->vector_elements; i++) {
1968 values[i] = ir->value.b[i];
1969 }
1970 break;
1971 default:
1972 assert(!"Non-float/uint/int/bool constant");
1973 }
1974
1975 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1976 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1977 (gl_constant_value *) values,
1978 ir->type->vector_elements,
1979 &this->result.swizzle);
1980 }
1981
1982 void
1983 ir_to_mesa_visitor::visit(ir_call *)
1984 {
1985 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1986 }
1987
1988 void
1989 ir_to_mesa_visitor::visit(ir_texture *ir)
1990 {
1991 src_reg result_src, coord, lod_info, projector, dx, dy;
1992 dst_reg result_dst, coord_dst;
1993 ir_to_mesa_instruction *inst = NULL;
1994 prog_opcode opcode = OPCODE_NOP;
1995
1996 if (ir->op == ir_txs)
1997 this->result = src_reg_for_float(0.0);
1998 else
1999 ir->coordinate->accept(this);
2000
2001 /* Put our coords in a temp. We'll need to modify them for shadow,
2002 * projection, or LOD, so the only case we'd use it as-is is if
2003 * we're doing plain old texturing. Mesa IR optimization should
2004 * handle cleaning up our mess in that case.
2005 */
2006 coord = get_temp(glsl_type::vec4_type);
2007 coord_dst = dst_reg(coord);
2008 emit(ir, OPCODE_MOV, coord_dst, this->result);
2009
2010 if (ir->projector) {
2011 ir->projector->accept(this);
2012 projector = this->result;
2013 }
2014
2015 /* Storage for our result. Ideally for an assignment we'd be using
2016 * the actual storage for the result here, instead.
2017 */
2018 result_src = get_temp(glsl_type::vec4_type);
2019 result_dst = dst_reg(result_src);
2020
2021 switch (ir->op) {
2022 case ir_tex:
2023 case ir_txs:
2024 opcode = OPCODE_TEX;
2025 break;
2026 case ir_txb:
2027 opcode = OPCODE_TXB;
2028 ir->lod_info.bias->accept(this);
2029 lod_info = this->result;
2030 break;
2031 case ir_txf:
2032 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2033 case ir_txl:
2034 opcode = OPCODE_TXL;
2035 ir->lod_info.lod->accept(this);
2036 lod_info = this->result;
2037 break;
2038 case ir_txd:
2039 opcode = OPCODE_TXD;
2040 ir->lod_info.grad.dPdx->accept(this);
2041 dx = this->result;
2042 ir->lod_info.grad.dPdy->accept(this);
2043 dy = this->result;
2044 break;
2045 case ir_txf_ms:
2046 assert(!"Unexpected ir_txf_ms opcode");
2047 break;
2048 case ir_lod:
2049 assert(!"Unexpected ir_lod opcode");
2050 break;
2051 case ir_tg4:
2052 assert(!"Unexpected ir_tg4 opcode");
2053 break;
2054 case ir_query_levels:
2055 assert(!"Unexpected ir_query_levels opcode");
2056 break;
2057 case ir_samples_identical:
2058 unreachable("Unexpected ir_samples_identical opcode");
2059 case ir_texture_samples:
2060 unreachable("Unexpected ir_texture_samples opcode");
2061 }
2062
2063 const glsl_type *sampler_type = ir->sampler->type;
2064
2065 if (ir->projector) {
2066 if (opcode == OPCODE_TEX) {
2067 /* Slot the projector in as the last component of the coord. */
2068 coord_dst.writemask = WRITEMASK_W;
2069 emit(ir, OPCODE_MOV, coord_dst, projector);
2070 coord_dst.writemask = WRITEMASK_XYZW;
2071 opcode = OPCODE_TXP;
2072 } else {
2073 src_reg coord_w = coord;
2074 coord_w.swizzle = SWIZZLE_WWWW;
2075
2076 /* For the other TEX opcodes there's no projective version
2077 * since the last slot is taken up by lod info. Do the
2078 * projective divide now.
2079 */
2080 coord_dst.writemask = WRITEMASK_W;
2081 emit(ir, OPCODE_RCP, coord_dst, projector);
2082
2083 /* In the case where we have to project the coordinates "by hand,"
2084 * the shadow comparator value must also be projected.
2085 */
2086 src_reg tmp_src = coord;
2087 if (ir->shadow_comparator) {
2088 /* Slot the shadow value in as the second to last component of the
2089 * coord.
2090 */
2091 ir->shadow_comparator->accept(this);
2092
2093 tmp_src = get_temp(glsl_type::vec4_type);
2094 dst_reg tmp_dst = dst_reg(tmp_src);
2095
2096 /* Projective division not allowed for array samplers. */
2097 assert(!sampler_type->sampler_array);
2098
2099 tmp_dst.writemask = WRITEMASK_Z;
2100 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2101
2102 tmp_dst.writemask = WRITEMASK_XY;
2103 emit(ir, OPCODE_MOV, tmp_dst, coord);
2104 }
2105
2106 coord_dst.writemask = WRITEMASK_XYZ;
2107 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2108
2109 coord_dst.writemask = WRITEMASK_XYZW;
2110 coord.swizzle = SWIZZLE_XYZW;
2111 }
2112 }
2113
2114 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2115 * comparator was put in the correct place (and projected) by the code,
2116 * above, that handles by-hand projection.
2117 */
2118 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2119 /* Slot the shadow value in as the second to last component of the
2120 * coord.
2121 */
2122 ir->shadow_comparator->accept(this);
2123
2124 /* XXX This will need to be updated for cubemap array samplers. */
2125 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2126 sampler_type->sampler_array) {
2127 coord_dst.writemask = WRITEMASK_W;
2128 } else {
2129 coord_dst.writemask = WRITEMASK_Z;
2130 }
2131
2132 emit(ir, OPCODE_MOV, coord_dst, this->result);
2133 coord_dst.writemask = WRITEMASK_XYZW;
2134 }
2135
2136 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2137 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2138 coord_dst.writemask = WRITEMASK_W;
2139 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2140 coord_dst.writemask = WRITEMASK_XYZW;
2141 }
2142
2143 if (opcode == OPCODE_TXD)
2144 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2145 else
2146 inst = emit(ir, opcode, result_dst, coord);
2147
2148 if (ir->shadow_comparator)
2149 inst->tex_shadow = GL_TRUE;
2150
2151 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2152 prog);
2153
2154 switch (sampler_type->sampler_dimensionality) {
2155 case GLSL_SAMPLER_DIM_1D:
2156 inst->tex_target = (sampler_type->sampler_array)
2157 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2158 break;
2159 case GLSL_SAMPLER_DIM_2D:
2160 inst->tex_target = (sampler_type->sampler_array)
2161 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2162 break;
2163 case GLSL_SAMPLER_DIM_3D:
2164 inst->tex_target = TEXTURE_3D_INDEX;
2165 break;
2166 case GLSL_SAMPLER_DIM_CUBE:
2167 inst->tex_target = TEXTURE_CUBE_INDEX;
2168 break;
2169 case GLSL_SAMPLER_DIM_RECT:
2170 inst->tex_target = TEXTURE_RECT_INDEX;
2171 break;
2172 case GLSL_SAMPLER_DIM_BUF:
2173 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2174 break;
2175 case GLSL_SAMPLER_DIM_EXTERNAL:
2176 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2177 break;
2178 default:
2179 assert(!"Should not get here.");
2180 }
2181
2182 this->result = result_src;
2183 }
2184
2185 void
2186 ir_to_mesa_visitor::visit(ir_return *ir)
2187 {
2188 /* Non-void functions should have been inlined. We may still emit RETs
2189 * from main() unless the EmitNoMainReturn option is set.
2190 */
2191 assert(!ir->get_value());
2192 emit(ir, OPCODE_RET);
2193 }
2194
2195 void
2196 ir_to_mesa_visitor::visit(ir_discard *ir)
2197 {
2198 if (!ir->condition)
2199 ir->condition = new(mem_ctx) ir_constant(true);
2200
2201 ir->condition->accept(this);
2202 this->result.negate = ~this->result.negate;
2203 emit(ir, OPCODE_KIL, undef_dst, this->result);
2204 }
2205
2206 void
2207 ir_to_mesa_visitor::visit(ir_if *ir)
2208 {
2209 ir_to_mesa_instruction *if_inst;
2210
2211 ir->condition->accept(this);
2212 assert(this->result.file != PROGRAM_UNDEFINED);
2213
2214 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2215
2216 this->instructions.push_tail(if_inst);
2217
2218 visit_exec_list(&ir->then_instructions, this);
2219
2220 if (!ir->else_instructions.is_empty()) {
2221 emit(ir->condition, OPCODE_ELSE);
2222 visit_exec_list(&ir->else_instructions, this);
2223 }
2224
2225 emit(ir->condition, OPCODE_ENDIF);
2226 }
2227
2228 void
2229 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2230 {
2231 assert(!"Geometry shaders not supported.");
2232 }
2233
2234 void
2235 ir_to_mesa_visitor::visit(ir_end_primitive *)
2236 {
2237 assert(!"Geometry shaders not supported.");
2238 }
2239
2240 void
2241 ir_to_mesa_visitor::visit(ir_barrier *)
2242 {
2243 unreachable("GLSL barrier() not supported.");
2244 }
2245
2246 ir_to_mesa_visitor::ir_to_mesa_visitor()
2247 {
2248 result.file = PROGRAM_UNDEFINED;
2249 next_temp = 1;
2250 next_signature_id = 1;
2251 current_function = NULL;
2252 mem_ctx = ralloc_context(NULL);
2253 }
2254
2255 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2256 {
2257 ralloc_free(mem_ctx);
2258 }
2259
2260 static struct prog_src_register
2261 mesa_src_reg_from_ir_src_reg(src_reg reg)
2262 {
2263 struct prog_src_register mesa_reg;
2264
2265 mesa_reg.File = reg.file;
2266 assert(reg.index < (1 << INST_INDEX_BITS));
2267 mesa_reg.Index = reg.index;
2268 mesa_reg.Swizzle = reg.swizzle;
2269 mesa_reg.RelAddr = reg.reladdr != NULL;
2270 mesa_reg.Negate = reg.negate;
2271
2272 return mesa_reg;
2273 }
2274
2275 static void
2276 set_branchtargets(ir_to_mesa_visitor *v,
2277 struct prog_instruction *mesa_instructions,
2278 int num_instructions)
2279 {
2280 int if_count = 0, loop_count = 0;
2281 int *if_stack, *loop_stack;
2282 int if_stack_pos = 0, loop_stack_pos = 0;
2283 int i, j;
2284
2285 for (i = 0; i < num_instructions; i++) {
2286 switch (mesa_instructions[i].Opcode) {
2287 case OPCODE_IF:
2288 if_count++;
2289 break;
2290 case OPCODE_BGNLOOP:
2291 loop_count++;
2292 break;
2293 case OPCODE_BRK:
2294 case OPCODE_CONT:
2295 mesa_instructions[i].BranchTarget = -1;
2296 break;
2297 default:
2298 break;
2299 }
2300 }
2301
2302 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2303 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2304
2305 for (i = 0; i < num_instructions; i++) {
2306 switch (mesa_instructions[i].Opcode) {
2307 case OPCODE_IF:
2308 if_stack[if_stack_pos] = i;
2309 if_stack_pos++;
2310 break;
2311 case OPCODE_ELSE:
2312 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2313 if_stack[if_stack_pos - 1] = i;
2314 break;
2315 case OPCODE_ENDIF:
2316 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2317 if_stack_pos--;
2318 break;
2319 case OPCODE_BGNLOOP:
2320 loop_stack[loop_stack_pos] = i;
2321 loop_stack_pos++;
2322 break;
2323 case OPCODE_ENDLOOP:
2324 loop_stack_pos--;
2325 /* Rewrite any breaks/conts at this nesting level (haven't
2326 * already had a BranchTarget assigned) to point to the end
2327 * of the loop.
2328 */
2329 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2330 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2331 mesa_instructions[j].Opcode == OPCODE_CONT) {
2332 if (mesa_instructions[j].BranchTarget == -1) {
2333 mesa_instructions[j].BranchTarget = i;
2334 }
2335 }
2336 }
2337 /* The loop ends point at each other. */
2338 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2339 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2340 break;
2341 case OPCODE_CAL:
2342 foreach_in_list(function_entry, entry, &v->function_signatures) {
2343 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2344 mesa_instructions[i].BranchTarget = entry->inst;
2345 break;
2346 }
2347 }
2348 break;
2349 default:
2350 break;
2351 }
2352 }
2353 }
2354
2355 static void
2356 print_program(struct prog_instruction *mesa_instructions,
2357 ir_instruction **mesa_instruction_annotation,
2358 int num_instructions)
2359 {
2360 ir_instruction *last_ir = NULL;
2361 int i;
2362 int indent = 0;
2363
2364 for (i = 0; i < num_instructions; i++) {
2365 struct prog_instruction *mesa_inst = mesa_instructions + i;
2366 ir_instruction *ir = mesa_instruction_annotation[i];
2367
2368 fprintf(stdout, "%3d: ", i);
2369
2370 if (last_ir != ir && ir) {
2371 int j;
2372
2373 for (j = 0; j < indent; j++) {
2374 fprintf(stdout, " ");
2375 }
2376 ir->print();
2377 printf("\n");
2378 last_ir = ir;
2379
2380 fprintf(stdout, " "); /* line number spacing. */
2381 }
2382
2383 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2384 PROG_PRINT_DEBUG, NULL);
2385 }
2386 }
2387
2388 namespace {
2389
2390 class add_uniform_to_shader : public program_resource_visitor {
2391 public:
2392 add_uniform_to_shader(struct gl_context *ctx,
2393 struct gl_shader_program *shader_program,
2394 struct gl_program_parameter_list *params)
2395 : ctx(ctx), params(params), idx(-1)
2396 {
2397 /* empty */
2398 }
2399
2400 void process(ir_variable *var)
2401 {
2402 this->idx = -1;
2403 this->var = var;
2404 this->program_resource_visitor::process(var,
2405 ctx->Const.UseSTD430AsDefaultPacking);
2406 var->data.param_index = this->idx;
2407 }
2408
2409 private:
2410 virtual void visit_field(const glsl_type *type, const char *name,
2411 bool row_major, const glsl_type *record_type,
2412 const enum glsl_interface_packing packing,
2413 bool last_field);
2414
2415 struct gl_context *ctx;
2416 struct gl_program_parameter_list *params;
2417 int idx;
2418 ir_variable *var;
2419 };
2420
2421 } /* anonymous namespace */
2422
2423 void
2424 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2425 bool /* row_major */,
2426 const glsl_type * /* record_type */,
2427 const enum glsl_interface_packing,
2428 bool /* last_field */)
2429 {
2430 /* opaque types don't use storage in the param list unless they are
2431 * bindless samplers or images.
2432 */
2433 if (type->contains_opaque() && !var->data.bindless)
2434 return;
2435
2436 /* Add the uniform to the param list */
2437 assert(_mesa_lookup_parameter_index(params, name) < 0);
2438 int index = _mesa_lookup_parameter_index(params, name);
2439
2440 unsigned num_params = type->arrays_of_arrays_size();
2441 num_params = MAX2(num_params, 1);
2442 num_params *= type->without_array()->matrix_columns;
2443
2444 bool is_dual_slot = type->without_array()->is_dual_slot();
2445 if (is_dual_slot)
2446 num_params *= 2;
2447
2448 _mesa_reserve_parameter_storage(params, num_params);
2449 index = params->NumParameters;
2450 for (unsigned i = 0; i < num_params; i++) {
2451 unsigned comps = 4;
2452 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2453 type->gl_type, NULL, NULL);
2454 }
2455
2456 /* The first part of the uniform that's processed determines the base
2457 * location of the whole uniform (for structures).
2458 */
2459 if (this->idx < 0)
2460 this->idx = index;
2461 }
2462
2463 /**
2464 * Generate the program parameters list for the user uniforms in a shader
2465 *
2466 * \param shader_program Linked shader program. This is only used to
2467 * emit possible link errors to the info log.
2468 * \param sh Shader whose uniforms are to be processed.
2469 * \param params Parameter list to be filled in.
2470 */
2471 void
2472 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2473 struct gl_shader_program
2474 *shader_program,
2475 struct gl_linked_shader *sh,
2476 struct gl_program_parameter_list
2477 *params)
2478 {
2479 add_uniform_to_shader add(ctx, shader_program, params);
2480
2481 foreach_in_list(ir_instruction, node, sh->ir) {
2482 ir_variable *var = node->as_variable();
2483
2484 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2485 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2486 continue;
2487
2488 add.process(var);
2489 }
2490 }
2491
2492 void
2493 _mesa_associate_uniform_storage(struct gl_context *ctx,
2494 struct gl_shader_program *shader_program,
2495 struct gl_program *prog,
2496 bool propagate_to_storage)
2497 {
2498 struct gl_program_parameter_list *params = prog->Parameters;
2499 gl_shader_stage shader_type = prog->info.stage;
2500
2501 /* After adding each uniform to the parameter list, connect the storage for
2502 * the parameter with the tracking structure used by the API for the
2503 * uniform.
2504 */
2505 unsigned last_location = unsigned(~0);
2506 for (unsigned i = 0; i < params->NumParameters; i++) {
2507 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2508 continue;
2509
2510 unsigned location;
2511 const bool found =
2512 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2513 assert(found);
2514
2515 if (!found)
2516 continue;
2517
2518 struct gl_uniform_storage *storage =
2519 &shader_program->data->UniformStorage[location];
2520
2521 /* Do not associate any uniform storage to built-in uniforms */
2522 if (storage->builtin)
2523 continue;
2524
2525 if (location != last_location) {
2526 enum gl_uniform_driver_format format = uniform_native;
2527 unsigned columns = 0;
2528 int dmul = 4 * sizeof(float);
2529
2530 switch (storage->type->base_type) {
2531 case GLSL_TYPE_UINT64:
2532 if (storage->type->vector_elements > 2)
2533 dmul *= 2;
2534 /* fallthrough */
2535 case GLSL_TYPE_UINT:
2536 case GLSL_TYPE_UINT16:
2537 assert(ctx->Const.NativeIntegers);
2538 format = uniform_native;
2539 columns = 1;
2540 break;
2541 case GLSL_TYPE_INT64:
2542 if (storage->type->vector_elements > 2)
2543 dmul *= 2;
2544 /* fallthrough */
2545 case GLSL_TYPE_INT:
2546 case GLSL_TYPE_INT16:
2547 format =
2548 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2549 columns = 1;
2550 break;
2551 case GLSL_TYPE_DOUBLE:
2552 if (storage->type->vector_elements > 2)
2553 dmul *= 2;
2554 /* fallthrough */
2555 case GLSL_TYPE_FLOAT:
2556 case GLSL_TYPE_FLOAT16:
2557 format = uniform_native;
2558 columns = storage->type->matrix_columns;
2559 break;
2560 case GLSL_TYPE_BOOL:
2561 format = uniform_native;
2562 columns = 1;
2563 break;
2564 case GLSL_TYPE_SAMPLER:
2565 case GLSL_TYPE_IMAGE:
2566 case GLSL_TYPE_SUBROUTINE:
2567 format = uniform_native;
2568 columns = 1;
2569 break;
2570 case GLSL_TYPE_ATOMIC_UINT:
2571 case GLSL_TYPE_ARRAY:
2572 case GLSL_TYPE_VOID:
2573 case GLSL_TYPE_STRUCT:
2574 case GLSL_TYPE_ERROR:
2575 case GLSL_TYPE_INTERFACE:
2576 case GLSL_TYPE_FUNCTION:
2577 assert(!"Should not get here.");
2578 break;
2579 }
2580
2581 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2582 format,
2583 &params->ParameterValues[i]);
2584
2585 /* When a bindless sampler/image is bound to a texture/image unit, we
2586 * have to overwrite the constant value by the resident handle
2587 * directly in the constant buffer before the next draw. One solution
2588 * is to keep track a pointer to the base of the data.
2589 */
2590 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2591 prog->sh.NumBindlessImages)) {
2592 unsigned array_elements = MAX2(1, storage->array_elements);
2593
2594 for (unsigned j = 0; j < array_elements; ++j) {
2595 unsigned unit = storage->opaque[shader_type].index + j;
2596
2597 if (storage->type->without_array()->is_sampler()) {
2598 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2599 prog->sh.BindlessSamplers[unit].data =
2600 &params->ParameterValues[i] + j;
2601 } else if (storage->type->without_array()->is_image()) {
2602 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2603 prog->sh.BindlessImages[unit].data =
2604 &params->ParameterValues[i] + j;
2605 }
2606 }
2607 }
2608
2609 /* After attaching the driver's storage to the uniform, propagate any
2610 * data from the linker's backing store. This will cause values from
2611 * initializers in the source code to be copied over.
2612 */
2613 if (propagate_to_storage) {
2614 unsigned array_elements = MAX2(1, storage->array_elements);
2615 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2616 array_elements);
2617 }
2618
2619 last_location = location;
2620 }
2621 }
2622 }
2623
2624 /*
2625 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2626 * channels for copy propagation and updates following instructions to
2627 * use the original versions.
2628 *
2629 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2630 * will occur. As an example, a TXP production before this pass:
2631 *
2632 * 0: MOV TEMP[1], INPUT[4].xyyy;
2633 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2634 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2635 *
2636 * and after:
2637 *
2638 * 0: MOV TEMP[1], INPUT[4].xyyy;
2639 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2640 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2641 *
2642 * which allows for dead code elimination on TEMP[1]'s writes.
2643 */
2644 void
2645 ir_to_mesa_visitor::copy_propagate(void)
2646 {
2647 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2648 ir_to_mesa_instruction *,
2649 this->next_temp * 4);
2650 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2651 int level = 0;
2652
2653 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2654 assert(inst->dst.file != PROGRAM_TEMPORARY
2655 || inst->dst.index < this->next_temp);
2656
2657 /* First, do any copy propagation possible into the src regs. */
2658 for (int r = 0; r < 3; r++) {
2659 ir_to_mesa_instruction *first = NULL;
2660 bool good = true;
2661 int acp_base = inst->src[r].index * 4;
2662
2663 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2664 inst->src[r].reladdr)
2665 continue;
2666
2667 /* See if we can find entries in the ACP consisting of MOVs
2668 * from the same src register for all the swizzled channels
2669 * of this src register reference.
2670 */
2671 for (int i = 0; i < 4; i++) {
2672 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2673 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2674
2675 if (!copy_chan) {
2676 good = false;
2677 break;
2678 }
2679
2680 assert(acp_level[acp_base + src_chan] <= level);
2681
2682 if (!first) {
2683 first = copy_chan;
2684 } else {
2685 if (first->src[0].file != copy_chan->src[0].file ||
2686 first->src[0].index != copy_chan->src[0].index) {
2687 good = false;
2688 break;
2689 }
2690 }
2691 }
2692
2693 if (good) {
2694 /* We've now validated that we can copy-propagate to
2695 * replace this src register reference. Do it.
2696 */
2697 inst->src[r].file = first->src[0].file;
2698 inst->src[r].index = first->src[0].index;
2699
2700 int swizzle = 0;
2701 for (int i = 0; i < 4; i++) {
2702 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2703 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2704 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2705 (3 * i));
2706 }
2707 inst->src[r].swizzle = swizzle;
2708 }
2709 }
2710
2711 switch (inst->op) {
2712 case OPCODE_BGNLOOP:
2713 case OPCODE_ENDLOOP:
2714 /* End of a basic block, clear the ACP entirely. */
2715 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2716 break;
2717
2718 case OPCODE_IF:
2719 ++level;
2720 break;
2721
2722 case OPCODE_ENDIF:
2723 case OPCODE_ELSE:
2724 /* Clear all channels written inside the block from the ACP, but
2725 * leaving those that were not touched.
2726 */
2727 for (int r = 0; r < this->next_temp; r++) {
2728 for (int c = 0; c < 4; c++) {
2729 if (!acp[4 * r + c])
2730 continue;
2731
2732 if (acp_level[4 * r + c] >= level)
2733 acp[4 * r + c] = NULL;
2734 }
2735 }
2736 if (inst->op == OPCODE_ENDIF)
2737 --level;
2738 break;
2739
2740 default:
2741 /* Continuing the block, clear any written channels from
2742 * the ACP.
2743 */
2744 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2745 /* Any temporary might be written, so no copy propagation
2746 * across this instruction.
2747 */
2748 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2749 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2750 inst->dst.reladdr) {
2751 /* Any output might be written, so no copy propagation
2752 * from outputs across this instruction.
2753 */
2754 for (int r = 0; r < this->next_temp; r++) {
2755 for (int c = 0; c < 4; c++) {
2756 if (!acp[4 * r + c])
2757 continue;
2758
2759 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2760 acp[4 * r + c] = NULL;
2761 }
2762 }
2763 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2764 inst->dst.file == PROGRAM_OUTPUT) {
2765 /* Clear where it's used as dst. */
2766 if (inst->dst.file == PROGRAM_TEMPORARY) {
2767 for (int c = 0; c < 4; c++) {
2768 if (inst->dst.writemask & (1 << c)) {
2769 acp[4 * inst->dst.index + c] = NULL;
2770 }
2771 }
2772 }
2773
2774 /* Clear where it's used as src. */
2775 for (int r = 0; r < this->next_temp; r++) {
2776 for (int c = 0; c < 4; c++) {
2777 if (!acp[4 * r + c])
2778 continue;
2779
2780 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2781
2782 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2783 acp[4 * r + c]->src[0].index == inst->dst.index &&
2784 inst->dst.writemask & (1 << src_chan))
2785 {
2786 acp[4 * r + c] = NULL;
2787 }
2788 }
2789 }
2790 }
2791 break;
2792 }
2793
2794 /* If this is a copy, add it to the ACP. */
2795 if (inst->op == OPCODE_MOV &&
2796 inst->dst.file == PROGRAM_TEMPORARY &&
2797 !(inst->dst.file == inst->src[0].file &&
2798 inst->dst.index == inst->src[0].index) &&
2799 !inst->dst.reladdr &&
2800 !inst->saturate &&
2801 !inst->src[0].reladdr &&
2802 !inst->src[0].negate) {
2803 for (int i = 0; i < 4; i++) {
2804 if (inst->dst.writemask & (1 << i)) {
2805 acp[4 * inst->dst.index + i] = inst;
2806 acp_level[4 * inst->dst.index + i] = level;
2807 }
2808 }
2809 }
2810 }
2811
2812 ralloc_free(acp_level);
2813 ralloc_free(acp);
2814 }
2815
2816
2817 /**
2818 * Convert a shader's GLSL IR into a Mesa gl_program.
2819 */
2820 static struct gl_program *
2821 get_mesa_program(struct gl_context *ctx,
2822 struct gl_shader_program *shader_program,
2823 struct gl_linked_shader *shader)
2824 {
2825 ir_to_mesa_visitor v;
2826 struct prog_instruction *mesa_instructions, *mesa_inst;
2827 ir_instruction **mesa_instruction_annotation;
2828 int i;
2829 struct gl_program *prog;
2830 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2831 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2832 struct gl_shader_compiler_options *options =
2833 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2834
2835 validate_ir_tree(shader->ir);
2836
2837 prog = shader->Program;
2838 prog->Parameters = _mesa_new_parameter_list();
2839 v.ctx = ctx;
2840 v.prog = prog;
2841 v.shader_program = shader_program;
2842 v.options = options;
2843
2844 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2845 prog->Parameters);
2846
2847 /* Emit Mesa IR for main(). */
2848 visit_exec_list(shader->ir, &v);
2849 v.emit(NULL, OPCODE_END);
2850
2851 prog->arb.NumTemporaries = v.next_temp;
2852
2853 unsigned num_instructions = v.instructions.length();
2854
2855 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2856 num_instructions);
2857 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2858 num_instructions);
2859
2860 v.copy_propagate();
2861
2862 /* Convert ir_mesa_instructions into prog_instructions.
2863 */
2864 mesa_inst = mesa_instructions;
2865 i = 0;
2866 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2867 mesa_inst->Opcode = inst->op;
2868 if (inst->saturate)
2869 mesa_inst->Saturate = GL_TRUE;
2870 mesa_inst->DstReg.File = inst->dst.file;
2871 mesa_inst->DstReg.Index = inst->dst.index;
2872 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2873 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2874 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2875 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2876 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2877 mesa_inst->TexSrcUnit = inst->sampler;
2878 mesa_inst->TexSrcTarget = inst->tex_target;
2879 mesa_inst->TexShadow = inst->tex_shadow;
2880 mesa_instruction_annotation[i] = inst->ir;
2881
2882 /* Set IndirectRegisterFiles. */
2883 if (mesa_inst->DstReg.RelAddr)
2884 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2885
2886 /* Update program's bitmask of indirectly accessed register files */
2887 for (unsigned src = 0; src < 3; src++)
2888 if (mesa_inst->SrcReg[src].RelAddr)
2889 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2890
2891 switch (mesa_inst->Opcode) {
2892 case OPCODE_IF:
2893 if (options->MaxIfDepth == 0) {
2894 linker_warning(shader_program,
2895 "Couldn't flatten if-statement. "
2896 "This will likely result in software "
2897 "rasterization.\n");
2898 }
2899 break;
2900 case OPCODE_BGNLOOP:
2901 if (options->EmitNoLoops) {
2902 linker_warning(shader_program,
2903 "Couldn't unroll loop. "
2904 "This will likely result in software "
2905 "rasterization.\n");
2906 }
2907 break;
2908 case OPCODE_CONT:
2909 if (options->EmitNoCont) {
2910 linker_warning(shader_program,
2911 "Couldn't lower continue-statement. "
2912 "This will likely result in software "
2913 "rasterization.\n");
2914 }
2915 break;
2916 case OPCODE_ARL:
2917 prog->arb.NumAddressRegs = 1;
2918 break;
2919 default:
2920 break;
2921 }
2922
2923 mesa_inst++;
2924 i++;
2925
2926 if (!shader_program->data->LinkStatus)
2927 break;
2928 }
2929
2930 if (!shader_program->data->LinkStatus) {
2931 goto fail_exit;
2932 }
2933
2934 set_branchtargets(&v, mesa_instructions, num_instructions);
2935
2936 if (ctx->_Shader->Flags & GLSL_DUMP) {
2937 fprintf(stderr, "\n");
2938 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2939 shader_program->Name);
2940 _mesa_print_ir(stderr, shader->ir, NULL);
2941 fprintf(stderr, "\n");
2942 fprintf(stderr, "\n");
2943 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2944 shader_program->Name);
2945 print_program(mesa_instructions, mesa_instruction_annotation,
2946 num_instructions);
2947 fflush(stderr);
2948 }
2949
2950 prog->arb.Instructions = mesa_instructions;
2951 prog->arb.NumInstructions = num_instructions;
2952
2953 /* Setting this to NULL prevents a possible double free in the fail_exit
2954 * path (far below).
2955 */
2956 mesa_instructions = NULL;
2957
2958 do_set_program_inouts(shader->ir, prog, shader->Stage);
2959
2960 prog->ShadowSamplers = shader->shadow_samplers;
2961 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2962 _mesa_update_shader_textures_used(shader_program, prog);
2963
2964 /* Set the gl_FragDepth layout. */
2965 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2966 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2967 }
2968
2969 _mesa_optimize_program(prog, prog);
2970
2971 /* This has to be done last. Any operation that can cause
2972 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2973 * program constant) has to happen before creating this linkage.
2974 */
2975 _mesa_associate_uniform_storage(ctx, shader_program, prog, true);
2976 if (!shader_program->data->LinkStatus) {
2977 goto fail_exit;
2978 }
2979
2980 return prog;
2981
2982 fail_exit:
2983 ralloc_free(mesa_instructions);
2984 _mesa_reference_program(ctx, &shader->Program, NULL);
2985 return NULL;
2986 }
2987
2988 extern "C" {
2989
2990 /**
2991 * Link a shader.
2992 * Called via ctx->Driver.LinkShader()
2993 * This actually involves converting GLSL IR into Mesa gl_programs with
2994 * code lowering and other optimizations.
2995 */
2996 GLboolean
2997 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2998 {
2999 assert(prog->data->LinkStatus);
3000
3001 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3002 if (prog->_LinkedShaders[i] == NULL)
3003 continue;
3004
3005 bool progress;
3006 exec_list *ir = prog->_LinkedShaders[i]->ir;
3007 const struct gl_shader_compiler_options *options =
3008 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3009
3010 do {
3011 progress = false;
3012
3013 /* Lowering */
3014 do_mat_op_to_vec(ir);
3015 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3016 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3017 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3018
3019 progress = do_common_optimization(ir, true, true,
3020 options, ctx->Const.NativeIntegers)
3021 || progress;
3022
3023 progress = lower_quadop_vector(ir, true) || progress;
3024
3025 if (options->MaxIfDepth == 0)
3026 progress = lower_discard(ir) || progress;
3027
3028 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3029 options->MaxIfDepth) || progress;
3030
3031 progress = lower_noise(ir) || progress;
3032
3033 /* If there are forms of indirect addressing that the driver
3034 * cannot handle, perform the lowering pass.
3035 */
3036 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3037 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3038 progress =
3039 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3040 options->EmitNoIndirectInput,
3041 options->EmitNoIndirectOutput,
3042 options->EmitNoIndirectTemp,
3043 options->EmitNoIndirectUniform)
3044 || progress;
3045
3046 progress = do_vec_index_to_cond_assign(ir) || progress;
3047 progress = lower_vector_insert(ir, true) || progress;
3048 } while (progress);
3049
3050 validate_ir_tree(ir);
3051 }
3052
3053 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3054 struct gl_program *linked_prog;
3055
3056 if (prog->_LinkedShaders[i] == NULL)
3057 continue;
3058
3059 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3060
3061 if (linked_prog) {
3062 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3063
3064 if (!ctx->Driver.ProgramStringNotify(ctx,
3065 _mesa_shader_stage_to_program(i),
3066 linked_prog)) {
3067 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3068 NULL);
3069 return GL_FALSE;
3070 }
3071 }
3072 }
3073
3074 build_program_resource_list(ctx, prog);
3075 return prog->data->LinkStatus;
3076 }
3077
3078 /**
3079 * Link a GLSL shader program. Called via glLinkProgram().
3080 */
3081 void
3082 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3083 {
3084 unsigned int i;
3085 bool spirv;
3086
3087 _mesa_clear_shader_program_data(ctx, prog);
3088
3089 prog->data = _mesa_create_shader_program_data();
3090
3091 prog->data->LinkStatus = LINKING_SUCCESS;
3092
3093 for (i = 0; i < prog->NumShaders; i++) {
3094 if (!prog->Shaders[i]->CompileStatus) {
3095 linker_error(prog, "linking with uncompiled/unspecialized shader");
3096 }
3097
3098 if (!i) {
3099 spirv = (prog->Shaders[i]->spirv_data != NULL);
3100 } else if (spirv && !prog->Shaders[i]->spirv_data) {
3101 /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
3102 * reasons LinkProgram can fail:
3103 *
3104 * "All the shader objects attached to <program> do not have the
3105 * same value for the SPIR_V_BINARY_ARB state."
3106 */
3107 linker_error(prog,
3108 "not all attached shaders have the same "
3109 "SPIR_V_BINARY_ARB state");
3110 }
3111 }
3112
3113 if (prog->data->LinkStatus) {
3114 link_shaders(ctx, prog);
3115 }
3116
3117 /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true.
3118 * Validation happens via the LinkShader call below. If LinkStatus is
3119 * LINKING_SKIPPED, then SamplersValidated will have been restored from the
3120 * shader cache.
3121 */
3122 if (prog->data->LinkStatus == LINKING_SUCCESS) {
3123 prog->SamplersValidated = GL_TRUE;
3124 }
3125
3126 if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
3127 prog->data->LinkStatus = LINKING_FAILURE;
3128 }
3129
3130 /* Return early if we are loading the shader from on-disk cache */
3131 if (prog->data->LinkStatus == LINKING_SKIPPED)
3132 return;
3133
3134 if (ctx->_Shader->Flags & GLSL_DUMP) {
3135 if (!prog->data->LinkStatus) {
3136 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3137 }
3138
3139 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3140 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3141 fprintf(stderr, "%s\n", prog->data->InfoLog);
3142 }
3143 }
3144
3145 #ifdef ENABLE_SHADER_CACHE
3146 if (prog->data->LinkStatus)
3147 shader_cache_write_program_metadata(ctx, prog);
3148 #endif
3149 }
3150
3151 } /* extern "C" */