mesa: Use shared code for converting shader targets to short strings.
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderobj.h"
47 #include "program/hash_table.h"
48
49 extern "C" {
50 #include "main/shaderapi.h"
51 #include "main/uniforms.h"
52 #include "program/prog_instruction.h"
53 #include "program/prog_optimize.h"
54 #include "program/prog_print.h"
55 #include "program/program.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58 }
59
60 class src_reg;
61 class dst_reg;
62
63 static int swizzle_for_size(int size);
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->cond_mask = COND_TR;
110 this->reladdr = NULL;
111 }
112
113 dst_reg()
114 {
115 this->file = PROGRAM_UNDEFINED;
116 this->index = 0;
117 this->writemask = 0;
118 this->cond_mask = COND_TR;
119 this->reladdr = NULL;
120 }
121
122 explicit dst_reg(src_reg reg);
123
124 gl_register_file file; /**< PROGRAM_* from Mesa */
125 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
126 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
127 GLuint cond_mask:4;
128 /** Register index should be offset by the integer in this reg. */
129 src_reg *reladdr;
130 };
131
132 src_reg::src_reg(dst_reg reg)
133 {
134 this->file = reg.file;
135 this->index = reg.index;
136 this->swizzle = SWIZZLE_XYZW;
137 this->negate = 0;
138 this->reladdr = reg.reladdr;
139 }
140
141 dst_reg::dst_reg(src_reg reg)
142 {
143 this->file = reg.file;
144 this->index = reg.index;
145 this->writemask = WRITEMASK_XYZW;
146 this->cond_mask = COND_TR;
147 this->reladdr = reg.reladdr;
148 }
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 /* Callers of this ralloc-based new need not call delete. It's
153 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
154 static void* operator new(size_t size, void *ctx)
155 {
156 void *node;
157
158 node = rzalloc_size(ctx, size);
159 assert(node != NULL);
160
161 return node;
162 }
163
164 enum prog_opcode op;
165 dst_reg dst;
166 src_reg src[3];
167 /** Pointer to the ir source this tree came from for debugging */
168 ir_instruction *ir;
169 GLboolean cond_update;
170 bool saturate;
171 int sampler; /**< sampler index */
172 int tex_target; /**< One of TEXTURE_*_INDEX */
173 GLboolean tex_shadow;
174 };
175
176 class variable_storage : public exec_node {
177 public:
178 variable_storage(ir_variable *var, gl_register_file file, int index)
179 : file(file), index(index), var(var)
180 {
181 /* empty */
182 }
183
184 gl_register_file file;
185 int index;
186 ir_variable *var; /* variable that maps to this, if any */
187 };
188
189 class function_entry : public exec_node {
190 public:
191 ir_function_signature *sig;
192
193 /**
194 * identifier of this function signature used by the program.
195 *
196 * At the point that Mesa instructions for function calls are
197 * generated, we don't know the address of the first instruction of
198 * the function body. So we make the BranchTarget that is called a
199 * small integer and rewrite them during set_branchtargets().
200 */
201 int sig_id;
202
203 /**
204 * Pointer to first instruction of the function body.
205 *
206 * Set during function body emits after main() is processed.
207 */
208 ir_to_mesa_instruction *bgn_inst;
209
210 /**
211 * Index of the first instruction of the function body in actual
212 * Mesa IR.
213 *
214 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
215 */
216 int inst;
217
218 /** Storage for the return value. */
219 src_reg return_reg;
220 };
221
222 class ir_to_mesa_visitor : public ir_visitor {
223 public:
224 ir_to_mesa_visitor();
225 ~ir_to_mesa_visitor();
226
227 function_entry *current_function;
228
229 struct gl_context *ctx;
230 struct gl_program *prog;
231 struct gl_shader_program *shader_program;
232 struct gl_shader_compiler_options *options;
233
234 int next_temp;
235
236 variable_storage *find_variable_storage(ir_variable *var);
237
238 src_reg get_temp(const glsl_type *type);
239 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
240
241 src_reg src_reg_for_float(float val);
242
243 /**
244 * \name Visit methods
245 *
246 * As typical for the visitor pattern, there must be one \c visit method for
247 * each concrete subclass of \c ir_instruction. Virtual base classes within
248 * the hierarchy should not have \c visit methods.
249 */
250 /*@{*/
251 virtual void visit(ir_variable *);
252 virtual void visit(ir_loop *);
253 virtual void visit(ir_loop_jump *);
254 virtual void visit(ir_function_signature *);
255 virtual void visit(ir_function *);
256 virtual void visit(ir_expression *);
257 virtual void visit(ir_swizzle *);
258 virtual void visit(ir_dereference_variable *);
259 virtual void visit(ir_dereference_array *);
260 virtual void visit(ir_dereference_record *);
261 virtual void visit(ir_assignment *);
262 virtual void visit(ir_constant *);
263 virtual void visit(ir_call *);
264 virtual void visit(ir_return *);
265 virtual void visit(ir_discard *);
266 virtual void visit(ir_texture *);
267 virtual void visit(ir_if *);
268 /*@}*/
269
270 src_reg result;
271
272 /** List of variable_storage */
273 exec_list variables;
274
275 /** List of function_entry */
276 exec_list function_signatures;
277 int next_signature_id;
278
279 /** List of ir_to_mesa_instruction */
280 exec_list instructions;
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
283
284 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
285 dst_reg dst, src_reg src0);
286
287 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
288 dst_reg dst, src_reg src0, src_reg src1);
289
290 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
291 dst_reg dst,
292 src_reg src0, src_reg src1, src_reg src2);
293
294 /**
295 * Emit the correct dot-product instruction for the type of arguments
296 */
297 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
298 dst_reg dst,
299 src_reg src0,
300 src_reg src1,
301 unsigned elements);
302
303 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
304 dst_reg dst, src_reg src0);
305
306 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
307 dst_reg dst, src_reg src0, src_reg src1);
308
309 void emit_scs(ir_instruction *ir, enum prog_opcode op,
310 dst_reg dst, const src_reg &src);
311
312 bool try_emit_mad(ir_expression *ir,
313 int mul_operand);
314 bool try_emit_mad_for_and_not(ir_expression *ir,
315 int mul_operand);
316 bool try_emit_sat(ir_expression *ir);
317
318 void emit_swz(ir_expression *ir);
319
320 bool process_move_condition(ir_rvalue *ir);
321
322 void copy_propagate(void);
323
324 void *mem_ctx;
325 };
326
327 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
328
329 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
330
331 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
332
333 static int
334 swizzle_for_size(int size)
335 {
336 static const int size_swizzles[4] = {
337 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
339 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
340 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
341 };
342
343 assert((size >= 1) && (size <= 4));
344 return size_swizzles[size - 1];
345 }
346
347 ir_to_mesa_instruction *
348 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
349 dst_reg dst,
350 src_reg src0, src_reg src1, src_reg src2)
351 {
352 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
353 int num_reladdr = 0;
354
355 /* If we have to do relative addressing, we want to load the ARL
356 * reg directly for one of the regs, and preload the other reladdr
357 * sources into temps.
358 */
359 num_reladdr += dst.reladdr != NULL;
360 num_reladdr += src0.reladdr != NULL;
361 num_reladdr += src1.reladdr != NULL;
362 num_reladdr += src2.reladdr != NULL;
363
364 reladdr_to_temp(ir, &src2, &num_reladdr);
365 reladdr_to_temp(ir, &src1, &num_reladdr);
366 reladdr_to_temp(ir, &src0, &num_reladdr);
367
368 if (dst.reladdr) {
369 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
370 num_reladdr--;
371 }
372 assert(num_reladdr == 0);
373
374 inst->op = op;
375 inst->dst = dst;
376 inst->src[0] = src0;
377 inst->src[1] = src1;
378 inst->src[2] = src2;
379 inst->ir = ir;
380
381 this->instructions.push_tail(inst);
382
383 return inst;
384 }
385
386
387 ir_to_mesa_instruction *
388 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
389 dst_reg dst, src_reg src0, src_reg src1)
390 {
391 return emit(ir, op, dst, src0, src1, undef_src);
392 }
393
394 ir_to_mesa_instruction *
395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0)
397 {
398 assert(dst.writemask != 0);
399 return emit(ir, op, dst, src0, undef_src, undef_src);
400 }
401
402 ir_to_mesa_instruction *
403 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
404 {
405 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
406 }
407
408 ir_to_mesa_instruction *
409 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
410 dst_reg dst, src_reg src0, src_reg src1,
411 unsigned elements)
412 {
413 static const gl_inst_opcode dot_opcodes[] = {
414 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
415 };
416
417 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
418 }
419
420 /**
421 * Emits Mesa scalar opcodes to produce unique answers across channels.
422 *
423 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
424 * channel determines the result across all channels. So to do a vec4
425 * of this operation, we want to emit a scalar per source channel used
426 * to produce dest channels.
427 */
428 void
429 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
430 dst_reg dst,
431 src_reg orig_src0, src_reg orig_src1)
432 {
433 int i, j;
434 int done_mask = ~dst.writemask;
435
436 /* Mesa RCP is a scalar operation splatting results to all channels,
437 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
438 * dst channels.
439 */
440 for (i = 0; i < 4; i++) {
441 GLuint this_mask = (1 << i);
442 ir_to_mesa_instruction *inst;
443 src_reg src0 = orig_src0;
444 src_reg src1 = orig_src1;
445
446 if (done_mask & this_mask)
447 continue;
448
449 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
450 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
451 for (j = i + 1; j < 4; j++) {
452 /* If there is another enabled component in the destination that is
453 * derived from the same inputs, generate its value on this pass as
454 * well.
455 */
456 if (!(done_mask & (1 << j)) &&
457 GET_SWZ(src0.swizzle, j) == src0_swiz &&
458 GET_SWZ(src1.swizzle, j) == src1_swiz) {
459 this_mask |= (1 << j);
460 }
461 }
462 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
463 src0_swiz, src0_swiz);
464 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
465 src1_swiz, src1_swiz);
466
467 inst = emit(ir, op, dst, src0, src1);
468 inst->dst.writemask = this_mask;
469 done_mask |= this_mask;
470 }
471 }
472
473 void
474 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
475 dst_reg dst, src_reg src0)
476 {
477 src_reg undef = undef_src;
478
479 undef.swizzle = SWIZZLE_XXXX;
480
481 emit_scalar(ir, op, dst, src0, undef);
482 }
483
484 /**
485 * Emit an OPCODE_SCS instruction
486 *
487 * The \c SCS opcode functions a bit differently than the other Mesa (or
488 * ARB_fragment_program) opcodes. Instead of splatting its result across all
489 * four components of the destination, it writes one value to the \c x
490 * component and another value to the \c y component.
491 *
492 * \param ir IR instruction being processed
493 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
494 * value is desired.
495 * \param dst Destination register
496 * \param src Source register
497 */
498 void
499 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
500 dst_reg dst,
501 const src_reg &src)
502 {
503 /* Vertex programs cannot use the SCS opcode.
504 */
505 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
506 emit_scalar(ir, op, dst, src);
507 return;
508 }
509
510 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
511 const unsigned scs_mask = (1U << component);
512 int done_mask = ~dst.writemask;
513 src_reg tmp;
514
515 assert(op == OPCODE_SIN || op == OPCODE_COS);
516
517 /* If there are compnents in the destination that differ from the component
518 * that will be written by the SCS instrution, we'll need a temporary.
519 */
520 if (scs_mask != unsigned(dst.writemask)) {
521 tmp = get_temp(glsl_type::vec4_type);
522 }
523
524 for (unsigned i = 0; i < 4; i++) {
525 unsigned this_mask = (1U << i);
526 src_reg src0 = src;
527
528 if ((done_mask & this_mask) != 0)
529 continue;
530
531 /* The source swizzle specified which component of the source generates
532 * sine / cosine for the current component in the destination. The SCS
533 * instruction requires that this value be swizzle to the X component.
534 * Replace the current swizzle with a swizzle that puts the source in
535 * the X component.
536 */
537 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
538
539 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
540 src0_swiz, src0_swiz);
541 for (unsigned j = i + 1; j < 4; j++) {
542 /* If there is another enabled component in the destination that is
543 * derived from the same inputs, generate its value on this pass as
544 * well.
545 */
546 if (!(done_mask & (1 << j)) &&
547 GET_SWZ(src0.swizzle, j) == src0_swiz) {
548 this_mask |= (1 << j);
549 }
550 }
551
552 if (this_mask != scs_mask) {
553 ir_to_mesa_instruction *inst;
554 dst_reg tmp_dst = dst_reg(tmp);
555
556 /* Emit the SCS instruction.
557 */
558 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
559 inst->dst.writemask = scs_mask;
560
561 /* Move the result of the SCS instruction to the desired location in
562 * the destination.
563 */
564 tmp.swizzle = MAKE_SWIZZLE4(component, component,
565 component, component);
566 inst = emit(ir, OPCODE_SCS, dst, tmp);
567 inst->dst.writemask = this_mask;
568 } else {
569 /* Emit the SCS instruction to write directly to the destination.
570 */
571 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
572 inst->dst.writemask = scs_mask;
573 }
574
575 done_mask |= this_mask;
576 }
577 }
578
579 src_reg
580 ir_to_mesa_visitor::src_reg_for_float(float val)
581 {
582 src_reg src(PROGRAM_CONSTANT, -1, NULL);
583
584 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
585 (const gl_constant_value *)&val, 1, &src.swizzle);
586
587 return src;
588 }
589
590 static int
591 type_size(const struct glsl_type *type)
592 {
593 unsigned int i;
594 int size;
595
596 switch (type->base_type) {
597 case GLSL_TYPE_UINT:
598 case GLSL_TYPE_INT:
599 case GLSL_TYPE_FLOAT:
600 case GLSL_TYPE_BOOL:
601 if (type->is_matrix()) {
602 return type->matrix_columns;
603 } else {
604 /* Regardless of size of vector, it gets a vec4. This is bad
605 * packing for things like floats, but otherwise arrays become a
606 * mess. Hopefully a later pass over the code can pack scalars
607 * down if appropriate.
608 */
609 return 1;
610 }
611 case GLSL_TYPE_ARRAY:
612 assert(type->length > 0);
613 return type_size(type->fields.array) * type->length;
614 case GLSL_TYPE_STRUCT:
615 size = 0;
616 for (i = 0; i < type->length; i++) {
617 size += type_size(type->fields.structure[i].type);
618 }
619 return size;
620 case GLSL_TYPE_SAMPLER:
621 /* Samplers take up one slot in UNIFORMS[], but they're baked in
622 * at link time.
623 */
624 return 1;
625 case GLSL_TYPE_VOID:
626 case GLSL_TYPE_ERROR:
627 case GLSL_TYPE_INTERFACE:
628 assert(!"Invalid type in type_size");
629 break;
630 }
631
632 return 0;
633 }
634
635 /**
636 * In the initial pass of codegen, we assign temporary numbers to
637 * intermediate results. (not SSA -- variable assignments will reuse
638 * storage). Actual register allocation for the Mesa VM occurs in a
639 * pass over the Mesa IR later.
640 */
641 src_reg
642 ir_to_mesa_visitor::get_temp(const glsl_type *type)
643 {
644 src_reg src;
645
646 src.file = PROGRAM_TEMPORARY;
647 src.index = next_temp;
648 src.reladdr = NULL;
649 next_temp += type_size(type);
650
651 if (type->is_array() || type->is_record()) {
652 src.swizzle = SWIZZLE_NOOP;
653 } else {
654 src.swizzle = swizzle_for_size(type->vector_elements);
655 }
656 src.negate = 0;
657
658 return src;
659 }
660
661 variable_storage *
662 ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
663 {
664
665 variable_storage *entry;
666
667 foreach_iter(exec_list_iterator, iter, this->variables) {
668 entry = (variable_storage *)iter.get();
669
670 if (entry->var == var)
671 return entry;
672 }
673
674 return NULL;
675 }
676
677 void
678 ir_to_mesa_visitor::visit(ir_variable *ir)
679 {
680 if (strcmp(ir->name, "gl_FragCoord") == 0) {
681 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
682
683 fp->OriginUpperLeft = ir->origin_upper_left;
684 fp->PixelCenterInteger = ir->pixel_center_integer;
685 }
686
687 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
688 unsigned int i;
689 const ir_state_slot *const slots = ir->state_slots;
690 assert(ir->state_slots != NULL);
691
692 /* Check if this statevar's setup in the STATE file exactly
693 * matches how we'll want to reference it as a
694 * struct/array/whatever. If not, then we need to move it into
695 * temporary storage and hope that it'll get copy-propagated
696 * out.
697 */
698 for (i = 0; i < ir->num_state_slots; i++) {
699 if (slots[i].swizzle != SWIZZLE_XYZW) {
700 break;
701 }
702 }
703
704 variable_storage *storage;
705 dst_reg dst;
706 if (i == ir->num_state_slots) {
707 /* We'll set the index later. */
708 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
709 this->variables.push_tail(storage);
710
711 dst = undef_dst;
712 } else {
713 /* The variable_storage constructor allocates slots based on the size
714 * of the type. However, this had better match the number of state
715 * elements that we're going to copy into the new temporary.
716 */
717 assert((int) ir->num_state_slots == type_size(ir->type));
718
719 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
720 this->next_temp);
721 this->variables.push_tail(storage);
722 this->next_temp += type_size(ir->type);
723
724 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
725 }
726
727
728 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
729 int index = _mesa_add_state_reference(this->prog->Parameters,
730 (gl_state_index *)slots[i].tokens);
731
732 if (storage->file == PROGRAM_STATE_VAR) {
733 if (storage->index == -1) {
734 storage->index = index;
735 } else {
736 assert(index == storage->index + (int)i);
737 }
738 } else {
739 src_reg src(PROGRAM_STATE_VAR, index, NULL);
740 src.swizzle = slots[i].swizzle;
741 emit(ir, OPCODE_MOV, dst, src);
742 /* even a float takes up a whole vec4 reg in a struct/array. */
743 dst.index++;
744 }
745 }
746
747 if (storage->file == PROGRAM_TEMPORARY &&
748 dst.index != storage->index + (int) ir->num_state_slots) {
749 linker_error(this->shader_program,
750 "failed to load builtin uniform `%s' "
751 "(%d/%d regs loaded)\n",
752 ir->name, dst.index - storage->index,
753 type_size(ir->type));
754 }
755 }
756 }
757
758 void
759 ir_to_mesa_visitor::visit(ir_loop *ir)
760 {
761 ir_dereference_variable *counter = NULL;
762
763 if (ir->counter != NULL)
764 counter = new(mem_ctx) ir_dereference_variable(ir->counter);
765
766 if (ir->from != NULL) {
767 assert(ir->counter != NULL);
768
769 ir_assignment *a =
770 new(mem_ctx) ir_assignment(counter, ir->from, NULL);
771
772 a->accept(this);
773 }
774
775 emit(NULL, OPCODE_BGNLOOP);
776
777 if (ir->to) {
778 ir_expression *e =
779 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
780 counter, ir->to);
781 ir_if *if_stmt = new(mem_ctx) ir_if(e);
782
783 ir_loop_jump *brk =
784 new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
785
786 if_stmt->then_instructions.push_tail(brk);
787
788 if_stmt->accept(this);
789 }
790
791 visit_exec_list(&ir->body_instructions, this);
792
793 if (ir->increment) {
794 ir_expression *e =
795 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
796 counter, ir->increment);
797
798 ir_assignment *a =
799 new(mem_ctx) ir_assignment(counter, e, NULL);
800
801 a->accept(this);
802 }
803
804 emit(NULL, OPCODE_ENDLOOP);
805 }
806
807 void
808 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
809 {
810 switch (ir->mode) {
811 case ir_loop_jump::jump_break:
812 emit(NULL, OPCODE_BRK);
813 break;
814 case ir_loop_jump::jump_continue:
815 emit(NULL, OPCODE_CONT);
816 break;
817 }
818 }
819
820
821 void
822 ir_to_mesa_visitor::visit(ir_function_signature *ir)
823 {
824 assert(0);
825 (void)ir;
826 }
827
828 void
829 ir_to_mesa_visitor::visit(ir_function *ir)
830 {
831 /* Ignore function bodies other than main() -- we shouldn't see calls to
832 * them since they should all be inlined before we get to ir_to_mesa.
833 */
834 if (strcmp(ir->name, "main") == 0) {
835 const ir_function_signature *sig;
836 exec_list empty;
837
838 sig = ir->matching_signature(&empty);
839
840 assert(sig);
841
842 foreach_iter(exec_list_iterator, iter, sig->body) {
843 ir_instruction *ir = (ir_instruction *)iter.get();
844
845 ir->accept(this);
846 }
847 }
848 }
849
850 bool
851 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
852 {
853 int nonmul_operand = 1 - mul_operand;
854 src_reg a, b, c;
855
856 ir_expression *expr = ir->operands[mul_operand]->as_expression();
857 if (!expr || expr->operation != ir_binop_mul)
858 return false;
859
860 expr->operands[0]->accept(this);
861 a = this->result;
862 expr->operands[1]->accept(this);
863 b = this->result;
864 ir->operands[nonmul_operand]->accept(this);
865 c = this->result;
866
867 this->result = get_temp(ir->type);
868 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
869
870 return true;
871 }
872
873 /**
874 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
875 *
876 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
877 * implemented using multiplication, and logical-or is implemented using
878 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
879 * As result, the logical expression (a & !b) can be rewritten as:
880 *
881 * - a * !b
882 * - a * (1 - b)
883 * - (a * 1) - (a * b)
884 * - a + -(a * b)
885 * - a + (a * -b)
886 *
887 * This final expression can be implemented as a single MAD(a, -b, a)
888 * instruction.
889 */
890 bool
891 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
892 {
893 const int other_operand = 1 - try_operand;
894 src_reg a, b;
895
896 ir_expression *expr = ir->operands[try_operand]->as_expression();
897 if (!expr || expr->operation != ir_unop_logic_not)
898 return false;
899
900 ir->operands[other_operand]->accept(this);
901 a = this->result;
902 expr->operands[0]->accept(this);
903 b = this->result;
904
905 b.negate = ~b.negate;
906
907 this->result = get_temp(ir->type);
908 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
909
910 return true;
911 }
912
913 bool
914 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
915 {
916 /* Saturates were only introduced to vertex programs in
917 * NV_vertex_program3, so don't give them to drivers in the VP.
918 */
919 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
920 return false;
921
922 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
923 if (!sat_src)
924 return false;
925
926 sat_src->accept(this);
927 src_reg src = this->result;
928
929 /* If we generated an expression instruction into a temporary in
930 * processing the saturate's operand, apply the saturate to that
931 * instruction. Otherwise, generate a MOV to do the saturate.
932 *
933 * Note that we have to be careful to only do this optimization if
934 * the instruction in question was what generated src->result. For
935 * example, ir_dereference_array might generate a MUL instruction
936 * to create the reladdr, and return us a src reg using that
937 * reladdr. That MUL result is not the value we're trying to
938 * saturate.
939 */
940 ir_expression *sat_src_expr = sat_src->as_expression();
941 ir_to_mesa_instruction *new_inst;
942 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
943 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
944 sat_src_expr->operation == ir_binop_add ||
945 sat_src_expr->operation == ir_binop_dot)) {
946 new_inst->saturate = true;
947 } else {
948 this->result = get_temp(ir->type);
949 ir_to_mesa_instruction *inst;
950 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
951 inst->saturate = true;
952 }
953
954 return true;
955 }
956
957 void
958 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
959 src_reg *reg, int *num_reladdr)
960 {
961 if (!reg->reladdr)
962 return;
963
964 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
965
966 if (*num_reladdr != 1) {
967 src_reg temp = get_temp(glsl_type::vec4_type);
968
969 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
970 *reg = temp;
971 }
972
973 (*num_reladdr)--;
974 }
975
976 void
977 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
978 {
979 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
980 * This means that each of the operands is either an immediate value of -1,
981 * 0, or 1, or is a component from one source register (possibly with
982 * negation).
983 */
984 uint8_t components[4] = { 0 };
985 bool negate[4] = { false };
986 ir_variable *var = NULL;
987
988 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
989 ir_rvalue *op = ir->operands[i];
990
991 assert(op->type->is_scalar());
992
993 while (op != NULL) {
994 switch (op->ir_type) {
995 case ir_type_constant: {
996
997 assert(op->type->is_scalar());
998
999 const ir_constant *const c = op->as_constant();
1000 if (c->is_one()) {
1001 components[i] = SWIZZLE_ONE;
1002 } else if (c->is_zero()) {
1003 components[i] = SWIZZLE_ZERO;
1004 } else if (c->is_negative_one()) {
1005 components[i] = SWIZZLE_ONE;
1006 negate[i] = true;
1007 } else {
1008 assert(!"SWZ constant must be 0.0 or 1.0.");
1009 }
1010
1011 op = NULL;
1012 break;
1013 }
1014
1015 case ir_type_dereference_variable: {
1016 ir_dereference_variable *const deref =
1017 (ir_dereference_variable *) op;
1018
1019 assert((var == NULL) || (deref->var == var));
1020 components[i] = SWIZZLE_X;
1021 var = deref->var;
1022 op = NULL;
1023 break;
1024 }
1025
1026 case ir_type_expression: {
1027 ir_expression *const expr = (ir_expression *) op;
1028
1029 assert(expr->operation == ir_unop_neg);
1030 negate[i] = true;
1031
1032 op = expr->operands[0];
1033 break;
1034 }
1035
1036 case ir_type_swizzle: {
1037 ir_swizzle *const swiz = (ir_swizzle *) op;
1038
1039 components[i] = swiz->mask.x;
1040 op = swiz->val;
1041 break;
1042 }
1043
1044 default:
1045 assert(!"Should not get here.");
1046 return;
1047 }
1048 }
1049 }
1050
1051 assert(var != NULL);
1052
1053 ir_dereference_variable *const deref =
1054 new(mem_ctx) ir_dereference_variable(var);
1055
1056 this->result.file = PROGRAM_UNDEFINED;
1057 deref->accept(this);
1058 if (this->result.file == PROGRAM_UNDEFINED) {
1059 printf("Failed to get tree for expression operand:\n");
1060 deref->print();
1061 printf("\n");
1062 exit(1);
1063 }
1064
1065 src_reg src;
1066
1067 src = this->result;
1068 src.swizzle = MAKE_SWIZZLE4(components[0],
1069 components[1],
1070 components[2],
1071 components[3]);
1072 src.negate = ((unsigned(negate[0]) << 0)
1073 | (unsigned(negate[1]) << 1)
1074 | (unsigned(negate[2]) << 2)
1075 | (unsigned(negate[3]) << 3));
1076
1077 /* Storage for our result. Ideally for an assignment we'd be using the
1078 * actual storage for the result here, instead.
1079 */
1080 const src_reg result_src = get_temp(ir->type);
1081 dst_reg result_dst = dst_reg(result_src);
1082
1083 /* Limit writes to the channels that will be used by result_src later.
1084 * This does limit this temp's use as a temporary for multi-instruction
1085 * sequences.
1086 */
1087 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1088
1089 emit(ir, OPCODE_SWZ, result_dst, src);
1090 this->result = result_src;
1091 }
1092
1093 void
1094 ir_to_mesa_visitor::visit(ir_expression *ir)
1095 {
1096 unsigned int operand;
1097 src_reg op[Elements(ir->operands)];
1098 src_reg result_src;
1099 dst_reg result_dst;
1100
1101 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1102 */
1103 if (ir->operation == ir_binop_add) {
1104 if (try_emit_mad(ir, 1))
1105 return;
1106 if (try_emit_mad(ir, 0))
1107 return;
1108 }
1109
1110 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1111 */
1112 if (ir->operation == ir_binop_logic_and) {
1113 if (try_emit_mad_for_and_not(ir, 1))
1114 return;
1115 if (try_emit_mad_for_and_not(ir, 0))
1116 return;
1117 }
1118
1119 if (try_emit_sat(ir))
1120 return;
1121
1122 if (ir->operation == ir_quadop_vector) {
1123 this->emit_swz(ir);
1124 return;
1125 }
1126
1127 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1128 this->result.file = PROGRAM_UNDEFINED;
1129 ir->operands[operand]->accept(this);
1130 if (this->result.file == PROGRAM_UNDEFINED) {
1131 printf("Failed to get tree for expression operand:\n");
1132 ir->operands[operand]->print();
1133 printf("\n");
1134 exit(1);
1135 }
1136 op[operand] = this->result;
1137
1138 /* Matrix expression operands should have been broken down to vector
1139 * operations already.
1140 */
1141 assert(!ir->operands[operand]->type->is_matrix());
1142 }
1143
1144 int vector_elements = ir->operands[0]->type->vector_elements;
1145 if (ir->operands[1]) {
1146 vector_elements = MAX2(vector_elements,
1147 ir->operands[1]->type->vector_elements);
1148 }
1149
1150 this->result.file = PROGRAM_UNDEFINED;
1151
1152 /* Storage for our result. Ideally for an assignment we'd be using
1153 * the actual storage for the result here, instead.
1154 */
1155 result_src = get_temp(ir->type);
1156 /* convenience for the emit functions below. */
1157 result_dst = dst_reg(result_src);
1158 /* Limit writes to the channels that will be used by result_src later.
1159 * This does limit this temp's use as a temporary for multi-instruction
1160 * sequences.
1161 */
1162 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1163
1164 switch (ir->operation) {
1165 case ir_unop_logic_not:
1166 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1167 * older GPUs implement SEQ using multiple instructions (i915 uses two
1168 * SGE instructions and a MUL instruction). Since our logic values are
1169 * 0.0 and 1.0, 1-x also implements !x.
1170 */
1171 op[0].negate = ~op[0].negate;
1172 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1173 break;
1174 case ir_unop_neg:
1175 op[0].negate = ~op[0].negate;
1176 result_src = op[0];
1177 break;
1178 case ir_unop_abs:
1179 emit(ir, OPCODE_ABS, result_dst, op[0]);
1180 break;
1181 case ir_unop_sign:
1182 emit(ir, OPCODE_SSG, result_dst, op[0]);
1183 break;
1184 case ir_unop_rcp:
1185 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1186 break;
1187
1188 case ir_unop_exp2:
1189 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1190 break;
1191 case ir_unop_exp:
1192 case ir_unop_log:
1193 assert(!"not reached: should be handled by ir_explog_to_explog2");
1194 break;
1195 case ir_unop_log2:
1196 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1197 break;
1198 case ir_unop_sin:
1199 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1200 break;
1201 case ir_unop_cos:
1202 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1203 break;
1204 case ir_unop_sin_reduced:
1205 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1206 break;
1207 case ir_unop_cos_reduced:
1208 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1209 break;
1210
1211 case ir_unop_dFdx:
1212 emit(ir, OPCODE_DDX, result_dst, op[0]);
1213 break;
1214 case ir_unop_dFdy:
1215 emit(ir, OPCODE_DDY, result_dst, op[0]);
1216 break;
1217
1218 case ir_unop_noise: {
1219 const enum prog_opcode opcode =
1220 prog_opcode(OPCODE_NOISE1
1221 + (ir->operands[0]->type->vector_elements) - 1);
1222 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1223
1224 emit(ir, opcode, result_dst, op[0]);
1225 break;
1226 }
1227
1228 case ir_binop_add:
1229 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1230 break;
1231 case ir_binop_sub:
1232 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1233 break;
1234
1235 case ir_binop_mul:
1236 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1237 break;
1238 case ir_binop_div:
1239 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1240 break;
1241 case ir_binop_mod:
1242 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1243 assert(ir->type->is_integer());
1244 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1245 break;
1246
1247 case ir_binop_less:
1248 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1249 break;
1250 case ir_binop_greater:
1251 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1252 break;
1253 case ir_binop_lequal:
1254 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1255 break;
1256 case ir_binop_gequal:
1257 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1258 break;
1259 case ir_binop_equal:
1260 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1261 break;
1262 case ir_binop_nequal:
1263 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1264 break;
1265 case ir_binop_all_equal:
1266 /* "==" operator producing a scalar boolean. */
1267 if (ir->operands[0]->type->is_vector() ||
1268 ir->operands[1]->type->is_vector()) {
1269 src_reg temp = get_temp(glsl_type::vec4_type);
1270 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1271
1272 /* After the dot-product, the value will be an integer on the
1273 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1274 */
1275 emit_dp(ir, result_dst, temp, temp, vector_elements);
1276
1277 /* Negating the result of the dot-product gives values on the range
1278 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1279 * achieved using SGE.
1280 */
1281 src_reg sge_src = result_src;
1282 sge_src.negate = ~sge_src.negate;
1283 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1284 } else {
1285 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1286 }
1287 break;
1288 case ir_binop_any_nequal:
1289 /* "!=" operator producing a scalar boolean. */
1290 if (ir->operands[0]->type->is_vector() ||
1291 ir->operands[1]->type->is_vector()) {
1292 src_reg temp = get_temp(glsl_type::vec4_type);
1293 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1294
1295 /* After the dot-product, the value will be an integer on the
1296 * range [0,4]. Zero stays zero, and positive values become 1.0.
1297 */
1298 ir_to_mesa_instruction *const dp =
1299 emit_dp(ir, result_dst, temp, temp, vector_elements);
1300 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1301 /* The clamping to [0,1] can be done for free in the fragment
1302 * shader with a saturate.
1303 */
1304 dp->saturate = true;
1305 } else {
1306 /* Negating the result of the dot-product gives values on the range
1307 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1308 * achieved using SLT.
1309 */
1310 src_reg slt_src = result_src;
1311 slt_src.negate = ~slt_src.negate;
1312 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1313 }
1314 } else {
1315 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1316 }
1317 break;
1318
1319 case ir_unop_any: {
1320 assert(ir->operands[0]->type->is_vector());
1321
1322 /* After the dot-product, the value will be an integer on the
1323 * range [0,4]. Zero stays zero, and positive values become 1.0.
1324 */
1325 ir_to_mesa_instruction *const dp =
1326 emit_dp(ir, result_dst, op[0], op[0],
1327 ir->operands[0]->type->vector_elements);
1328 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1329 /* The clamping to [0,1] can be done for free in the fragment
1330 * shader with a saturate.
1331 */
1332 dp->saturate = true;
1333 } else {
1334 /* Negating the result of the dot-product gives values on the range
1335 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1336 * is achieved using SLT.
1337 */
1338 src_reg slt_src = result_src;
1339 slt_src.negate = ~slt_src.negate;
1340 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1341 }
1342 break;
1343 }
1344
1345 case ir_binop_logic_xor:
1346 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1347 break;
1348
1349 case ir_binop_logic_or: {
1350 /* After the addition, the value will be an integer on the
1351 * range [0,2]. Zero stays zero, and positive values become 1.0.
1352 */
1353 ir_to_mesa_instruction *add =
1354 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1355 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1356 /* The clamping to [0,1] can be done for free in the fragment
1357 * shader with a saturate.
1358 */
1359 add->saturate = true;
1360 } else {
1361 /* Negating the result of the addition gives values on the range
1362 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1363 * is achieved using SLT.
1364 */
1365 src_reg slt_src = result_src;
1366 slt_src.negate = ~slt_src.negate;
1367 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1368 }
1369 break;
1370 }
1371
1372 case ir_binop_logic_and:
1373 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1374 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1375 break;
1376
1377 case ir_binop_dot:
1378 assert(ir->operands[0]->type->is_vector());
1379 assert(ir->operands[0]->type == ir->operands[1]->type);
1380 emit_dp(ir, result_dst, op[0], op[1],
1381 ir->operands[0]->type->vector_elements);
1382 break;
1383
1384 case ir_unop_sqrt:
1385 /* sqrt(x) = x * rsq(x). */
1386 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1387 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1388 /* For incoming channels <= 0, set the result to 0. */
1389 op[0].negate = ~op[0].negate;
1390 emit(ir, OPCODE_CMP, result_dst,
1391 op[0], result_src, src_reg_for_float(0.0));
1392 break;
1393 case ir_unop_rsq:
1394 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1395 break;
1396 case ir_unop_i2f:
1397 case ir_unop_u2f:
1398 case ir_unop_b2f:
1399 case ir_unop_b2i:
1400 case ir_unop_i2u:
1401 case ir_unop_u2i:
1402 /* Mesa IR lacks types, ints are stored as truncated floats. */
1403 result_src = op[0];
1404 break;
1405 case ir_unop_f2i:
1406 case ir_unop_f2u:
1407 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1408 break;
1409 case ir_unop_f2b:
1410 case ir_unop_i2b:
1411 emit(ir, OPCODE_SNE, result_dst,
1412 op[0], src_reg_for_float(0.0));
1413 break;
1414 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1415 case ir_unop_bitcast_f2u:
1416 case ir_unop_bitcast_i2f:
1417 case ir_unop_bitcast_u2f:
1418 break;
1419 case ir_unop_trunc:
1420 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1421 break;
1422 case ir_unop_ceil:
1423 op[0].negate = ~op[0].negate;
1424 emit(ir, OPCODE_FLR, result_dst, op[0]);
1425 result_src.negate = ~result_src.negate;
1426 break;
1427 case ir_unop_floor:
1428 emit(ir, OPCODE_FLR, result_dst, op[0]);
1429 break;
1430 case ir_unop_fract:
1431 emit(ir, OPCODE_FRC, result_dst, op[0]);
1432 break;
1433 case ir_unop_pack_snorm_2x16:
1434 case ir_unop_pack_snorm_4x8:
1435 case ir_unop_pack_unorm_2x16:
1436 case ir_unop_pack_unorm_4x8:
1437 case ir_unop_pack_half_2x16:
1438 case ir_unop_unpack_snorm_2x16:
1439 case ir_unop_unpack_snorm_4x8:
1440 case ir_unop_unpack_unorm_2x16:
1441 case ir_unop_unpack_unorm_4x8:
1442 case ir_unop_unpack_half_2x16:
1443 case ir_unop_unpack_half_2x16_split_x:
1444 case ir_unop_unpack_half_2x16_split_y:
1445 case ir_binop_pack_half_2x16_split:
1446 case ir_unop_bitfield_reverse:
1447 case ir_unop_bit_count:
1448 case ir_unop_find_msb:
1449 case ir_unop_find_lsb:
1450 assert(!"not supported");
1451 break;
1452 case ir_binop_min:
1453 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1454 break;
1455 case ir_binop_max:
1456 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1457 break;
1458 case ir_binop_pow:
1459 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1460 break;
1461
1462 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1463 * hardware backends have no way to avoid Mesa IR generation
1464 * even if they don't use it, we need to emit "something" and
1465 * continue.
1466 */
1467 case ir_binop_lshift:
1468 case ir_binop_rshift:
1469 case ir_binop_bit_and:
1470 case ir_binop_bit_xor:
1471 case ir_binop_bit_or:
1472 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1473 break;
1474
1475 case ir_unop_bit_not:
1476 case ir_unop_round_even:
1477 emit(ir, OPCODE_MOV, result_dst, op[0]);
1478 break;
1479
1480 case ir_binop_ubo_load:
1481 assert(!"not supported");
1482 break;
1483
1484 case ir_triop_lrp:
1485 /* ir_triop_lrp operands are (x, y, a) while
1486 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1487 */
1488 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1489 break;
1490
1491 case ir_binop_vector_extract:
1492 case ir_binop_bfm:
1493 case ir_triop_bfi:
1494 case ir_triop_bitfield_extract:
1495 case ir_triop_vector_insert:
1496 case ir_quadop_bitfield_insert:
1497 assert(!"not supported");
1498 break;
1499
1500 case ir_quadop_vector:
1501 /* This operation should have already been handled.
1502 */
1503 assert(!"Should not get here.");
1504 break;
1505 }
1506
1507 this->result = result_src;
1508 }
1509
1510
1511 void
1512 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1513 {
1514 src_reg src;
1515 int i;
1516 int swizzle[4];
1517
1518 /* Note that this is only swizzles in expressions, not those on the left
1519 * hand side of an assignment, which do write masking. See ir_assignment
1520 * for that.
1521 */
1522
1523 ir->val->accept(this);
1524 src = this->result;
1525 assert(src.file != PROGRAM_UNDEFINED);
1526
1527 for (i = 0; i < 4; i++) {
1528 if (i < ir->type->vector_elements) {
1529 switch (i) {
1530 case 0:
1531 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1532 break;
1533 case 1:
1534 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1535 break;
1536 case 2:
1537 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1538 break;
1539 case 3:
1540 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1541 break;
1542 }
1543 } else {
1544 /* If the type is smaller than a vec4, replicate the last
1545 * channel out.
1546 */
1547 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1548 }
1549 }
1550
1551 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1552
1553 this->result = src;
1554 }
1555
1556 void
1557 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1558 {
1559 variable_storage *entry = find_variable_storage(ir->var);
1560 ir_variable *var = ir->var;
1561
1562 if (!entry) {
1563 switch (var->mode) {
1564 case ir_var_uniform:
1565 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1566 var->location);
1567 this->variables.push_tail(entry);
1568 break;
1569 case ir_var_shader_in:
1570 /* The linker assigns locations for varyings and attributes,
1571 * including deprecated builtins (like gl_Color),
1572 * user-assigned generic attributes (glBindVertexLocation),
1573 * and user-defined varyings.
1574 */
1575 assert(var->location != -1);
1576 entry = new(mem_ctx) variable_storage(var,
1577 PROGRAM_INPUT,
1578 var->location);
1579 break;
1580 case ir_var_shader_out:
1581 assert(var->location != -1);
1582 entry = new(mem_ctx) variable_storage(var,
1583 PROGRAM_OUTPUT,
1584 var->location);
1585 break;
1586 case ir_var_system_value:
1587 entry = new(mem_ctx) variable_storage(var,
1588 PROGRAM_SYSTEM_VALUE,
1589 var->location);
1590 break;
1591 case ir_var_auto:
1592 case ir_var_temporary:
1593 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1594 this->next_temp);
1595 this->variables.push_tail(entry);
1596
1597 next_temp += type_size(var->type);
1598 break;
1599 }
1600
1601 if (!entry) {
1602 printf("Failed to make storage for %s\n", var->name);
1603 exit(1);
1604 }
1605 }
1606
1607 this->result = src_reg(entry->file, entry->index, var->type);
1608 }
1609
1610 void
1611 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1612 {
1613 ir_constant *index;
1614 src_reg src;
1615 int element_size = type_size(ir->type);
1616
1617 index = ir->array_index->constant_expression_value();
1618
1619 ir->array->accept(this);
1620 src = this->result;
1621
1622 if (index) {
1623 src.index += index->value.i[0] * element_size;
1624 } else {
1625 /* Variable index array dereference. It eats the "vec4" of the
1626 * base of the array and an index that offsets the Mesa register
1627 * index.
1628 */
1629 ir->array_index->accept(this);
1630
1631 src_reg index_reg;
1632
1633 if (element_size == 1) {
1634 index_reg = this->result;
1635 } else {
1636 index_reg = get_temp(glsl_type::float_type);
1637
1638 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1639 this->result, src_reg_for_float(element_size));
1640 }
1641
1642 /* If there was already a relative address register involved, add the
1643 * new and the old together to get the new offset.
1644 */
1645 if (src.reladdr != NULL) {
1646 src_reg accum_reg = get_temp(glsl_type::float_type);
1647
1648 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1649 index_reg, *src.reladdr);
1650
1651 index_reg = accum_reg;
1652 }
1653
1654 src.reladdr = ralloc(mem_ctx, src_reg);
1655 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1656 }
1657
1658 /* If the type is smaller than a vec4, replicate the last channel out. */
1659 if (ir->type->is_scalar() || ir->type->is_vector())
1660 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1661 else
1662 src.swizzle = SWIZZLE_NOOP;
1663
1664 this->result = src;
1665 }
1666
1667 void
1668 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1669 {
1670 unsigned int i;
1671 const glsl_type *struct_type = ir->record->type;
1672 int offset = 0;
1673
1674 ir->record->accept(this);
1675
1676 for (i = 0; i < struct_type->length; i++) {
1677 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1678 break;
1679 offset += type_size(struct_type->fields.structure[i].type);
1680 }
1681
1682 /* If the type is smaller than a vec4, replicate the last channel out. */
1683 if (ir->type->is_scalar() || ir->type->is_vector())
1684 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1685 else
1686 this->result.swizzle = SWIZZLE_NOOP;
1687
1688 this->result.index += offset;
1689 }
1690
1691 /**
1692 * We want to be careful in assignment setup to hit the actual storage
1693 * instead of potentially using a temporary like we might with the
1694 * ir_dereference handler.
1695 */
1696 static dst_reg
1697 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1698 {
1699 /* The LHS must be a dereference. If the LHS is a variable indexed array
1700 * access of a vector, it must be separated into a series conditional moves
1701 * before reaching this point (see ir_vec_index_to_cond_assign).
1702 */
1703 assert(ir->as_dereference());
1704 ir_dereference_array *deref_array = ir->as_dereference_array();
1705 if (deref_array) {
1706 assert(!deref_array->array->type->is_vector());
1707 }
1708
1709 /* Use the rvalue deref handler for the most part. We'll ignore
1710 * swizzles in it and write swizzles using writemask, though.
1711 */
1712 ir->accept(v);
1713 return dst_reg(v->result);
1714 }
1715
1716 /**
1717 * Process the condition of a conditional assignment
1718 *
1719 * Examines the condition of a conditional assignment to generate the optimal
1720 * first operand of a \c CMP instruction. If the condition is a relational
1721 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1722 * used as the source for the \c CMP instruction. Otherwise the comparison
1723 * is processed to a boolean result, and the boolean result is used as the
1724 * operand to the CMP instruction.
1725 */
1726 bool
1727 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1728 {
1729 ir_rvalue *src_ir = ir;
1730 bool negate = true;
1731 bool switch_order = false;
1732
1733 ir_expression *const expr = ir->as_expression();
1734 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1735 bool zero_on_left = false;
1736
1737 if (expr->operands[0]->is_zero()) {
1738 src_ir = expr->operands[1];
1739 zero_on_left = true;
1740 } else if (expr->operands[1]->is_zero()) {
1741 src_ir = expr->operands[0];
1742 zero_on_left = false;
1743 }
1744
1745 /* a is - 0 + - 0 +
1746 * (a < 0) T F F ( a < 0) T F F
1747 * (0 < a) F F T (-a < 0) F F T
1748 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1749 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1750 * (a > 0) F F T (-a < 0) F F T
1751 * (0 > a) T F F ( a < 0) T F F
1752 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1753 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1754 *
1755 * Note that exchanging the order of 0 and 'a' in the comparison simply
1756 * means that the value of 'a' should be negated.
1757 */
1758 if (src_ir != ir) {
1759 switch (expr->operation) {
1760 case ir_binop_less:
1761 switch_order = false;
1762 negate = zero_on_left;
1763 break;
1764
1765 case ir_binop_greater:
1766 switch_order = false;
1767 negate = !zero_on_left;
1768 break;
1769
1770 case ir_binop_lequal:
1771 switch_order = true;
1772 negate = !zero_on_left;
1773 break;
1774
1775 case ir_binop_gequal:
1776 switch_order = true;
1777 negate = zero_on_left;
1778 break;
1779
1780 default:
1781 /* This isn't the right kind of comparison afterall, so make sure
1782 * the whole condition is visited.
1783 */
1784 src_ir = ir;
1785 break;
1786 }
1787 }
1788 }
1789
1790 src_ir->accept(this);
1791
1792 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1793 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1794 * choose which value OPCODE_CMP produces without an extra instruction
1795 * computing the condition.
1796 */
1797 if (negate)
1798 this->result.negate = ~this->result.negate;
1799
1800 return switch_order;
1801 }
1802
1803 void
1804 ir_to_mesa_visitor::visit(ir_assignment *ir)
1805 {
1806 dst_reg l;
1807 src_reg r;
1808 int i;
1809
1810 ir->rhs->accept(this);
1811 r = this->result;
1812
1813 l = get_assignment_lhs(ir->lhs, this);
1814
1815 /* FINISHME: This should really set to the correct maximal writemask for each
1816 * FINISHME: component written (in the loops below). This case can only
1817 * FINISHME: occur for matrices, arrays, and structures.
1818 */
1819 if (ir->write_mask == 0) {
1820 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1821 l.writemask = WRITEMASK_XYZW;
1822 } else if (ir->lhs->type->is_scalar()) {
1823 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1824 * FINISHME: W component of fragment shader output zero, work correctly.
1825 */
1826 l.writemask = WRITEMASK_XYZW;
1827 } else {
1828 int swizzles[4];
1829 int first_enabled_chan = 0;
1830 int rhs_chan = 0;
1831
1832 assert(ir->lhs->type->is_vector());
1833 l.writemask = ir->write_mask;
1834
1835 for (int i = 0; i < 4; i++) {
1836 if (l.writemask & (1 << i)) {
1837 first_enabled_chan = GET_SWZ(r.swizzle, i);
1838 break;
1839 }
1840 }
1841
1842 /* Swizzle a small RHS vector into the channels being written.
1843 *
1844 * glsl ir treats write_mask as dictating how many channels are
1845 * present on the RHS while Mesa IR treats write_mask as just
1846 * showing which channels of the vec4 RHS get written.
1847 */
1848 for (int i = 0; i < 4; i++) {
1849 if (l.writemask & (1 << i))
1850 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1851 else
1852 swizzles[i] = first_enabled_chan;
1853 }
1854 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1855 swizzles[2], swizzles[3]);
1856 }
1857
1858 assert(l.file != PROGRAM_UNDEFINED);
1859 assert(r.file != PROGRAM_UNDEFINED);
1860
1861 if (ir->condition) {
1862 const bool switch_order = this->process_move_condition(ir->condition);
1863 src_reg condition = this->result;
1864
1865 for (i = 0; i < type_size(ir->lhs->type); i++) {
1866 if (switch_order) {
1867 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1868 } else {
1869 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1870 }
1871
1872 l.index++;
1873 r.index++;
1874 }
1875 } else {
1876 for (i = 0; i < type_size(ir->lhs->type); i++) {
1877 emit(ir, OPCODE_MOV, l, r);
1878 l.index++;
1879 r.index++;
1880 }
1881 }
1882 }
1883
1884
1885 void
1886 ir_to_mesa_visitor::visit(ir_constant *ir)
1887 {
1888 src_reg src;
1889 GLfloat stack_vals[4] = { 0 };
1890 GLfloat *values = stack_vals;
1891 unsigned int i;
1892
1893 /* Unfortunately, 4 floats is all we can get into
1894 * _mesa_add_unnamed_constant. So, make a temp to store an
1895 * aggregate constant and move each constant value into it. If we
1896 * get lucky, copy propagation will eliminate the extra moves.
1897 */
1898
1899 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1900 src_reg temp_base = get_temp(ir->type);
1901 dst_reg temp = dst_reg(temp_base);
1902
1903 foreach_iter(exec_list_iterator, iter, ir->components) {
1904 ir_constant *field_value = (ir_constant *)iter.get();
1905 int size = type_size(field_value->type);
1906
1907 assert(size > 0);
1908
1909 field_value->accept(this);
1910 src = this->result;
1911
1912 for (i = 0; i < (unsigned int)size; i++) {
1913 emit(ir, OPCODE_MOV, temp, src);
1914
1915 src.index++;
1916 temp.index++;
1917 }
1918 }
1919 this->result = temp_base;
1920 return;
1921 }
1922
1923 if (ir->type->is_array()) {
1924 src_reg temp_base = get_temp(ir->type);
1925 dst_reg temp = dst_reg(temp_base);
1926 int size = type_size(ir->type->fields.array);
1927
1928 assert(size > 0);
1929
1930 for (i = 0; i < ir->type->length; i++) {
1931 ir->array_elements[i]->accept(this);
1932 src = this->result;
1933 for (int j = 0; j < size; j++) {
1934 emit(ir, OPCODE_MOV, temp, src);
1935
1936 src.index++;
1937 temp.index++;
1938 }
1939 }
1940 this->result = temp_base;
1941 return;
1942 }
1943
1944 if (ir->type->is_matrix()) {
1945 src_reg mat = get_temp(ir->type);
1946 dst_reg mat_column = dst_reg(mat);
1947
1948 for (i = 0; i < ir->type->matrix_columns; i++) {
1949 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1950 values = &ir->value.f[i * ir->type->vector_elements];
1951
1952 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1953 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1954 (gl_constant_value *) values,
1955 ir->type->vector_elements,
1956 &src.swizzle);
1957 emit(ir, OPCODE_MOV, mat_column, src);
1958
1959 mat_column.index++;
1960 }
1961
1962 this->result = mat;
1963 return;
1964 }
1965
1966 src.file = PROGRAM_CONSTANT;
1967 switch (ir->type->base_type) {
1968 case GLSL_TYPE_FLOAT:
1969 values = &ir->value.f[0];
1970 break;
1971 case GLSL_TYPE_UINT:
1972 for (i = 0; i < ir->type->vector_elements; i++) {
1973 values[i] = ir->value.u[i];
1974 }
1975 break;
1976 case GLSL_TYPE_INT:
1977 for (i = 0; i < ir->type->vector_elements; i++) {
1978 values[i] = ir->value.i[i];
1979 }
1980 break;
1981 case GLSL_TYPE_BOOL:
1982 for (i = 0; i < ir->type->vector_elements; i++) {
1983 values[i] = ir->value.b[i];
1984 }
1985 break;
1986 default:
1987 assert(!"Non-float/uint/int/bool constant");
1988 }
1989
1990 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1991 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1992 (gl_constant_value *) values,
1993 ir->type->vector_elements,
1994 &this->result.swizzle);
1995 }
1996
1997 void
1998 ir_to_mesa_visitor::visit(ir_call *ir)
1999 {
2000 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
2001 }
2002
2003 void
2004 ir_to_mesa_visitor::visit(ir_texture *ir)
2005 {
2006 src_reg result_src, coord, lod_info, projector, dx, dy;
2007 dst_reg result_dst, coord_dst;
2008 ir_to_mesa_instruction *inst = NULL;
2009 prog_opcode opcode = OPCODE_NOP;
2010
2011 if (ir->op == ir_txs)
2012 this->result = src_reg_for_float(0.0);
2013 else
2014 ir->coordinate->accept(this);
2015
2016 /* Put our coords in a temp. We'll need to modify them for shadow,
2017 * projection, or LOD, so the only case we'd use it as is is if
2018 * we're doing plain old texturing. Mesa IR optimization should
2019 * handle cleaning up our mess in that case.
2020 */
2021 coord = get_temp(glsl_type::vec4_type);
2022 coord_dst = dst_reg(coord);
2023 emit(ir, OPCODE_MOV, coord_dst, this->result);
2024
2025 if (ir->projector) {
2026 ir->projector->accept(this);
2027 projector = this->result;
2028 }
2029
2030 /* Storage for our result. Ideally for an assignment we'd be using
2031 * the actual storage for the result here, instead.
2032 */
2033 result_src = get_temp(glsl_type::vec4_type);
2034 result_dst = dst_reg(result_src);
2035
2036 switch (ir->op) {
2037 case ir_tex:
2038 case ir_txs:
2039 opcode = OPCODE_TEX;
2040 break;
2041 case ir_txb:
2042 opcode = OPCODE_TXB;
2043 ir->lod_info.bias->accept(this);
2044 lod_info = this->result;
2045 break;
2046 case ir_txf:
2047 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2048 case ir_txl:
2049 opcode = OPCODE_TXL;
2050 ir->lod_info.lod->accept(this);
2051 lod_info = this->result;
2052 break;
2053 case ir_txd:
2054 opcode = OPCODE_TXD;
2055 ir->lod_info.grad.dPdx->accept(this);
2056 dx = this->result;
2057 ir->lod_info.grad.dPdy->accept(this);
2058 dy = this->result;
2059 break;
2060 case ir_txf_ms:
2061 assert(!"Unexpected ir_txf_ms opcode");
2062 break;
2063 case ir_lod:
2064 assert(!"Unexpected ir_lod opcode");
2065 break;
2066 }
2067
2068 const glsl_type *sampler_type = ir->sampler->type;
2069
2070 if (ir->projector) {
2071 if (opcode == OPCODE_TEX) {
2072 /* Slot the projector in as the last component of the coord. */
2073 coord_dst.writemask = WRITEMASK_W;
2074 emit(ir, OPCODE_MOV, coord_dst, projector);
2075 coord_dst.writemask = WRITEMASK_XYZW;
2076 opcode = OPCODE_TXP;
2077 } else {
2078 src_reg coord_w = coord;
2079 coord_w.swizzle = SWIZZLE_WWWW;
2080
2081 /* For the other TEX opcodes there's no projective version
2082 * since the last slot is taken up by lod info. Do the
2083 * projective divide now.
2084 */
2085 coord_dst.writemask = WRITEMASK_W;
2086 emit(ir, OPCODE_RCP, coord_dst, projector);
2087
2088 /* In the case where we have to project the coordinates "by hand,"
2089 * the shadow comparitor value must also be projected.
2090 */
2091 src_reg tmp_src = coord;
2092 if (ir->shadow_comparitor) {
2093 /* Slot the shadow value in as the second to last component of the
2094 * coord.
2095 */
2096 ir->shadow_comparitor->accept(this);
2097
2098 tmp_src = get_temp(glsl_type::vec4_type);
2099 dst_reg tmp_dst = dst_reg(tmp_src);
2100
2101 /* Projective division not allowed for array samplers. */
2102 assert(!sampler_type->sampler_array);
2103
2104 tmp_dst.writemask = WRITEMASK_Z;
2105 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2106
2107 tmp_dst.writemask = WRITEMASK_XY;
2108 emit(ir, OPCODE_MOV, tmp_dst, coord);
2109 }
2110
2111 coord_dst.writemask = WRITEMASK_XYZ;
2112 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2113
2114 coord_dst.writemask = WRITEMASK_XYZW;
2115 coord.swizzle = SWIZZLE_XYZW;
2116 }
2117 }
2118
2119 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2120 * comparitor was put in the correct place (and projected) by the code,
2121 * above, that handles by-hand projection.
2122 */
2123 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2124 /* Slot the shadow value in as the second to last component of the
2125 * coord.
2126 */
2127 ir->shadow_comparitor->accept(this);
2128
2129 /* XXX This will need to be updated for cubemap array samplers. */
2130 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2131 sampler_type->sampler_array) {
2132 coord_dst.writemask = WRITEMASK_W;
2133 } else {
2134 coord_dst.writemask = WRITEMASK_Z;
2135 }
2136
2137 emit(ir, OPCODE_MOV, coord_dst, this->result);
2138 coord_dst.writemask = WRITEMASK_XYZW;
2139 }
2140
2141 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2142 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2143 coord_dst.writemask = WRITEMASK_W;
2144 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2145 coord_dst.writemask = WRITEMASK_XYZW;
2146 }
2147
2148 if (opcode == OPCODE_TXD)
2149 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2150 else
2151 inst = emit(ir, opcode, result_dst, coord);
2152
2153 if (ir->shadow_comparitor)
2154 inst->tex_shadow = GL_TRUE;
2155
2156 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2157 this->shader_program,
2158 this->prog);
2159
2160 switch (sampler_type->sampler_dimensionality) {
2161 case GLSL_SAMPLER_DIM_1D:
2162 inst->tex_target = (sampler_type->sampler_array)
2163 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2164 break;
2165 case GLSL_SAMPLER_DIM_2D:
2166 inst->tex_target = (sampler_type->sampler_array)
2167 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2168 break;
2169 case GLSL_SAMPLER_DIM_3D:
2170 inst->tex_target = TEXTURE_3D_INDEX;
2171 break;
2172 case GLSL_SAMPLER_DIM_CUBE:
2173 inst->tex_target = TEXTURE_CUBE_INDEX;
2174 break;
2175 case GLSL_SAMPLER_DIM_RECT:
2176 inst->tex_target = TEXTURE_RECT_INDEX;
2177 break;
2178 case GLSL_SAMPLER_DIM_BUF:
2179 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2180 break;
2181 case GLSL_SAMPLER_DIM_EXTERNAL:
2182 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2183 break;
2184 default:
2185 assert(!"Should not get here.");
2186 }
2187
2188 this->result = result_src;
2189 }
2190
2191 void
2192 ir_to_mesa_visitor::visit(ir_return *ir)
2193 {
2194 /* Non-void functions should have been inlined. We may still emit RETs
2195 * from main() unless the EmitNoMainReturn option is set.
2196 */
2197 assert(!ir->get_value());
2198 emit(ir, OPCODE_RET);
2199 }
2200
2201 void
2202 ir_to_mesa_visitor::visit(ir_discard *ir)
2203 {
2204 if (ir->condition) {
2205 ir->condition->accept(this);
2206 this->result.negate = ~this->result.negate;
2207 emit(ir, OPCODE_KIL, undef_dst, this->result);
2208 } else {
2209 emit(ir, OPCODE_KIL_NV);
2210 }
2211 }
2212
2213 void
2214 ir_to_mesa_visitor::visit(ir_if *ir)
2215 {
2216 ir_to_mesa_instruction *cond_inst, *if_inst;
2217 ir_to_mesa_instruction *prev_inst;
2218
2219 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2220
2221 ir->condition->accept(this);
2222 assert(this->result.file != PROGRAM_UNDEFINED);
2223
2224 if (this->options->EmitCondCodes) {
2225 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2226
2227 /* See if we actually generated any instruction for generating
2228 * the condition. If not, then cook up a move to a temp so we
2229 * have something to set cond_update on.
2230 */
2231 if (cond_inst == prev_inst) {
2232 src_reg temp = get_temp(glsl_type::bool_type);
2233 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2234 }
2235 cond_inst->cond_update = GL_TRUE;
2236
2237 if_inst = emit(ir->condition, OPCODE_IF);
2238 if_inst->dst.cond_mask = COND_NE;
2239 } else {
2240 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2241 }
2242
2243 this->instructions.push_tail(if_inst);
2244
2245 visit_exec_list(&ir->then_instructions, this);
2246
2247 if (!ir->else_instructions.is_empty()) {
2248 emit(ir->condition, OPCODE_ELSE);
2249 visit_exec_list(&ir->else_instructions, this);
2250 }
2251
2252 if_inst = emit(ir->condition, OPCODE_ENDIF);
2253 }
2254
2255 ir_to_mesa_visitor::ir_to_mesa_visitor()
2256 {
2257 result.file = PROGRAM_UNDEFINED;
2258 next_temp = 1;
2259 next_signature_id = 1;
2260 current_function = NULL;
2261 mem_ctx = ralloc_context(NULL);
2262 }
2263
2264 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2265 {
2266 ralloc_free(mem_ctx);
2267 }
2268
2269 static struct prog_src_register
2270 mesa_src_reg_from_ir_src_reg(src_reg reg)
2271 {
2272 struct prog_src_register mesa_reg;
2273
2274 mesa_reg.File = reg.file;
2275 assert(reg.index < (1 << INST_INDEX_BITS));
2276 mesa_reg.Index = reg.index;
2277 mesa_reg.Swizzle = reg.swizzle;
2278 mesa_reg.RelAddr = reg.reladdr != NULL;
2279 mesa_reg.Negate = reg.negate;
2280 mesa_reg.Abs = 0;
2281 mesa_reg.HasIndex2 = GL_FALSE;
2282 mesa_reg.RelAddr2 = 0;
2283 mesa_reg.Index2 = 0;
2284
2285 return mesa_reg;
2286 }
2287
2288 static void
2289 set_branchtargets(ir_to_mesa_visitor *v,
2290 struct prog_instruction *mesa_instructions,
2291 int num_instructions)
2292 {
2293 int if_count = 0, loop_count = 0;
2294 int *if_stack, *loop_stack;
2295 int if_stack_pos = 0, loop_stack_pos = 0;
2296 int i, j;
2297
2298 for (i = 0; i < num_instructions; i++) {
2299 switch (mesa_instructions[i].Opcode) {
2300 case OPCODE_IF:
2301 if_count++;
2302 break;
2303 case OPCODE_BGNLOOP:
2304 loop_count++;
2305 break;
2306 case OPCODE_BRK:
2307 case OPCODE_CONT:
2308 mesa_instructions[i].BranchTarget = -1;
2309 break;
2310 default:
2311 break;
2312 }
2313 }
2314
2315 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2316 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2317
2318 for (i = 0; i < num_instructions; i++) {
2319 switch (mesa_instructions[i].Opcode) {
2320 case OPCODE_IF:
2321 if_stack[if_stack_pos] = i;
2322 if_stack_pos++;
2323 break;
2324 case OPCODE_ELSE:
2325 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2326 if_stack[if_stack_pos - 1] = i;
2327 break;
2328 case OPCODE_ENDIF:
2329 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2330 if_stack_pos--;
2331 break;
2332 case OPCODE_BGNLOOP:
2333 loop_stack[loop_stack_pos] = i;
2334 loop_stack_pos++;
2335 break;
2336 case OPCODE_ENDLOOP:
2337 loop_stack_pos--;
2338 /* Rewrite any breaks/conts at this nesting level (haven't
2339 * already had a BranchTarget assigned) to point to the end
2340 * of the loop.
2341 */
2342 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2343 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2344 mesa_instructions[j].Opcode == OPCODE_CONT) {
2345 if (mesa_instructions[j].BranchTarget == -1) {
2346 mesa_instructions[j].BranchTarget = i;
2347 }
2348 }
2349 }
2350 /* The loop ends point at each other. */
2351 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2352 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2353 break;
2354 case OPCODE_CAL:
2355 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2356 function_entry *entry = (function_entry *)iter.get();
2357
2358 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2359 mesa_instructions[i].BranchTarget = entry->inst;
2360 break;
2361 }
2362 }
2363 break;
2364 default:
2365 break;
2366 }
2367 }
2368 }
2369
2370 static void
2371 print_program(struct prog_instruction *mesa_instructions,
2372 ir_instruction **mesa_instruction_annotation,
2373 int num_instructions)
2374 {
2375 ir_instruction *last_ir = NULL;
2376 int i;
2377 int indent = 0;
2378
2379 for (i = 0; i < num_instructions; i++) {
2380 struct prog_instruction *mesa_inst = mesa_instructions + i;
2381 ir_instruction *ir = mesa_instruction_annotation[i];
2382
2383 fprintf(stdout, "%3d: ", i);
2384
2385 if (last_ir != ir && ir) {
2386 int j;
2387
2388 for (j = 0; j < indent; j++) {
2389 fprintf(stdout, " ");
2390 }
2391 ir->print();
2392 printf("\n");
2393 last_ir = ir;
2394
2395 fprintf(stdout, " "); /* line number spacing. */
2396 }
2397
2398 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2399 PROG_PRINT_DEBUG, NULL);
2400 }
2401 }
2402
2403 class add_uniform_to_shader : public program_resource_visitor {
2404 public:
2405 add_uniform_to_shader(struct gl_shader_program *shader_program,
2406 struct gl_program_parameter_list *params,
2407 gl_shader_type shader_type)
2408 : shader_program(shader_program), params(params), idx(-1),
2409 shader_type(shader_type)
2410 {
2411 /* empty */
2412 }
2413
2414 void process(ir_variable *var)
2415 {
2416 this->idx = -1;
2417 this->program_resource_visitor::process(var);
2418
2419 var->location = this->idx;
2420 }
2421
2422 private:
2423 virtual void visit_field(const glsl_type *type, const char *name,
2424 bool row_major);
2425
2426 struct gl_shader_program *shader_program;
2427 struct gl_program_parameter_list *params;
2428 int idx;
2429 gl_shader_type shader_type;
2430 };
2431
2432 void
2433 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2434 bool row_major)
2435 {
2436 unsigned int size;
2437
2438 (void) row_major;
2439
2440 if (type->is_vector() || type->is_scalar()) {
2441 size = type->vector_elements;
2442 } else {
2443 size = type_size(type) * 4;
2444 }
2445
2446 gl_register_file file;
2447 if (type->is_sampler() ||
2448 (type->is_array() && type->fields.array->is_sampler())) {
2449 file = PROGRAM_SAMPLER;
2450 } else {
2451 file = PROGRAM_UNIFORM;
2452 }
2453
2454 int index = _mesa_lookup_parameter_index(params, -1, name);
2455 if (index < 0) {
2456 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2457 NULL, NULL);
2458
2459 /* Sampler uniform values are stored in prog->SamplerUnits,
2460 * and the entry in that array is selected by this index we
2461 * store in ParameterValues[].
2462 */
2463 if (file == PROGRAM_SAMPLER) {
2464 unsigned location;
2465 const bool found =
2466 this->shader_program->UniformHash->get(location,
2467 params->Parameters[index].Name);
2468 assert(found);
2469
2470 if (!found)
2471 return;
2472
2473 struct gl_uniform_storage *storage =
2474 &this->shader_program->UniformStorage[location];
2475
2476 assert(storage->sampler[shader_type].active);
2477
2478 for (unsigned int j = 0; j < size / 4; j++)
2479 params->ParameterValues[index + j][0].f =
2480 storage->sampler[shader_type].index + j;
2481 }
2482 }
2483
2484 /* The first part of the uniform that's processed determines the base
2485 * location of the whole uniform (for structures).
2486 */
2487 if (this->idx < 0)
2488 this->idx = index;
2489 }
2490
2491 /**
2492 * Generate the program parameters list for the user uniforms in a shader
2493 *
2494 * \param shader_program Linked shader program. This is only used to
2495 * emit possible link errors to the info log.
2496 * \param sh Shader whose uniforms are to be processed.
2497 * \param params Parameter list to be filled in.
2498 */
2499 void
2500 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2501 *shader_program,
2502 struct gl_shader *sh,
2503 struct gl_program_parameter_list
2504 *params)
2505 {
2506 add_uniform_to_shader add(shader_program, params,
2507 _mesa_shader_type_to_index(sh->Type));
2508
2509 foreach_list(node, sh->ir) {
2510 ir_variable *var = ((ir_instruction *) node)->as_variable();
2511
2512 if ((var == NULL) || (var->mode != ir_var_uniform)
2513 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2514 continue;
2515
2516 add.process(var);
2517 }
2518 }
2519
2520 void
2521 _mesa_associate_uniform_storage(struct gl_context *ctx,
2522 struct gl_shader_program *shader_program,
2523 struct gl_program_parameter_list *params)
2524 {
2525 /* After adding each uniform to the parameter list, connect the storage for
2526 * the parameter with the tracking structure used by the API for the
2527 * uniform.
2528 */
2529 unsigned last_location = unsigned(~0);
2530 for (unsigned i = 0; i < params->NumParameters; i++) {
2531 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2532 continue;
2533
2534 unsigned location;
2535 const bool found =
2536 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2537 assert(found);
2538
2539 if (!found)
2540 continue;
2541
2542 if (location != last_location) {
2543 struct gl_uniform_storage *storage =
2544 &shader_program->UniformStorage[location];
2545 enum gl_uniform_driver_format format = uniform_native;
2546
2547 unsigned columns = 0;
2548 switch (storage->type->base_type) {
2549 case GLSL_TYPE_UINT:
2550 assert(ctx->Const.NativeIntegers);
2551 format = uniform_native;
2552 columns = 1;
2553 break;
2554 case GLSL_TYPE_INT:
2555 format =
2556 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2557 columns = 1;
2558 break;
2559 case GLSL_TYPE_FLOAT:
2560 format = uniform_native;
2561 columns = storage->type->matrix_columns;
2562 break;
2563 case GLSL_TYPE_BOOL:
2564 if (ctx->Const.NativeIntegers) {
2565 format = (ctx->Const.UniformBooleanTrue == 1)
2566 ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2567 } else {
2568 format = uniform_bool_float;
2569 }
2570 columns = 1;
2571 break;
2572 case GLSL_TYPE_SAMPLER:
2573 format = uniform_native;
2574 columns = 1;
2575 break;
2576 case GLSL_TYPE_ARRAY:
2577 case GLSL_TYPE_VOID:
2578 case GLSL_TYPE_STRUCT:
2579 case GLSL_TYPE_ERROR:
2580 case GLSL_TYPE_INTERFACE:
2581 assert(!"Should not get here.");
2582 break;
2583 }
2584
2585 _mesa_uniform_attach_driver_storage(storage,
2586 4 * sizeof(float) * columns,
2587 4 * sizeof(float),
2588 format,
2589 &params->ParameterValues[i]);
2590
2591 /* After attaching the driver's storage to the uniform, propagate any
2592 * data from the linker's backing store. This will cause values from
2593 * initializers in the source code to be copied over.
2594 */
2595 _mesa_propagate_uniforms_to_driver_storage(storage,
2596 0,
2597 MAX2(1, storage->array_elements));
2598
2599 last_location = location;
2600 }
2601 }
2602 }
2603
2604 /*
2605 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2606 * channels for copy propagation and updates following instructions to
2607 * use the original versions.
2608 *
2609 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2610 * will occur. As an example, a TXP production before this pass:
2611 *
2612 * 0: MOV TEMP[1], INPUT[4].xyyy;
2613 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2614 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2615 *
2616 * and after:
2617 *
2618 * 0: MOV TEMP[1], INPUT[4].xyyy;
2619 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2620 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2621 *
2622 * which allows for dead code elimination on TEMP[1]'s writes.
2623 */
2624 void
2625 ir_to_mesa_visitor::copy_propagate(void)
2626 {
2627 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2628 ir_to_mesa_instruction *,
2629 this->next_temp * 4);
2630 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2631 int level = 0;
2632
2633 foreach_iter(exec_list_iterator, iter, this->instructions) {
2634 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2635
2636 assert(inst->dst.file != PROGRAM_TEMPORARY
2637 || inst->dst.index < this->next_temp);
2638
2639 /* First, do any copy propagation possible into the src regs. */
2640 for (int r = 0; r < 3; r++) {
2641 ir_to_mesa_instruction *first = NULL;
2642 bool good = true;
2643 int acp_base = inst->src[r].index * 4;
2644
2645 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2646 inst->src[r].reladdr)
2647 continue;
2648
2649 /* See if we can find entries in the ACP consisting of MOVs
2650 * from the same src register for all the swizzled channels
2651 * of this src register reference.
2652 */
2653 for (int i = 0; i < 4; i++) {
2654 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2655 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2656
2657 if (!copy_chan) {
2658 good = false;
2659 break;
2660 }
2661
2662 assert(acp_level[acp_base + src_chan] <= level);
2663
2664 if (!first) {
2665 first = copy_chan;
2666 } else {
2667 if (first->src[0].file != copy_chan->src[0].file ||
2668 first->src[0].index != copy_chan->src[0].index) {
2669 good = false;
2670 break;
2671 }
2672 }
2673 }
2674
2675 if (good) {
2676 /* We've now validated that we can copy-propagate to
2677 * replace this src register reference. Do it.
2678 */
2679 inst->src[r].file = first->src[0].file;
2680 inst->src[r].index = first->src[0].index;
2681
2682 int swizzle = 0;
2683 for (int i = 0; i < 4; i++) {
2684 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2685 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2686 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2687 (3 * i));
2688 }
2689 inst->src[r].swizzle = swizzle;
2690 }
2691 }
2692
2693 switch (inst->op) {
2694 case OPCODE_BGNLOOP:
2695 case OPCODE_ENDLOOP:
2696 /* End of a basic block, clear the ACP entirely. */
2697 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2698 break;
2699
2700 case OPCODE_IF:
2701 ++level;
2702 break;
2703
2704 case OPCODE_ENDIF:
2705 case OPCODE_ELSE:
2706 /* Clear all channels written inside the block from the ACP, but
2707 * leaving those that were not touched.
2708 */
2709 for (int r = 0; r < this->next_temp; r++) {
2710 for (int c = 0; c < 4; c++) {
2711 if (!acp[4 * r + c])
2712 continue;
2713
2714 if (acp_level[4 * r + c] >= level)
2715 acp[4 * r + c] = NULL;
2716 }
2717 }
2718 if (inst->op == OPCODE_ENDIF)
2719 --level;
2720 break;
2721
2722 default:
2723 /* Continuing the block, clear any written channels from
2724 * the ACP.
2725 */
2726 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2727 /* Any temporary might be written, so no copy propagation
2728 * across this instruction.
2729 */
2730 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2731 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2732 inst->dst.reladdr) {
2733 /* Any output might be written, so no copy propagation
2734 * from outputs across this instruction.
2735 */
2736 for (int r = 0; r < this->next_temp; r++) {
2737 for (int c = 0; c < 4; c++) {
2738 if (!acp[4 * r + c])
2739 continue;
2740
2741 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2742 acp[4 * r + c] = NULL;
2743 }
2744 }
2745 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2746 inst->dst.file == PROGRAM_OUTPUT) {
2747 /* Clear where it's used as dst. */
2748 if (inst->dst.file == PROGRAM_TEMPORARY) {
2749 for (int c = 0; c < 4; c++) {
2750 if (inst->dst.writemask & (1 << c)) {
2751 acp[4 * inst->dst.index + c] = NULL;
2752 }
2753 }
2754 }
2755
2756 /* Clear where it's used as src. */
2757 for (int r = 0; r < this->next_temp; r++) {
2758 for (int c = 0; c < 4; c++) {
2759 if (!acp[4 * r + c])
2760 continue;
2761
2762 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2763
2764 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2765 acp[4 * r + c]->src[0].index == inst->dst.index &&
2766 inst->dst.writemask & (1 << src_chan))
2767 {
2768 acp[4 * r + c] = NULL;
2769 }
2770 }
2771 }
2772 }
2773 break;
2774 }
2775
2776 /* If this is a copy, add it to the ACP. */
2777 if (inst->op == OPCODE_MOV &&
2778 inst->dst.file == PROGRAM_TEMPORARY &&
2779 !(inst->dst.file == inst->src[0].file &&
2780 inst->dst.index == inst->src[0].index) &&
2781 !inst->dst.reladdr &&
2782 !inst->saturate &&
2783 !inst->src[0].reladdr &&
2784 !inst->src[0].negate) {
2785 for (int i = 0; i < 4; i++) {
2786 if (inst->dst.writemask & (1 << i)) {
2787 acp[4 * inst->dst.index + i] = inst;
2788 acp_level[4 * inst->dst.index + i] = level;
2789 }
2790 }
2791 }
2792 }
2793
2794 ralloc_free(acp_level);
2795 ralloc_free(acp);
2796 }
2797
2798
2799 /**
2800 * Convert a shader's GLSL IR into a Mesa gl_program.
2801 */
2802 static struct gl_program *
2803 get_mesa_program(struct gl_context *ctx,
2804 struct gl_shader_program *shader_program,
2805 struct gl_shader *shader)
2806 {
2807 ir_to_mesa_visitor v;
2808 struct prog_instruction *mesa_instructions, *mesa_inst;
2809 ir_instruction **mesa_instruction_annotation;
2810 int i;
2811 struct gl_program *prog;
2812 GLenum target;
2813 const char *target_string = _mesa_glsl_shader_target_name(shader->Type);
2814 struct gl_shader_compiler_options *options =
2815 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2816
2817 switch (shader->Type) {
2818 case GL_VERTEX_SHADER:
2819 target = GL_VERTEX_PROGRAM_ARB;
2820 break;
2821 case GL_FRAGMENT_SHADER:
2822 target = GL_FRAGMENT_PROGRAM_ARB;
2823 break;
2824 case GL_GEOMETRY_SHADER:
2825 target = GL_GEOMETRY_PROGRAM_NV;
2826 break;
2827 default:
2828 assert(!"should not be reached");
2829 return NULL;
2830 }
2831
2832 validate_ir_tree(shader->ir);
2833
2834 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2835 if (!prog)
2836 return NULL;
2837 prog->Parameters = _mesa_new_parameter_list();
2838 v.ctx = ctx;
2839 v.prog = prog;
2840 v.shader_program = shader_program;
2841 v.options = options;
2842
2843 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2844 prog->Parameters);
2845
2846 /* Emit Mesa IR for main(). */
2847 visit_exec_list(shader->ir, &v);
2848 v.emit(NULL, OPCODE_END);
2849
2850 prog->NumTemporaries = v.next_temp;
2851
2852 int num_instructions = 0;
2853 foreach_iter(exec_list_iterator, iter, v.instructions) {
2854 num_instructions++;
2855 }
2856
2857 mesa_instructions =
2858 (struct prog_instruction *)calloc(num_instructions,
2859 sizeof(*mesa_instructions));
2860 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2861 num_instructions);
2862
2863 v.copy_propagate();
2864
2865 /* Convert ir_mesa_instructions into prog_instructions.
2866 */
2867 mesa_inst = mesa_instructions;
2868 i = 0;
2869 foreach_iter(exec_list_iterator, iter, v.instructions) {
2870 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2871
2872 mesa_inst->Opcode = inst->op;
2873 mesa_inst->CondUpdate = inst->cond_update;
2874 if (inst->saturate)
2875 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2876 mesa_inst->DstReg.File = inst->dst.file;
2877 mesa_inst->DstReg.Index = inst->dst.index;
2878 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2879 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2880 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2881 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2882 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2883 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2884 mesa_inst->TexSrcUnit = inst->sampler;
2885 mesa_inst->TexSrcTarget = inst->tex_target;
2886 mesa_inst->TexShadow = inst->tex_shadow;
2887 mesa_instruction_annotation[i] = inst->ir;
2888
2889 /* Set IndirectRegisterFiles. */
2890 if (mesa_inst->DstReg.RelAddr)
2891 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2892
2893 /* Update program's bitmask of indirectly accessed register files */
2894 for (unsigned src = 0; src < 3; src++)
2895 if (mesa_inst->SrcReg[src].RelAddr)
2896 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2897
2898 switch (mesa_inst->Opcode) {
2899 case OPCODE_IF:
2900 if (options->MaxIfDepth == 0) {
2901 linker_warning(shader_program,
2902 "Couldn't flatten if-statement. "
2903 "This will likely result in software "
2904 "rasterization.\n");
2905 }
2906 break;
2907 case OPCODE_BGNLOOP:
2908 if (options->EmitNoLoops) {
2909 linker_warning(shader_program,
2910 "Couldn't unroll loop. "
2911 "This will likely result in software "
2912 "rasterization.\n");
2913 }
2914 break;
2915 case OPCODE_CONT:
2916 if (options->EmitNoCont) {
2917 linker_warning(shader_program,
2918 "Couldn't lower continue-statement. "
2919 "This will likely result in software "
2920 "rasterization.\n");
2921 }
2922 break;
2923 case OPCODE_ARL:
2924 prog->NumAddressRegs = 1;
2925 break;
2926 default:
2927 break;
2928 }
2929
2930 mesa_inst++;
2931 i++;
2932
2933 if (!shader_program->LinkStatus)
2934 break;
2935 }
2936
2937 if (!shader_program->LinkStatus) {
2938 goto fail_exit;
2939 }
2940
2941 set_branchtargets(&v, mesa_instructions, num_instructions);
2942
2943 if (ctx->Shader.Flags & GLSL_DUMP) {
2944 printf("\n");
2945 printf("GLSL IR for linked %s program %d:\n", target_string,
2946 shader_program->Name);
2947 _mesa_print_ir(shader->ir, NULL);
2948 printf("\n");
2949 printf("\n");
2950 printf("Mesa IR for linked %s program %d:\n", target_string,
2951 shader_program->Name);
2952 print_program(mesa_instructions, mesa_instruction_annotation,
2953 num_instructions);
2954 }
2955
2956 prog->Instructions = mesa_instructions;
2957 prog->NumInstructions = num_instructions;
2958
2959 /* Setting this to NULL prevents a possible double free in the fail_exit
2960 * path (far below).
2961 */
2962 mesa_instructions = NULL;
2963
2964 do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
2965
2966 prog->SamplersUsed = shader->active_samplers;
2967 prog->ShadowSamplers = shader->shadow_samplers;
2968 _mesa_update_shader_textures_used(shader_program, prog);
2969
2970 /* Set the gl_FragDepth layout. */
2971 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2972 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2973 fp->FragDepthLayout = shader_program->FragDepthLayout;
2974 }
2975
2976 _mesa_reference_program(ctx, &shader->Program, prog);
2977
2978 if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
2979 _mesa_optimize_program(ctx, prog);
2980 }
2981
2982 /* This has to be done last. Any operation that can cause
2983 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2984 * program constant) has to happen before creating this linkage.
2985 */
2986 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2987 if (!shader_program->LinkStatus) {
2988 goto fail_exit;
2989 }
2990
2991 return prog;
2992
2993 fail_exit:
2994 free(mesa_instructions);
2995 _mesa_reference_program(ctx, &shader->Program, NULL);
2996 return NULL;
2997 }
2998
2999 extern "C" {
3000
3001 /**
3002 * Link a shader.
3003 * Called via ctx->Driver.LinkShader()
3004 * This actually involves converting GLSL IR into Mesa gl_programs with
3005 * code lowering and other optimizations.
3006 */
3007 GLboolean
3008 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3009 {
3010 assert(prog->LinkStatus);
3011
3012 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3013 if (prog->_LinkedShaders[i] == NULL)
3014 continue;
3015
3016 bool progress;
3017 exec_list *ir = prog->_LinkedShaders[i]->ir;
3018 const struct gl_shader_compiler_options *options =
3019 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
3020
3021 do {
3022 progress = false;
3023
3024 /* Lowering */
3025 do_mat_op_to_vec(ir);
3026 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3027 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3028 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3029
3030 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3031
3032 progress = do_common_optimization(ir, true, true,
3033 options->MaxUnrollIterations,
3034 options)
3035 || progress;
3036
3037 progress = lower_quadop_vector(ir, true) || progress;
3038
3039 if (options->MaxIfDepth == 0)
3040 progress = lower_discard(ir) || progress;
3041
3042 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3043
3044 if (options->EmitNoNoise)
3045 progress = lower_noise(ir) || progress;
3046
3047 /* If there are forms of indirect addressing that the driver
3048 * cannot handle, perform the lowering pass.
3049 */
3050 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3051 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3052 progress =
3053 lower_variable_index_to_cond_assign(ir,
3054 options->EmitNoIndirectInput,
3055 options->EmitNoIndirectOutput,
3056 options->EmitNoIndirectTemp,
3057 options->EmitNoIndirectUniform)
3058 || progress;
3059
3060 progress = do_vec_index_to_cond_assign(ir) || progress;
3061 progress = lower_vector_insert(ir, true) || progress;
3062 } while (progress);
3063
3064 validate_ir_tree(ir);
3065 }
3066
3067 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3068 struct gl_program *linked_prog;
3069
3070 if (prog->_LinkedShaders[i] == NULL)
3071 continue;
3072
3073 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3074
3075 if (linked_prog) {
3076 static const GLenum targets[] = {
3077 GL_VERTEX_PROGRAM_ARB,
3078 GL_FRAGMENT_PROGRAM_ARB,
3079 GL_GEOMETRY_PROGRAM_NV
3080 };
3081
3082 if (i == MESA_SHADER_VERTEX) {
3083 ((struct gl_vertex_program *)linked_prog)->UsesClipDistance
3084 = prog->Vert.UsesClipDistance;
3085 }
3086
3087 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3088 linked_prog);
3089 if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
3090 return GL_FALSE;
3091 }
3092 }
3093
3094 _mesa_reference_program(ctx, &linked_prog, NULL);
3095 }
3096
3097 return prog->LinkStatus;
3098 }
3099
3100
3101 /**
3102 * Compile a GLSL shader. Called via glCompileShader().
3103 */
3104 void
3105 _mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
3106 {
3107 struct _mesa_glsl_parse_state *state =
3108 new(shader) _mesa_glsl_parse_state(ctx, shader->Type, shader);
3109
3110 const char *source = shader->Source;
3111 /* Check if the user called glCompileShader without first calling
3112 * glShaderSource. This should fail to compile, but not raise a GL_ERROR.
3113 */
3114 if (source == NULL) {
3115 shader->CompileStatus = GL_FALSE;
3116 return;
3117 }
3118
3119 state->error = glcpp_preprocess(state, &source, &state->info_log,
3120 &ctx->Extensions, ctx);
3121
3122 if (ctx->Shader.Flags & GLSL_DUMP) {
3123 printf("GLSL source for %s shader %d:\n",
3124 _mesa_glsl_shader_target_name(state->target), shader->Name);
3125 printf("%s\n", shader->Source);
3126 }
3127
3128 if (!state->error) {
3129 _mesa_glsl_lexer_ctor(state, source);
3130 _mesa_glsl_parse(state);
3131 _mesa_glsl_lexer_dtor(state);
3132 }
3133
3134 ralloc_free(shader->ir);
3135 shader->ir = new(shader) exec_list;
3136 if (!state->error && !state->translation_unit.is_empty())
3137 _mesa_ast_to_hir(shader->ir, state);
3138
3139 if (!state->error && !shader->ir->is_empty()) {
3140 validate_ir_tree(shader->ir);
3141 struct gl_shader_compiler_options *options =
3142 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
3143
3144 /* Do some optimization at compile time to reduce shader IR size
3145 * and reduce later work if the same shader is linked multiple times
3146 */
3147 while (do_common_optimization(shader->ir, false, false, 32, options))
3148 ;
3149
3150 validate_ir_tree(shader->ir);
3151 }
3152
3153 shader->symbols = state->symbols;
3154
3155 shader->CompileStatus = !state->error;
3156 shader->InfoLog = state->info_log;
3157 shader->Version = state->language_version;
3158 memcpy(shader->builtins_to_link, state->builtins_to_link,
3159 sizeof(shader->builtins_to_link[0]) * state->num_builtins_to_link);
3160 shader->num_builtins_to_link = state->num_builtins_to_link;
3161
3162 if (ctx->Shader.Flags & GLSL_LOG) {
3163 _mesa_write_shader_to_file(shader);
3164 }
3165
3166 if (ctx->Shader.Flags & GLSL_DUMP) {
3167 if (shader->CompileStatus) {
3168 printf("GLSL IR for shader %d:\n", shader->Name);
3169 _mesa_print_ir(shader->ir, NULL);
3170 printf("\n\n");
3171 } else {
3172 printf("GLSL shader %d failed to compile.\n", shader->Name);
3173 }
3174 if (shader->InfoLog && shader->InfoLog[0] != 0) {
3175 printf("GLSL shader %d info log:\n", shader->Name);
3176 printf("%s\n", shader->InfoLog);
3177 }
3178 }
3179
3180 if (shader->UniformBlocks)
3181 ralloc_free(shader->UniformBlocks);
3182 shader->NumUniformBlocks = state->num_uniform_blocks;
3183 shader->UniformBlocks = state->uniform_blocks;
3184 ralloc_steal(shader, shader->UniformBlocks);
3185
3186 /* Retain any live IR, but trash the rest. */
3187 reparent_ir(shader->ir, shader->ir);
3188
3189 ralloc_free(state);
3190 }
3191
3192
3193 /**
3194 * Link a GLSL shader program. Called via glLinkProgram().
3195 */
3196 void
3197 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3198 {
3199 unsigned int i;
3200
3201 _mesa_clear_shader_program_data(ctx, prog);
3202
3203 prog->LinkStatus = GL_TRUE;
3204
3205 for (i = 0; i < prog->NumShaders; i++) {
3206 if (!prog->Shaders[i]->CompileStatus) {
3207 linker_error(prog, "linking with uncompiled shader");
3208 prog->LinkStatus = GL_FALSE;
3209 }
3210 }
3211
3212 if (prog->LinkStatus) {
3213 link_shaders(ctx, prog);
3214 }
3215
3216 if (prog->LinkStatus) {
3217 if (!ctx->Driver.LinkShader(ctx, prog)) {
3218 prog->LinkStatus = GL_FALSE;
3219 }
3220 }
3221
3222 if (ctx->Shader.Flags & GLSL_DUMP) {
3223 if (!prog->LinkStatus) {
3224 printf("GLSL shader program %d failed to link\n", prog->Name);
3225 }
3226
3227 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3228 printf("GLSL shader program %d info log:\n", prog->Name);
3229 printf("%s\n", prog->InfoLog);
3230 }
3231 }
3232 }
3233
3234 } /* extern "C" */