ir_to_mesa: Do not emit OPCODE_SEQ or OPCODE_SNE
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/macros.h"
35 #include "main/mtypes.h"
36 #include "main/shaderapi.h"
37 #include "main/shaderobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "program/hash_table.h"
50 #include "program/prog_instruction.h"
51 #include "program/prog_optimize.h"
52 #include "program/prog_print.h"
53 #include "program/program.h"
54 #include "program/prog_parameter.h"
55
56
57 static int swizzle_for_size(int size);
58
59 namespace {
60
61 class src_reg;
62 class dst_reg;
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->reladdr = NULL;
109 }
110
111 dst_reg()
112 {
113 this->file = PROGRAM_UNDEFINED;
114 this->index = 0;
115 this->writemask = 0;
116 this->reladdr = NULL;
117 }
118
119 explicit dst_reg(src_reg reg);
120
121 gl_register_file file; /**< PROGRAM_* from Mesa */
122 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
123 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
124 /** Register index should be offset by the integer in this reg. */
125 src_reg *reladdr;
126 };
127
128 } /* anonymous namespace */
129
130 src_reg::src_reg(dst_reg reg)
131 {
132 this->file = reg.file;
133 this->index = reg.index;
134 this->swizzle = SWIZZLE_XYZW;
135 this->negate = 0;
136 this->reladdr = reg.reladdr;
137 }
138
139 dst_reg::dst_reg(src_reg reg)
140 {
141 this->file = reg.file;
142 this->index = reg.index;
143 this->writemask = WRITEMASK_XYZW;
144 this->reladdr = reg.reladdr;
145 }
146
147 namespace {
148
149 class ir_to_mesa_instruction : public exec_node {
150 public:
151 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
152
153 enum prog_opcode op;
154 dst_reg dst;
155 src_reg src[3];
156 /** Pointer to the ir source this tree came from for debugging */
157 ir_instruction *ir;
158 bool saturate;
159 int sampler; /**< sampler index */
160 int tex_target; /**< One of TEXTURE_*_INDEX */
161 GLboolean tex_shadow;
162 };
163
164 class variable_storage : public exec_node {
165 public:
166 variable_storage(ir_variable *var, gl_register_file file, int index)
167 : file(file), index(index), var(var)
168 {
169 /* empty */
170 }
171
172 gl_register_file file;
173 int index;
174 ir_variable *var; /* variable that maps to this, if any */
175 };
176
177 class function_entry : public exec_node {
178 public:
179 ir_function_signature *sig;
180
181 /**
182 * identifier of this function signature used by the program.
183 *
184 * At the point that Mesa instructions for function calls are
185 * generated, we don't know the address of the first instruction of
186 * the function body. So we make the BranchTarget that is called a
187 * small integer and rewrite them during set_branchtargets().
188 */
189 int sig_id;
190
191 /**
192 * Pointer to first instruction of the function body.
193 *
194 * Set during function body emits after main() is processed.
195 */
196 ir_to_mesa_instruction *bgn_inst;
197
198 /**
199 * Index of the first instruction of the function body in actual
200 * Mesa IR.
201 *
202 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
203 */
204 int inst;
205
206 /** Storage for the return value. */
207 src_reg return_reg;
208 };
209
210 class ir_to_mesa_visitor : public ir_visitor {
211 public:
212 ir_to_mesa_visitor();
213 ~ir_to_mesa_visitor();
214
215 function_entry *current_function;
216
217 struct gl_context *ctx;
218 struct gl_program *prog;
219 struct gl_shader_program *shader_program;
220 struct gl_shader_compiler_options *options;
221
222 int next_temp;
223
224 variable_storage *find_variable_storage(const ir_variable *var);
225
226 src_reg get_temp(const glsl_type *type);
227 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
228
229 src_reg src_reg_for_float(float val);
230
231 /**
232 * \name Visit methods
233 *
234 * As typical for the visitor pattern, there must be one \c visit method for
235 * each concrete subclass of \c ir_instruction. Virtual base classes within
236 * the hierarchy should not have \c visit methods.
237 */
238 /*@{*/
239 virtual void visit(ir_variable *);
240 virtual void visit(ir_loop *);
241 virtual void visit(ir_loop_jump *);
242 virtual void visit(ir_function_signature *);
243 virtual void visit(ir_function *);
244 virtual void visit(ir_expression *);
245 virtual void visit(ir_swizzle *);
246 virtual void visit(ir_dereference_variable *);
247 virtual void visit(ir_dereference_array *);
248 virtual void visit(ir_dereference_record *);
249 virtual void visit(ir_assignment *);
250 virtual void visit(ir_constant *);
251 virtual void visit(ir_call *);
252 virtual void visit(ir_return *);
253 virtual void visit(ir_discard *);
254 virtual void visit(ir_texture *);
255 virtual void visit(ir_if *);
256 virtual void visit(ir_emit_vertex *);
257 virtual void visit(ir_end_primitive *);
258 virtual void visit(ir_barrier *);
259 /*@}*/
260
261 src_reg result;
262
263 /** List of variable_storage */
264 exec_list variables;
265
266 /** List of function_entry */
267 exec_list function_signatures;
268 int next_signature_id;
269
270 /** List of ir_to_mesa_instruction */
271 exec_list instructions;
272
273 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
276 dst_reg dst, src_reg src0);
277
278 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
279 dst_reg dst, src_reg src0, src_reg src1);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst,
283 src_reg src0, src_reg src1, src_reg src2);
284
285 /**
286 * Emit the correct dot-product instruction for the type of arguments
287 */
288 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
289 dst_reg dst,
290 src_reg src0,
291 src_reg src1,
292 unsigned elements);
293
294 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
295 dst_reg dst, src_reg src0);
296
297 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
298 dst_reg dst, src_reg src0, src_reg src1);
299
300 bool try_emit_mad(ir_expression *ir,
301 int mul_operand);
302 bool try_emit_mad_for_and_not(ir_expression *ir,
303 int mul_operand);
304
305 void emit_swz(ir_expression *ir);
306
307 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
308 dst_reg dst,
309 const src_reg &src0, const src_reg &src1);
310
311 inline void emit_sne(ir_expression *ir, dst_reg dst,
312 const src_reg &src0, const src_reg &src1)
313 {
314 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
315 }
316
317 inline void emit_seq(ir_expression *ir, dst_reg dst,
318 const src_reg &src0, const src_reg &src1)
319 {
320 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
321 }
322
323 bool process_move_condition(ir_rvalue *ir);
324
325 void copy_propagate(void);
326
327 void *mem_ctx;
328 };
329
330 } /* anonymous namespace */
331
332 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
333
334 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
335
336 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
337
338 static int
339 swizzle_for_size(int size)
340 {
341 static const int size_swizzles[4] = {
342 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
346 };
347
348 assert((size >= 1) && (size <= 4));
349 return size_swizzles[size - 1];
350 }
351
352 ir_to_mesa_instruction *
353 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
354 dst_reg dst,
355 src_reg src0, src_reg src1, src_reg src2)
356 {
357 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
358 int num_reladdr = 0;
359
360 /* If we have to do relative addressing, we want to load the ARL
361 * reg directly for one of the regs, and preload the other reladdr
362 * sources into temps.
363 */
364 num_reladdr += dst.reladdr != NULL;
365 num_reladdr += src0.reladdr != NULL;
366 num_reladdr += src1.reladdr != NULL;
367 num_reladdr += src2.reladdr != NULL;
368
369 reladdr_to_temp(ir, &src2, &num_reladdr);
370 reladdr_to_temp(ir, &src1, &num_reladdr);
371 reladdr_to_temp(ir, &src0, &num_reladdr);
372
373 if (dst.reladdr) {
374 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
375 num_reladdr--;
376 }
377 assert(num_reladdr == 0);
378
379 inst->op = op;
380 inst->dst = dst;
381 inst->src[0] = src0;
382 inst->src[1] = src1;
383 inst->src[2] = src2;
384 inst->ir = ir;
385
386 this->instructions.push_tail(inst);
387
388 return inst;
389 }
390
391
392 ir_to_mesa_instruction *
393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
394 dst_reg dst, src_reg src0, src_reg src1)
395 {
396 return emit(ir, op, dst, src0, src1, undef_src);
397 }
398
399 ir_to_mesa_instruction *
400 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
401 dst_reg dst, src_reg src0)
402 {
403 assert(dst.writemask != 0);
404 return emit(ir, op, dst, src0, undef_src, undef_src);
405 }
406
407 ir_to_mesa_instruction *
408 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
409 {
410 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
411 }
412
413 ir_to_mesa_instruction *
414 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
415 dst_reg dst, src_reg src0, src_reg src1,
416 unsigned elements)
417 {
418 static const enum prog_opcode dot_opcodes[] = {
419 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
420 };
421
422 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
423 }
424
425 /**
426 * Emits Mesa scalar opcodes to produce unique answers across channels.
427 *
428 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
429 * channel determines the result across all channels. So to do a vec4
430 * of this operation, we want to emit a scalar per source channel used
431 * to produce dest channels.
432 */
433 void
434 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
435 dst_reg dst,
436 src_reg orig_src0, src_reg orig_src1)
437 {
438 int i, j;
439 int done_mask = ~dst.writemask;
440
441 /* Mesa RCP is a scalar operation splatting results to all channels,
442 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
443 * dst channels.
444 */
445 for (i = 0; i < 4; i++) {
446 GLuint this_mask = (1 << i);
447 ir_to_mesa_instruction *inst;
448 src_reg src0 = orig_src0;
449 src_reg src1 = orig_src1;
450
451 if (done_mask & this_mask)
452 continue;
453
454 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
455 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
456 for (j = i + 1; j < 4; j++) {
457 /* If there is another enabled component in the destination that is
458 * derived from the same inputs, generate its value on this pass as
459 * well.
460 */
461 if (!(done_mask & (1 << j)) &&
462 GET_SWZ(src0.swizzle, j) == src0_swiz &&
463 GET_SWZ(src1.swizzle, j) == src1_swiz) {
464 this_mask |= (1 << j);
465 }
466 }
467 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
468 src0_swiz, src0_swiz);
469 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
470 src1_swiz, src1_swiz);
471
472 inst = emit(ir, op, dst, src0, src1);
473 inst->dst.writemask = this_mask;
474 done_mask |= this_mask;
475 }
476 }
477
478 void
479 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
480 dst_reg dst, src_reg src0)
481 {
482 src_reg undef = undef_src;
483
484 undef.swizzle = SWIZZLE_XXXX;
485
486 emit_scalar(ir, op, dst, src0, undef);
487 }
488
489 src_reg
490 ir_to_mesa_visitor::src_reg_for_float(float val)
491 {
492 src_reg src(PROGRAM_CONSTANT, -1, NULL);
493
494 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
495 (const gl_constant_value *)&val, 1, &src.swizzle);
496
497 return src;
498 }
499
500 static int
501 type_size(const struct glsl_type *type)
502 {
503 unsigned int i;
504 int size;
505
506 switch (type->base_type) {
507 case GLSL_TYPE_UINT:
508 case GLSL_TYPE_INT:
509 case GLSL_TYPE_FLOAT:
510 case GLSL_TYPE_BOOL:
511 if (type->is_matrix()) {
512 return type->matrix_columns;
513 } else {
514 /* Regardless of size of vector, it gets a vec4. This is bad
515 * packing for things like floats, but otherwise arrays become a
516 * mess. Hopefully a later pass over the code can pack scalars
517 * down if appropriate.
518 */
519 return 1;
520 }
521 break;
522 case GLSL_TYPE_DOUBLE:
523 if (type->is_matrix()) {
524 if (type->vector_elements > 2)
525 return type->matrix_columns * 2;
526 else
527 return type->matrix_columns;
528 } else {
529 if (type->vector_elements > 2)
530 return 2;
531 else
532 return 1;
533 }
534 break;
535 case GLSL_TYPE_ARRAY:
536 assert(type->length > 0);
537 return type_size(type->fields.array) * type->length;
538 case GLSL_TYPE_STRUCT:
539 size = 0;
540 for (i = 0; i < type->length; i++) {
541 size += type_size(type->fields.structure[i].type);
542 }
543 return size;
544 case GLSL_TYPE_SAMPLER:
545 case GLSL_TYPE_IMAGE:
546 case GLSL_TYPE_SUBROUTINE:
547 /* Samplers take up one slot in UNIFORMS[], but they're baked in
548 * at link time.
549 */
550 return 1;
551 case GLSL_TYPE_ATOMIC_UINT:
552 case GLSL_TYPE_VOID:
553 case GLSL_TYPE_ERROR:
554 case GLSL_TYPE_INTERFACE:
555 case GLSL_TYPE_FUNCTION:
556 assert(!"Invalid type in type_size");
557 break;
558 }
559
560 return 0;
561 }
562
563 /**
564 * In the initial pass of codegen, we assign temporary numbers to
565 * intermediate results. (not SSA -- variable assignments will reuse
566 * storage). Actual register allocation for the Mesa VM occurs in a
567 * pass over the Mesa IR later.
568 */
569 src_reg
570 ir_to_mesa_visitor::get_temp(const glsl_type *type)
571 {
572 src_reg src;
573
574 src.file = PROGRAM_TEMPORARY;
575 src.index = next_temp;
576 src.reladdr = NULL;
577 next_temp += type_size(type);
578
579 if (type->is_array() || type->is_record()) {
580 src.swizzle = SWIZZLE_NOOP;
581 } else {
582 src.swizzle = swizzle_for_size(type->vector_elements);
583 }
584 src.negate = 0;
585
586 return src;
587 }
588
589 variable_storage *
590 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
591 {
592 foreach_in_list(variable_storage, entry, &this->variables) {
593 if (entry->var == var)
594 return entry;
595 }
596
597 return NULL;
598 }
599
600 void
601 ir_to_mesa_visitor::visit(ir_variable *ir)
602 {
603 if (strcmp(ir->name, "gl_FragCoord") == 0) {
604 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
605
606 fp->OriginUpperLeft = ir->data.origin_upper_left;
607 fp->PixelCenterInteger = ir->data.pixel_center_integer;
608 }
609
610 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
611 unsigned int i;
612 const ir_state_slot *const slots = ir->get_state_slots();
613 assert(slots != NULL);
614
615 /* Check if this statevar's setup in the STATE file exactly
616 * matches how we'll want to reference it as a
617 * struct/array/whatever. If not, then we need to move it into
618 * temporary storage and hope that it'll get copy-propagated
619 * out.
620 */
621 for (i = 0; i < ir->get_num_state_slots(); i++) {
622 if (slots[i].swizzle != SWIZZLE_XYZW) {
623 break;
624 }
625 }
626
627 variable_storage *storage;
628 dst_reg dst;
629 if (i == ir->get_num_state_slots()) {
630 /* We'll set the index later. */
631 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
632 this->variables.push_tail(storage);
633
634 dst = undef_dst;
635 } else {
636 /* The variable_storage constructor allocates slots based on the size
637 * of the type. However, this had better match the number of state
638 * elements that we're going to copy into the new temporary.
639 */
640 assert((int) ir->get_num_state_slots() == type_size(ir->type));
641
642 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
643 this->next_temp);
644 this->variables.push_tail(storage);
645 this->next_temp += type_size(ir->type);
646
647 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
648 }
649
650
651 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
652 int index = _mesa_add_state_reference(this->prog->Parameters,
653 (gl_state_index *)slots[i].tokens);
654
655 if (storage->file == PROGRAM_STATE_VAR) {
656 if (storage->index == -1) {
657 storage->index = index;
658 } else {
659 assert(index == storage->index + (int)i);
660 }
661 } else {
662 src_reg src(PROGRAM_STATE_VAR, index, NULL);
663 src.swizzle = slots[i].swizzle;
664 emit(ir, OPCODE_MOV, dst, src);
665 /* even a float takes up a whole vec4 reg in a struct/array. */
666 dst.index++;
667 }
668 }
669
670 if (storage->file == PROGRAM_TEMPORARY &&
671 dst.index != storage->index + (int) ir->get_num_state_slots()) {
672 linker_error(this->shader_program,
673 "failed to load builtin uniform `%s' "
674 "(%d/%d regs loaded)\n",
675 ir->name, dst.index - storage->index,
676 type_size(ir->type));
677 }
678 }
679 }
680
681 void
682 ir_to_mesa_visitor::visit(ir_loop *ir)
683 {
684 emit(NULL, OPCODE_BGNLOOP);
685
686 visit_exec_list(&ir->body_instructions, this);
687
688 emit(NULL, OPCODE_ENDLOOP);
689 }
690
691 void
692 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
693 {
694 switch (ir->mode) {
695 case ir_loop_jump::jump_break:
696 emit(NULL, OPCODE_BRK);
697 break;
698 case ir_loop_jump::jump_continue:
699 emit(NULL, OPCODE_CONT);
700 break;
701 }
702 }
703
704
705 void
706 ir_to_mesa_visitor::visit(ir_function_signature *ir)
707 {
708 assert(0);
709 (void)ir;
710 }
711
712 void
713 ir_to_mesa_visitor::visit(ir_function *ir)
714 {
715 /* Ignore function bodies other than main() -- we shouldn't see calls to
716 * them since they should all be inlined before we get to ir_to_mesa.
717 */
718 if (strcmp(ir->name, "main") == 0) {
719 const ir_function_signature *sig;
720 exec_list empty;
721
722 sig = ir->matching_signature(NULL, &empty, false);
723
724 assert(sig);
725
726 foreach_in_list(ir_instruction, ir, &sig->body) {
727 ir->accept(this);
728 }
729 }
730 }
731
732 bool
733 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
734 {
735 int nonmul_operand = 1 - mul_operand;
736 src_reg a, b, c;
737
738 ir_expression *expr = ir->operands[mul_operand]->as_expression();
739 if (!expr || expr->operation != ir_binop_mul)
740 return false;
741
742 expr->operands[0]->accept(this);
743 a = this->result;
744 expr->operands[1]->accept(this);
745 b = this->result;
746 ir->operands[nonmul_operand]->accept(this);
747 c = this->result;
748
749 this->result = get_temp(ir->type);
750 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
751
752 return true;
753 }
754
755 /**
756 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
757 *
758 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
759 * implemented using multiplication, and logical-or is implemented using
760 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
761 * As result, the logical expression (a & !b) can be rewritten as:
762 *
763 * - a * !b
764 * - a * (1 - b)
765 * - (a * 1) - (a * b)
766 * - a + -(a * b)
767 * - a + (a * -b)
768 *
769 * This final expression can be implemented as a single MAD(a, -b, a)
770 * instruction.
771 */
772 bool
773 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
774 {
775 const int other_operand = 1 - try_operand;
776 src_reg a, b;
777
778 ir_expression *expr = ir->operands[try_operand]->as_expression();
779 if (!expr || expr->operation != ir_unop_logic_not)
780 return false;
781
782 ir->operands[other_operand]->accept(this);
783 a = this->result;
784 expr->operands[0]->accept(this);
785 b = this->result;
786
787 b.negate = ~b.negate;
788
789 this->result = get_temp(ir->type);
790 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
791
792 return true;
793 }
794
795 void
796 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
797 src_reg *reg, int *num_reladdr)
798 {
799 if (!reg->reladdr)
800 return;
801
802 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
803
804 if (*num_reladdr != 1) {
805 src_reg temp = get_temp(glsl_type::vec4_type);
806
807 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
808 *reg = temp;
809 }
810
811 (*num_reladdr)--;
812 }
813
814 void
815 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
816 {
817 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
818 * This means that each of the operands is either an immediate value of -1,
819 * 0, or 1, or is a component from one source register (possibly with
820 * negation).
821 */
822 uint8_t components[4] = { 0 };
823 bool negate[4] = { false };
824 ir_variable *var = NULL;
825
826 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
827 ir_rvalue *op = ir->operands[i];
828
829 assert(op->type->is_scalar());
830
831 while (op != NULL) {
832 switch (op->ir_type) {
833 case ir_type_constant: {
834
835 assert(op->type->is_scalar());
836
837 const ir_constant *const c = op->as_constant();
838 if (c->is_one()) {
839 components[i] = SWIZZLE_ONE;
840 } else if (c->is_zero()) {
841 components[i] = SWIZZLE_ZERO;
842 } else if (c->is_negative_one()) {
843 components[i] = SWIZZLE_ONE;
844 negate[i] = true;
845 } else {
846 assert(!"SWZ constant must be 0.0 or 1.0.");
847 }
848
849 op = NULL;
850 break;
851 }
852
853 case ir_type_dereference_variable: {
854 ir_dereference_variable *const deref =
855 (ir_dereference_variable *) op;
856
857 assert((var == NULL) || (deref->var == var));
858 components[i] = SWIZZLE_X;
859 var = deref->var;
860 op = NULL;
861 break;
862 }
863
864 case ir_type_expression: {
865 ir_expression *const expr = (ir_expression *) op;
866
867 assert(expr->operation == ir_unop_neg);
868 negate[i] = true;
869
870 op = expr->operands[0];
871 break;
872 }
873
874 case ir_type_swizzle: {
875 ir_swizzle *const swiz = (ir_swizzle *) op;
876
877 components[i] = swiz->mask.x;
878 op = swiz->val;
879 break;
880 }
881
882 default:
883 assert(!"Should not get here.");
884 return;
885 }
886 }
887 }
888
889 assert(var != NULL);
890
891 ir_dereference_variable *const deref =
892 new(mem_ctx) ir_dereference_variable(var);
893
894 this->result.file = PROGRAM_UNDEFINED;
895 deref->accept(this);
896 if (this->result.file == PROGRAM_UNDEFINED) {
897 printf("Failed to get tree for expression operand:\n");
898 deref->print();
899 printf("\n");
900 exit(1);
901 }
902
903 src_reg src;
904
905 src = this->result;
906 src.swizzle = MAKE_SWIZZLE4(components[0],
907 components[1],
908 components[2],
909 components[3]);
910 src.negate = ((unsigned(negate[0]) << 0)
911 | (unsigned(negate[1]) << 1)
912 | (unsigned(negate[2]) << 2)
913 | (unsigned(negate[3]) << 3));
914
915 /* Storage for our result. Ideally for an assignment we'd be using the
916 * actual storage for the result here, instead.
917 */
918 const src_reg result_src = get_temp(ir->type);
919 dst_reg result_dst = dst_reg(result_src);
920
921 /* Limit writes to the channels that will be used by result_src later.
922 * This does limit this temp's use as a temporary for multi-instruction
923 * sequences.
924 */
925 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
926
927 emit(ir, OPCODE_SWZ, result_dst, src);
928 this->result = result_src;
929 }
930
931 void
932 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
933 enum prog_opcode op,
934 dst_reg dst,
935 const src_reg &src0,
936 const src_reg &src1)
937 {
938 src_reg difference;
939 src_reg abs_difference = get_temp(glsl_type::vec4_type);
940 const src_reg zero = src_reg_for_float(0.0);
941
942 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
943 * consumes the generated IR is pretty dumb, take special care when one
944 * of the operands is zero.
945 *
946 * Similarly, x != y is equivalent to -abs(x-y) < 0.
947 */
948 if (src0.file == zero.file &&
949 src0.index == zero.index &&
950 src0.swizzle == zero.swizzle) {
951 difference = src1;
952 } else if (src1.file == zero.file &&
953 src1.index == zero.index &&
954 src1.swizzle == zero.swizzle) {
955 difference = src0;
956 } else {
957 difference = get_temp(glsl_type::vec4_type);
958
959 src_reg tmp_src = src0;
960 tmp_src.negate = ~tmp_src.negate;
961
962 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
963 }
964
965 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
966
967 abs_difference.negate = ~abs_difference.negate;
968 emit(ir, op, dst, abs_difference, zero);
969 }
970
971 void
972 ir_to_mesa_visitor::visit(ir_expression *ir)
973 {
974 unsigned int operand;
975 src_reg op[ARRAY_SIZE(ir->operands)];
976 src_reg result_src;
977 dst_reg result_dst;
978
979 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
980 */
981 if (ir->operation == ir_binop_add) {
982 if (try_emit_mad(ir, 1))
983 return;
984 if (try_emit_mad(ir, 0))
985 return;
986 }
987
988 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
989 */
990 if (ir->operation == ir_binop_logic_and) {
991 if (try_emit_mad_for_and_not(ir, 1))
992 return;
993 if (try_emit_mad_for_and_not(ir, 0))
994 return;
995 }
996
997 if (ir->operation == ir_quadop_vector) {
998 this->emit_swz(ir);
999 return;
1000 }
1001
1002 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1003 this->result.file = PROGRAM_UNDEFINED;
1004 ir->operands[operand]->accept(this);
1005 if (this->result.file == PROGRAM_UNDEFINED) {
1006 printf("Failed to get tree for expression operand:\n");
1007 ir->operands[operand]->print();
1008 printf("\n");
1009 exit(1);
1010 }
1011 op[operand] = this->result;
1012
1013 /* Matrix expression operands should have been broken down to vector
1014 * operations already.
1015 */
1016 assert(!ir->operands[operand]->type->is_matrix());
1017 }
1018
1019 int vector_elements = ir->operands[0]->type->vector_elements;
1020 if (ir->operands[1]) {
1021 vector_elements = MAX2(vector_elements,
1022 ir->operands[1]->type->vector_elements);
1023 }
1024
1025 this->result.file = PROGRAM_UNDEFINED;
1026
1027 /* Storage for our result. Ideally for an assignment we'd be using
1028 * the actual storage for the result here, instead.
1029 */
1030 result_src = get_temp(ir->type);
1031 /* convenience for the emit functions below. */
1032 result_dst = dst_reg(result_src);
1033 /* Limit writes to the channels that will be used by result_src later.
1034 * This does limit this temp's use as a temporary for multi-instruction
1035 * sequences.
1036 */
1037 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1038
1039 switch (ir->operation) {
1040 case ir_unop_logic_not:
1041 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1042 * older GPUs implement SEQ using multiple instructions (i915 uses two
1043 * SGE instructions and a MUL instruction). Since our logic values are
1044 * 0.0 and 1.0, 1-x also implements !x.
1045 */
1046 op[0].negate = ~op[0].negate;
1047 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1048 break;
1049 case ir_unop_neg:
1050 op[0].negate = ~op[0].negate;
1051 result_src = op[0];
1052 break;
1053 case ir_unop_abs:
1054 emit(ir, OPCODE_ABS, result_dst, op[0]);
1055 break;
1056 case ir_unop_sign:
1057 emit(ir, OPCODE_SSG, result_dst, op[0]);
1058 break;
1059 case ir_unop_rcp:
1060 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1061 break;
1062
1063 case ir_unop_exp2:
1064 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1065 break;
1066 case ir_unop_exp:
1067 case ir_unop_log:
1068 assert(!"not reached: should be handled by ir_explog_to_explog2");
1069 break;
1070 case ir_unop_log2:
1071 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1072 break;
1073 case ir_unop_sin:
1074 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1075 break;
1076 case ir_unop_cos:
1077 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1078 break;
1079
1080 case ir_unop_dFdx:
1081 emit(ir, OPCODE_DDX, result_dst, op[0]);
1082 break;
1083 case ir_unop_dFdy:
1084 emit(ir, OPCODE_DDY, result_dst, op[0]);
1085 break;
1086
1087 case ir_unop_saturate: {
1088 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1089 result_dst, op[0]);
1090 inst->saturate = true;
1091 break;
1092 }
1093 case ir_unop_noise: {
1094 const enum prog_opcode opcode =
1095 prog_opcode(OPCODE_NOISE1
1096 + (ir->operands[0]->type->vector_elements) - 1);
1097 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1098
1099 emit(ir, opcode, result_dst, op[0]);
1100 break;
1101 }
1102
1103 case ir_binop_add:
1104 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1105 break;
1106 case ir_binop_sub:
1107 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1108 break;
1109
1110 case ir_binop_mul:
1111 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1112 break;
1113 case ir_binop_div:
1114 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1115 break;
1116 case ir_binop_mod:
1117 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1118 assert(ir->type->is_integer());
1119 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1120 break;
1121
1122 case ir_binop_less:
1123 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1124 break;
1125 case ir_binop_greater:
1126 /* Negating the operands (as opposed to switching the order of the
1127 * operands) produces the correct result when both are +/-Inf.
1128 */
1129 op[0].negate = ~op[0].negate;
1130 op[1].negate = ~op[1].negate;
1131 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1132 break;
1133 case ir_binop_lequal:
1134 /* Negating the operands (as opposed to switching the order of the
1135 * operands) produces the correct result when both are +/-Inf.
1136 */
1137 op[0].negate = ~op[0].negate;
1138 op[1].negate = ~op[1].negate;
1139 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1140 break;
1141 case ir_binop_gequal:
1142 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1143 break;
1144 case ir_binop_equal:
1145 emit_seq(ir, result_dst, op[0], op[1]);
1146 break;
1147 case ir_binop_nequal:
1148 emit_sne(ir, result_dst, op[0], op[1]);
1149 break;
1150 case ir_binop_all_equal:
1151 /* "==" operator producing a scalar boolean. */
1152 if (ir->operands[0]->type->is_vector() ||
1153 ir->operands[1]->type->is_vector()) {
1154 src_reg temp = get_temp(glsl_type::vec4_type);
1155 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1156
1157 /* After the dot-product, the value will be an integer on the
1158 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1159 */
1160 emit_dp(ir, result_dst, temp, temp, vector_elements);
1161
1162 /* Negating the result of the dot-product gives values on the range
1163 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1164 * achieved using SGE.
1165 */
1166 src_reg sge_src = result_src;
1167 sge_src.negate = ~sge_src.negate;
1168 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1169 } else {
1170 emit_seq(ir, result_dst, op[0], op[1]);
1171 }
1172 break;
1173 case ir_binop_any_nequal:
1174 /* "!=" operator producing a scalar boolean. */
1175 if (ir->operands[0]->type->is_vector() ||
1176 ir->operands[1]->type->is_vector()) {
1177 src_reg temp = get_temp(glsl_type::vec4_type);
1178 if (ir->operands[0]->type->is_boolean() &&
1179 ir->operands[1]->as_constant() &&
1180 ir->operands[1]->as_constant()->is_zero()) {
1181 temp = op[0];
1182 } else {
1183 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1184 }
1185
1186 /* After the dot-product, the value will be an integer on the
1187 * range [0,4]. Zero stays zero, and positive values become 1.0.
1188 */
1189 ir_to_mesa_instruction *const dp =
1190 emit_dp(ir, result_dst, temp, temp, vector_elements);
1191 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1192 /* The clamping to [0,1] can be done for free in the fragment
1193 * shader with a saturate.
1194 */
1195 dp->saturate = true;
1196 } else {
1197 /* Negating the result of the dot-product gives values on the range
1198 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1199 * achieved using SLT.
1200 */
1201 src_reg slt_src = result_src;
1202 slt_src.negate = ~slt_src.negate;
1203 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1204 }
1205 } else {
1206 emit_sne(ir, result_dst, op[0], op[1]);
1207 }
1208 break;
1209
1210 case ir_binop_logic_xor:
1211 emit_sne(ir, result_dst, op[0], op[1]);
1212 break;
1213
1214 case ir_binop_logic_or: {
1215 /* After the addition, the value will be an integer on the
1216 * range [0,2]. Zero stays zero, and positive values become 1.0.
1217 */
1218 ir_to_mesa_instruction *add =
1219 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1220 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1221 /* The clamping to [0,1] can be done for free in the fragment
1222 * shader with a saturate.
1223 */
1224 add->saturate = true;
1225 } else {
1226 /* Negating the result of the addition gives values on the range
1227 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1228 * is achieved using SLT.
1229 */
1230 src_reg slt_src = result_src;
1231 slt_src.negate = ~slt_src.negate;
1232 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1233 }
1234 break;
1235 }
1236
1237 case ir_binop_logic_and:
1238 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1239 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1240 break;
1241
1242 case ir_binop_dot:
1243 assert(ir->operands[0]->type->is_vector());
1244 assert(ir->operands[0]->type == ir->operands[1]->type);
1245 emit_dp(ir, result_dst, op[0], op[1],
1246 ir->operands[0]->type->vector_elements);
1247 break;
1248
1249 case ir_unop_sqrt:
1250 /* sqrt(x) = x * rsq(x). */
1251 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1252 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1253 /* For incoming channels <= 0, set the result to 0. */
1254 op[0].negate = ~op[0].negate;
1255 emit(ir, OPCODE_CMP, result_dst,
1256 op[0], result_src, src_reg_for_float(0.0));
1257 break;
1258 case ir_unop_rsq:
1259 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1260 break;
1261 case ir_unop_i2f:
1262 case ir_unop_u2f:
1263 case ir_unop_b2f:
1264 case ir_unop_b2i:
1265 case ir_unop_i2u:
1266 case ir_unop_u2i:
1267 /* Mesa IR lacks types, ints are stored as truncated floats. */
1268 result_src = op[0];
1269 break;
1270 case ir_unop_f2i:
1271 case ir_unop_f2u:
1272 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1273 break;
1274 case ir_unop_f2b:
1275 case ir_unop_i2b:
1276 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1277 break;
1278 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1279 case ir_unop_bitcast_f2u:
1280 case ir_unop_bitcast_i2f:
1281 case ir_unop_bitcast_u2f:
1282 break;
1283 case ir_unop_trunc:
1284 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1285 break;
1286 case ir_unop_ceil:
1287 op[0].negate = ~op[0].negate;
1288 emit(ir, OPCODE_FLR, result_dst, op[0]);
1289 result_src.negate = ~result_src.negate;
1290 break;
1291 case ir_unop_floor:
1292 emit(ir, OPCODE_FLR, result_dst, op[0]);
1293 break;
1294 case ir_unop_fract:
1295 emit(ir, OPCODE_FRC, result_dst, op[0]);
1296 break;
1297 case ir_unop_pack_snorm_2x16:
1298 case ir_unop_pack_snorm_4x8:
1299 case ir_unop_pack_unorm_2x16:
1300 case ir_unop_pack_unorm_4x8:
1301 case ir_unop_pack_half_2x16:
1302 case ir_unop_pack_double_2x32:
1303 case ir_unop_unpack_snorm_2x16:
1304 case ir_unop_unpack_snorm_4x8:
1305 case ir_unop_unpack_unorm_2x16:
1306 case ir_unop_unpack_unorm_4x8:
1307 case ir_unop_unpack_half_2x16:
1308 case ir_unop_unpack_double_2x32:
1309 case ir_unop_bitfield_reverse:
1310 case ir_unop_bit_count:
1311 case ir_unop_find_msb:
1312 case ir_unop_find_lsb:
1313 case ir_unop_d2f:
1314 case ir_unop_f2d:
1315 case ir_unop_d2i:
1316 case ir_unop_i2d:
1317 case ir_unop_d2u:
1318 case ir_unop_u2d:
1319 case ir_unop_d2b:
1320 case ir_unop_frexp_sig:
1321 case ir_unop_frexp_exp:
1322 assert(!"not supported");
1323 break;
1324 case ir_binop_min:
1325 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1326 break;
1327 case ir_binop_max:
1328 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1329 break;
1330 case ir_binop_pow:
1331 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1332 break;
1333
1334 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1335 * hardware backends have no way to avoid Mesa IR generation
1336 * even if they don't use it, we need to emit "something" and
1337 * continue.
1338 */
1339 case ir_binop_lshift:
1340 case ir_binop_rshift:
1341 case ir_binop_bit_and:
1342 case ir_binop_bit_xor:
1343 case ir_binop_bit_or:
1344 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1345 break;
1346
1347 case ir_unop_bit_not:
1348 case ir_unop_round_even:
1349 emit(ir, OPCODE_MOV, result_dst, op[0]);
1350 break;
1351
1352 case ir_binop_ubo_load:
1353 assert(!"not supported");
1354 break;
1355
1356 case ir_triop_lrp:
1357 /* ir_triop_lrp operands are (x, y, a) while
1358 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1359 */
1360 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1361 break;
1362
1363 case ir_binop_vector_extract:
1364 case ir_triop_fma:
1365 case ir_triop_bitfield_extract:
1366 case ir_triop_vector_insert:
1367 case ir_quadop_bitfield_insert:
1368 case ir_binop_ldexp:
1369 case ir_triop_csel:
1370 case ir_binop_carry:
1371 case ir_binop_borrow:
1372 case ir_binop_imul_high:
1373 case ir_unop_interpolate_at_centroid:
1374 case ir_binop_interpolate_at_offset:
1375 case ir_binop_interpolate_at_sample:
1376 case ir_unop_dFdx_coarse:
1377 case ir_unop_dFdx_fine:
1378 case ir_unop_dFdy_coarse:
1379 case ir_unop_dFdy_fine:
1380 case ir_unop_subroutine_to_int:
1381 case ir_unop_get_buffer_size:
1382 assert(!"not supported");
1383 break;
1384
1385 case ir_unop_ssbo_unsized_array_length:
1386 case ir_quadop_vector:
1387 /* This operation should have already been handled.
1388 */
1389 assert(!"Should not get here.");
1390 break;
1391 }
1392
1393 this->result = result_src;
1394 }
1395
1396
1397 void
1398 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1399 {
1400 src_reg src;
1401 int i;
1402 int swizzle[4];
1403
1404 /* Note that this is only swizzles in expressions, not those on the left
1405 * hand side of an assignment, which do write masking. See ir_assignment
1406 * for that.
1407 */
1408
1409 ir->val->accept(this);
1410 src = this->result;
1411 assert(src.file != PROGRAM_UNDEFINED);
1412 assert(ir->type->vector_elements > 0);
1413
1414 for (i = 0; i < 4; i++) {
1415 if (i < ir->type->vector_elements) {
1416 switch (i) {
1417 case 0:
1418 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1419 break;
1420 case 1:
1421 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1422 break;
1423 case 2:
1424 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1425 break;
1426 case 3:
1427 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1428 break;
1429 }
1430 } else {
1431 /* If the type is smaller than a vec4, replicate the last
1432 * channel out.
1433 */
1434 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1435 }
1436 }
1437
1438 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1439
1440 this->result = src;
1441 }
1442
1443 void
1444 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1445 {
1446 variable_storage *entry = find_variable_storage(ir->var);
1447 ir_variable *var = ir->var;
1448
1449 if (!entry) {
1450 switch (var->data.mode) {
1451 case ir_var_uniform:
1452 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1453 var->data.param_index);
1454 this->variables.push_tail(entry);
1455 break;
1456 case ir_var_shader_in:
1457 /* The linker assigns locations for varyings and attributes,
1458 * including deprecated builtins (like gl_Color),
1459 * user-assigned generic attributes (glBindVertexLocation),
1460 * and user-defined varyings.
1461 */
1462 assert(var->data.location != -1);
1463 entry = new(mem_ctx) variable_storage(var,
1464 PROGRAM_INPUT,
1465 var->data.location);
1466 break;
1467 case ir_var_shader_out:
1468 assert(var->data.location != -1);
1469 entry = new(mem_ctx) variable_storage(var,
1470 PROGRAM_OUTPUT,
1471 var->data.location);
1472 break;
1473 case ir_var_system_value:
1474 entry = new(mem_ctx) variable_storage(var,
1475 PROGRAM_SYSTEM_VALUE,
1476 var->data.location);
1477 break;
1478 case ir_var_auto:
1479 case ir_var_temporary:
1480 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1481 this->next_temp);
1482 this->variables.push_tail(entry);
1483
1484 next_temp += type_size(var->type);
1485 break;
1486 }
1487
1488 if (!entry) {
1489 printf("Failed to make storage for %s\n", var->name);
1490 exit(1);
1491 }
1492 }
1493
1494 this->result = src_reg(entry->file, entry->index, var->type);
1495 }
1496
1497 void
1498 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1499 {
1500 ir_constant *index;
1501 src_reg src;
1502 int element_size = type_size(ir->type);
1503
1504 index = ir->array_index->constant_expression_value();
1505
1506 ir->array->accept(this);
1507 src = this->result;
1508
1509 if (index) {
1510 src.index += index->value.i[0] * element_size;
1511 } else {
1512 /* Variable index array dereference. It eats the "vec4" of the
1513 * base of the array and an index that offsets the Mesa register
1514 * index.
1515 */
1516 ir->array_index->accept(this);
1517
1518 src_reg index_reg;
1519
1520 if (element_size == 1) {
1521 index_reg = this->result;
1522 } else {
1523 index_reg = get_temp(glsl_type::float_type);
1524
1525 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1526 this->result, src_reg_for_float(element_size));
1527 }
1528
1529 /* If there was already a relative address register involved, add the
1530 * new and the old together to get the new offset.
1531 */
1532 if (src.reladdr != NULL) {
1533 src_reg accum_reg = get_temp(glsl_type::float_type);
1534
1535 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1536 index_reg, *src.reladdr);
1537
1538 index_reg = accum_reg;
1539 }
1540
1541 src.reladdr = ralloc(mem_ctx, src_reg);
1542 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1543 }
1544
1545 /* If the type is smaller than a vec4, replicate the last channel out. */
1546 if (ir->type->is_scalar() || ir->type->is_vector())
1547 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1548 else
1549 src.swizzle = SWIZZLE_NOOP;
1550
1551 this->result = src;
1552 }
1553
1554 void
1555 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1556 {
1557 unsigned int i;
1558 const glsl_type *struct_type = ir->record->type;
1559 int offset = 0;
1560
1561 ir->record->accept(this);
1562
1563 for (i = 0; i < struct_type->length; i++) {
1564 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1565 break;
1566 offset += type_size(struct_type->fields.structure[i].type);
1567 }
1568
1569 /* If the type is smaller than a vec4, replicate the last channel out. */
1570 if (ir->type->is_scalar() || ir->type->is_vector())
1571 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1572 else
1573 this->result.swizzle = SWIZZLE_NOOP;
1574
1575 this->result.index += offset;
1576 }
1577
1578 /**
1579 * We want to be careful in assignment setup to hit the actual storage
1580 * instead of potentially using a temporary like we might with the
1581 * ir_dereference handler.
1582 */
1583 static dst_reg
1584 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1585 {
1586 /* The LHS must be a dereference. If the LHS is a variable indexed array
1587 * access of a vector, it must be separated into a series conditional moves
1588 * before reaching this point (see ir_vec_index_to_cond_assign).
1589 */
1590 assert(ir->as_dereference());
1591 ir_dereference_array *deref_array = ir->as_dereference_array();
1592 if (deref_array) {
1593 assert(!deref_array->array->type->is_vector());
1594 }
1595
1596 /* Use the rvalue deref handler for the most part. We'll ignore
1597 * swizzles in it and write swizzles using writemask, though.
1598 */
1599 ir->accept(v);
1600 return dst_reg(v->result);
1601 }
1602
1603 /* Calculate the sampler index and also calculate the base uniform location
1604 * for struct members.
1605 */
1606 static void
1607 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1608 unsigned *offset, unsigned *array_elements,
1609 unsigned *location)
1610 {
1611 if (deref->ir_type == ir_type_dereference_variable)
1612 return;
1613
1614 switch (deref->ir_type) {
1615 case ir_type_dereference_array: {
1616 ir_dereference_array *deref_arr = deref->as_dereference_array();
1617 ir_constant *array_index =
1618 deref_arr->array_index->constant_expression_value();
1619
1620 if (!array_index) {
1621 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1622 * while GLSL 1.30 requires that the array indices be
1623 * constant integer expressions. We don't expect any driver
1624 * to actually work with a really variable array index, so
1625 * all that would work would be an unrolled loop counter that ends
1626 * up being constant above.
1627 */
1628 ralloc_strcat(&prog->InfoLog,
1629 "warning: Variable sampler array index unsupported.\n"
1630 "This feature of the language was removed in GLSL 1.20 "
1631 "and is unlikely to be supported for 1.10 in Mesa.\n");
1632 } else {
1633 *offset += array_index->value.u[0] * *array_elements;
1634 }
1635
1636 *array_elements *= deref_arr->array->type->length;
1637
1638 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1639 offset, array_elements, location);
1640 break;
1641 }
1642
1643 case ir_type_dereference_record: {
1644 ir_dereference_record *deref_record = deref->as_dereference_record();
1645 unsigned field_index =
1646 deref_record->record->type->field_index(deref_record->field);
1647 *location +=
1648 deref_record->record->type->record_location_offset(field_index);
1649 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1650 offset, array_elements, location);
1651 break;
1652 }
1653
1654 default:
1655 unreachable("Invalid deref type");
1656 break;
1657 }
1658 }
1659
1660 static int
1661 get_sampler_uniform_value(class ir_dereference *sampler,
1662 struct gl_shader_program *shader_program,
1663 const struct gl_program *prog)
1664 {
1665 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1666 ir_variable *var = sampler->variable_referenced();
1667 unsigned location = var->data.location;
1668 unsigned array_elements = 1;
1669 unsigned offset = 0;
1670
1671 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1672 &location);
1673
1674 assert(shader_program->UniformStorage[location].opaque[shader].active);
1675 return shader_program->UniformStorage[location].opaque[shader].index +
1676 offset;
1677 }
1678
1679 /**
1680 * Process the condition of a conditional assignment
1681 *
1682 * Examines the condition of a conditional assignment to generate the optimal
1683 * first operand of a \c CMP instruction. If the condition is a relational
1684 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1685 * used as the source for the \c CMP instruction. Otherwise the comparison
1686 * is processed to a boolean result, and the boolean result is used as the
1687 * operand to the CMP instruction.
1688 */
1689 bool
1690 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1691 {
1692 ir_rvalue *src_ir = ir;
1693 bool negate = true;
1694 bool switch_order = false;
1695
1696 ir_expression *const expr = ir->as_expression();
1697 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1698 bool zero_on_left = false;
1699
1700 if (expr->operands[0]->is_zero()) {
1701 src_ir = expr->operands[1];
1702 zero_on_left = true;
1703 } else if (expr->operands[1]->is_zero()) {
1704 src_ir = expr->operands[0];
1705 zero_on_left = false;
1706 }
1707
1708 /* a is - 0 + - 0 +
1709 * (a < 0) T F F ( a < 0) T F F
1710 * (0 < a) F F T (-a < 0) F F T
1711 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1712 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1713 * (a > 0) F F T (-a < 0) F F T
1714 * (0 > a) T F F ( a < 0) T F F
1715 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1716 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1717 *
1718 * Note that exchanging the order of 0 and 'a' in the comparison simply
1719 * means that the value of 'a' should be negated.
1720 */
1721 if (src_ir != ir) {
1722 switch (expr->operation) {
1723 case ir_binop_less:
1724 switch_order = false;
1725 negate = zero_on_left;
1726 break;
1727
1728 case ir_binop_greater:
1729 switch_order = false;
1730 negate = !zero_on_left;
1731 break;
1732
1733 case ir_binop_lequal:
1734 switch_order = true;
1735 negate = !zero_on_left;
1736 break;
1737
1738 case ir_binop_gequal:
1739 switch_order = true;
1740 negate = zero_on_left;
1741 break;
1742
1743 default:
1744 /* This isn't the right kind of comparison afterall, so make sure
1745 * the whole condition is visited.
1746 */
1747 src_ir = ir;
1748 break;
1749 }
1750 }
1751 }
1752
1753 src_ir->accept(this);
1754
1755 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1756 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1757 * choose which value OPCODE_CMP produces without an extra instruction
1758 * computing the condition.
1759 */
1760 if (negate)
1761 this->result.negate = ~this->result.negate;
1762
1763 return switch_order;
1764 }
1765
1766 void
1767 ir_to_mesa_visitor::visit(ir_assignment *ir)
1768 {
1769 dst_reg l;
1770 src_reg r;
1771 int i;
1772
1773 ir->rhs->accept(this);
1774 r = this->result;
1775
1776 l = get_assignment_lhs(ir->lhs, this);
1777
1778 /* FINISHME: This should really set to the correct maximal writemask for each
1779 * FINISHME: component written (in the loops below). This case can only
1780 * FINISHME: occur for matrices, arrays, and structures.
1781 */
1782 if (ir->write_mask == 0) {
1783 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1784 l.writemask = WRITEMASK_XYZW;
1785 } else if (ir->lhs->type->is_scalar()) {
1786 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1787 * FINISHME: W component of fragment shader output zero, work correctly.
1788 */
1789 l.writemask = WRITEMASK_XYZW;
1790 } else {
1791 int swizzles[4];
1792 int first_enabled_chan = 0;
1793 int rhs_chan = 0;
1794
1795 assert(ir->lhs->type->is_vector());
1796 l.writemask = ir->write_mask;
1797
1798 for (int i = 0; i < 4; i++) {
1799 if (l.writemask & (1 << i)) {
1800 first_enabled_chan = GET_SWZ(r.swizzle, i);
1801 break;
1802 }
1803 }
1804
1805 /* Swizzle a small RHS vector into the channels being written.
1806 *
1807 * glsl ir treats write_mask as dictating how many channels are
1808 * present on the RHS while Mesa IR treats write_mask as just
1809 * showing which channels of the vec4 RHS get written.
1810 */
1811 for (int i = 0; i < 4; i++) {
1812 if (l.writemask & (1 << i))
1813 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1814 else
1815 swizzles[i] = first_enabled_chan;
1816 }
1817 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1818 swizzles[2], swizzles[3]);
1819 }
1820
1821 assert(l.file != PROGRAM_UNDEFINED);
1822 assert(r.file != PROGRAM_UNDEFINED);
1823
1824 if (ir->condition) {
1825 const bool switch_order = this->process_move_condition(ir->condition);
1826 src_reg condition = this->result;
1827
1828 for (i = 0; i < type_size(ir->lhs->type); i++) {
1829 if (switch_order) {
1830 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1831 } else {
1832 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1833 }
1834
1835 l.index++;
1836 r.index++;
1837 }
1838 } else {
1839 for (i = 0; i < type_size(ir->lhs->type); i++) {
1840 emit(ir, OPCODE_MOV, l, r);
1841 l.index++;
1842 r.index++;
1843 }
1844 }
1845 }
1846
1847
1848 void
1849 ir_to_mesa_visitor::visit(ir_constant *ir)
1850 {
1851 src_reg src;
1852 GLfloat stack_vals[4] = { 0 };
1853 GLfloat *values = stack_vals;
1854 unsigned int i;
1855
1856 /* Unfortunately, 4 floats is all we can get into
1857 * _mesa_add_unnamed_constant. So, make a temp to store an
1858 * aggregate constant and move each constant value into it. If we
1859 * get lucky, copy propagation will eliminate the extra moves.
1860 */
1861
1862 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1863 src_reg temp_base = get_temp(ir->type);
1864 dst_reg temp = dst_reg(temp_base);
1865
1866 foreach_in_list(ir_constant, field_value, &ir->components) {
1867 int size = type_size(field_value->type);
1868
1869 assert(size > 0);
1870
1871 field_value->accept(this);
1872 src = this->result;
1873
1874 for (i = 0; i < (unsigned int)size; i++) {
1875 emit(ir, OPCODE_MOV, temp, src);
1876
1877 src.index++;
1878 temp.index++;
1879 }
1880 }
1881 this->result = temp_base;
1882 return;
1883 }
1884
1885 if (ir->type->is_array()) {
1886 src_reg temp_base = get_temp(ir->type);
1887 dst_reg temp = dst_reg(temp_base);
1888 int size = type_size(ir->type->fields.array);
1889
1890 assert(size > 0);
1891
1892 for (i = 0; i < ir->type->length; i++) {
1893 ir->array_elements[i]->accept(this);
1894 src = this->result;
1895 for (int j = 0; j < size; j++) {
1896 emit(ir, OPCODE_MOV, temp, src);
1897
1898 src.index++;
1899 temp.index++;
1900 }
1901 }
1902 this->result = temp_base;
1903 return;
1904 }
1905
1906 if (ir->type->is_matrix()) {
1907 src_reg mat = get_temp(ir->type);
1908 dst_reg mat_column = dst_reg(mat);
1909
1910 for (i = 0; i < ir->type->matrix_columns; i++) {
1911 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1912 values = &ir->value.f[i * ir->type->vector_elements];
1913
1914 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1915 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1916 (gl_constant_value *) values,
1917 ir->type->vector_elements,
1918 &src.swizzle);
1919 emit(ir, OPCODE_MOV, mat_column, src);
1920
1921 mat_column.index++;
1922 }
1923
1924 this->result = mat;
1925 return;
1926 }
1927
1928 src.file = PROGRAM_CONSTANT;
1929 switch (ir->type->base_type) {
1930 case GLSL_TYPE_FLOAT:
1931 values = &ir->value.f[0];
1932 break;
1933 case GLSL_TYPE_UINT:
1934 for (i = 0; i < ir->type->vector_elements; i++) {
1935 values[i] = ir->value.u[i];
1936 }
1937 break;
1938 case GLSL_TYPE_INT:
1939 for (i = 0; i < ir->type->vector_elements; i++) {
1940 values[i] = ir->value.i[i];
1941 }
1942 break;
1943 case GLSL_TYPE_BOOL:
1944 for (i = 0; i < ir->type->vector_elements; i++) {
1945 values[i] = ir->value.b[i];
1946 }
1947 break;
1948 default:
1949 assert(!"Non-float/uint/int/bool constant");
1950 }
1951
1952 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1953 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1954 (gl_constant_value *) values,
1955 ir->type->vector_elements,
1956 &this->result.swizzle);
1957 }
1958
1959 void
1960 ir_to_mesa_visitor::visit(ir_call *)
1961 {
1962 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1963 }
1964
1965 void
1966 ir_to_mesa_visitor::visit(ir_texture *ir)
1967 {
1968 src_reg result_src, coord, lod_info, projector, dx, dy;
1969 dst_reg result_dst, coord_dst;
1970 ir_to_mesa_instruction *inst = NULL;
1971 prog_opcode opcode = OPCODE_NOP;
1972
1973 if (ir->op == ir_txs)
1974 this->result = src_reg_for_float(0.0);
1975 else
1976 ir->coordinate->accept(this);
1977
1978 /* Put our coords in a temp. We'll need to modify them for shadow,
1979 * projection, or LOD, so the only case we'd use it as is is if
1980 * we're doing plain old texturing. Mesa IR optimization should
1981 * handle cleaning up our mess in that case.
1982 */
1983 coord = get_temp(glsl_type::vec4_type);
1984 coord_dst = dst_reg(coord);
1985 emit(ir, OPCODE_MOV, coord_dst, this->result);
1986
1987 if (ir->projector) {
1988 ir->projector->accept(this);
1989 projector = this->result;
1990 }
1991
1992 /* Storage for our result. Ideally for an assignment we'd be using
1993 * the actual storage for the result here, instead.
1994 */
1995 result_src = get_temp(glsl_type::vec4_type);
1996 result_dst = dst_reg(result_src);
1997
1998 switch (ir->op) {
1999 case ir_tex:
2000 case ir_txs:
2001 opcode = OPCODE_TEX;
2002 break;
2003 case ir_txb:
2004 opcode = OPCODE_TXB;
2005 ir->lod_info.bias->accept(this);
2006 lod_info = this->result;
2007 break;
2008 case ir_txf:
2009 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2010 case ir_txl:
2011 opcode = OPCODE_TXL;
2012 ir->lod_info.lod->accept(this);
2013 lod_info = this->result;
2014 break;
2015 case ir_txd:
2016 opcode = OPCODE_TXD;
2017 ir->lod_info.grad.dPdx->accept(this);
2018 dx = this->result;
2019 ir->lod_info.grad.dPdy->accept(this);
2020 dy = this->result;
2021 break;
2022 case ir_txf_ms:
2023 assert(!"Unexpected ir_txf_ms opcode");
2024 break;
2025 case ir_lod:
2026 assert(!"Unexpected ir_lod opcode");
2027 break;
2028 case ir_tg4:
2029 assert(!"Unexpected ir_tg4 opcode");
2030 break;
2031 case ir_query_levels:
2032 assert(!"Unexpected ir_query_levels opcode");
2033 break;
2034 case ir_samples_identical:
2035 unreachable("Unexpected ir_samples_identical opcode");
2036 case ir_texture_samples:
2037 unreachable("Unexpected ir_texture_samples opcode");
2038 }
2039
2040 const glsl_type *sampler_type = ir->sampler->type;
2041
2042 if (ir->projector) {
2043 if (opcode == OPCODE_TEX) {
2044 /* Slot the projector in as the last component of the coord. */
2045 coord_dst.writemask = WRITEMASK_W;
2046 emit(ir, OPCODE_MOV, coord_dst, projector);
2047 coord_dst.writemask = WRITEMASK_XYZW;
2048 opcode = OPCODE_TXP;
2049 } else {
2050 src_reg coord_w = coord;
2051 coord_w.swizzle = SWIZZLE_WWWW;
2052
2053 /* For the other TEX opcodes there's no projective version
2054 * since the last slot is taken up by lod info. Do the
2055 * projective divide now.
2056 */
2057 coord_dst.writemask = WRITEMASK_W;
2058 emit(ir, OPCODE_RCP, coord_dst, projector);
2059
2060 /* In the case where we have to project the coordinates "by hand,"
2061 * the shadow comparitor value must also be projected.
2062 */
2063 src_reg tmp_src = coord;
2064 if (ir->shadow_comparitor) {
2065 /* Slot the shadow value in as the second to last component of the
2066 * coord.
2067 */
2068 ir->shadow_comparitor->accept(this);
2069
2070 tmp_src = get_temp(glsl_type::vec4_type);
2071 dst_reg tmp_dst = dst_reg(tmp_src);
2072
2073 /* Projective division not allowed for array samplers. */
2074 assert(!sampler_type->sampler_array);
2075
2076 tmp_dst.writemask = WRITEMASK_Z;
2077 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2078
2079 tmp_dst.writemask = WRITEMASK_XY;
2080 emit(ir, OPCODE_MOV, tmp_dst, coord);
2081 }
2082
2083 coord_dst.writemask = WRITEMASK_XYZ;
2084 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2085
2086 coord_dst.writemask = WRITEMASK_XYZW;
2087 coord.swizzle = SWIZZLE_XYZW;
2088 }
2089 }
2090
2091 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2092 * comparitor was put in the correct place (and projected) by the code,
2093 * above, that handles by-hand projection.
2094 */
2095 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2096 /* Slot the shadow value in as the second to last component of the
2097 * coord.
2098 */
2099 ir->shadow_comparitor->accept(this);
2100
2101 /* XXX This will need to be updated for cubemap array samplers. */
2102 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2103 sampler_type->sampler_array) {
2104 coord_dst.writemask = WRITEMASK_W;
2105 } else {
2106 coord_dst.writemask = WRITEMASK_Z;
2107 }
2108
2109 emit(ir, OPCODE_MOV, coord_dst, this->result);
2110 coord_dst.writemask = WRITEMASK_XYZW;
2111 }
2112
2113 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2114 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2115 coord_dst.writemask = WRITEMASK_W;
2116 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2117 coord_dst.writemask = WRITEMASK_XYZW;
2118 }
2119
2120 if (opcode == OPCODE_TXD)
2121 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2122 else
2123 inst = emit(ir, opcode, result_dst, coord);
2124
2125 if (ir->shadow_comparitor)
2126 inst->tex_shadow = GL_TRUE;
2127
2128 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2129 prog);
2130
2131 switch (sampler_type->sampler_dimensionality) {
2132 case GLSL_SAMPLER_DIM_1D:
2133 inst->tex_target = (sampler_type->sampler_array)
2134 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2135 break;
2136 case GLSL_SAMPLER_DIM_2D:
2137 inst->tex_target = (sampler_type->sampler_array)
2138 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2139 break;
2140 case GLSL_SAMPLER_DIM_3D:
2141 inst->tex_target = TEXTURE_3D_INDEX;
2142 break;
2143 case GLSL_SAMPLER_DIM_CUBE:
2144 inst->tex_target = TEXTURE_CUBE_INDEX;
2145 break;
2146 case GLSL_SAMPLER_DIM_RECT:
2147 inst->tex_target = TEXTURE_RECT_INDEX;
2148 break;
2149 case GLSL_SAMPLER_DIM_BUF:
2150 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2151 break;
2152 case GLSL_SAMPLER_DIM_EXTERNAL:
2153 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2154 break;
2155 default:
2156 assert(!"Should not get here.");
2157 }
2158
2159 this->result = result_src;
2160 }
2161
2162 void
2163 ir_to_mesa_visitor::visit(ir_return *ir)
2164 {
2165 /* Non-void functions should have been inlined. We may still emit RETs
2166 * from main() unless the EmitNoMainReturn option is set.
2167 */
2168 assert(!ir->get_value());
2169 emit(ir, OPCODE_RET);
2170 }
2171
2172 void
2173 ir_to_mesa_visitor::visit(ir_discard *ir)
2174 {
2175 if (!ir->condition)
2176 ir->condition = new(mem_ctx) ir_constant(true);
2177
2178 ir->condition->accept(this);
2179 this->result.negate = ~this->result.negate;
2180 emit(ir, OPCODE_KIL, undef_dst, this->result);
2181 }
2182
2183 void
2184 ir_to_mesa_visitor::visit(ir_if *ir)
2185 {
2186 ir_to_mesa_instruction *if_inst;
2187
2188 ir->condition->accept(this);
2189 assert(this->result.file != PROGRAM_UNDEFINED);
2190
2191 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2192
2193 this->instructions.push_tail(if_inst);
2194
2195 visit_exec_list(&ir->then_instructions, this);
2196
2197 if (!ir->else_instructions.is_empty()) {
2198 emit(ir->condition, OPCODE_ELSE);
2199 visit_exec_list(&ir->else_instructions, this);
2200 }
2201
2202 emit(ir->condition, OPCODE_ENDIF);
2203 }
2204
2205 void
2206 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2207 {
2208 assert(!"Geometry shaders not supported.");
2209 }
2210
2211 void
2212 ir_to_mesa_visitor::visit(ir_end_primitive *)
2213 {
2214 assert(!"Geometry shaders not supported.");
2215 }
2216
2217 void
2218 ir_to_mesa_visitor::visit(ir_barrier *)
2219 {
2220 unreachable("GLSL barrier() not supported.");
2221 }
2222
2223 ir_to_mesa_visitor::ir_to_mesa_visitor()
2224 {
2225 result.file = PROGRAM_UNDEFINED;
2226 next_temp = 1;
2227 next_signature_id = 1;
2228 current_function = NULL;
2229 mem_ctx = ralloc_context(NULL);
2230 }
2231
2232 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2233 {
2234 ralloc_free(mem_ctx);
2235 }
2236
2237 static struct prog_src_register
2238 mesa_src_reg_from_ir_src_reg(src_reg reg)
2239 {
2240 struct prog_src_register mesa_reg;
2241
2242 mesa_reg.File = reg.file;
2243 assert(reg.index < (1 << INST_INDEX_BITS));
2244 mesa_reg.Index = reg.index;
2245 mesa_reg.Swizzle = reg.swizzle;
2246 mesa_reg.RelAddr = reg.reladdr != NULL;
2247 mesa_reg.Negate = reg.negate;
2248
2249 return mesa_reg;
2250 }
2251
2252 static void
2253 set_branchtargets(ir_to_mesa_visitor *v,
2254 struct prog_instruction *mesa_instructions,
2255 int num_instructions)
2256 {
2257 int if_count = 0, loop_count = 0;
2258 int *if_stack, *loop_stack;
2259 int if_stack_pos = 0, loop_stack_pos = 0;
2260 int i, j;
2261
2262 for (i = 0; i < num_instructions; i++) {
2263 switch (mesa_instructions[i].Opcode) {
2264 case OPCODE_IF:
2265 if_count++;
2266 break;
2267 case OPCODE_BGNLOOP:
2268 loop_count++;
2269 break;
2270 case OPCODE_BRK:
2271 case OPCODE_CONT:
2272 mesa_instructions[i].BranchTarget = -1;
2273 break;
2274 default:
2275 break;
2276 }
2277 }
2278
2279 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2280 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2281
2282 for (i = 0; i < num_instructions; i++) {
2283 switch (mesa_instructions[i].Opcode) {
2284 case OPCODE_IF:
2285 if_stack[if_stack_pos] = i;
2286 if_stack_pos++;
2287 break;
2288 case OPCODE_ELSE:
2289 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2290 if_stack[if_stack_pos - 1] = i;
2291 break;
2292 case OPCODE_ENDIF:
2293 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2294 if_stack_pos--;
2295 break;
2296 case OPCODE_BGNLOOP:
2297 loop_stack[loop_stack_pos] = i;
2298 loop_stack_pos++;
2299 break;
2300 case OPCODE_ENDLOOP:
2301 loop_stack_pos--;
2302 /* Rewrite any breaks/conts at this nesting level (haven't
2303 * already had a BranchTarget assigned) to point to the end
2304 * of the loop.
2305 */
2306 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2307 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2308 mesa_instructions[j].Opcode == OPCODE_CONT) {
2309 if (mesa_instructions[j].BranchTarget == -1) {
2310 mesa_instructions[j].BranchTarget = i;
2311 }
2312 }
2313 }
2314 /* The loop ends point at each other. */
2315 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2316 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2317 break;
2318 case OPCODE_CAL:
2319 foreach_in_list(function_entry, entry, &v->function_signatures) {
2320 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2321 mesa_instructions[i].BranchTarget = entry->inst;
2322 break;
2323 }
2324 }
2325 break;
2326 default:
2327 break;
2328 }
2329 }
2330 }
2331
2332 static void
2333 print_program(struct prog_instruction *mesa_instructions,
2334 ir_instruction **mesa_instruction_annotation,
2335 int num_instructions)
2336 {
2337 ir_instruction *last_ir = NULL;
2338 int i;
2339 int indent = 0;
2340
2341 for (i = 0; i < num_instructions; i++) {
2342 struct prog_instruction *mesa_inst = mesa_instructions + i;
2343 ir_instruction *ir = mesa_instruction_annotation[i];
2344
2345 fprintf(stdout, "%3d: ", i);
2346
2347 if (last_ir != ir && ir) {
2348 int j;
2349
2350 for (j = 0; j < indent; j++) {
2351 fprintf(stdout, " ");
2352 }
2353 ir->print();
2354 printf("\n");
2355 last_ir = ir;
2356
2357 fprintf(stdout, " "); /* line number spacing. */
2358 }
2359
2360 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2361 PROG_PRINT_DEBUG, NULL);
2362 }
2363 }
2364
2365 namespace {
2366
2367 class add_uniform_to_shader : public program_resource_visitor {
2368 public:
2369 add_uniform_to_shader(struct gl_shader_program *shader_program,
2370 struct gl_program_parameter_list *params,
2371 gl_shader_stage shader_type)
2372 : shader_program(shader_program), params(params), idx(-1),
2373 shader_type(shader_type)
2374 {
2375 /* empty */
2376 }
2377
2378 void process(ir_variable *var)
2379 {
2380 this->idx = -1;
2381 this->program_resource_visitor::process(var);
2382 var->data.param_index = this->idx;
2383 }
2384
2385 private:
2386 virtual void visit_field(const glsl_type *type, const char *name,
2387 bool row_major);
2388
2389 struct gl_shader_program *shader_program;
2390 struct gl_program_parameter_list *params;
2391 int idx;
2392 gl_shader_stage shader_type;
2393 };
2394
2395 } /* anonymous namespace */
2396
2397 void
2398 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2399 bool row_major)
2400 {
2401 unsigned int size;
2402
2403 (void) row_major;
2404
2405 /* atomics don't get real storage */
2406 if (type->contains_atomic())
2407 return;
2408
2409 if (type->is_vector() || type->is_scalar()) {
2410 size = type->vector_elements;
2411 if (type->is_double())
2412 size *= 2;
2413 } else {
2414 size = type_size(type) * 4;
2415 }
2416
2417 gl_register_file file;
2418 if (type->without_array()->is_sampler()) {
2419 file = PROGRAM_SAMPLER;
2420 } else {
2421 file = PROGRAM_UNIFORM;
2422 }
2423
2424 int index = _mesa_lookup_parameter_index(params, name);
2425 if (index < 0) {
2426 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2427 NULL, NULL);
2428
2429 /* Sampler uniform values are stored in prog->SamplerUnits,
2430 * and the entry in that array is selected by this index we
2431 * store in ParameterValues[].
2432 */
2433 if (file == PROGRAM_SAMPLER) {
2434 unsigned location;
2435 const bool found =
2436 this->shader_program->UniformHash->get(location,
2437 params->Parameters[index].Name);
2438 assert(found);
2439
2440 if (!found)
2441 return;
2442
2443 struct gl_uniform_storage *storage =
2444 &this->shader_program->UniformStorage[location];
2445
2446 assert(storage->type->is_sampler() &&
2447 storage->opaque[shader_type].active);
2448
2449 for (unsigned int j = 0; j < size / 4; j++)
2450 params->ParameterValues[index + j][0].f =
2451 storage->opaque[shader_type].index + j;
2452 }
2453 }
2454
2455 /* The first part of the uniform that's processed determines the base
2456 * location of the whole uniform (for structures).
2457 */
2458 if (this->idx < 0)
2459 this->idx = index;
2460 }
2461
2462 /**
2463 * Generate the program parameters list for the user uniforms in a shader
2464 *
2465 * \param shader_program Linked shader program. This is only used to
2466 * emit possible link errors to the info log.
2467 * \param sh Shader whose uniforms are to be processed.
2468 * \param params Parameter list to be filled in.
2469 */
2470 void
2471 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2472 *shader_program,
2473 struct gl_shader *sh,
2474 struct gl_program_parameter_list
2475 *params)
2476 {
2477 add_uniform_to_shader add(shader_program, params, sh->Stage);
2478
2479 foreach_in_list(ir_instruction, node, sh->ir) {
2480 ir_variable *var = node->as_variable();
2481
2482 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2483 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2484 continue;
2485
2486 add.process(var);
2487 }
2488 }
2489
2490 void
2491 _mesa_associate_uniform_storage(struct gl_context *ctx,
2492 struct gl_shader_program *shader_program,
2493 struct gl_program_parameter_list *params)
2494 {
2495 /* After adding each uniform to the parameter list, connect the storage for
2496 * the parameter with the tracking structure used by the API for the
2497 * uniform.
2498 */
2499 unsigned last_location = unsigned(~0);
2500 for (unsigned i = 0; i < params->NumParameters; i++) {
2501 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2502 continue;
2503
2504 unsigned location;
2505 const bool found =
2506 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2507 assert(found);
2508
2509 if (!found)
2510 continue;
2511
2512 struct gl_uniform_storage *storage =
2513 &shader_program->UniformStorage[location];
2514
2515 /* Do not associate any uniform storage to built-in uniforms */
2516 if (storage->builtin)
2517 continue;
2518
2519 if (location != last_location) {
2520 enum gl_uniform_driver_format format = uniform_native;
2521
2522 unsigned columns = 0;
2523 int dmul = 4 * sizeof(float);
2524 switch (storage->type->base_type) {
2525 case GLSL_TYPE_UINT:
2526 assert(ctx->Const.NativeIntegers);
2527 format = uniform_native;
2528 columns = 1;
2529 break;
2530 case GLSL_TYPE_INT:
2531 format =
2532 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2533 columns = 1;
2534 break;
2535
2536 case GLSL_TYPE_DOUBLE:
2537 if (storage->type->vector_elements > 2)
2538 dmul *= 2;
2539 /* fallthrough */
2540 case GLSL_TYPE_FLOAT:
2541 format = uniform_native;
2542 columns = storage->type->matrix_columns;
2543 break;
2544 case GLSL_TYPE_BOOL:
2545 format = uniform_native;
2546 columns = 1;
2547 break;
2548 case GLSL_TYPE_SAMPLER:
2549 case GLSL_TYPE_IMAGE:
2550 case GLSL_TYPE_SUBROUTINE:
2551 format = uniform_native;
2552 columns = 1;
2553 break;
2554 case GLSL_TYPE_ATOMIC_UINT:
2555 case GLSL_TYPE_ARRAY:
2556 case GLSL_TYPE_VOID:
2557 case GLSL_TYPE_STRUCT:
2558 case GLSL_TYPE_ERROR:
2559 case GLSL_TYPE_INTERFACE:
2560 case GLSL_TYPE_FUNCTION:
2561 assert(!"Should not get here.");
2562 break;
2563 }
2564
2565 _mesa_uniform_attach_driver_storage(storage,
2566 dmul * columns,
2567 dmul,
2568 format,
2569 &params->ParameterValues[i]);
2570
2571 /* After attaching the driver's storage to the uniform, propagate any
2572 * data from the linker's backing store. This will cause values from
2573 * initializers in the source code to be copied over.
2574 */
2575 _mesa_propagate_uniforms_to_driver_storage(storage,
2576 0,
2577 MAX2(1, storage->array_elements));
2578
2579 last_location = location;
2580 }
2581 }
2582 }
2583
2584 /*
2585 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2586 * channels for copy propagation and updates following instructions to
2587 * use the original versions.
2588 *
2589 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2590 * will occur. As an example, a TXP production before this pass:
2591 *
2592 * 0: MOV TEMP[1], INPUT[4].xyyy;
2593 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2594 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2595 *
2596 * and after:
2597 *
2598 * 0: MOV TEMP[1], INPUT[4].xyyy;
2599 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2600 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2601 *
2602 * which allows for dead code elimination on TEMP[1]'s writes.
2603 */
2604 void
2605 ir_to_mesa_visitor::copy_propagate(void)
2606 {
2607 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2608 ir_to_mesa_instruction *,
2609 this->next_temp * 4);
2610 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2611 int level = 0;
2612
2613 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2614 assert(inst->dst.file != PROGRAM_TEMPORARY
2615 || inst->dst.index < this->next_temp);
2616
2617 /* First, do any copy propagation possible into the src regs. */
2618 for (int r = 0; r < 3; r++) {
2619 ir_to_mesa_instruction *first = NULL;
2620 bool good = true;
2621 int acp_base = inst->src[r].index * 4;
2622
2623 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2624 inst->src[r].reladdr)
2625 continue;
2626
2627 /* See if we can find entries in the ACP consisting of MOVs
2628 * from the same src register for all the swizzled channels
2629 * of this src register reference.
2630 */
2631 for (int i = 0; i < 4; i++) {
2632 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2633 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2634
2635 if (!copy_chan) {
2636 good = false;
2637 break;
2638 }
2639
2640 assert(acp_level[acp_base + src_chan] <= level);
2641
2642 if (!first) {
2643 first = copy_chan;
2644 } else {
2645 if (first->src[0].file != copy_chan->src[0].file ||
2646 first->src[0].index != copy_chan->src[0].index) {
2647 good = false;
2648 break;
2649 }
2650 }
2651 }
2652
2653 if (good) {
2654 /* We've now validated that we can copy-propagate to
2655 * replace this src register reference. Do it.
2656 */
2657 inst->src[r].file = first->src[0].file;
2658 inst->src[r].index = first->src[0].index;
2659
2660 int swizzle = 0;
2661 for (int i = 0; i < 4; i++) {
2662 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2663 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2664 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2665 (3 * i));
2666 }
2667 inst->src[r].swizzle = swizzle;
2668 }
2669 }
2670
2671 switch (inst->op) {
2672 case OPCODE_BGNLOOP:
2673 case OPCODE_ENDLOOP:
2674 /* End of a basic block, clear the ACP entirely. */
2675 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2676 break;
2677
2678 case OPCODE_IF:
2679 ++level;
2680 break;
2681
2682 case OPCODE_ENDIF:
2683 case OPCODE_ELSE:
2684 /* Clear all channels written inside the block from the ACP, but
2685 * leaving those that were not touched.
2686 */
2687 for (int r = 0; r < this->next_temp; r++) {
2688 for (int c = 0; c < 4; c++) {
2689 if (!acp[4 * r + c])
2690 continue;
2691
2692 if (acp_level[4 * r + c] >= level)
2693 acp[4 * r + c] = NULL;
2694 }
2695 }
2696 if (inst->op == OPCODE_ENDIF)
2697 --level;
2698 break;
2699
2700 default:
2701 /* Continuing the block, clear any written channels from
2702 * the ACP.
2703 */
2704 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2705 /* Any temporary might be written, so no copy propagation
2706 * across this instruction.
2707 */
2708 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2709 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2710 inst->dst.reladdr) {
2711 /* Any output might be written, so no copy propagation
2712 * from outputs across this instruction.
2713 */
2714 for (int r = 0; r < this->next_temp; r++) {
2715 for (int c = 0; c < 4; c++) {
2716 if (!acp[4 * r + c])
2717 continue;
2718
2719 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2720 acp[4 * r + c] = NULL;
2721 }
2722 }
2723 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2724 inst->dst.file == PROGRAM_OUTPUT) {
2725 /* Clear where it's used as dst. */
2726 if (inst->dst.file == PROGRAM_TEMPORARY) {
2727 for (int c = 0; c < 4; c++) {
2728 if (inst->dst.writemask & (1 << c)) {
2729 acp[4 * inst->dst.index + c] = NULL;
2730 }
2731 }
2732 }
2733
2734 /* Clear where it's used as src. */
2735 for (int r = 0; r < this->next_temp; r++) {
2736 for (int c = 0; c < 4; c++) {
2737 if (!acp[4 * r + c])
2738 continue;
2739
2740 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2741
2742 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2743 acp[4 * r + c]->src[0].index == inst->dst.index &&
2744 inst->dst.writemask & (1 << src_chan))
2745 {
2746 acp[4 * r + c] = NULL;
2747 }
2748 }
2749 }
2750 }
2751 break;
2752 }
2753
2754 /* If this is a copy, add it to the ACP. */
2755 if (inst->op == OPCODE_MOV &&
2756 inst->dst.file == PROGRAM_TEMPORARY &&
2757 !(inst->dst.file == inst->src[0].file &&
2758 inst->dst.index == inst->src[0].index) &&
2759 !inst->dst.reladdr &&
2760 !inst->saturate &&
2761 !inst->src[0].reladdr &&
2762 !inst->src[0].negate) {
2763 for (int i = 0; i < 4; i++) {
2764 if (inst->dst.writemask & (1 << i)) {
2765 acp[4 * inst->dst.index + i] = inst;
2766 acp_level[4 * inst->dst.index + i] = level;
2767 }
2768 }
2769 }
2770 }
2771
2772 ralloc_free(acp_level);
2773 ralloc_free(acp);
2774 }
2775
2776
2777 /**
2778 * Convert a shader's GLSL IR into a Mesa gl_program.
2779 */
2780 static struct gl_program *
2781 get_mesa_program(struct gl_context *ctx,
2782 struct gl_shader_program *shader_program,
2783 struct gl_shader *shader)
2784 {
2785 ir_to_mesa_visitor v;
2786 struct prog_instruction *mesa_instructions, *mesa_inst;
2787 ir_instruction **mesa_instruction_annotation;
2788 int i;
2789 struct gl_program *prog;
2790 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2791 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2792 struct gl_shader_compiler_options *options =
2793 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2794
2795 validate_ir_tree(shader->ir);
2796
2797 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2798 if (!prog)
2799 return NULL;
2800 prog->Parameters = _mesa_new_parameter_list();
2801 v.ctx = ctx;
2802 v.prog = prog;
2803 v.shader_program = shader_program;
2804 v.options = options;
2805
2806 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2807 prog->Parameters);
2808
2809 /* Emit Mesa IR for main(). */
2810 visit_exec_list(shader->ir, &v);
2811 v.emit(NULL, OPCODE_END);
2812
2813 prog->NumTemporaries = v.next_temp;
2814
2815 unsigned num_instructions = v.instructions.length();
2816
2817 mesa_instructions =
2818 (struct prog_instruction *)calloc(num_instructions,
2819 sizeof(*mesa_instructions));
2820 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2821 num_instructions);
2822
2823 v.copy_propagate();
2824
2825 /* Convert ir_mesa_instructions into prog_instructions.
2826 */
2827 mesa_inst = mesa_instructions;
2828 i = 0;
2829 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2830 mesa_inst->Opcode = inst->op;
2831 if (inst->saturate)
2832 mesa_inst->Saturate = GL_TRUE;
2833 mesa_inst->DstReg.File = inst->dst.file;
2834 mesa_inst->DstReg.Index = inst->dst.index;
2835 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2836 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2837 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2838 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2839 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2840 mesa_inst->TexSrcUnit = inst->sampler;
2841 mesa_inst->TexSrcTarget = inst->tex_target;
2842 mesa_inst->TexShadow = inst->tex_shadow;
2843 mesa_instruction_annotation[i] = inst->ir;
2844
2845 /* Set IndirectRegisterFiles. */
2846 if (mesa_inst->DstReg.RelAddr)
2847 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2848
2849 /* Update program's bitmask of indirectly accessed register files */
2850 for (unsigned src = 0; src < 3; src++)
2851 if (mesa_inst->SrcReg[src].RelAddr)
2852 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2853
2854 switch (mesa_inst->Opcode) {
2855 case OPCODE_IF:
2856 if (options->MaxIfDepth == 0) {
2857 linker_warning(shader_program,
2858 "Couldn't flatten if-statement. "
2859 "This will likely result in software "
2860 "rasterization.\n");
2861 }
2862 break;
2863 case OPCODE_BGNLOOP:
2864 if (options->EmitNoLoops) {
2865 linker_warning(shader_program,
2866 "Couldn't unroll loop. "
2867 "This will likely result in software "
2868 "rasterization.\n");
2869 }
2870 break;
2871 case OPCODE_CONT:
2872 if (options->EmitNoCont) {
2873 linker_warning(shader_program,
2874 "Couldn't lower continue-statement. "
2875 "This will likely result in software "
2876 "rasterization.\n");
2877 }
2878 break;
2879 case OPCODE_ARL:
2880 prog->NumAddressRegs = 1;
2881 break;
2882 default:
2883 break;
2884 }
2885
2886 mesa_inst++;
2887 i++;
2888
2889 if (!shader_program->LinkStatus)
2890 break;
2891 }
2892
2893 if (!shader_program->LinkStatus) {
2894 goto fail_exit;
2895 }
2896
2897 set_branchtargets(&v, mesa_instructions, num_instructions);
2898
2899 if (ctx->_Shader->Flags & GLSL_DUMP) {
2900 fprintf(stderr, "\n");
2901 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2902 shader_program->Name);
2903 _mesa_print_ir(stderr, shader->ir, NULL);
2904 fprintf(stderr, "\n");
2905 fprintf(stderr, "\n");
2906 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2907 shader_program->Name);
2908 print_program(mesa_instructions, mesa_instruction_annotation,
2909 num_instructions);
2910 fflush(stderr);
2911 }
2912
2913 prog->Instructions = mesa_instructions;
2914 prog->NumInstructions = num_instructions;
2915
2916 /* Setting this to NULL prevents a possible double free in the fail_exit
2917 * path (far below).
2918 */
2919 mesa_instructions = NULL;
2920
2921 do_set_program_inouts(shader->ir, prog, shader->Stage);
2922
2923 prog->SamplersUsed = shader->active_samplers;
2924 prog->ShadowSamplers = shader->shadow_samplers;
2925 _mesa_update_shader_textures_used(shader_program, prog);
2926
2927 /* Set the gl_FragDepth layout. */
2928 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2929 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2930 fp->FragDepthLayout = shader_program->FragDepthLayout;
2931 }
2932
2933 _mesa_reference_program(ctx, &shader->Program, prog);
2934
2935 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2936 _mesa_optimize_program(ctx, prog);
2937 }
2938
2939 /* This has to be done last. Any operation that can cause
2940 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2941 * program constant) has to happen before creating this linkage.
2942 */
2943 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2944 if (!shader_program->LinkStatus) {
2945 goto fail_exit;
2946 }
2947
2948 return prog;
2949
2950 fail_exit:
2951 free(mesa_instructions);
2952 _mesa_reference_program(ctx, &shader->Program, NULL);
2953 return NULL;
2954 }
2955
2956 extern "C" {
2957
2958 /**
2959 * Link a shader.
2960 * Called via ctx->Driver.LinkShader()
2961 * This actually involves converting GLSL IR into Mesa gl_programs with
2962 * code lowering and other optimizations.
2963 */
2964 GLboolean
2965 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2966 {
2967 assert(prog->LinkStatus);
2968
2969 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2970 if (prog->_LinkedShaders[i] == NULL)
2971 continue;
2972
2973 bool progress;
2974 exec_list *ir = prog->_LinkedShaders[i]->ir;
2975 const struct gl_shader_compiler_options *options =
2976 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2977
2978 do {
2979 progress = false;
2980
2981 /* Lowering */
2982 do_mat_op_to_vec(ir);
2983 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2984 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2985 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2986
2987 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2988
2989 progress = do_common_optimization(ir, true, true,
2990 options, ctx->Const.NativeIntegers)
2991 || progress;
2992
2993 progress = lower_quadop_vector(ir, true) || progress;
2994
2995 if (options->MaxIfDepth == 0)
2996 progress = lower_discard(ir) || progress;
2997
2998 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2999
3000 if (options->EmitNoNoise)
3001 progress = lower_noise(ir) || progress;
3002
3003 /* If there are forms of indirect addressing that the driver
3004 * cannot handle, perform the lowering pass.
3005 */
3006 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3007 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3008 progress =
3009 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3010 options->EmitNoIndirectInput,
3011 options->EmitNoIndirectOutput,
3012 options->EmitNoIndirectTemp,
3013 options->EmitNoIndirectUniform)
3014 || progress;
3015
3016 progress = do_vec_index_to_cond_assign(ir) || progress;
3017 progress = lower_vector_insert(ir, true) || progress;
3018 } while (progress);
3019
3020 validate_ir_tree(ir);
3021 }
3022
3023 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3024 struct gl_program *linked_prog;
3025
3026 if (prog->_LinkedShaders[i] == NULL)
3027 continue;
3028
3029 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3030
3031 if (linked_prog) {
3032 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
3033
3034 if (!ctx->Driver.ProgramStringNotify(ctx,
3035 _mesa_shader_stage_to_program(i),
3036 linked_prog)) {
3037 return GL_FALSE;
3038 }
3039 }
3040
3041 _mesa_reference_program(ctx, &linked_prog, NULL);
3042 }
3043
3044 build_program_resource_list(ctx, prog);
3045 return prog->LinkStatus;
3046 }
3047
3048 /**
3049 * Link a GLSL shader program. Called via glLinkProgram().
3050 */
3051 void
3052 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3053 {
3054 unsigned int i;
3055
3056 _mesa_clear_shader_program_data(prog);
3057
3058 prog->LinkStatus = GL_TRUE;
3059
3060 for (i = 0; i < prog->NumShaders; i++) {
3061 if (!prog->Shaders[i]->CompileStatus) {
3062 linker_error(prog, "linking with uncompiled shader");
3063 }
3064 }
3065
3066 if (prog->LinkStatus) {
3067 link_shaders(ctx, prog);
3068 }
3069
3070 if (prog->LinkStatus) {
3071 if (!ctx->Driver.LinkShader(ctx, prog)) {
3072 prog->LinkStatus = GL_FALSE;
3073 }
3074 }
3075
3076 if (ctx->_Shader->Flags & GLSL_DUMP) {
3077 if (!prog->LinkStatus) {
3078 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3079 }
3080
3081 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3082 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3083 fprintf(stderr, "%s\n", prog->InfoLog);
3084 }
3085 }
3086 }
3087
3088 } /* extern "C" */