Merge remote-tracking branch 'origin/master' into vulkan
[mesa.git] / src / mesa / program / prog_optimize.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VMWARE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
20 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24
25
26 #include "main/glheader.h"
27 #include "main/context.h"
28 #include "main/macros.h"
29 #include "program.h"
30 #include "prog_instruction.h"
31 #include "prog_optimize.h"
32 #include "prog_print.h"
33
34
35 #define MAX_LOOP_NESTING 50
36 /* MAX_PROGRAM_TEMPS is a low number (256), and we want to be able to
37 * register allocate many temporary values into that small number of
38 * temps. So allow large temporary indices coming into the register
39 * allocator.
40 */
41 #define REG_ALLOCATE_MAX_PROGRAM_TEMPS ((1 << INST_INDEX_BITS) - 1)
42
43 static GLboolean dbg = GL_FALSE;
44
45 #define NO_MASK 0xf
46
47 /**
48 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
49 * are read from the given src in this instruction, We also provide
50 * one optional masks which may mask other components in the dst
51 * register
52 */
53 static GLuint
54 get_src_arg_mask(const struct prog_instruction *inst,
55 GLuint arg, GLuint dst_mask)
56 {
57 GLuint read_mask, channel_mask;
58 GLuint comp;
59
60 assert(arg < _mesa_num_inst_src_regs(inst->Opcode));
61
62 /* Form the dst register, find the written channels */
63 switch (inst->Opcode) {
64 case OPCODE_MOV:
65 case OPCODE_MIN:
66 case OPCODE_MAX:
67 case OPCODE_ABS:
68 case OPCODE_ADD:
69 case OPCODE_MAD:
70 case OPCODE_MUL:
71 case OPCODE_SUB:
72 case OPCODE_CMP:
73 case OPCODE_FLR:
74 case OPCODE_FRC:
75 case OPCODE_LRP:
76 case OPCODE_SEQ:
77 case OPCODE_SGE:
78 case OPCODE_SGT:
79 case OPCODE_SLE:
80 case OPCODE_SLT:
81 case OPCODE_SNE:
82 case OPCODE_SSG:
83 channel_mask = inst->DstReg.WriteMask & dst_mask;
84 break;
85 case OPCODE_RCP:
86 case OPCODE_SIN:
87 case OPCODE_COS:
88 case OPCODE_RSQ:
89 case OPCODE_POW:
90 case OPCODE_EX2:
91 case OPCODE_LOG:
92 channel_mask = WRITEMASK_X;
93 break;
94 case OPCODE_DP2:
95 channel_mask = WRITEMASK_XY;
96 break;
97 case OPCODE_DP3:
98 case OPCODE_XPD:
99 channel_mask = WRITEMASK_XYZ;
100 break;
101 default:
102 channel_mask = WRITEMASK_XYZW;
103 break;
104 }
105
106 /* Now, given the src swizzle and the written channels, find which
107 * components are actually read
108 */
109 read_mask = 0x0;
110 for (comp = 0; comp < 4; ++comp) {
111 const GLuint coord = GET_SWZ(inst->SrcReg[arg].Swizzle, comp);
112 if (channel_mask & (1 << comp) && coord <= SWIZZLE_W)
113 read_mask |= 1 << coord;
114 }
115
116 return read_mask;
117 }
118
119
120 /**
121 * For a MOV instruction, compute a write mask when src register also has
122 * a mask
123 */
124 static GLuint
125 get_dst_mask_for_mov(const struct prog_instruction *mov, GLuint src_mask)
126 {
127 const GLuint mask = mov->DstReg.WriteMask;
128 GLuint comp;
129 GLuint updated_mask = 0x0;
130
131 assert(mov->Opcode == OPCODE_MOV);
132
133 for (comp = 0; comp < 4; ++comp) {
134 GLuint src_comp;
135 if ((mask & (1 << comp)) == 0)
136 continue;
137 src_comp = GET_SWZ(mov->SrcReg[0].Swizzle, comp);
138 if ((src_mask & (1 << src_comp)) == 0)
139 continue;
140 updated_mask |= 1 << comp;
141 }
142
143 return updated_mask;
144 }
145
146
147 /**
148 * Ensure that the swizzle is regular. That is, all of the swizzle
149 * terms are SWIZZLE_X,Y,Z,W and not SWIZZLE_ZERO or SWIZZLE_ONE.
150 */
151 static GLboolean
152 is_swizzle_regular(GLuint swz)
153 {
154 return GET_SWZ(swz,0) <= SWIZZLE_W &&
155 GET_SWZ(swz,1) <= SWIZZLE_W &&
156 GET_SWZ(swz,2) <= SWIZZLE_W &&
157 GET_SWZ(swz,3) <= SWIZZLE_W;
158 }
159
160
161 /**
162 * In 'prog' remove instruction[i] if removeFlags[i] == TRUE.
163 * \return number of instructions removed
164 */
165 static GLuint
166 remove_instructions(struct gl_program *prog, const GLboolean *removeFlags)
167 {
168 GLint i, removeEnd = 0, removeCount = 0;
169 GLuint totalRemoved = 0;
170
171 /* go backward */
172 for (i = prog->NumInstructions - 1; i >= 0; i--) {
173 if (removeFlags[i]) {
174 totalRemoved++;
175 if (removeCount == 0) {
176 /* begin a run of instructions to remove */
177 removeEnd = i;
178 removeCount = 1;
179 }
180 else {
181 /* extend the run of instructions to remove */
182 removeCount++;
183 }
184 }
185 else {
186 /* don't remove this instruction, but check if the preceeding
187 * instructions are to be removed.
188 */
189 if (removeCount > 0) {
190 GLint removeStart = removeEnd - removeCount + 1;
191 _mesa_delete_instructions(prog, removeStart, removeCount);
192 removeStart = removeCount = 0; /* reset removal info */
193 }
194 }
195 }
196 /* Finish removing if the first instruction was to be removed. */
197 if (removeCount > 0) {
198 GLint removeStart = removeEnd - removeCount + 1;
199 _mesa_delete_instructions(prog, removeStart, removeCount);
200 }
201 return totalRemoved;
202 }
203
204
205 /**
206 * Remap register indexes according to map.
207 * \param prog the program to search/replace
208 * \param file the type of register file to search/replace
209 * \param map maps old register indexes to new indexes
210 */
211 static void
212 replace_regs(struct gl_program *prog, gl_register_file file, const GLint map[])
213 {
214 GLuint i;
215
216 for (i = 0; i < prog->NumInstructions; i++) {
217 struct prog_instruction *inst = prog->Instructions + i;
218 const GLuint numSrc = _mesa_num_inst_src_regs(inst->Opcode);
219 GLuint j;
220 for (j = 0; j < numSrc; j++) {
221 if (inst->SrcReg[j].File == file) {
222 GLuint index = inst->SrcReg[j].Index;
223 assert(map[index] >= 0);
224 inst->SrcReg[j].Index = map[index];
225 }
226 }
227 if (inst->DstReg.File == file) {
228 const GLuint index = inst->DstReg.Index;
229 assert(map[index] >= 0);
230 inst->DstReg.Index = map[index];
231 }
232 }
233 }
234
235
236 /**
237 * Remove dead instructions from the given program.
238 * This is very primitive for now. Basically look for temp registers
239 * that are written to but never read. Remove any instructions that
240 * write to such registers. Be careful with condition code setters.
241 */
242 static GLboolean
243 _mesa_remove_dead_code_global(struct gl_program *prog)
244 {
245 GLboolean tempRead[REG_ALLOCATE_MAX_PROGRAM_TEMPS][4];
246 GLboolean *removeInst; /* per-instruction removal flag */
247 GLuint i, rem = 0, comp;
248
249 memset(tempRead, 0, sizeof(tempRead));
250
251 if (dbg) {
252 printf("Optimize: Begin dead code removal\n");
253 /*_mesa_print_program(prog);*/
254 }
255
256 removeInst =
257 calloc(prog->NumInstructions, sizeof(GLboolean));
258
259 /* Determine which temps are read and written */
260 for (i = 0; i < prog->NumInstructions; i++) {
261 const struct prog_instruction *inst = prog->Instructions + i;
262 const GLuint numSrc = _mesa_num_inst_src_regs(inst->Opcode);
263 GLuint j;
264
265 /* check src regs */
266 for (j = 0; j < numSrc; j++) {
267 if (inst->SrcReg[j].File == PROGRAM_TEMPORARY) {
268 const GLuint index = inst->SrcReg[j].Index;
269 GLuint read_mask;
270 assert(index < REG_ALLOCATE_MAX_PROGRAM_TEMPS);
271 read_mask = get_src_arg_mask(inst, j, NO_MASK);
272
273 if (inst->SrcReg[j].RelAddr) {
274 if (dbg)
275 printf("abort remove dead code (indirect temp)\n");
276 goto done;
277 }
278
279 for (comp = 0; comp < 4; comp++) {
280 const GLuint swz = GET_SWZ(inst->SrcReg[j].Swizzle, comp);
281 if (swz <= SWIZZLE_W) {
282 if ((read_mask & (1 << swz)) == 0)
283 continue;
284 tempRead[index][swz] = GL_TRUE;
285 }
286 }
287 }
288 }
289
290 /* check dst reg */
291 if (inst->DstReg.File == PROGRAM_TEMPORARY) {
292 const GLuint index = inst->DstReg.Index;
293 assert(index < REG_ALLOCATE_MAX_PROGRAM_TEMPS);
294
295 if (inst->DstReg.RelAddr) {
296 if (dbg)
297 printf("abort remove dead code (indirect temp)\n");
298 goto done;
299 }
300 }
301 }
302
303 /* find instructions that write to dead registers, flag for removal */
304 for (i = 0; i < prog->NumInstructions; i++) {
305 struct prog_instruction *inst = prog->Instructions + i;
306 const GLuint numDst = _mesa_num_inst_dst_regs(inst->Opcode);
307
308 if (numDst != 0 && inst->DstReg.File == PROGRAM_TEMPORARY) {
309 GLint chan, index = inst->DstReg.Index;
310
311 for (chan = 0; chan < 4; chan++) {
312 if (!tempRead[index][chan] &&
313 inst->DstReg.WriteMask & (1 << chan)) {
314 if (dbg) {
315 printf("Remove writemask on %u.%c\n", i,
316 chan == 3 ? 'w' : 'x' + chan);
317 }
318 inst->DstReg.WriteMask &= ~(1 << chan);
319 rem++;
320 }
321 }
322
323 if (inst->DstReg.WriteMask == 0) {
324 /* If we cleared all writes, the instruction can be removed. */
325 if (dbg)
326 printf("Remove instruction %u: \n", i);
327 removeInst[i] = GL_TRUE;
328 }
329 }
330 }
331
332 /* now remove the instructions which aren't needed */
333 rem = remove_instructions(prog, removeInst);
334
335 if (dbg) {
336 printf("Optimize: End dead code removal.\n");
337 printf(" %u channel writes removed\n", rem);
338 printf(" %u instructions removed\n", rem);
339 /*_mesa_print_program(prog);*/
340 }
341
342 done:
343 free(removeInst);
344 return rem != 0;
345 }
346
347
348 enum inst_use
349 {
350 READ,
351 WRITE,
352 FLOW,
353 END
354 };
355
356
357 /**
358 * Scan forward in program from 'start' for the next occurances of TEMP[index].
359 * We look if an instruction reads the component given by the masks and if they
360 * are overwritten.
361 * Return READ, WRITE, FLOW or END to indicate the next usage or an indicator
362 * that we can't look further.
363 */
364 static enum inst_use
365 find_next_use(const struct gl_program *prog,
366 GLuint start,
367 GLuint index,
368 GLuint mask)
369 {
370 GLuint i;
371
372 for (i = start; i < prog->NumInstructions; i++) {
373 const struct prog_instruction *inst = prog->Instructions + i;
374 switch (inst->Opcode) {
375 case OPCODE_BGNLOOP:
376 case OPCODE_BGNSUB:
377 case OPCODE_CAL:
378 case OPCODE_CONT:
379 case OPCODE_IF:
380 case OPCODE_ELSE:
381 case OPCODE_ENDIF:
382 case OPCODE_ENDLOOP:
383 case OPCODE_ENDSUB:
384 case OPCODE_RET:
385 return FLOW;
386 case OPCODE_END:
387 return END;
388 default:
389 {
390 const GLuint numSrc = _mesa_num_inst_src_regs(inst->Opcode);
391 GLuint j;
392 for (j = 0; j < numSrc; j++) {
393 if (inst->SrcReg[j].RelAddr ||
394 (inst->SrcReg[j].File == PROGRAM_TEMPORARY &&
395 inst->SrcReg[j].Index == (GLint)index &&
396 (get_src_arg_mask(inst,j,NO_MASK) & mask)))
397 return READ;
398 }
399 if (_mesa_num_inst_dst_regs(inst->Opcode) == 1 &&
400 inst->DstReg.File == PROGRAM_TEMPORARY &&
401 inst->DstReg.Index == index) {
402 mask &= ~inst->DstReg.WriteMask;
403 if (mask == 0)
404 return WRITE;
405 }
406 }
407 }
408 }
409 return END;
410 }
411
412
413 /**
414 * Is the given instruction opcode a flow-control opcode?
415 * XXX maybe move this into prog_instruction.[ch]
416 */
417 static GLboolean
418 _mesa_is_flow_control_opcode(enum prog_opcode opcode)
419 {
420 switch (opcode) {
421 case OPCODE_BGNLOOP:
422 case OPCODE_BGNSUB:
423 case OPCODE_CAL:
424 case OPCODE_CONT:
425 case OPCODE_IF:
426 case OPCODE_ELSE:
427 case OPCODE_END:
428 case OPCODE_ENDIF:
429 case OPCODE_ENDLOOP:
430 case OPCODE_ENDSUB:
431 case OPCODE_RET:
432 return GL_TRUE;
433 default:
434 return GL_FALSE;
435 }
436 }
437
438
439 /**
440 * Test if the given instruction is a simple MOV (no conditional updating,
441 * not relative addressing, no negation/abs, etc).
442 */
443 static GLboolean
444 can_downward_mov_be_modifed(const struct prog_instruction *mov)
445 {
446 return
447 mov->Opcode == OPCODE_MOV &&
448 mov->SrcReg[0].RelAddr == 0 &&
449 mov->SrcReg[0].Negate == 0 &&
450 mov->DstReg.RelAddr == 0;
451 }
452
453
454 static GLboolean
455 can_upward_mov_be_modifed(const struct prog_instruction *mov)
456 {
457 return
458 can_downward_mov_be_modifed(mov) &&
459 mov->DstReg.File == PROGRAM_TEMPORARY &&
460 !mov->Saturate;
461 }
462
463
464 /**
465 * Try to remove use of extraneous MOV instructions, to free them up for dead
466 * code removal.
467 */
468 static void
469 _mesa_remove_extra_move_use(struct gl_program *prog)
470 {
471 GLuint i, j;
472
473 if (dbg) {
474 printf("Optimize: Begin remove extra move use\n");
475 _mesa_print_program(prog);
476 }
477
478 /*
479 * Look for sequences such as this:
480 * MOV tmpX, arg0;
481 * ...
482 * FOO tmpY, tmpX, arg1;
483 * and convert into:
484 * MOV tmpX, arg0;
485 * ...
486 * FOO tmpY, arg0, arg1;
487 */
488
489 for (i = 0; i + 1 < prog->NumInstructions; i++) {
490 const struct prog_instruction *mov = prog->Instructions + i;
491 GLuint dst_mask, src_mask;
492 if (can_upward_mov_be_modifed(mov) == GL_FALSE)
493 continue;
494
495 /* Scanning the code, we maintain the components which are still active in
496 * these two masks
497 */
498 dst_mask = mov->DstReg.WriteMask;
499 src_mask = get_src_arg_mask(mov, 0, NO_MASK);
500
501 /* Walk through remaining instructions until the or src reg gets
502 * rewritten or we get into some flow-control, eliminating the use of
503 * this MOV.
504 */
505 for (j = i + 1; j < prog->NumInstructions; j++) {
506 struct prog_instruction *inst2 = prog->Instructions + j;
507 GLuint arg;
508
509 if (_mesa_is_flow_control_opcode(inst2->Opcode))
510 break;
511
512 /* First rewrite this instruction's args if appropriate. */
513 for (arg = 0; arg < _mesa_num_inst_src_regs(inst2->Opcode); arg++) {
514 GLuint comp, read_mask;
515
516 if (inst2->SrcReg[arg].File != mov->DstReg.File ||
517 inst2->SrcReg[arg].Index != mov->DstReg.Index ||
518 inst2->SrcReg[arg].RelAddr)
519 continue;
520 read_mask = get_src_arg_mask(inst2, arg, NO_MASK);
521
522 /* Adjust the swizzles of inst2 to point at MOV's source if ALL the
523 * components read still come from the mov instructions
524 */
525 if (is_swizzle_regular(inst2->SrcReg[arg].Swizzle) &&
526 (read_mask & dst_mask) == read_mask) {
527 for (comp = 0; comp < 4; comp++) {
528 const GLuint inst2_swz =
529 GET_SWZ(inst2->SrcReg[arg].Swizzle, comp);
530 const GLuint s = GET_SWZ(mov->SrcReg[0].Swizzle, inst2_swz);
531 inst2->SrcReg[arg].Swizzle &= ~(7 << (3 * comp));
532 inst2->SrcReg[arg].Swizzle |= s << (3 * comp);
533 inst2->SrcReg[arg].Negate ^= (((mov->SrcReg[0].Negate >>
534 inst2_swz) & 0x1) << comp);
535 }
536 inst2->SrcReg[arg].File = mov->SrcReg[0].File;
537 inst2->SrcReg[arg].Index = mov->SrcReg[0].Index;
538 }
539 }
540
541 /* The source of MOV is written. This potentially deactivates some
542 * components from the src and dst of the MOV instruction
543 */
544 if (inst2->DstReg.File == mov->DstReg.File &&
545 (inst2->DstReg.RelAddr ||
546 inst2->DstReg.Index == mov->DstReg.Index)) {
547 dst_mask &= ~inst2->DstReg.WriteMask;
548 src_mask = get_src_arg_mask(mov, 0, dst_mask);
549 }
550
551 /* Idem when the destination of mov is written */
552 if (inst2->DstReg.File == mov->SrcReg[0].File &&
553 (inst2->DstReg.RelAddr ||
554 inst2->DstReg.Index == mov->SrcReg[0].Index)) {
555 src_mask &= ~inst2->DstReg.WriteMask;
556 dst_mask &= get_dst_mask_for_mov(mov, src_mask);
557 }
558 if (dst_mask == 0)
559 break;
560 }
561 }
562
563 if (dbg) {
564 printf("Optimize: End remove extra move use.\n");
565 /*_mesa_print_program(prog);*/
566 }
567 }
568
569
570 /**
571 * Complements dead_code_global. Try to remove code in block of code by
572 * carefully monitoring the swizzles. Both functions should be merged into one
573 * with a proper control flow graph
574 */
575 static GLboolean
576 _mesa_remove_dead_code_local(struct gl_program *prog)
577 {
578 GLboolean *removeInst;
579 GLuint i, arg, rem = 0;
580
581 removeInst =
582 calloc(prog->NumInstructions, sizeof(GLboolean));
583
584 for (i = 0; i < prog->NumInstructions; i++) {
585 const struct prog_instruction *inst = prog->Instructions + i;
586 const GLuint index = inst->DstReg.Index;
587 const GLuint mask = inst->DstReg.WriteMask;
588 enum inst_use use;
589
590 /* We must deactivate the pass as soon as some indirection is used */
591 if (inst->DstReg.RelAddr)
592 goto done;
593 for (arg = 0; arg < _mesa_num_inst_src_regs(inst->Opcode); arg++)
594 if (inst->SrcReg[arg].RelAddr)
595 goto done;
596
597 if (_mesa_is_flow_control_opcode(inst->Opcode) ||
598 _mesa_num_inst_dst_regs(inst->Opcode) == 0 ||
599 inst->DstReg.File != PROGRAM_TEMPORARY ||
600 inst->DstReg.RelAddr)
601 continue;
602
603 use = find_next_use(prog, i+1, index, mask);
604 if (use == WRITE || use == END)
605 removeInst[i] = GL_TRUE;
606 }
607
608 rem = remove_instructions(prog, removeInst);
609
610 done:
611 free(removeInst);
612 return rem != 0;
613 }
614
615
616 /**
617 * Try to inject the destination of mov as the destination of inst and recompute
618 * the swizzles operators for the sources of inst if required. Return GL_TRUE
619 * of the substitution was possible, GL_FALSE otherwise
620 */
621 static GLboolean
622 _mesa_merge_mov_into_inst(struct prog_instruction *inst,
623 const struct prog_instruction *mov)
624 {
625 /* Indirection table which associates destination and source components for
626 * the mov instruction
627 */
628 const GLuint mask = get_src_arg_mask(mov, 0, NO_MASK);
629
630 /* Some components are not written by inst. We cannot remove the mov */
631 if (mask != (inst->DstReg.WriteMask & mask))
632 return GL_FALSE;
633
634 inst->Saturate |= mov->Saturate;
635
636 /* Depending on the instruction, we may need to recompute the swizzles.
637 * Also, some other instructions (like TEX) are not linear. We will only
638 * consider completely active sources and destinations
639 */
640 switch (inst->Opcode) {
641
642 /* Carstesian instructions: we compute the swizzle */
643 case OPCODE_MOV:
644 case OPCODE_MIN:
645 case OPCODE_MAX:
646 case OPCODE_ABS:
647 case OPCODE_ADD:
648 case OPCODE_MAD:
649 case OPCODE_MUL:
650 case OPCODE_SUB:
651 {
652 GLuint dst_to_src_comp[4] = {0,0,0,0};
653 GLuint dst_comp, arg;
654 for (dst_comp = 0; dst_comp < 4; ++dst_comp) {
655 if (mov->DstReg.WriteMask & (1 << dst_comp)) {
656 const GLuint src_comp = GET_SWZ(mov->SrcReg[0].Swizzle, dst_comp);
657 assert(src_comp < 4);
658 dst_to_src_comp[dst_comp] = src_comp;
659 }
660 }
661
662 /* Patch each source of the instruction */
663 for (arg = 0; arg < _mesa_num_inst_src_regs(inst->Opcode); arg++) {
664 const GLuint arg_swz = inst->SrcReg[arg].Swizzle;
665 inst->SrcReg[arg].Swizzle = 0;
666
667 /* Reset each active component of the swizzle */
668 for (dst_comp = 0; dst_comp < 4; ++dst_comp) {
669 GLuint src_comp, arg_comp;
670 if ((mov->DstReg.WriteMask & (1 << dst_comp)) == 0)
671 continue;
672 src_comp = dst_to_src_comp[dst_comp];
673 assert(src_comp < 4);
674 arg_comp = GET_SWZ(arg_swz, src_comp);
675 assert(arg_comp < 4);
676 inst->SrcReg[arg].Swizzle |= arg_comp << (3*dst_comp);
677 }
678 }
679 inst->DstReg = mov->DstReg;
680 return GL_TRUE;
681 }
682
683 /* Dot products and scalar instructions: we only change the destination */
684 case OPCODE_RCP:
685 case OPCODE_SIN:
686 case OPCODE_COS:
687 case OPCODE_RSQ:
688 case OPCODE_POW:
689 case OPCODE_EX2:
690 case OPCODE_LOG:
691 case OPCODE_DP2:
692 case OPCODE_DP3:
693 case OPCODE_DP4:
694 inst->DstReg = mov->DstReg;
695 return GL_TRUE;
696
697 /* All other instructions require fully active components with no swizzle */
698 default:
699 if (mov->SrcReg[0].Swizzle != SWIZZLE_XYZW ||
700 inst->DstReg.WriteMask != WRITEMASK_XYZW)
701 return GL_FALSE;
702 inst->DstReg = mov->DstReg;
703 return GL_TRUE;
704 }
705 }
706
707
708 /**
709 * Try to remove extraneous MOV instructions from the given program.
710 */
711 static GLboolean
712 _mesa_remove_extra_moves(struct gl_program *prog)
713 {
714 GLboolean *removeInst; /* per-instruction removal flag */
715 GLuint i, rem = 0, nesting = 0;
716
717 if (dbg) {
718 printf("Optimize: Begin remove extra moves\n");
719 _mesa_print_program(prog);
720 }
721
722 removeInst =
723 calloc(prog->NumInstructions, sizeof(GLboolean));
724
725 /*
726 * Look for sequences such as this:
727 * FOO tmpX, arg0, arg1;
728 * MOV tmpY, tmpX;
729 * and convert into:
730 * FOO tmpY, arg0, arg1;
731 */
732
733 for (i = 0; i < prog->NumInstructions; i++) {
734 const struct prog_instruction *mov = prog->Instructions + i;
735
736 switch (mov->Opcode) {
737 case OPCODE_BGNLOOP:
738 case OPCODE_BGNSUB:
739 case OPCODE_IF:
740 nesting++;
741 break;
742 case OPCODE_ENDLOOP:
743 case OPCODE_ENDSUB:
744 case OPCODE_ENDIF:
745 nesting--;
746 break;
747 case OPCODE_MOV:
748 if (i > 0 &&
749 can_downward_mov_be_modifed(mov) &&
750 mov->SrcReg[0].File == PROGRAM_TEMPORARY &&
751 nesting == 0)
752 {
753
754 /* see if this MOV can be removed */
755 const GLuint id = mov->SrcReg[0].Index;
756 struct prog_instruction *prevInst;
757 GLuint prevI;
758
759 /* get pointer to previous instruction */
760 prevI = i - 1;
761 while (prevI > 0 && removeInst[prevI])
762 prevI--;
763 prevInst = prog->Instructions + prevI;
764
765 if (prevInst->DstReg.File == PROGRAM_TEMPORARY &&
766 prevInst->DstReg.Index == id &&
767 prevInst->DstReg.RelAddr == 0) {
768
769 const GLuint dst_mask = prevInst->DstReg.WriteMask;
770 enum inst_use next_use = find_next_use(prog, i+1, id, dst_mask);
771
772 if (next_use == WRITE || next_use == END) {
773 /* OK, we can safely remove this MOV instruction.
774 * Transform:
775 * prevI: FOO tempIndex, x, y;
776 * i: MOV z, tempIndex;
777 * Into:
778 * prevI: FOO z, x, y;
779 */
780 if (_mesa_merge_mov_into_inst(prevInst, mov)) {
781 removeInst[i] = GL_TRUE;
782 if (dbg) {
783 printf("Remove MOV at %u\n", i);
784 printf("new prev inst %u: ", prevI);
785 _mesa_print_instruction(prevInst);
786 }
787 }
788 }
789 }
790 }
791 break;
792 default:
793 ; /* nothing */
794 }
795 }
796
797 /* now remove the instructions which aren't needed */
798 rem = remove_instructions(prog, removeInst);
799
800 free(removeInst);
801
802 if (dbg) {
803 printf("Optimize: End remove extra moves. %u instructions removed\n", rem);
804 /*_mesa_print_program(prog);*/
805 }
806
807 return rem != 0;
808 }
809
810
811 /** A live register interval */
812 struct interval
813 {
814 GLuint Reg; /** The temporary register index */
815 GLuint Start, End; /** Start/end instruction numbers */
816 };
817
818
819 /** A list of register intervals */
820 struct interval_list
821 {
822 GLuint Num;
823 struct interval Intervals[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
824 };
825
826
827 static void
828 append_interval(struct interval_list *list, const struct interval *inv)
829 {
830 list->Intervals[list->Num++] = *inv;
831 }
832
833
834 /** Insert interval inv into list, sorted by interval end */
835 static void
836 insert_interval_by_end(struct interval_list *list, const struct interval *inv)
837 {
838 /* XXX we could do a binary search insertion here since list is sorted */
839 GLint i = list->Num - 1;
840 while (i >= 0 && list->Intervals[i].End > inv->End) {
841 list->Intervals[i + 1] = list->Intervals[i];
842 i--;
843 }
844 list->Intervals[i + 1] = *inv;
845 list->Num++;
846
847 #ifdef DEBUG
848 {
849 GLuint i;
850 for (i = 0; i + 1 < list->Num; i++) {
851 assert(list->Intervals[i].End <= list->Intervals[i + 1].End);
852 }
853 }
854 #endif
855 }
856
857
858 /** Remove the given interval from the interval list */
859 static void
860 remove_interval(struct interval_list *list, const struct interval *inv)
861 {
862 /* XXX we could binary search since list is sorted */
863 GLuint k;
864 for (k = 0; k < list->Num; k++) {
865 if (list->Intervals[k].Reg == inv->Reg) {
866 /* found, remove it */
867 assert(list->Intervals[k].Start == inv->Start);
868 assert(list->Intervals[k].End == inv->End);
869 while (k < list->Num - 1) {
870 list->Intervals[k] = list->Intervals[k + 1];
871 k++;
872 }
873 list->Num--;
874 return;
875 }
876 }
877 }
878
879
880 /** called by qsort() */
881 static int
882 compare_start(const void *a, const void *b)
883 {
884 const struct interval *ia = (const struct interval *) a;
885 const struct interval *ib = (const struct interval *) b;
886 if (ia->Start < ib->Start)
887 return -1;
888 else if (ia->Start > ib->Start)
889 return +1;
890 else
891 return 0;
892 }
893
894
895 /** sort the interval list according to interval starts */
896 static void
897 sort_interval_list_by_start(struct interval_list *list)
898 {
899 qsort(list->Intervals, list->Num, sizeof(struct interval), compare_start);
900 #ifdef DEBUG
901 {
902 GLuint i;
903 for (i = 0; i + 1 < list->Num; i++) {
904 assert(list->Intervals[i].Start <= list->Intervals[i + 1].Start);
905 }
906 }
907 #endif
908 }
909
910 struct loop_info
911 {
912 GLuint Start, End; /**< Start, end instructions of loop */
913 };
914
915 /**
916 * Update the intermediate interval info for register 'index' and
917 * instruction 'ic'.
918 */
919 static void
920 update_interval(GLint intBegin[], GLint intEnd[],
921 struct loop_info *loopStack, GLuint loopStackDepth,
922 GLuint index, GLuint ic)
923 {
924 unsigned i;
925 GLuint begin = ic;
926 GLuint end = ic;
927
928 /* If the register is used in a loop, extend its lifetime through the end
929 * of the outermost loop that doesn't contain its definition.
930 */
931 for (i = 0; i < loopStackDepth; i++) {
932 if (intBegin[index] < loopStack[i].Start) {
933 end = loopStack[i].End;
934 break;
935 }
936 }
937
938 /* Variables that are live at the end of a loop will also be live at the
939 * beginning, so an instruction inside of a loop should have its live
940 * interval begin at the start of the outermost loop.
941 */
942 if (loopStackDepth > 0 && ic > loopStack[0].Start && ic < loopStack[0].End) {
943 begin = loopStack[0].Start;
944 }
945
946 assert(index < REG_ALLOCATE_MAX_PROGRAM_TEMPS);
947 if (intBegin[index] == -1) {
948 assert(intEnd[index] == -1);
949 intBegin[index] = begin;
950 intEnd[index] = end;
951 }
952 else {
953 intEnd[index] = end;
954 }
955 }
956
957
958 /**
959 * Find first/last instruction that references each temporary register.
960 */
961 GLboolean
962 _mesa_find_temp_intervals(const struct prog_instruction *instructions,
963 GLuint numInstructions,
964 GLint intBegin[REG_ALLOCATE_MAX_PROGRAM_TEMPS],
965 GLint intEnd[REG_ALLOCATE_MAX_PROGRAM_TEMPS])
966 {
967 struct loop_info loopStack[MAX_LOOP_NESTING];
968 GLuint loopStackDepth = 0;
969 GLuint i;
970
971 for (i = 0; i < REG_ALLOCATE_MAX_PROGRAM_TEMPS; i++){
972 intBegin[i] = intEnd[i] = -1;
973 }
974
975 /* Scan instructions looking for temporary registers */
976 for (i = 0; i < numInstructions; i++) {
977 const struct prog_instruction *inst = instructions + i;
978 if (inst->Opcode == OPCODE_BGNLOOP) {
979 loopStack[loopStackDepth].Start = i;
980 loopStack[loopStackDepth].End = inst->BranchTarget;
981 loopStackDepth++;
982 }
983 else if (inst->Opcode == OPCODE_ENDLOOP) {
984 loopStackDepth--;
985 }
986 else if (inst->Opcode == OPCODE_CAL) {
987 return GL_FALSE;
988 }
989 else {
990 const GLuint numSrc = 3;/*_mesa_num_inst_src_regs(inst->Opcode);*/
991 GLuint j;
992 for (j = 0; j < numSrc; j++) {
993 if (inst->SrcReg[j].File == PROGRAM_TEMPORARY) {
994 const GLuint index = inst->SrcReg[j].Index;
995 if (inst->SrcReg[j].RelAddr)
996 return GL_FALSE;
997 update_interval(intBegin, intEnd, loopStack, loopStackDepth,
998 index, i);
999 }
1000 }
1001 if (inst->DstReg.File == PROGRAM_TEMPORARY) {
1002 const GLuint index = inst->DstReg.Index;
1003 if (inst->DstReg.RelAddr)
1004 return GL_FALSE;
1005 update_interval(intBegin, intEnd, loopStack, loopStackDepth,
1006 index, i);
1007 }
1008 }
1009 }
1010
1011 return GL_TRUE;
1012 }
1013
1014
1015 /**
1016 * Find the live intervals for each temporary register in the program.
1017 * For register R, the interval [A,B] indicates that R is referenced
1018 * from instruction A through instruction B.
1019 * Special consideration is needed for loops and subroutines.
1020 * \return GL_TRUE if success, GL_FALSE if we cannot proceed for some reason
1021 */
1022 static GLboolean
1023 find_live_intervals(struct gl_program *prog,
1024 struct interval_list *liveIntervals)
1025 {
1026 GLint intBegin[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
1027 GLint intEnd[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
1028 GLuint i;
1029
1030 /*
1031 * Note: we'll return GL_FALSE below if we find relative indexing
1032 * into the TEMP register file. We can't handle that yet.
1033 * We also give up on subroutines for now.
1034 */
1035
1036 if (dbg) {
1037 printf("Optimize: Begin find intervals\n");
1038 }
1039
1040 /* build intermediate arrays */
1041 if (!_mesa_find_temp_intervals(prog->Instructions, prog->NumInstructions,
1042 intBegin, intEnd))
1043 return GL_FALSE;
1044
1045 /* Build live intervals list from intermediate arrays */
1046 liveIntervals->Num = 0;
1047 for (i = 0; i < REG_ALLOCATE_MAX_PROGRAM_TEMPS; i++) {
1048 if (intBegin[i] >= 0) {
1049 struct interval inv;
1050 inv.Reg = i;
1051 inv.Start = intBegin[i];
1052 inv.End = intEnd[i];
1053 append_interval(liveIntervals, &inv);
1054 }
1055 }
1056
1057 /* Sort the list according to interval starts */
1058 sort_interval_list_by_start(liveIntervals);
1059
1060 if (dbg) {
1061 /* print interval info */
1062 for (i = 0; i < liveIntervals->Num; i++) {
1063 const struct interval *inv = liveIntervals->Intervals + i;
1064 printf("Reg[%d] live [%d, %d]:",
1065 inv->Reg, inv->Start, inv->End);
1066 if (1) {
1067 GLuint j;
1068 for (j = 0; j < inv->Start; j++)
1069 printf(" ");
1070 for (j = inv->Start; j <= inv->End; j++)
1071 printf("x");
1072 }
1073 printf("\n");
1074 }
1075 }
1076
1077 return GL_TRUE;
1078 }
1079
1080
1081 /** Scan the array of used register flags to find free entry */
1082 static GLint
1083 alloc_register(GLboolean usedRegs[REG_ALLOCATE_MAX_PROGRAM_TEMPS])
1084 {
1085 GLuint k;
1086 for (k = 0; k < REG_ALLOCATE_MAX_PROGRAM_TEMPS; k++) {
1087 if (!usedRegs[k]) {
1088 usedRegs[k] = GL_TRUE;
1089 return k;
1090 }
1091 }
1092 return -1;
1093 }
1094
1095
1096 /**
1097 * This function implements "Linear Scan Register Allocation" to reduce
1098 * the number of temporary registers used by the program.
1099 *
1100 * We compute the "live interval" for all temporary registers then
1101 * examine the overlap of the intervals to allocate new registers.
1102 * Basically, if two intervals do not overlap, they can use the same register.
1103 */
1104 static void
1105 _mesa_reallocate_registers(struct gl_program *prog)
1106 {
1107 struct interval_list liveIntervals;
1108 GLint registerMap[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
1109 GLboolean usedRegs[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
1110 GLuint i;
1111 GLint maxTemp = -1;
1112
1113 if (dbg) {
1114 printf("Optimize: Begin live-interval register reallocation\n");
1115 _mesa_print_program(prog);
1116 }
1117
1118 for (i = 0; i < REG_ALLOCATE_MAX_PROGRAM_TEMPS; i++){
1119 registerMap[i] = -1;
1120 usedRegs[i] = GL_FALSE;
1121 }
1122
1123 if (!find_live_intervals(prog, &liveIntervals)) {
1124 if (dbg)
1125 printf("Aborting register reallocation\n");
1126 return;
1127 }
1128
1129 {
1130 struct interval_list activeIntervals;
1131 activeIntervals.Num = 0;
1132
1133 /* loop over live intervals, allocating a new register for each */
1134 for (i = 0; i < liveIntervals.Num; i++) {
1135 const struct interval *live = liveIntervals.Intervals + i;
1136
1137 if (dbg)
1138 printf("Consider register %u\n", live->Reg);
1139
1140 /* Expire old intervals. Intervals which have ended with respect
1141 * to the live interval can have their remapped registers freed.
1142 */
1143 {
1144 GLint j;
1145 for (j = 0; j < (GLint) activeIntervals.Num; j++) {
1146 const struct interval *inv = activeIntervals.Intervals + j;
1147 if (inv->End >= live->Start) {
1148 /* Stop now. Since the activeInterval list is sorted
1149 * we know we don't have to go further.
1150 */
1151 break;
1152 }
1153 else {
1154 /* Interval 'inv' has expired */
1155 const GLint regNew = registerMap[inv->Reg];
1156 assert(regNew >= 0);
1157
1158 if (dbg)
1159 printf(" expire interval for reg %u\n", inv->Reg);
1160
1161 /* remove interval j from active list */
1162 remove_interval(&activeIntervals, inv);
1163 j--; /* counter-act j++ in for-loop above */
1164
1165 /* return register regNew to the free pool */
1166 if (dbg)
1167 printf(" free reg %d\n", regNew);
1168 assert(usedRegs[regNew] == GL_TRUE);
1169 usedRegs[regNew] = GL_FALSE;
1170 }
1171 }
1172 }
1173
1174 /* find a free register for this live interval */
1175 {
1176 const GLint k = alloc_register(usedRegs);
1177 if (k < 0) {
1178 /* out of registers, give up */
1179 return;
1180 }
1181 registerMap[live->Reg] = k;
1182 maxTemp = MAX2(maxTemp, k);
1183 if (dbg)
1184 printf(" remap register %u -> %d\n", live->Reg, k);
1185 }
1186
1187 /* Insert this live interval into the active list which is sorted
1188 * by increasing end points.
1189 */
1190 insert_interval_by_end(&activeIntervals, live);
1191 }
1192 }
1193
1194 if (maxTemp + 1 < (GLint) liveIntervals.Num) {
1195 /* OK, we've reduced the number of registers needed.
1196 * Scan the program and replace all the old temporary register
1197 * indexes with the new indexes.
1198 */
1199 replace_regs(prog, PROGRAM_TEMPORARY, registerMap);
1200
1201 prog->NumTemporaries = maxTemp + 1;
1202 }
1203
1204 if (dbg) {
1205 printf("Optimize: End live-interval register reallocation\n");
1206 printf("Num temp regs before: %u after: %u\n",
1207 liveIntervals.Num, maxTemp + 1);
1208 _mesa_print_program(prog);
1209 }
1210 }
1211
1212
1213 #if 0
1214 static void
1215 print_it(struct gl_context *ctx, struct gl_program *program, const char *txt) {
1216 fprintf(stderr, "%s (%u inst):\n", txt, program->NumInstructions);
1217 _mesa_print_program(program);
1218 _mesa_print_program_parameters(ctx, program);
1219 fprintf(stderr, "\n\n");
1220 }
1221 #endif
1222
1223 /**
1224 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
1225 * instruction is the first instruction to write to register T0. The are
1226 * several lowering passes done in GLSL IR (e.g. branches and
1227 * relative addressing) that create a large number of conditional assignments
1228 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
1229 *
1230 * Here is why this conversion is safe:
1231 * CMP T0, T1 T2 T0 can be expanded to:
1232 * if (T1 < 0.0)
1233 * MOV T0, T2;
1234 * else
1235 * MOV T0, T0;
1236 *
1237 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
1238 * as the original program. If (T1 < 0.0) evaluates to false, executing
1239 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
1240 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
1241 * because any instruction that was going to read from T0 after this was going
1242 * to read a garbage value anyway.
1243 */
1244 static void
1245 _mesa_simplify_cmp(struct gl_program * program)
1246 {
1247 GLuint tempWrites[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
1248 GLuint outputWrites[MAX_PROGRAM_OUTPUTS];
1249 GLuint i;
1250
1251 if (dbg) {
1252 printf("Optimize: Begin reads without writes\n");
1253 _mesa_print_program(program);
1254 }
1255
1256 for (i = 0; i < REG_ALLOCATE_MAX_PROGRAM_TEMPS; i++) {
1257 tempWrites[i] = 0;
1258 }
1259
1260 for (i = 0; i < MAX_PROGRAM_OUTPUTS; i++) {
1261 outputWrites[i] = 0;
1262 }
1263
1264 for (i = 0; i < program->NumInstructions; i++) {
1265 struct prog_instruction *inst = program->Instructions + i;
1266 GLuint prevWriteMask;
1267
1268 /* Give up if we encounter relative addressing or flow control. */
1269 if (_mesa_is_flow_control_opcode(inst->Opcode) || inst->DstReg.RelAddr) {
1270 return;
1271 }
1272
1273 if (inst->DstReg.File == PROGRAM_OUTPUT) {
1274 assert(inst->DstReg.Index < MAX_PROGRAM_OUTPUTS);
1275 prevWriteMask = outputWrites[inst->DstReg.Index];
1276 outputWrites[inst->DstReg.Index] |= inst->DstReg.WriteMask;
1277 } else if (inst->DstReg.File == PROGRAM_TEMPORARY) {
1278 assert(inst->DstReg.Index < REG_ALLOCATE_MAX_PROGRAM_TEMPS);
1279 prevWriteMask = tempWrites[inst->DstReg.Index];
1280 tempWrites[inst->DstReg.Index] |= inst->DstReg.WriteMask;
1281 } else {
1282 /* No other register type can be a destination register. */
1283 continue;
1284 }
1285
1286 /* For a CMP to be considered a conditional write, the destination
1287 * register and source register two must be the same. */
1288 if (inst->Opcode == OPCODE_CMP
1289 && !(inst->DstReg.WriteMask & prevWriteMask)
1290 && inst->SrcReg[2].File == inst->DstReg.File
1291 && inst->SrcReg[2].Index == inst->DstReg.Index
1292 && inst->DstReg.WriteMask == get_src_arg_mask(inst, 2, NO_MASK)) {
1293
1294 inst->Opcode = OPCODE_MOV;
1295 inst->SrcReg[0] = inst->SrcReg[1];
1296
1297 /* Unused operands are expected to have the file set to
1298 * PROGRAM_UNDEFINED. This is how _mesa_init_instructions initializes
1299 * all of the sources.
1300 */
1301 inst->SrcReg[1].File = PROGRAM_UNDEFINED;
1302 inst->SrcReg[1].Swizzle = SWIZZLE_NOOP;
1303 inst->SrcReg[2].File = PROGRAM_UNDEFINED;
1304 inst->SrcReg[2].Swizzle = SWIZZLE_NOOP;
1305 }
1306 }
1307 if (dbg) {
1308 printf("Optimize: End reads without writes\n");
1309 _mesa_print_program(program);
1310 }
1311 }
1312
1313 /**
1314 * Apply optimizations to the given program to eliminate unnecessary
1315 * instructions, temp regs, etc.
1316 */
1317 void
1318 _mesa_optimize_program(struct gl_context *ctx, struct gl_program *program)
1319 {
1320 GLboolean any_change;
1321
1322 _mesa_simplify_cmp(program);
1323 /* Stop when no modifications were output */
1324 do {
1325 any_change = GL_FALSE;
1326 _mesa_remove_extra_move_use(program);
1327 if (_mesa_remove_dead_code_global(program))
1328 any_change = GL_TRUE;
1329 if (_mesa_remove_extra_moves(program))
1330 any_change = GL_TRUE;
1331 if (_mesa_remove_dead_code_local(program))
1332 any_change = GL_TRUE;
1333
1334 any_change = _mesa_constant_fold(program) || any_change;
1335 _mesa_reallocate_registers(program);
1336 } while (any_change);
1337 }
1338