ra: Convert another bool array to bitsets.
[mesa.git] / src / mesa / program / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/blend.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/mtypes.h"
38 #include "main/fbobject.h"
39 #include "prog_statevars.h"
40 #include "prog_parameter.h"
41 #include "main/samplerobj.h"
42
43
44 /**
45 * Use the list of tokens in the state[] array to find global GL state
46 * and return it in <value>. Usually, four values are returned in <value>
47 * but matrix queries may return as many as 16 values.
48 * This function is used for ARB vertex/fragment programs.
49 * The program parser will produce the state[] values.
50 */
51 static void
52 _mesa_fetch_state(struct gl_context *ctx, const gl_state_index state[],
53 GLfloat *value)
54 {
55 switch (state[0]) {
56 case STATE_MATERIAL:
57 {
58 /* state[1] is either 0=front or 1=back side */
59 const GLuint face = (GLuint) state[1];
60 const struct gl_material *mat = &ctx->Light.Material;
61 ASSERT(face == 0 || face == 1);
62 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
63 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
64 /* XXX we could get rid of this switch entirely with a little
65 * work in arbprogparse.c's parse_state_single_item().
66 */
67 /* state[2] is the material attribute */
68 switch (state[2]) {
69 case STATE_AMBIENT:
70 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
71 return;
72 case STATE_DIFFUSE:
73 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
74 return;
75 case STATE_SPECULAR:
76 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
77 return;
78 case STATE_EMISSION:
79 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
80 return;
81 case STATE_SHININESS:
82 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
83 value[1] = 0.0F;
84 value[2] = 0.0F;
85 value[3] = 1.0F;
86 return;
87 default:
88 _mesa_problem(ctx, "Invalid material state in fetch_state");
89 return;
90 }
91 }
92 case STATE_LIGHT:
93 {
94 /* state[1] is the light number */
95 const GLuint ln = (GLuint) state[1];
96 /* state[2] is the light attribute */
97 switch (state[2]) {
98 case STATE_AMBIENT:
99 COPY_4V(value, ctx->Light.Light[ln].Ambient);
100 return;
101 case STATE_DIFFUSE:
102 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
103 return;
104 case STATE_SPECULAR:
105 COPY_4V(value, ctx->Light.Light[ln].Specular);
106 return;
107 case STATE_POSITION:
108 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
109 return;
110 case STATE_ATTENUATION:
111 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
112 value[1] = ctx->Light.Light[ln].LinearAttenuation;
113 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
114 value[3] = ctx->Light.Light[ln].SpotExponent;
115 return;
116 case STATE_SPOT_DIRECTION:
117 COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
118 value[3] = ctx->Light.Light[ln]._CosCutoff;
119 return;
120 case STATE_SPOT_CUTOFF:
121 value[0] = ctx->Light.Light[ln].SpotCutoff;
122 return;
123 case STATE_HALF_VECTOR:
124 {
125 static const GLfloat eye_z[] = {0, 0, 1};
126 GLfloat p[3];
127 /* Compute infinite half angle vector:
128 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
129 * light.EyePosition.w should be 0 for infinite lights.
130 */
131 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
132 NORMALIZE_3FV(p);
133 ADD_3V(value, p, eye_z);
134 NORMALIZE_3FV(value);
135 value[3] = 1.0;
136 }
137 return;
138 default:
139 _mesa_problem(ctx, "Invalid light state in fetch_state");
140 return;
141 }
142 }
143 case STATE_LIGHTMODEL_AMBIENT:
144 COPY_4V(value, ctx->Light.Model.Ambient);
145 return;
146 case STATE_LIGHTMODEL_SCENECOLOR:
147 if (state[1] == 0) {
148 /* front */
149 GLint i;
150 for (i = 0; i < 3; i++) {
151 value[i] = ctx->Light.Model.Ambient[i]
152 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
153 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
154 }
155 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
156 }
157 else {
158 /* back */
159 GLint i;
160 for (i = 0; i < 3; i++) {
161 value[i] = ctx->Light.Model.Ambient[i]
162 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
163 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
164 }
165 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
166 }
167 return;
168 case STATE_LIGHTPROD:
169 {
170 const GLuint ln = (GLuint) state[1];
171 const GLuint face = (GLuint) state[2];
172 GLint i;
173 ASSERT(face == 0 || face == 1);
174 switch (state[3]) {
175 case STATE_AMBIENT:
176 for (i = 0; i < 3; i++) {
177 value[i] = ctx->Light.Light[ln].Ambient[i] *
178 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
179 }
180 /* [3] = material alpha */
181 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
182 return;
183 case STATE_DIFFUSE:
184 for (i = 0; i < 3; i++) {
185 value[i] = ctx->Light.Light[ln].Diffuse[i] *
186 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
187 }
188 /* [3] = material alpha */
189 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
190 return;
191 case STATE_SPECULAR:
192 for (i = 0; i < 3; i++) {
193 value[i] = ctx->Light.Light[ln].Specular[i] *
194 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
195 }
196 /* [3] = material alpha */
197 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
198 return;
199 default:
200 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
201 return;
202 }
203 }
204 case STATE_TEXGEN:
205 {
206 /* state[1] is the texture unit */
207 const GLuint unit = (GLuint) state[1];
208 /* state[2] is the texgen attribute */
209 switch (state[2]) {
210 case STATE_TEXGEN_EYE_S:
211 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
212 return;
213 case STATE_TEXGEN_EYE_T:
214 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
215 return;
216 case STATE_TEXGEN_EYE_R:
217 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
218 return;
219 case STATE_TEXGEN_EYE_Q:
220 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
221 return;
222 case STATE_TEXGEN_OBJECT_S:
223 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
224 return;
225 case STATE_TEXGEN_OBJECT_T:
226 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
227 return;
228 case STATE_TEXGEN_OBJECT_R:
229 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
230 return;
231 case STATE_TEXGEN_OBJECT_Q:
232 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
233 return;
234 default:
235 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
236 return;
237 }
238 }
239 case STATE_TEXENV_COLOR:
240 {
241 /* state[1] is the texture unit */
242 const GLuint unit = (GLuint) state[1];
243 if (_mesa_get_clamp_fragment_color(ctx))
244 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
245 else
246 COPY_4V(value, ctx->Texture.Unit[unit].EnvColorUnclamped);
247 }
248 return;
249 case STATE_FOG_COLOR:
250 if (_mesa_get_clamp_fragment_color(ctx))
251 COPY_4V(value, ctx->Fog.Color);
252 else
253 COPY_4V(value, ctx->Fog.ColorUnclamped);
254 return;
255 case STATE_FOG_PARAMS:
256 value[0] = ctx->Fog.Density;
257 value[1] = ctx->Fog.Start;
258 value[2] = ctx->Fog.End;
259 value[3] = 1.0f / (ctx->Fog.End - ctx->Fog.Start);
260 return;
261 case STATE_CLIPPLANE:
262 {
263 const GLuint plane = (GLuint) state[1];
264 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
265 }
266 return;
267 case STATE_POINT_SIZE:
268 value[0] = ctx->Point.Size;
269 value[1] = ctx->Point.MinSize;
270 value[2] = ctx->Point.MaxSize;
271 value[3] = ctx->Point.Threshold;
272 return;
273 case STATE_POINT_ATTENUATION:
274 value[0] = ctx->Point.Params[0];
275 value[1] = ctx->Point.Params[1];
276 value[2] = ctx->Point.Params[2];
277 value[3] = 1.0F;
278 return;
279 case STATE_MODELVIEW_MATRIX:
280 case STATE_PROJECTION_MATRIX:
281 case STATE_MVP_MATRIX:
282 case STATE_TEXTURE_MATRIX:
283 case STATE_PROGRAM_MATRIX:
284 {
285 /* state[0] = modelview, projection, texture, etc. */
286 /* state[1] = which texture matrix or program matrix */
287 /* state[2] = first row to fetch */
288 /* state[3] = last row to fetch */
289 /* state[4] = transpose, inverse or invtrans */
290 const GLmatrix *matrix;
291 const gl_state_index mat = state[0];
292 const GLuint index = (GLuint) state[1];
293 const GLuint firstRow = (GLuint) state[2];
294 const GLuint lastRow = (GLuint) state[3];
295 const gl_state_index modifier = state[4];
296 const GLfloat *m;
297 GLuint row, i;
298 ASSERT(firstRow >= 0);
299 ASSERT(firstRow < 4);
300 ASSERT(lastRow >= 0);
301 ASSERT(lastRow < 4);
302 if (mat == STATE_MODELVIEW_MATRIX) {
303 matrix = ctx->ModelviewMatrixStack.Top;
304 }
305 else if (mat == STATE_PROJECTION_MATRIX) {
306 matrix = ctx->ProjectionMatrixStack.Top;
307 }
308 else if (mat == STATE_MVP_MATRIX) {
309 matrix = &ctx->_ModelProjectMatrix;
310 }
311 else if (mat == STATE_TEXTURE_MATRIX) {
312 ASSERT(index < Elements(ctx->TextureMatrixStack));
313 matrix = ctx->TextureMatrixStack[index].Top;
314 }
315 else if (mat == STATE_PROGRAM_MATRIX) {
316 ASSERT(index < Elements(ctx->ProgramMatrixStack));
317 matrix = ctx->ProgramMatrixStack[index].Top;
318 }
319 else {
320 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
321 return;
322 }
323 if (modifier == STATE_MATRIX_INVERSE ||
324 modifier == STATE_MATRIX_INVTRANS) {
325 /* Be sure inverse is up to date:
326 */
327 _math_matrix_analyse( (GLmatrix*) matrix );
328 m = matrix->inv;
329 }
330 else {
331 m = matrix->m;
332 }
333 if (modifier == STATE_MATRIX_TRANSPOSE ||
334 modifier == STATE_MATRIX_INVTRANS) {
335 for (i = 0, row = firstRow; row <= lastRow; row++) {
336 value[i++] = m[row * 4 + 0];
337 value[i++] = m[row * 4 + 1];
338 value[i++] = m[row * 4 + 2];
339 value[i++] = m[row * 4 + 3];
340 }
341 }
342 else {
343 for (i = 0, row = firstRow; row <= lastRow; row++) {
344 value[i++] = m[row + 0];
345 value[i++] = m[row + 4];
346 value[i++] = m[row + 8];
347 value[i++] = m[row + 12];
348 }
349 }
350 }
351 return;
352 case STATE_NUM_SAMPLES:
353 ((int *)value)[0] = ctx->DrawBuffer->Visual.samples;
354 return;
355 case STATE_DEPTH_RANGE:
356 value[0] = ctx->ViewportArray[0].Near; /* near */
357 value[1] = ctx->ViewportArray[0].Far; /* far */
358 value[2] = ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near; /* far - near */
359 value[3] = 1.0;
360 return;
361 case STATE_FRAGMENT_PROGRAM:
362 {
363 /* state[1] = {STATE_ENV, STATE_LOCAL} */
364 /* state[2] = parameter index */
365 const int idx = (int) state[2];
366 switch (state[1]) {
367 case STATE_ENV:
368 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
369 return;
370 case STATE_LOCAL:
371 if (!ctx->FragmentProgram.Current->Base.LocalParams) {
372 ctx->FragmentProgram.Current->Base.LocalParams =
373 calloc(MAX_PROGRAM_LOCAL_PARAMS, sizeof(float[4]));
374 if (!ctx->FragmentProgram.Current->Base.LocalParams)
375 return;
376 }
377
378 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
379 return;
380 default:
381 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
382 return;
383 }
384 }
385 return;
386
387 case STATE_VERTEX_PROGRAM:
388 {
389 /* state[1] = {STATE_ENV, STATE_LOCAL} */
390 /* state[2] = parameter index */
391 const int idx = (int) state[2];
392 switch (state[1]) {
393 case STATE_ENV:
394 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
395 return;
396 case STATE_LOCAL:
397 if (!ctx->VertexProgram.Current->Base.LocalParams) {
398 ctx->VertexProgram.Current->Base.LocalParams =
399 calloc(MAX_PROGRAM_LOCAL_PARAMS, sizeof(float[4]));
400 if (!ctx->VertexProgram.Current->Base.LocalParams)
401 return;
402 }
403
404 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
405 return;
406 default:
407 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
408 return;
409 }
410 }
411 return;
412
413 case STATE_NORMAL_SCALE:
414 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
415 return;
416
417 case STATE_INTERNAL:
418 switch (state[1]) {
419 case STATE_CURRENT_ATTRIB:
420 {
421 const GLuint idx = (GLuint) state[2];
422 COPY_4V(value, ctx->Current.Attrib[idx]);
423 }
424 return;
425
426 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
427 {
428 const GLuint idx = (GLuint) state[2];
429 if(ctx->Light._ClampVertexColor &&
430 (idx == VERT_ATTRIB_COLOR0 ||
431 idx == VERT_ATTRIB_COLOR1)) {
432 value[0] = CLAMP(ctx->Current.Attrib[idx][0], 0.0f, 1.0f);
433 value[1] = CLAMP(ctx->Current.Attrib[idx][1], 0.0f, 1.0f);
434 value[2] = CLAMP(ctx->Current.Attrib[idx][2], 0.0f, 1.0f);
435 value[3] = CLAMP(ctx->Current.Attrib[idx][3], 0.0f, 1.0f);
436 }
437 else
438 COPY_4V(value, ctx->Current.Attrib[idx]);
439 }
440 return;
441
442 case STATE_NORMAL_SCALE:
443 ASSIGN_4V(value,
444 ctx->_ModelViewInvScale,
445 ctx->_ModelViewInvScale,
446 ctx->_ModelViewInvScale,
447 1);
448 return;
449
450 case STATE_TEXRECT_SCALE:
451 /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
452 * Used to convert unnormalized texcoords to normalized texcoords.
453 */
454 {
455 const int unit = (int) state[2];
456 const struct gl_texture_object *texObj
457 = ctx->Texture.Unit[unit]._Current;
458 if (texObj) {
459 struct gl_texture_image *texImage = texObj->Image[0][0];
460 ASSIGN_4V(value,
461 (GLfloat) (1.0 / texImage->Width),
462 (GLfloat) (1.0 / texImage->Height),
463 0.0f, 1.0f);
464 }
465 }
466 return;
467
468 case STATE_FOG_PARAMS_OPTIMIZED:
469 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
470 * might be more expensive than EX2 on some hw, plus it needs
471 * another constant (e) anyway. Linear fog can now be done with a
472 * single MAD.
473 * linear: fogcoord * -1/(end-start) + end/(end-start)
474 * exp: 2^-(density/ln(2) * fogcoord)
475 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
476 */
477 value[0] = (ctx->Fog.End == ctx->Fog.Start)
478 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
479 value[1] = ctx->Fog.End * -value[0];
480 value[2] = (GLfloat)(ctx->Fog.Density * M_LOG2E); /* M_LOG2E == 1/ln(2) */
481 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
482 return;
483
484 case STATE_POINT_SIZE_CLAMPED:
485 {
486 /* this includes implementation dependent limits, to avoid
487 * another potentially necessary clamp.
488 * Note: for sprites, point smooth (point AA) is ignored
489 * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
490 * expect drivers will want to say their minimum for AA size is 0.0
491 * but for non-AA it's 1.0 (because normal points with size below 1.0
492 * need to get rounded up to 1.0, hence never disappear). GL does
493 * not specify max clamp size for sprites, other than it needs to be
494 * at least as large as max AA size, hence use non-AA size there.
495 */
496 GLfloat minImplSize;
497 GLfloat maxImplSize;
498 if (ctx->Point.PointSprite) {
499 minImplSize = ctx->Const.MinPointSizeAA;
500 maxImplSize = ctx->Const.MaxPointSize;
501 }
502 else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
503 minImplSize = ctx->Const.MinPointSizeAA;
504 maxImplSize = ctx->Const.MaxPointSizeAA;
505 }
506 else {
507 minImplSize = ctx->Const.MinPointSize;
508 maxImplSize = ctx->Const.MaxPointSize;
509 }
510 value[0] = ctx->Point.Size;
511 value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
512 value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
513 value[3] = ctx->Point.Threshold;
514 }
515 return;
516 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
517 {
518 /* here, state[2] is the light number */
519 /* pre-normalize spot dir */
520 const GLuint ln = (GLuint) state[2];
521 COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
522 value[3] = ctx->Light.Light[ln]._CosCutoff;
523 }
524 return;
525
526 case STATE_LIGHT_POSITION:
527 {
528 const GLuint ln = (GLuint) state[2];
529 COPY_4V(value, ctx->Light.Light[ln]._Position);
530 }
531 return;
532
533 case STATE_LIGHT_POSITION_NORMALIZED:
534 {
535 const GLuint ln = (GLuint) state[2];
536 COPY_4V(value, ctx->Light.Light[ln]._Position);
537 NORMALIZE_3FV( value );
538 }
539 return;
540
541 case STATE_LIGHT_HALF_VECTOR:
542 {
543 const GLuint ln = (GLuint) state[2];
544 GLfloat p[3];
545 /* Compute infinite half angle vector:
546 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
547 * light.EyePosition.w should be 0 for infinite lights.
548 */
549 COPY_3V(p, ctx->Light.Light[ln]._Position);
550 NORMALIZE_3FV(p);
551 ADD_3V(value, p, ctx->_EyeZDir);
552 NORMALIZE_3FV(value);
553 value[3] = 1.0;
554 }
555 return;
556
557 case STATE_PT_SCALE:
558 value[0] = ctx->Pixel.RedScale;
559 value[1] = ctx->Pixel.GreenScale;
560 value[2] = ctx->Pixel.BlueScale;
561 value[3] = ctx->Pixel.AlphaScale;
562 return;
563
564 case STATE_PT_BIAS:
565 value[0] = ctx->Pixel.RedBias;
566 value[1] = ctx->Pixel.GreenBias;
567 value[2] = ctx->Pixel.BlueBias;
568 value[3] = ctx->Pixel.AlphaBias;
569 return;
570
571 case STATE_FB_SIZE:
572 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
573 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
574 value[2] = 0.0F;
575 value[3] = 0.0F;
576 return;
577
578 case STATE_FB_WPOS_Y_TRANSFORM:
579 /* A driver may negate this conditional by using ZW swizzle
580 * instead of XY (based on e.g. some other state). */
581 if (_mesa_is_user_fbo(ctx->DrawBuffer)) {
582 /* Identity (XY) followed by flipping Y upside down (ZW). */
583 value[0] = 1.0F;
584 value[1] = 0.0F;
585 value[2] = -1.0F;
586 value[3] = (GLfloat) ctx->DrawBuffer->Height;
587 } else {
588 /* Flipping Y upside down (XY) followed by identity (ZW). */
589 value[0] = -1.0F;
590 value[1] = (GLfloat) ctx->DrawBuffer->Height;
591 value[2] = 1.0F;
592 value[3] = 0.0F;
593 }
594 return;
595
596 case STATE_ROT_MATRIX_0:
597 {
598 const int unit = (int) state[2];
599 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
600 value[0] = rotMat22[0];
601 value[1] = rotMat22[2];
602 value[2] = 0.0;
603 value[3] = 0.0;
604 }
605 return;
606
607 case STATE_ROT_MATRIX_1:
608 {
609 const int unit = (int) state[2];
610 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
611 value[0] = rotMat22[1];
612 value[1] = rotMat22[3];
613 value[2] = 0.0;
614 value[3] = 0.0;
615 }
616 return;
617
618 /* XXX: make sure new tokens added here are also handled in the
619 * _mesa_program_state_flags() switch, below.
620 */
621 default:
622 /* Unknown state indexes are silently ignored here.
623 * Drivers may do something special.
624 */
625 return;
626 }
627 return;
628
629 default:
630 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
631 return;
632 }
633 }
634
635
636 /**
637 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
638 * indicate that the given context state may have changed.
639 * The bitmask is used during validation to determine if we need to update
640 * vertex/fragment program parameters (like "state.material.color") when
641 * some GL state has changed.
642 */
643 GLbitfield
644 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
645 {
646 switch (state[0]) {
647 case STATE_MATERIAL:
648 case STATE_LIGHTPROD:
649 case STATE_LIGHTMODEL_SCENECOLOR:
650 /* these can be effected by glColor when colormaterial mode is used */
651 return _NEW_LIGHT | _NEW_CURRENT_ATTRIB;
652
653 case STATE_LIGHT:
654 case STATE_LIGHTMODEL_AMBIENT:
655 return _NEW_LIGHT;
656
657 case STATE_TEXGEN:
658 return _NEW_TEXTURE;
659 case STATE_TEXENV_COLOR:
660 return _NEW_TEXTURE | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
661
662 case STATE_FOG_COLOR:
663 return _NEW_FOG | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
664 case STATE_FOG_PARAMS:
665 return _NEW_FOG;
666
667 case STATE_CLIPPLANE:
668 return _NEW_TRANSFORM;
669
670 case STATE_POINT_SIZE:
671 case STATE_POINT_ATTENUATION:
672 return _NEW_POINT;
673
674 case STATE_MODELVIEW_MATRIX:
675 return _NEW_MODELVIEW;
676 case STATE_PROJECTION_MATRIX:
677 return _NEW_PROJECTION;
678 case STATE_MVP_MATRIX:
679 return _NEW_MODELVIEW | _NEW_PROJECTION;
680 case STATE_TEXTURE_MATRIX:
681 return _NEW_TEXTURE_MATRIX;
682 case STATE_PROGRAM_MATRIX:
683 return _NEW_TRACK_MATRIX;
684
685 case STATE_NUM_SAMPLES:
686 return _NEW_BUFFERS;
687
688 case STATE_DEPTH_RANGE:
689 return _NEW_VIEWPORT;
690
691 case STATE_FRAGMENT_PROGRAM:
692 case STATE_VERTEX_PROGRAM:
693 return _NEW_PROGRAM;
694
695 case STATE_NORMAL_SCALE:
696 return _NEW_MODELVIEW;
697
698 case STATE_INTERNAL:
699 switch (state[1]) {
700 case STATE_CURRENT_ATTRIB:
701 return _NEW_CURRENT_ATTRIB;
702 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
703 return _NEW_CURRENT_ATTRIB | _NEW_LIGHT | _NEW_BUFFERS;
704
705 case STATE_NORMAL_SCALE:
706 return _NEW_MODELVIEW;
707
708 case STATE_TEXRECT_SCALE:
709 case STATE_ROT_MATRIX_0:
710 case STATE_ROT_MATRIX_1:
711 return _NEW_TEXTURE;
712 case STATE_FOG_PARAMS_OPTIMIZED:
713 return _NEW_FOG;
714 case STATE_POINT_SIZE_CLAMPED:
715 return _NEW_POINT | _NEW_MULTISAMPLE;
716 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
717 case STATE_LIGHT_POSITION:
718 case STATE_LIGHT_POSITION_NORMALIZED:
719 case STATE_LIGHT_HALF_VECTOR:
720 return _NEW_LIGHT;
721
722 case STATE_PT_SCALE:
723 case STATE_PT_BIAS:
724 return _NEW_PIXEL;
725
726 case STATE_FB_SIZE:
727 case STATE_FB_WPOS_Y_TRANSFORM:
728 return _NEW_BUFFERS;
729
730 default:
731 /* unknown state indexes are silently ignored and
732 * no flag set, since it is handled by the driver.
733 */
734 return 0;
735 }
736
737 default:
738 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
739 return 0;
740 }
741 }
742
743
744 static void
745 append(char *dst, const char *src)
746 {
747 while (*dst)
748 dst++;
749 while (*src)
750 *dst++ = *src++;
751 *dst = 0;
752 }
753
754
755 /**
756 * Convert token 'k' to a string, append it onto 'dst' string.
757 */
758 static void
759 append_token(char *dst, gl_state_index k)
760 {
761 switch (k) {
762 case STATE_MATERIAL:
763 append(dst, "material");
764 break;
765 case STATE_LIGHT:
766 append(dst, "light");
767 break;
768 case STATE_LIGHTMODEL_AMBIENT:
769 append(dst, "lightmodel.ambient");
770 break;
771 case STATE_LIGHTMODEL_SCENECOLOR:
772 break;
773 case STATE_LIGHTPROD:
774 append(dst, "lightprod");
775 break;
776 case STATE_TEXGEN:
777 append(dst, "texgen");
778 break;
779 case STATE_FOG_COLOR:
780 append(dst, "fog.color");
781 break;
782 case STATE_FOG_PARAMS:
783 append(dst, "fog.params");
784 break;
785 case STATE_CLIPPLANE:
786 append(dst, "clip");
787 break;
788 case STATE_POINT_SIZE:
789 append(dst, "point.size");
790 break;
791 case STATE_POINT_ATTENUATION:
792 append(dst, "point.attenuation");
793 break;
794 case STATE_MODELVIEW_MATRIX:
795 append(dst, "matrix.modelview");
796 break;
797 case STATE_PROJECTION_MATRIX:
798 append(dst, "matrix.projection");
799 break;
800 case STATE_MVP_MATRIX:
801 append(dst, "matrix.mvp");
802 break;
803 case STATE_TEXTURE_MATRIX:
804 append(dst, "matrix.texture");
805 break;
806 case STATE_PROGRAM_MATRIX:
807 append(dst, "matrix.program");
808 break;
809 case STATE_MATRIX_INVERSE:
810 append(dst, ".inverse");
811 break;
812 case STATE_MATRIX_TRANSPOSE:
813 append(dst, ".transpose");
814 break;
815 case STATE_MATRIX_INVTRANS:
816 append(dst, ".invtrans");
817 break;
818 case STATE_AMBIENT:
819 append(dst, ".ambient");
820 break;
821 case STATE_DIFFUSE:
822 append(dst, ".diffuse");
823 break;
824 case STATE_SPECULAR:
825 append(dst, ".specular");
826 break;
827 case STATE_EMISSION:
828 append(dst, ".emission");
829 break;
830 case STATE_SHININESS:
831 append(dst, "lshininess");
832 break;
833 case STATE_HALF_VECTOR:
834 append(dst, ".half");
835 break;
836 case STATE_POSITION:
837 append(dst, ".position");
838 break;
839 case STATE_ATTENUATION:
840 append(dst, ".attenuation");
841 break;
842 case STATE_SPOT_DIRECTION:
843 append(dst, ".spot.direction");
844 break;
845 case STATE_SPOT_CUTOFF:
846 append(dst, ".spot.cutoff");
847 break;
848 case STATE_TEXGEN_EYE_S:
849 append(dst, ".eye.s");
850 break;
851 case STATE_TEXGEN_EYE_T:
852 append(dst, ".eye.t");
853 break;
854 case STATE_TEXGEN_EYE_R:
855 append(dst, ".eye.r");
856 break;
857 case STATE_TEXGEN_EYE_Q:
858 append(dst, ".eye.q");
859 break;
860 case STATE_TEXGEN_OBJECT_S:
861 append(dst, ".object.s");
862 break;
863 case STATE_TEXGEN_OBJECT_T:
864 append(dst, ".object.t");
865 break;
866 case STATE_TEXGEN_OBJECT_R:
867 append(dst, ".object.r");
868 break;
869 case STATE_TEXGEN_OBJECT_Q:
870 append(dst, ".object.q");
871 break;
872 case STATE_TEXENV_COLOR:
873 append(dst, "texenv");
874 break;
875 case STATE_NUM_SAMPLES:
876 append(dst, "numsamples");
877 break;
878 case STATE_DEPTH_RANGE:
879 append(dst, "depth.range");
880 break;
881 case STATE_VERTEX_PROGRAM:
882 case STATE_FRAGMENT_PROGRAM:
883 break;
884 case STATE_ENV:
885 append(dst, "env");
886 break;
887 case STATE_LOCAL:
888 append(dst, "local");
889 break;
890 /* BEGIN internal state vars */
891 case STATE_INTERNAL:
892 append(dst, ".internal.");
893 break;
894 case STATE_CURRENT_ATTRIB:
895 append(dst, "current");
896 break;
897 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
898 append(dst, "currentAttribMaybeVPClamped");
899 break;
900 case STATE_NORMAL_SCALE:
901 append(dst, "normalScale");
902 break;
903 case STATE_TEXRECT_SCALE:
904 append(dst, "texrectScale");
905 break;
906 case STATE_FOG_PARAMS_OPTIMIZED:
907 append(dst, "fogParamsOptimized");
908 break;
909 case STATE_POINT_SIZE_CLAMPED:
910 append(dst, "pointSizeClamped");
911 break;
912 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
913 append(dst, "lightSpotDirNormalized");
914 break;
915 case STATE_LIGHT_POSITION:
916 append(dst, "lightPosition");
917 break;
918 case STATE_LIGHT_POSITION_NORMALIZED:
919 append(dst, "light.position.normalized");
920 break;
921 case STATE_LIGHT_HALF_VECTOR:
922 append(dst, "lightHalfVector");
923 break;
924 case STATE_PT_SCALE:
925 append(dst, "PTscale");
926 break;
927 case STATE_PT_BIAS:
928 append(dst, "PTbias");
929 break;
930 case STATE_FB_SIZE:
931 append(dst, "FbSize");
932 break;
933 case STATE_FB_WPOS_Y_TRANSFORM:
934 append(dst, "FbWposYTransform");
935 break;
936 case STATE_ROT_MATRIX_0:
937 append(dst, "rotMatrixRow0");
938 break;
939 case STATE_ROT_MATRIX_1:
940 append(dst, "rotMatrixRow1");
941 break;
942 default:
943 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
944 append(dst, "driverState");
945 }
946 }
947
948 static void
949 append_face(char *dst, GLint face)
950 {
951 if (face == 0)
952 append(dst, "front.");
953 else
954 append(dst, "back.");
955 }
956
957 static void
958 append_index(char *dst, GLint index)
959 {
960 char s[20];
961 sprintf(s, "[%d]", index);
962 append(dst, s);
963 }
964
965 /**
966 * Make a string from the given state vector.
967 * For example, return "state.matrix.texture[2].inverse".
968 * Use free() to deallocate the string.
969 */
970 char *
971 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
972 {
973 char str[1000] = "";
974 char tmp[30];
975
976 append(str, "state.");
977 append_token(str, state[0]);
978
979 switch (state[0]) {
980 case STATE_MATERIAL:
981 append_face(str, state[1]);
982 append_token(str, state[2]);
983 break;
984 case STATE_LIGHT:
985 append_index(str, state[1]); /* light number [i]. */
986 append_token(str, state[2]); /* coefficients */
987 break;
988 case STATE_LIGHTMODEL_AMBIENT:
989 append(str, "lightmodel.ambient");
990 break;
991 case STATE_LIGHTMODEL_SCENECOLOR:
992 if (state[1] == 0) {
993 append(str, "lightmodel.front.scenecolor");
994 }
995 else {
996 append(str, "lightmodel.back.scenecolor");
997 }
998 break;
999 case STATE_LIGHTPROD:
1000 append_index(str, state[1]); /* light number [i]. */
1001 append_face(str, state[2]);
1002 append_token(str, state[3]);
1003 break;
1004 case STATE_TEXGEN:
1005 append_index(str, state[1]); /* tex unit [i] */
1006 append_token(str, state[2]); /* plane coef */
1007 break;
1008 case STATE_TEXENV_COLOR:
1009 append_index(str, state[1]); /* tex unit [i] */
1010 append(str, "color");
1011 break;
1012 case STATE_CLIPPLANE:
1013 append_index(str, state[1]); /* plane [i] */
1014 append(str, ".plane");
1015 break;
1016 case STATE_MODELVIEW_MATRIX:
1017 case STATE_PROJECTION_MATRIX:
1018 case STATE_MVP_MATRIX:
1019 case STATE_TEXTURE_MATRIX:
1020 case STATE_PROGRAM_MATRIX:
1021 {
1022 /* state[0] = modelview, projection, texture, etc. */
1023 /* state[1] = which texture matrix or program matrix */
1024 /* state[2] = first row to fetch */
1025 /* state[3] = last row to fetch */
1026 /* state[4] = transpose, inverse or invtrans */
1027 const gl_state_index mat = state[0];
1028 const GLuint index = (GLuint) state[1];
1029 const GLuint firstRow = (GLuint) state[2];
1030 const GLuint lastRow = (GLuint) state[3];
1031 const gl_state_index modifier = state[4];
1032 if (index ||
1033 mat == STATE_TEXTURE_MATRIX ||
1034 mat == STATE_PROGRAM_MATRIX)
1035 append_index(str, index);
1036 if (modifier)
1037 append_token(str, modifier);
1038 if (firstRow == lastRow)
1039 sprintf(tmp, ".row[%d]", firstRow);
1040 else
1041 sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
1042 append(str, tmp);
1043 }
1044 break;
1045 case STATE_POINT_SIZE:
1046 break;
1047 case STATE_POINT_ATTENUATION:
1048 break;
1049 case STATE_FOG_PARAMS:
1050 break;
1051 case STATE_FOG_COLOR:
1052 break;
1053 case STATE_NUM_SAMPLES:
1054 break;
1055 case STATE_DEPTH_RANGE:
1056 break;
1057 case STATE_FRAGMENT_PROGRAM:
1058 case STATE_VERTEX_PROGRAM:
1059 /* state[1] = {STATE_ENV, STATE_LOCAL} */
1060 /* state[2] = parameter index */
1061 append_token(str, state[1]);
1062 append_index(str, state[2]);
1063 break;
1064 case STATE_NORMAL_SCALE:
1065 break;
1066 case STATE_INTERNAL:
1067 append_token(str, state[1]);
1068 if (state[1] == STATE_CURRENT_ATTRIB)
1069 append_index(str, state[2]);
1070 break;
1071 default:
1072 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
1073 break;
1074 }
1075
1076 return _mesa_strdup(str);
1077 }
1078
1079
1080 /**
1081 * Loop over all the parameters in a parameter list. If the parameter
1082 * is a GL state reference, look up the current value of that state
1083 * variable and put it into the parameter's Value[4] array.
1084 * Other parameter types never change or are explicitly set by the user
1085 * with glUniform() or glProgramParameter(), etc.
1086 * This would be called at glBegin time.
1087 */
1088 void
1089 _mesa_load_state_parameters(struct gl_context *ctx,
1090 struct gl_program_parameter_list *paramList)
1091 {
1092 GLuint i;
1093
1094 if (!paramList)
1095 return;
1096
1097 for (i = 0; i < paramList->NumParameters; i++) {
1098 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1099 _mesa_fetch_state(ctx,
1100 paramList->Parameters[i].StateIndexes,
1101 &paramList->ParameterValues[i][0].f);
1102 }
1103 }
1104 }