mesa: make use of ralloc when creating ARB asm gl_program fields
[mesa.git] / src / mesa / program / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include <stdio.h>
33 #include "main/glheader.h"
34 #include "main/context.h"
35 #include "main/blend.h"
36 #include "main/imports.h"
37 #include "main/macros.h"
38 #include "main/mtypes.h"
39 #include "main/fbobject.h"
40 #include "prog_statevars.h"
41 #include "prog_parameter.h"
42 #include "main/samplerobj.h"
43 #include "main/framebuffer.h"
44
45
46 #define ONE_DIV_SQRT_LN2 (1.201122408786449815)
47
48
49 /**
50 * Use the list of tokens in the state[] array to find global GL state
51 * and return it in <value>. Usually, four values are returned in <value>
52 * but matrix queries may return as many as 16 values.
53 * This function is used for ARB vertex/fragment programs.
54 * The program parser will produce the state[] values.
55 */
56 static void
57 _mesa_fetch_state(struct gl_context *ctx, const gl_state_index state[],
58 gl_constant_value *val)
59 {
60 GLfloat *value = &val->f;
61
62 switch (state[0]) {
63 case STATE_MATERIAL:
64 {
65 /* state[1] is either 0=front or 1=back side */
66 const GLuint face = (GLuint) state[1];
67 const struct gl_material *mat = &ctx->Light.Material;
68 assert(face == 0 || face == 1);
69 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
70 assert(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
71 /* XXX we could get rid of this switch entirely with a little
72 * work in arbprogparse.c's parse_state_single_item().
73 */
74 /* state[2] is the material attribute */
75 switch (state[2]) {
76 case STATE_AMBIENT:
77 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
78 return;
79 case STATE_DIFFUSE:
80 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
81 return;
82 case STATE_SPECULAR:
83 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
84 return;
85 case STATE_EMISSION:
86 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
87 return;
88 case STATE_SHININESS:
89 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
90 value[1] = 0.0F;
91 value[2] = 0.0F;
92 value[3] = 1.0F;
93 return;
94 default:
95 _mesa_problem(ctx, "Invalid material state in fetch_state");
96 return;
97 }
98 }
99 case STATE_LIGHT:
100 {
101 /* state[1] is the light number */
102 const GLuint ln = (GLuint) state[1];
103 /* state[2] is the light attribute */
104 switch (state[2]) {
105 case STATE_AMBIENT:
106 COPY_4V(value, ctx->Light.Light[ln].Ambient);
107 return;
108 case STATE_DIFFUSE:
109 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
110 return;
111 case STATE_SPECULAR:
112 COPY_4V(value, ctx->Light.Light[ln].Specular);
113 return;
114 case STATE_POSITION:
115 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
116 return;
117 case STATE_ATTENUATION:
118 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
119 value[1] = ctx->Light.Light[ln].LinearAttenuation;
120 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
121 value[3] = ctx->Light.Light[ln].SpotExponent;
122 return;
123 case STATE_SPOT_DIRECTION:
124 COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
125 value[3] = ctx->Light.Light[ln]._CosCutoff;
126 return;
127 case STATE_SPOT_CUTOFF:
128 value[0] = ctx->Light.Light[ln].SpotCutoff;
129 return;
130 case STATE_HALF_VECTOR:
131 {
132 static const GLfloat eye_z[] = {0, 0, 1};
133 GLfloat p[3];
134 /* Compute infinite half angle vector:
135 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
136 * light.EyePosition.w should be 0 for infinite lights.
137 */
138 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
139 NORMALIZE_3FV(p);
140 ADD_3V(value, p, eye_z);
141 NORMALIZE_3FV(value);
142 value[3] = 1.0;
143 }
144 return;
145 default:
146 _mesa_problem(ctx, "Invalid light state in fetch_state");
147 return;
148 }
149 }
150 case STATE_LIGHTMODEL_AMBIENT:
151 COPY_4V(value, ctx->Light.Model.Ambient);
152 return;
153 case STATE_LIGHTMODEL_SCENECOLOR:
154 if (state[1] == 0) {
155 /* front */
156 GLint i;
157 for (i = 0; i < 3; i++) {
158 value[i] = ctx->Light.Model.Ambient[i]
159 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
160 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
161 }
162 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
163 }
164 else {
165 /* back */
166 GLint i;
167 for (i = 0; i < 3; i++) {
168 value[i] = ctx->Light.Model.Ambient[i]
169 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
170 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
171 }
172 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
173 }
174 return;
175 case STATE_LIGHTPROD:
176 {
177 const GLuint ln = (GLuint) state[1];
178 const GLuint face = (GLuint) state[2];
179 GLint i;
180 assert(face == 0 || face == 1);
181 switch (state[3]) {
182 case STATE_AMBIENT:
183 for (i = 0; i < 3; i++) {
184 value[i] = ctx->Light.Light[ln].Ambient[i] *
185 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
186 }
187 /* [3] = material alpha */
188 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
189 return;
190 case STATE_DIFFUSE:
191 for (i = 0; i < 3; i++) {
192 value[i] = ctx->Light.Light[ln].Diffuse[i] *
193 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
194 }
195 /* [3] = material alpha */
196 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
197 return;
198 case STATE_SPECULAR:
199 for (i = 0; i < 3; i++) {
200 value[i] = ctx->Light.Light[ln].Specular[i] *
201 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
202 }
203 /* [3] = material alpha */
204 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
205 return;
206 default:
207 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
208 return;
209 }
210 }
211 case STATE_TEXGEN:
212 {
213 /* state[1] is the texture unit */
214 const GLuint unit = (GLuint) state[1];
215 /* state[2] is the texgen attribute */
216 switch (state[2]) {
217 case STATE_TEXGEN_EYE_S:
218 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
219 return;
220 case STATE_TEXGEN_EYE_T:
221 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
222 return;
223 case STATE_TEXGEN_EYE_R:
224 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
225 return;
226 case STATE_TEXGEN_EYE_Q:
227 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
228 return;
229 case STATE_TEXGEN_OBJECT_S:
230 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
231 return;
232 case STATE_TEXGEN_OBJECT_T:
233 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
234 return;
235 case STATE_TEXGEN_OBJECT_R:
236 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
237 return;
238 case STATE_TEXGEN_OBJECT_Q:
239 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
240 return;
241 default:
242 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
243 return;
244 }
245 }
246 case STATE_TEXENV_COLOR:
247 {
248 /* state[1] is the texture unit */
249 const GLuint unit = (GLuint) state[1];
250 if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
251 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
252 else
253 COPY_4V(value, ctx->Texture.Unit[unit].EnvColorUnclamped);
254 }
255 return;
256 case STATE_FOG_COLOR:
257 if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
258 COPY_4V(value, ctx->Fog.Color);
259 else
260 COPY_4V(value, ctx->Fog.ColorUnclamped);
261 return;
262 case STATE_FOG_PARAMS:
263 value[0] = ctx->Fog.Density;
264 value[1] = ctx->Fog.Start;
265 value[2] = ctx->Fog.End;
266 value[3] = 1.0f / (ctx->Fog.End - ctx->Fog.Start);
267 return;
268 case STATE_CLIPPLANE:
269 {
270 const GLuint plane = (GLuint) state[1];
271 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
272 }
273 return;
274 case STATE_POINT_SIZE:
275 value[0] = ctx->Point.Size;
276 value[1] = ctx->Point.MinSize;
277 value[2] = ctx->Point.MaxSize;
278 value[3] = ctx->Point.Threshold;
279 return;
280 case STATE_POINT_ATTENUATION:
281 value[0] = ctx->Point.Params[0];
282 value[1] = ctx->Point.Params[1];
283 value[2] = ctx->Point.Params[2];
284 value[3] = 1.0F;
285 return;
286 case STATE_MODELVIEW_MATRIX:
287 case STATE_PROJECTION_MATRIX:
288 case STATE_MVP_MATRIX:
289 case STATE_TEXTURE_MATRIX:
290 case STATE_PROGRAM_MATRIX:
291 {
292 /* state[0] = modelview, projection, texture, etc. */
293 /* state[1] = which texture matrix or program matrix */
294 /* state[2] = first row to fetch */
295 /* state[3] = last row to fetch */
296 /* state[4] = transpose, inverse or invtrans */
297 const GLmatrix *matrix;
298 const gl_state_index mat = state[0];
299 const GLuint index = (GLuint) state[1];
300 const GLuint firstRow = (GLuint) state[2];
301 const GLuint lastRow = (GLuint) state[3];
302 const gl_state_index modifier = state[4];
303 const GLfloat *m;
304 GLuint row, i;
305 assert(firstRow < 4);
306 assert(lastRow < 4);
307 if (mat == STATE_MODELVIEW_MATRIX) {
308 matrix = ctx->ModelviewMatrixStack.Top;
309 }
310 else if (mat == STATE_PROJECTION_MATRIX) {
311 matrix = ctx->ProjectionMatrixStack.Top;
312 }
313 else if (mat == STATE_MVP_MATRIX) {
314 matrix = &ctx->_ModelProjectMatrix;
315 }
316 else if (mat == STATE_TEXTURE_MATRIX) {
317 assert(index < ARRAY_SIZE(ctx->TextureMatrixStack));
318 matrix = ctx->TextureMatrixStack[index].Top;
319 }
320 else if (mat == STATE_PROGRAM_MATRIX) {
321 assert(index < ARRAY_SIZE(ctx->ProgramMatrixStack));
322 matrix = ctx->ProgramMatrixStack[index].Top;
323 }
324 else {
325 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
326 return;
327 }
328 if (modifier == STATE_MATRIX_INVERSE ||
329 modifier == STATE_MATRIX_INVTRANS) {
330 /* Be sure inverse is up to date:
331 */
332 _math_matrix_analyse( (GLmatrix*) matrix );
333 m = matrix->inv;
334 }
335 else {
336 m = matrix->m;
337 }
338 if (modifier == STATE_MATRIX_TRANSPOSE ||
339 modifier == STATE_MATRIX_INVTRANS) {
340 for (i = 0, row = firstRow; row <= lastRow; row++) {
341 value[i++] = m[row * 4 + 0];
342 value[i++] = m[row * 4 + 1];
343 value[i++] = m[row * 4 + 2];
344 value[i++] = m[row * 4 + 3];
345 }
346 }
347 else {
348 for (i = 0, row = firstRow; row <= lastRow; row++) {
349 value[i++] = m[row + 0];
350 value[i++] = m[row + 4];
351 value[i++] = m[row + 8];
352 value[i++] = m[row + 12];
353 }
354 }
355 }
356 return;
357 case STATE_NUM_SAMPLES:
358 val[0].i = MAX2(1, _mesa_geometric_samples(ctx->DrawBuffer));
359 return;
360 case STATE_DEPTH_RANGE:
361 value[0] = ctx->ViewportArray[0].Near; /* near */
362 value[1] = ctx->ViewportArray[0].Far; /* far */
363 value[2] = ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near; /* far - near */
364 value[3] = 1.0;
365 return;
366 case STATE_FRAGMENT_PROGRAM:
367 {
368 /* state[1] = {STATE_ENV, STATE_LOCAL} */
369 /* state[2] = parameter index */
370 const int idx = (int) state[2];
371 switch (state[1]) {
372 case STATE_ENV:
373 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
374 return;
375 case STATE_LOCAL:
376 if (!ctx->FragmentProgram.Current->LocalParams) {
377 ctx->FragmentProgram.Current->LocalParams =
378 rzalloc_array_size(ctx->FragmentProgram.Current,
379 sizeof(float[4]),
380 MAX_PROGRAM_LOCAL_PARAMS);
381 if (!ctx->FragmentProgram.Current->LocalParams)
382 return;
383 }
384
385 COPY_4V(value, ctx->FragmentProgram.Current->LocalParams[idx]);
386 return;
387 default:
388 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
389 return;
390 }
391 }
392 return;
393
394 case STATE_VERTEX_PROGRAM:
395 {
396 /* state[1] = {STATE_ENV, STATE_LOCAL} */
397 /* state[2] = parameter index */
398 const int idx = (int) state[2];
399 switch (state[1]) {
400 case STATE_ENV:
401 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
402 return;
403 case STATE_LOCAL:
404 if (!ctx->VertexProgram.Current->LocalParams) {
405 ctx->VertexProgram.Current->LocalParams =
406 rzalloc_array_size(ctx->VertexProgram.Current,
407 sizeof(float[4]),
408 MAX_PROGRAM_LOCAL_PARAMS);
409 if (!ctx->VertexProgram.Current->LocalParams)
410 return;
411 }
412
413 COPY_4V(value, ctx->VertexProgram.Current->LocalParams[idx]);
414 return;
415 default:
416 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
417 return;
418 }
419 }
420 return;
421
422 case STATE_NORMAL_SCALE:
423 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
424 return;
425
426 case STATE_INTERNAL:
427 switch (state[1]) {
428 case STATE_CURRENT_ATTRIB:
429 {
430 const GLuint idx = (GLuint) state[2];
431 COPY_4V(value, ctx->Current.Attrib[idx]);
432 }
433 return;
434
435 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
436 {
437 const GLuint idx = (GLuint) state[2];
438 if(ctx->Light._ClampVertexColor &&
439 (idx == VERT_ATTRIB_COLOR0 ||
440 idx == VERT_ATTRIB_COLOR1)) {
441 value[0] = CLAMP(ctx->Current.Attrib[idx][0], 0.0f, 1.0f);
442 value[1] = CLAMP(ctx->Current.Attrib[idx][1], 0.0f, 1.0f);
443 value[2] = CLAMP(ctx->Current.Attrib[idx][2], 0.0f, 1.0f);
444 value[3] = CLAMP(ctx->Current.Attrib[idx][3], 0.0f, 1.0f);
445 }
446 else
447 COPY_4V(value, ctx->Current.Attrib[idx]);
448 }
449 return;
450
451 case STATE_NORMAL_SCALE:
452 ASSIGN_4V(value,
453 ctx->_ModelViewInvScale,
454 ctx->_ModelViewInvScale,
455 ctx->_ModelViewInvScale,
456 1);
457 return;
458
459 case STATE_TEXRECT_SCALE:
460 /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
461 * Used to convert unnormalized texcoords to normalized texcoords.
462 */
463 {
464 const int unit = (int) state[2];
465 const struct gl_texture_object *texObj
466 = ctx->Texture.Unit[unit]._Current;
467 if (texObj) {
468 struct gl_texture_image *texImage = texObj->Image[0][0];
469 ASSIGN_4V(value,
470 (GLfloat) (1.0 / texImage->Width),
471 (GLfloat) (1.0 / texImage->Height),
472 0.0f, 1.0f);
473 }
474 }
475 return;
476
477 case STATE_FOG_PARAMS_OPTIMIZED:
478 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
479 * might be more expensive than EX2 on some hw, plus it needs
480 * another constant (e) anyway. Linear fog can now be done with a
481 * single MAD.
482 * linear: fogcoord * -1/(end-start) + end/(end-start)
483 * exp: 2^-(density/ln(2) * fogcoord)
484 * exp2: 2^-((density/(sqrt(ln(2))) * fogcoord)^2)
485 */
486 value[0] = (ctx->Fog.End == ctx->Fog.Start)
487 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
488 value[1] = ctx->Fog.End * -value[0];
489 value[2] = (GLfloat)(ctx->Fog.Density * M_LOG2E); /* M_LOG2E == 1/ln(2) */
490 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
491 return;
492
493 case STATE_POINT_SIZE_CLAMPED:
494 {
495 /* this includes implementation dependent limits, to avoid
496 * another potentially necessary clamp.
497 * Note: for sprites, point smooth (point AA) is ignored
498 * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
499 * expect drivers will want to say their minimum for AA size is 0.0
500 * but for non-AA it's 1.0 (because normal points with size below 1.0
501 * need to get rounded up to 1.0, hence never disappear). GL does
502 * not specify max clamp size for sprites, other than it needs to be
503 * at least as large as max AA size, hence use non-AA size there.
504 */
505 GLfloat minImplSize;
506 GLfloat maxImplSize;
507 if (ctx->Point.PointSprite) {
508 minImplSize = ctx->Const.MinPointSizeAA;
509 maxImplSize = ctx->Const.MaxPointSize;
510 }
511 else if (ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) {
512 minImplSize = ctx->Const.MinPointSizeAA;
513 maxImplSize = ctx->Const.MaxPointSizeAA;
514 }
515 else {
516 minImplSize = ctx->Const.MinPointSize;
517 maxImplSize = ctx->Const.MaxPointSize;
518 }
519 value[0] = ctx->Point.Size;
520 value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
521 value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
522 value[3] = ctx->Point.Threshold;
523 }
524 return;
525 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
526 {
527 /* here, state[2] is the light number */
528 /* pre-normalize spot dir */
529 const GLuint ln = (GLuint) state[2];
530 COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
531 value[3] = ctx->Light.Light[ln]._CosCutoff;
532 }
533 return;
534
535 case STATE_LIGHT_POSITION:
536 {
537 const GLuint ln = (GLuint) state[2];
538 COPY_4V(value, ctx->Light.Light[ln]._Position);
539 }
540 return;
541
542 case STATE_LIGHT_POSITION_NORMALIZED:
543 {
544 const GLuint ln = (GLuint) state[2];
545 COPY_4V(value, ctx->Light.Light[ln]._Position);
546 NORMALIZE_3FV( value );
547 }
548 return;
549
550 case STATE_LIGHT_HALF_VECTOR:
551 {
552 const GLuint ln = (GLuint) state[2];
553 GLfloat p[3];
554 /* Compute infinite half angle vector:
555 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
556 * light.EyePosition.w should be 0 for infinite lights.
557 */
558 COPY_3V(p, ctx->Light.Light[ln]._Position);
559 NORMALIZE_3FV(p);
560 ADD_3V(value, p, ctx->_EyeZDir);
561 NORMALIZE_3FV(value);
562 value[3] = 1.0;
563 }
564 return;
565
566 case STATE_PT_SCALE:
567 value[0] = ctx->Pixel.RedScale;
568 value[1] = ctx->Pixel.GreenScale;
569 value[2] = ctx->Pixel.BlueScale;
570 value[3] = ctx->Pixel.AlphaScale;
571 return;
572
573 case STATE_PT_BIAS:
574 value[0] = ctx->Pixel.RedBias;
575 value[1] = ctx->Pixel.GreenBias;
576 value[2] = ctx->Pixel.BlueBias;
577 value[3] = ctx->Pixel.AlphaBias;
578 return;
579
580 case STATE_FB_SIZE:
581 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
582 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
583 value[2] = 0.0F;
584 value[3] = 0.0F;
585 return;
586
587 case STATE_FB_WPOS_Y_TRANSFORM:
588 /* A driver may negate this conditional by using ZW swizzle
589 * instead of XY (based on e.g. some other state). */
590 if (_mesa_is_user_fbo(ctx->DrawBuffer)) {
591 /* Identity (XY) followed by flipping Y upside down (ZW). */
592 value[0] = 1.0F;
593 value[1] = 0.0F;
594 value[2] = -1.0F;
595 value[3] = (GLfloat) ctx->DrawBuffer->Height;
596 } else {
597 /* Flipping Y upside down (XY) followed by identity (ZW). */
598 value[0] = -1.0F;
599 value[1] = (GLfloat) ctx->DrawBuffer->Height;
600 value[2] = 1.0F;
601 value[3] = 0.0F;
602 }
603 return;
604
605 case STATE_TCS_PATCH_VERTICES_IN:
606 val[0].i = ctx->TessCtrlProgram.patch_vertices;
607 return;
608
609 case STATE_TES_PATCH_VERTICES_IN:
610 if (ctx->TessCtrlProgram._Current)
611 val[0].i = ctx->TessCtrlProgram._Current->info.tcs.vertices_out;
612 else
613 val[0].i = ctx->TessCtrlProgram.patch_vertices;
614 return;
615
616 case STATE_ADVANCED_BLENDING_MODE:
617 val[0].i = ctx->Color.BlendEnabled ? ctx->Color._AdvancedBlendMode : 0;
618 return;
619
620 /* XXX: make sure new tokens added here are also handled in the
621 * _mesa_program_state_flags() switch, below.
622 */
623 default:
624 /* Unknown state indexes are silently ignored here.
625 * Drivers may do something special.
626 */
627 return;
628 }
629 return;
630
631 default:
632 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
633 return;
634 }
635 }
636
637
638 /**
639 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
640 * indicate that the given context state may have changed.
641 * The bitmask is used during validation to determine if we need to update
642 * vertex/fragment program parameters (like "state.material.color") when
643 * some GL state has changed.
644 */
645 GLbitfield
646 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
647 {
648 switch (state[0]) {
649 case STATE_MATERIAL:
650 case STATE_LIGHTPROD:
651 case STATE_LIGHTMODEL_SCENECOLOR:
652 /* these can be effected by glColor when colormaterial mode is used */
653 return _NEW_LIGHT | _NEW_CURRENT_ATTRIB;
654
655 case STATE_LIGHT:
656 case STATE_LIGHTMODEL_AMBIENT:
657 return _NEW_LIGHT;
658
659 case STATE_TEXGEN:
660 return _NEW_TEXTURE;
661 case STATE_TEXENV_COLOR:
662 return _NEW_TEXTURE | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
663
664 case STATE_FOG_COLOR:
665 return _NEW_FOG | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
666 case STATE_FOG_PARAMS:
667 return _NEW_FOG;
668
669 case STATE_CLIPPLANE:
670 return _NEW_TRANSFORM;
671
672 case STATE_POINT_SIZE:
673 case STATE_POINT_ATTENUATION:
674 return _NEW_POINT;
675
676 case STATE_MODELVIEW_MATRIX:
677 return _NEW_MODELVIEW;
678 case STATE_PROJECTION_MATRIX:
679 return _NEW_PROJECTION;
680 case STATE_MVP_MATRIX:
681 return _NEW_MODELVIEW | _NEW_PROJECTION;
682 case STATE_TEXTURE_MATRIX:
683 return _NEW_TEXTURE_MATRIX;
684 case STATE_PROGRAM_MATRIX:
685 return _NEW_TRACK_MATRIX;
686
687 case STATE_NUM_SAMPLES:
688 return _NEW_BUFFERS;
689
690 case STATE_DEPTH_RANGE:
691 return _NEW_VIEWPORT;
692
693 case STATE_FRAGMENT_PROGRAM:
694 case STATE_VERTEX_PROGRAM:
695 return _NEW_PROGRAM;
696
697 case STATE_NORMAL_SCALE:
698 return _NEW_MODELVIEW;
699
700 case STATE_INTERNAL:
701 switch (state[1]) {
702 case STATE_CURRENT_ATTRIB:
703 return _NEW_CURRENT_ATTRIB;
704 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
705 return _NEW_CURRENT_ATTRIB | _NEW_LIGHT | _NEW_BUFFERS;
706
707 case STATE_NORMAL_SCALE:
708 return _NEW_MODELVIEW;
709
710 case STATE_TEXRECT_SCALE:
711 return _NEW_TEXTURE;
712 case STATE_FOG_PARAMS_OPTIMIZED:
713 return _NEW_FOG;
714 case STATE_POINT_SIZE_CLAMPED:
715 return _NEW_POINT | _NEW_MULTISAMPLE;
716 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
717 case STATE_LIGHT_POSITION:
718 case STATE_LIGHT_POSITION_NORMALIZED:
719 case STATE_LIGHT_HALF_VECTOR:
720 return _NEW_LIGHT;
721
722 case STATE_PT_SCALE:
723 case STATE_PT_BIAS:
724 return _NEW_PIXEL;
725
726 case STATE_FB_SIZE:
727 case STATE_FB_WPOS_Y_TRANSFORM:
728 return _NEW_BUFFERS;
729
730 case STATE_ADVANCED_BLENDING_MODE:
731 return _NEW_COLOR;
732
733 default:
734 /* unknown state indexes are silently ignored and
735 * no flag set, since it is handled by the driver.
736 */
737 return 0;
738 }
739
740 default:
741 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
742 return 0;
743 }
744 }
745
746
747 static void
748 append(char *dst, const char *src)
749 {
750 while (*dst)
751 dst++;
752 while (*src)
753 *dst++ = *src++;
754 *dst = 0;
755 }
756
757
758 /**
759 * Convert token 'k' to a string, append it onto 'dst' string.
760 */
761 static void
762 append_token(char *dst, gl_state_index k)
763 {
764 switch (k) {
765 case STATE_MATERIAL:
766 append(dst, "material");
767 break;
768 case STATE_LIGHT:
769 append(dst, "light");
770 break;
771 case STATE_LIGHTMODEL_AMBIENT:
772 append(dst, "lightmodel.ambient");
773 break;
774 case STATE_LIGHTMODEL_SCENECOLOR:
775 break;
776 case STATE_LIGHTPROD:
777 append(dst, "lightprod");
778 break;
779 case STATE_TEXGEN:
780 append(dst, "texgen");
781 break;
782 case STATE_FOG_COLOR:
783 append(dst, "fog.color");
784 break;
785 case STATE_FOG_PARAMS:
786 append(dst, "fog.params");
787 break;
788 case STATE_CLIPPLANE:
789 append(dst, "clip");
790 break;
791 case STATE_POINT_SIZE:
792 append(dst, "point.size");
793 break;
794 case STATE_POINT_ATTENUATION:
795 append(dst, "point.attenuation");
796 break;
797 case STATE_MODELVIEW_MATRIX:
798 append(dst, "matrix.modelview");
799 break;
800 case STATE_PROJECTION_MATRIX:
801 append(dst, "matrix.projection");
802 break;
803 case STATE_MVP_MATRIX:
804 append(dst, "matrix.mvp");
805 break;
806 case STATE_TEXTURE_MATRIX:
807 append(dst, "matrix.texture");
808 break;
809 case STATE_PROGRAM_MATRIX:
810 append(dst, "matrix.program");
811 break;
812 case STATE_MATRIX_INVERSE:
813 append(dst, ".inverse");
814 break;
815 case STATE_MATRIX_TRANSPOSE:
816 append(dst, ".transpose");
817 break;
818 case STATE_MATRIX_INVTRANS:
819 append(dst, ".invtrans");
820 break;
821 case STATE_AMBIENT:
822 append(dst, ".ambient");
823 break;
824 case STATE_DIFFUSE:
825 append(dst, ".diffuse");
826 break;
827 case STATE_SPECULAR:
828 append(dst, ".specular");
829 break;
830 case STATE_EMISSION:
831 append(dst, ".emission");
832 break;
833 case STATE_SHININESS:
834 append(dst, "lshininess");
835 break;
836 case STATE_HALF_VECTOR:
837 append(dst, ".half");
838 break;
839 case STATE_POSITION:
840 append(dst, ".position");
841 break;
842 case STATE_ATTENUATION:
843 append(dst, ".attenuation");
844 break;
845 case STATE_SPOT_DIRECTION:
846 append(dst, ".spot.direction");
847 break;
848 case STATE_SPOT_CUTOFF:
849 append(dst, ".spot.cutoff");
850 break;
851 case STATE_TEXGEN_EYE_S:
852 append(dst, ".eye.s");
853 break;
854 case STATE_TEXGEN_EYE_T:
855 append(dst, ".eye.t");
856 break;
857 case STATE_TEXGEN_EYE_R:
858 append(dst, ".eye.r");
859 break;
860 case STATE_TEXGEN_EYE_Q:
861 append(dst, ".eye.q");
862 break;
863 case STATE_TEXGEN_OBJECT_S:
864 append(dst, ".object.s");
865 break;
866 case STATE_TEXGEN_OBJECT_T:
867 append(dst, ".object.t");
868 break;
869 case STATE_TEXGEN_OBJECT_R:
870 append(dst, ".object.r");
871 break;
872 case STATE_TEXGEN_OBJECT_Q:
873 append(dst, ".object.q");
874 break;
875 case STATE_TEXENV_COLOR:
876 append(dst, "texenv");
877 break;
878 case STATE_NUM_SAMPLES:
879 append(dst, "numsamples");
880 break;
881 case STATE_DEPTH_RANGE:
882 append(dst, "depth.range");
883 break;
884 case STATE_VERTEX_PROGRAM:
885 case STATE_FRAGMENT_PROGRAM:
886 break;
887 case STATE_ENV:
888 append(dst, "env");
889 break;
890 case STATE_LOCAL:
891 append(dst, "local");
892 break;
893 /* BEGIN internal state vars */
894 case STATE_INTERNAL:
895 append(dst, ".internal.");
896 break;
897 case STATE_CURRENT_ATTRIB:
898 append(dst, "current");
899 break;
900 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
901 append(dst, "currentAttribMaybeVPClamped");
902 break;
903 case STATE_NORMAL_SCALE:
904 append(dst, "normalScale");
905 break;
906 case STATE_TEXRECT_SCALE:
907 append(dst, "texrectScale");
908 break;
909 case STATE_FOG_PARAMS_OPTIMIZED:
910 append(dst, "fogParamsOptimized");
911 break;
912 case STATE_POINT_SIZE_CLAMPED:
913 append(dst, "pointSizeClamped");
914 break;
915 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
916 append(dst, "lightSpotDirNormalized");
917 break;
918 case STATE_LIGHT_POSITION:
919 append(dst, "lightPosition");
920 break;
921 case STATE_LIGHT_POSITION_NORMALIZED:
922 append(dst, "light.position.normalized");
923 break;
924 case STATE_LIGHT_HALF_VECTOR:
925 append(dst, "lightHalfVector");
926 break;
927 case STATE_PT_SCALE:
928 append(dst, "PTscale");
929 break;
930 case STATE_PT_BIAS:
931 append(dst, "PTbias");
932 break;
933 case STATE_FB_SIZE:
934 append(dst, "FbSize");
935 break;
936 case STATE_FB_WPOS_Y_TRANSFORM:
937 append(dst, "FbWposYTransform");
938 break;
939 case STATE_ADVANCED_BLENDING_MODE:
940 append(dst, "AdvancedBlendingMode");
941 break;
942 default:
943 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
944 append(dst, "driverState");
945 }
946 }
947
948 static void
949 append_face(char *dst, GLint face)
950 {
951 if (face == 0)
952 append(dst, "front.");
953 else
954 append(dst, "back.");
955 }
956
957 static void
958 append_index(char *dst, GLint index)
959 {
960 char s[20];
961 sprintf(s, "[%d]", index);
962 append(dst, s);
963 }
964
965 /**
966 * Make a string from the given state vector.
967 * For example, return "state.matrix.texture[2].inverse".
968 * Use free() to deallocate the string.
969 */
970 char *
971 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
972 {
973 char str[1000] = "";
974 char tmp[30];
975
976 append(str, "state.");
977 append_token(str, state[0]);
978
979 switch (state[0]) {
980 case STATE_MATERIAL:
981 append_face(str, state[1]);
982 append_token(str, state[2]);
983 break;
984 case STATE_LIGHT:
985 append_index(str, state[1]); /* light number [i]. */
986 append_token(str, state[2]); /* coefficients */
987 break;
988 case STATE_LIGHTMODEL_AMBIENT:
989 append(str, "lightmodel.ambient");
990 break;
991 case STATE_LIGHTMODEL_SCENECOLOR:
992 if (state[1] == 0) {
993 append(str, "lightmodel.front.scenecolor");
994 }
995 else {
996 append(str, "lightmodel.back.scenecolor");
997 }
998 break;
999 case STATE_LIGHTPROD:
1000 append_index(str, state[1]); /* light number [i]. */
1001 append_face(str, state[2]);
1002 append_token(str, state[3]);
1003 break;
1004 case STATE_TEXGEN:
1005 append_index(str, state[1]); /* tex unit [i] */
1006 append_token(str, state[2]); /* plane coef */
1007 break;
1008 case STATE_TEXENV_COLOR:
1009 append_index(str, state[1]); /* tex unit [i] */
1010 append(str, "color");
1011 break;
1012 case STATE_CLIPPLANE:
1013 append_index(str, state[1]); /* plane [i] */
1014 append(str, ".plane");
1015 break;
1016 case STATE_MODELVIEW_MATRIX:
1017 case STATE_PROJECTION_MATRIX:
1018 case STATE_MVP_MATRIX:
1019 case STATE_TEXTURE_MATRIX:
1020 case STATE_PROGRAM_MATRIX:
1021 {
1022 /* state[0] = modelview, projection, texture, etc. */
1023 /* state[1] = which texture matrix or program matrix */
1024 /* state[2] = first row to fetch */
1025 /* state[3] = last row to fetch */
1026 /* state[4] = transpose, inverse or invtrans */
1027 const gl_state_index mat = state[0];
1028 const GLuint index = (GLuint) state[1];
1029 const GLuint firstRow = (GLuint) state[2];
1030 const GLuint lastRow = (GLuint) state[3];
1031 const gl_state_index modifier = state[4];
1032 if (index ||
1033 mat == STATE_TEXTURE_MATRIX ||
1034 mat == STATE_PROGRAM_MATRIX)
1035 append_index(str, index);
1036 if (modifier)
1037 append_token(str, modifier);
1038 if (firstRow == lastRow)
1039 sprintf(tmp, ".row[%d]", firstRow);
1040 else
1041 sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
1042 append(str, tmp);
1043 }
1044 break;
1045 case STATE_POINT_SIZE:
1046 break;
1047 case STATE_POINT_ATTENUATION:
1048 break;
1049 case STATE_FOG_PARAMS:
1050 break;
1051 case STATE_FOG_COLOR:
1052 break;
1053 case STATE_NUM_SAMPLES:
1054 break;
1055 case STATE_DEPTH_RANGE:
1056 break;
1057 case STATE_FRAGMENT_PROGRAM:
1058 case STATE_VERTEX_PROGRAM:
1059 /* state[1] = {STATE_ENV, STATE_LOCAL} */
1060 /* state[2] = parameter index */
1061 append_token(str, state[1]);
1062 append_index(str, state[2]);
1063 break;
1064 case STATE_NORMAL_SCALE:
1065 break;
1066 case STATE_INTERNAL:
1067 append_token(str, state[1]);
1068 if (state[1] == STATE_CURRENT_ATTRIB)
1069 append_index(str, state[2]);
1070 break;
1071 default:
1072 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
1073 break;
1074 }
1075
1076 return strdup(str);
1077 }
1078
1079
1080 /**
1081 * Loop over all the parameters in a parameter list. If the parameter
1082 * is a GL state reference, look up the current value of that state
1083 * variable and put it into the parameter's Value[4] array.
1084 * Other parameter types never change or are explicitly set by the user
1085 * with glUniform() or glProgramParameter(), etc.
1086 * This would be called at glBegin time.
1087 */
1088 void
1089 _mesa_load_state_parameters(struct gl_context *ctx,
1090 struct gl_program_parameter_list *paramList)
1091 {
1092 GLuint i;
1093
1094 if (!paramList)
1095 return;
1096
1097 for (i = 0; i < paramList->NumParameters; i++) {
1098 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1099 _mesa_fetch_state(ctx,
1100 paramList->Parameters[i].StateIndexes,
1101 &paramList->ParameterValues[i][0]);
1102 }
1103 }
1104 }