glsl: Optionally lower TES gl_PatchVerticesIn to a uniform.
[mesa.git] / src / mesa / program / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include <stdio.h>
33 #include "main/glheader.h"
34 #include "main/context.h"
35 #include "main/blend.h"
36 #include "main/imports.h"
37 #include "main/macros.h"
38 #include "main/mtypes.h"
39 #include "main/fbobject.h"
40 #include "prog_statevars.h"
41 #include "prog_parameter.h"
42 #include "main/samplerobj.h"
43 #include "main/framebuffer.h"
44
45
46 #define ONE_DIV_SQRT_LN2 (1.201122408786449815)
47
48
49 /**
50 * Use the list of tokens in the state[] array to find global GL state
51 * and return it in <value>. Usually, four values are returned in <value>
52 * but matrix queries may return as many as 16 values.
53 * This function is used for ARB vertex/fragment programs.
54 * The program parser will produce the state[] values.
55 */
56 static void
57 _mesa_fetch_state(struct gl_context *ctx, const gl_state_index state[],
58 gl_constant_value *val)
59 {
60 GLfloat *value = &val->f;
61
62 switch (state[0]) {
63 case STATE_MATERIAL:
64 {
65 /* state[1] is either 0=front or 1=back side */
66 const GLuint face = (GLuint) state[1];
67 const struct gl_material *mat = &ctx->Light.Material;
68 assert(face == 0 || face == 1);
69 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
70 assert(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
71 /* XXX we could get rid of this switch entirely with a little
72 * work in arbprogparse.c's parse_state_single_item().
73 */
74 /* state[2] is the material attribute */
75 switch (state[2]) {
76 case STATE_AMBIENT:
77 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
78 return;
79 case STATE_DIFFUSE:
80 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
81 return;
82 case STATE_SPECULAR:
83 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
84 return;
85 case STATE_EMISSION:
86 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
87 return;
88 case STATE_SHININESS:
89 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
90 value[1] = 0.0F;
91 value[2] = 0.0F;
92 value[3] = 1.0F;
93 return;
94 default:
95 _mesa_problem(ctx, "Invalid material state in fetch_state");
96 return;
97 }
98 }
99 case STATE_LIGHT:
100 {
101 /* state[1] is the light number */
102 const GLuint ln = (GLuint) state[1];
103 /* state[2] is the light attribute */
104 switch (state[2]) {
105 case STATE_AMBIENT:
106 COPY_4V(value, ctx->Light.Light[ln].Ambient);
107 return;
108 case STATE_DIFFUSE:
109 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
110 return;
111 case STATE_SPECULAR:
112 COPY_4V(value, ctx->Light.Light[ln].Specular);
113 return;
114 case STATE_POSITION:
115 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
116 return;
117 case STATE_ATTENUATION:
118 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
119 value[1] = ctx->Light.Light[ln].LinearAttenuation;
120 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
121 value[3] = ctx->Light.Light[ln].SpotExponent;
122 return;
123 case STATE_SPOT_DIRECTION:
124 COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
125 value[3] = ctx->Light.Light[ln]._CosCutoff;
126 return;
127 case STATE_SPOT_CUTOFF:
128 value[0] = ctx->Light.Light[ln].SpotCutoff;
129 return;
130 case STATE_HALF_VECTOR:
131 {
132 static const GLfloat eye_z[] = {0, 0, 1};
133 GLfloat p[3];
134 /* Compute infinite half angle vector:
135 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
136 * light.EyePosition.w should be 0 for infinite lights.
137 */
138 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
139 NORMALIZE_3FV(p);
140 ADD_3V(value, p, eye_z);
141 NORMALIZE_3FV(value);
142 value[3] = 1.0;
143 }
144 return;
145 default:
146 _mesa_problem(ctx, "Invalid light state in fetch_state");
147 return;
148 }
149 }
150 case STATE_LIGHTMODEL_AMBIENT:
151 COPY_4V(value, ctx->Light.Model.Ambient);
152 return;
153 case STATE_LIGHTMODEL_SCENECOLOR:
154 if (state[1] == 0) {
155 /* front */
156 GLint i;
157 for (i = 0; i < 3; i++) {
158 value[i] = ctx->Light.Model.Ambient[i]
159 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
160 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
161 }
162 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
163 }
164 else {
165 /* back */
166 GLint i;
167 for (i = 0; i < 3; i++) {
168 value[i] = ctx->Light.Model.Ambient[i]
169 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
170 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
171 }
172 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
173 }
174 return;
175 case STATE_LIGHTPROD:
176 {
177 const GLuint ln = (GLuint) state[1];
178 const GLuint face = (GLuint) state[2];
179 GLint i;
180 assert(face == 0 || face == 1);
181 switch (state[3]) {
182 case STATE_AMBIENT:
183 for (i = 0; i < 3; i++) {
184 value[i] = ctx->Light.Light[ln].Ambient[i] *
185 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
186 }
187 /* [3] = material alpha */
188 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
189 return;
190 case STATE_DIFFUSE:
191 for (i = 0; i < 3; i++) {
192 value[i] = ctx->Light.Light[ln].Diffuse[i] *
193 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
194 }
195 /* [3] = material alpha */
196 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
197 return;
198 case STATE_SPECULAR:
199 for (i = 0; i < 3; i++) {
200 value[i] = ctx->Light.Light[ln].Specular[i] *
201 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
202 }
203 /* [3] = material alpha */
204 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
205 return;
206 default:
207 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
208 return;
209 }
210 }
211 case STATE_TEXGEN:
212 {
213 /* state[1] is the texture unit */
214 const GLuint unit = (GLuint) state[1];
215 /* state[2] is the texgen attribute */
216 switch (state[2]) {
217 case STATE_TEXGEN_EYE_S:
218 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
219 return;
220 case STATE_TEXGEN_EYE_T:
221 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
222 return;
223 case STATE_TEXGEN_EYE_R:
224 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
225 return;
226 case STATE_TEXGEN_EYE_Q:
227 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
228 return;
229 case STATE_TEXGEN_OBJECT_S:
230 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
231 return;
232 case STATE_TEXGEN_OBJECT_T:
233 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
234 return;
235 case STATE_TEXGEN_OBJECT_R:
236 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
237 return;
238 case STATE_TEXGEN_OBJECT_Q:
239 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
240 return;
241 default:
242 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
243 return;
244 }
245 }
246 case STATE_TEXENV_COLOR:
247 {
248 /* state[1] is the texture unit */
249 const GLuint unit = (GLuint) state[1];
250 if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
251 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
252 else
253 COPY_4V(value, ctx->Texture.Unit[unit].EnvColorUnclamped);
254 }
255 return;
256 case STATE_FOG_COLOR:
257 if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
258 COPY_4V(value, ctx->Fog.Color);
259 else
260 COPY_4V(value, ctx->Fog.ColorUnclamped);
261 return;
262 case STATE_FOG_PARAMS:
263 value[0] = ctx->Fog.Density;
264 value[1] = ctx->Fog.Start;
265 value[2] = ctx->Fog.End;
266 value[3] = 1.0f / (ctx->Fog.End - ctx->Fog.Start);
267 return;
268 case STATE_CLIPPLANE:
269 {
270 const GLuint plane = (GLuint) state[1];
271 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
272 }
273 return;
274 case STATE_POINT_SIZE:
275 value[0] = ctx->Point.Size;
276 value[1] = ctx->Point.MinSize;
277 value[2] = ctx->Point.MaxSize;
278 value[3] = ctx->Point.Threshold;
279 return;
280 case STATE_POINT_ATTENUATION:
281 value[0] = ctx->Point.Params[0];
282 value[1] = ctx->Point.Params[1];
283 value[2] = ctx->Point.Params[2];
284 value[3] = 1.0F;
285 return;
286 case STATE_MODELVIEW_MATRIX:
287 case STATE_PROJECTION_MATRIX:
288 case STATE_MVP_MATRIX:
289 case STATE_TEXTURE_MATRIX:
290 case STATE_PROGRAM_MATRIX:
291 {
292 /* state[0] = modelview, projection, texture, etc. */
293 /* state[1] = which texture matrix or program matrix */
294 /* state[2] = first row to fetch */
295 /* state[3] = last row to fetch */
296 /* state[4] = transpose, inverse or invtrans */
297 const GLmatrix *matrix;
298 const gl_state_index mat = state[0];
299 const GLuint index = (GLuint) state[1];
300 const GLuint firstRow = (GLuint) state[2];
301 const GLuint lastRow = (GLuint) state[3];
302 const gl_state_index modifier = state[4];
303 const GLfloat *m;
304 GLuint row, i;
305 assert(firstRow < 4);
306 assert(lastRow < 4);
307 if (mat == STATE_MODELVIEW_MATRIX) {
308 matrix = ctx->ModelviewMatrixStack.Top;
309 }
310 else if (mat == STATE_PROJECTION_MATRIX) {
311 matrix = ctx->ProjectionMatrixStack.Top;
312 }
313 else if (mat == STATE_MVP_MATRIX) {
314 matrix = &ctx->_ModelProjectMatrix;
315 }
316 else if (mat == STATE_TEXTURE_MATRIX) {
317 assert(index < ARRAY_SIZE(ctx->TextureMatrixStack));
318 matrix = ctx->TextureMatrixStack[index].Top;
319 }
320 else if (mat == STATE_PROGRAM_MATRIX) {
321 assert(index < ARRAY_SIZE(ctx->ProgramMatrixStack));
322 matrix = ctx->ProgramMatrixStack[index].Top;
323 }
324 else {
325 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
326 return;
327 }
328 if (modifier == STATE_MATRIX_INVERSE ||
329 modifier == STATE_MATRIX_INVTRANS) {
330 /* Be sure inverse is up to date:
331 */
332 _math_matrix_analyse( (GLmatrix*) matrix );
333 m = matrix->inv;
334 }
335 else {
336 m = matrix->m;
337 }
338 if (modifier == STATE_MATRIX_TRANSPOSE ||
339 modifier == STATE_MATRIX_INVTRANS) {
340 for (i = 0, row = firstRow; row <= lastRow; row++) {
341 value[i++] = m[row * 4 + 0];
342 value[i++] = m[row * 4 + 1];
343 value[i++] = m[row * 4 + 2];
344 value[i++] = m[row * 4 + 3];
345 }
346 }
347 else {
348 for (i = 0, row = firstRow; row <= lastRow; row++) {
349 value[i++] = m[row + 0];
350 value[i++] = m[row + 4];
351 value[i++] = m[row + 8];
352 value[i++] = m[row + 12];
353 }
354 }
355 }
356 return;
357 case STATE_NUM_SAMPLES:
358 val[0].i = MAX2(1, _mesa_geometric_samples(ctx->DrawBuffer));
359 return;
360 case STATE_DEPTH_RANGE:
361 value[0] = ctx->ViewportArray[0].Near; /* near */
362 value[1] = ctx->ViewportArray[0].Far; /* far */
363 value[2] = ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near; /* far - near */
364 value[3] = 1.0;
365 return;
366 case STATE_FRAGMENT_PROGRAM:
367 {
368 /* state[1] = {STATE_ENV, STATE_LOCAL} */
369 /* state[2] = parameter index */
370 const int idx = (int) state[2];
371 switch (state[1]) {
372 case STATE_ENV:
373 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
374 return;
375 case STATE_LOCAL:
376 if (!ctx->FragmentProgram.Current->Base.LocalParams) {
377 ctx->FragmentProgram.Current->Base.LocalParams =
378 calloc(MAX_PROGRAM_LOCAL_PARAMS, sizeof(float[4]));
379 if (!ctx->FragmentProgram.Current->Base.LocalParams)
380 return;
381 }
382
383 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
384 return;
385 default:
386 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
387 return;
388 }
389 }
390 return;
391
392 case STATE_VERTEX_PROGRAM:
393 {
394 /* state[1] = {STATE_ENV, STATE_LOCAL} */
395 /* state[2] = parameter index */
396 const int idx = (int) state[2];
397 switch (state[1]) {
398 case STATE_ENV:
399 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
400 return;
401 case STATE_LOCAL:
402 if (!ctx->VertexProgram.Current->Base.LocalParams) {
403 ctx->VertexProgram.Current->Base.LocalParams =
404 calloc(MAX_PROGRAM_LOCAL_PARAMS, sizeof(float[4]));
405 if (!ctx->VertexProgram.Current->Base.LocalParams)
406 return;
407 }
408
409 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
410 return;
411 default:
412 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
413 return;
414 }
415 }
416 return;
417
418 case STATE_NORMAL_SCALE:
419 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
420 return;
421
422 case STATE_INTERNAL:
423 switch (state[1]) {
424 case STATE_CURRENT_ATTRIB:
425 {
426 const GLuint idx = (GLuint) state[2];
427 COPY_4V(value, ctx->Current.Attrib[idx]);
428 }
429 return;
430
431 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
432 {
433 const GLuint idx = (GLuint) state[2];
434 if(ctx->Light._ClampVertexColor &&
435 (idx == VERT_ATTRIB_COLOR0 ||
436 idx == VERT_ATTRIB_COLOR1)) {
437 value[0] = CLAMP(ctx->Current.Attrib[idx][0], 0.0f, 1.0f);
438 value[1] = CLAMP(ctx->Current.Attrib[idx][1], 0.0f, 1.0f);
439 value[2] = CLAMP(ctx->Current.Attrib[idx][2], 0.0f, 1.0f);
440 value[3] = CLAMP(ctx->Current.Attrib[idx][3], 0.0f, 1.0f);
441 }
442 else
443 COPY_4V(value, ctx->Current.Attrib[idx]);
444 }
445 return;
446
447 case STATE_NORMAL_SCALE:
448 ASSIGN_4V(value,
449 ctx->_ModelViewInvScale,
450 ctx->_ModelViewInvScale,
451 ctx->_ModelViewInvScale,
452 1);
453 return;
454
455 case STATE_TEXRECT_SCALE:
456 /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
457 * Used to convert unnormalized texcoords to normalized texcoords.
458 */
459 {
460 const int unit = (int) state[2];
461 const struct gl_texture_object *texObj
462 = ctx->Texture.Unit[unit]._Current;
463 if (texObj) {
464 struct gl_texture_image *texImage = texObj->Image[0][0];
465 ASSIGN_4V(value,
466 (GLfloat) (1.0 / texImage->Width),
467 (GLfloat) (1.0 / texImage->Height),
468 0.0f, 1.0f);
469 }
470 }
471 return;
472
473 case STATE_FOG_PARAMS_OPTIMIZED:
474 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
475 * might be more expensive than EX2 on some hw, plus it needs
476 * another constant (e) anyway. Linear fog can now be done with a
477 * single MAD.
478 * linear: fogcoord * -1/(end-start) + end/(end-start)
479 * exp: 2^-(density/ln(2) * fogcoord)
480 * exp2: 2^-((density/(sqrt(ln(2))) * fogcoord)^2)
481 */
482 value[0] = (ctx->Fog.End == ctx->Fog.Start)
483 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
484 value[1] = ctx->Fog.End * -value[0];
485 value[2] = (GLfloat)(ctx->Fog.Density * M_LOG2E); /* M_LOG2E == 1/ln(2) */
486 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
487 return;
488
489 case STATE_POINT_SIZE_CLAMPED:
490 {
491 /* this includes implementation dependent limits, to avoid
492 * another potentially necessary clamp.
493 * Note: for sprites, point smooth (point AA) is ignored
494 * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
495 * expect drivers will want to say their minimum for AA size is 0.0
496 * but for non-AA it's 1.0 (because normal points with size below 1.0
497 * need to get rounded up to 1.0, hence never disappear). GL does
498 * not specify max clamp size for sprites, other than it needs to be
499 * at least as large as max AA size, hence use non-AA size there.
500 */
501 GLfloat minImplSize;
502 GLfloat maxImplSize;
503 if (ctx->Point.PointSprite) {
504 minImplSize = ctx->Const.MinPointSizeAA;
505 maxImplSize = ctx->Const.MaxPointSize;
506 }
507 else if (ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) {
508 minImplSize = ctx->Const.MinPointSizeAA;
509 maxImplSize = ctx->Const.MaxPointSizeAA;
510 }
511 else {
512 minImplSize = ctx->Const.MinPointSize;
513 maxImplSize = ctx->Const.MaxPointSize;
514 }
515 value[0] = ctx->Point.Size;
516 value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
517 value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
518 value[3] = ctx->Point.Threshold;
519 }
520 return;
521 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
522 {
523 /* here, state[2] is the light number */
524 /* pre-normalize spot dir */
525 const GLuint ln = (GLuint) state[2];
526 COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
527 value[3] = ctx->Light.Light[ln]._CosCutoff;
528 }
529 return;
530
531 case STATE_LIGHT_POSITION:
532 {
533 const GLuint ln = (GLuint) state[2];
534 COPY_4V(value, ctx->Light.Light[ln]._Position);
535 }
536 return;
537
538 case STATE_LIGHT_POSITION_NORMALIZED:
539 {
540 const GLuint ln = (GLuint) state[2];
541 COPY_4V(value, ctx->Light.Light[ln]._Position);
542 NORMALIZE_3FV( value );
543 }
544 return;
545
546 case STATE_LIGHT_HALF_VECTOR:
547 {
548 const GLuint ln = (GLuint) state[2];
549 GLfloat p[3];
550 /* Compute infinite half angle vector:
551 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
552 * light.EyePosition.w should be 0 for infinite lights.
553 */
554 COPY_3V(p, ctx->Light.Light[ln]._Position);
555 NORMALIZE_3FV(p);
556 ADD_3V(value, p, ctx->_EyeZDir);
557 NORMALIZE_3FV(value);
558 value[3] = 1.0;
559 }
560 return;
561
562 case STATE_PT_SCALE:
563 value[0] = ctx->Pixel.RedScale;
564 value[1] = ctx->Pixel.GreenScale;
565 value[2] = ctx->Pixel.BlueScale;
566 value[3] = ctx->Pixel.AlphaScale;
567 return;
568
569 case STATE_PT_BIAS:
570 value[0] = ctx->Pixel.RedBias;
571 value[1] = ctx->Pixel.GreenBias;
572 value[2] = ctx->Pixel.BlueBias;
573 value[3] = ctx->Pixel.AlphaBias;
574 return;
575
576 case STATE_FB_SIZE:
577 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
578 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
579 value[2] = 0.0F;
580 value[3] = 0.0F;
581 return;
582
583 case STATE_FB_WPOS_Y_TRANSFORM:
584 /* A driver may negate this conditional by using ZW swizzle
585 * instead of XY (based on e.g. some other state). */
586 if (_mesa_is_user_fbo(ctx->DrawBuffer)) {
587 /* Identity (XY) followed by flipping Y upside down (ZW). */
588 value[0] = 1.0F;
589 value[1] = 0.0F;
590 value[2] = -1.0F;
591 value[3] = (GLfloat) ctx->DrawBuffer->Height;
592 } else {
593 /* Flipping Y upside down (XY) followed by identity (ZW). */
594 value[0] = -1.0F;
595 value[1] = (GLfloat) ctx->DrawBuffer->Height;
596 value[2] = 1.0F;
597 value[3] = 0.0F;
598 }
599 return;
600
601 case STATE_TES_PATCH_VERTICES_IN:
602 if (ctx->TessCtrlProgram._Current)
603 val[0].i = ctx->TessCtrlProgram._Current->VerticesOut;
604 else
605 val[0].i = ctx->TessCtrlProgram.patch_vertices;
606 return;
607
608 /* XXX: make sure new tokens added here are also handled in the
609 * _mesa_program_state_flags() switch, below.
610 */
611 default:
612 /* Unknown state indexes are silently ignored here.
613 * Drivers may do something special.
614 */
615 return;
616 }
617 return;
618
619 default:
620 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
621 return;
622 }
623 }
624
625
626 /**
627 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
628 * indicate that the given context state may have changed.
629 * The bitmask is used during validation to determine if we need to update
630 * vertex/fragment program parameters (like "state.material.color") when
631 * some GL state has changed.
632 */
633 GLbitfield
634 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
635 {
636 switch (state[0]) {
637 case STATE_MATERIAL:
638 case STATE_LIGHTPROD:
639 case STATE_LIGHTMODEL_SCENECOLOR:
640 /* these can be effected by glColor when colormaterial mode is used */
641 return _NEW_LIGHT | _NEW_CURRENT_ATTRIB;
642
643 case STATE_LIGHT:
644 case STATE_LIGHTMODEL_AMBIENT:
645 return _NEW_LIGHT;
646
647 case STATE_TEXGEN:
648 return _NEW_TEXTURE;
649 case STATE_TEXENV_COLOR:
650 return _NEW_TEXTURE | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
651
652 case STATE_FOG_COLOR:
653 return _NEW_FOG | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
654 case STATE_FOG_PARAMS:
655 return _NEW_FOG;
656
657 case STATE_CLIPPLANE:
658 return _NEW_TRANSFORM;
659
660 case STATE_POINT_SIZE:
661 case STATE_POINT_ATTENUATION:
662 return _NEW_POINT;
663
664 case STATE_MODELVIEW_MATRIX:
665 return _NEW_MODELVIEW;
666 case STATE_PROJECTION_MATRIX:
667 return _NEW_PROJECTION;
668 case STATE_MVP_MATRIX:
669 return _NEW_MODELVIEW | _NEW_PROJECTION;
670 case STATE_TEXTURE_MATRIX:
671 return _NEW_TEXTURE_MATRIX;
672 case STATE_PROGRAM_MATRIX:
673 return _NEW_TRACK_MATRIX;
674
675 case STATE_NUM_SAMPLES:
676 return _NEW_BUFFERS;
677
678 case STATE_DEPTH_RANGE:
679 return _NEW_VIEWPORT;
680
681 case STATE_FRAGMENT_PROGRAM:
682 case STATE_VERTEX_PROGRAM:
683 return _NEW_PROGRAM;
684
685 case STATE_NORMAL_SCALE:
686 return _NEW_MODELVIEW;
687
688 case STATE_INTERNAL:
689 switch (state[1]) {
690 case STATE_CURRENT_ATTRIB:
691 return _NEW_CURRENT_ATTRIB;
692 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
693 return _NEW_CURRENT_ATTRIB | _NEW_LIGHT | _NEW_BUFFERS;
694
695 case STATE_NORMAL_SCALE:
696 return _NEW_MODELVIEW;
697
698 case STATE_TEXRECT_SCALE:
699 return _NEW_TEXTURE;
700 case STATE_FOG_PARAMS_OPTIMIZED:
701 return _NEW_FOG;
702 case STATE_POINT_SIZE_CLAMPED:
703 return _NEW_POINT | _NEW_MULTISAMPLE;
704 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
705 case STATE_LIGHT_POSITION:
706 case STATE_LIGHT_POSITION_NORMALIZED:
707 case STATE_LIGHT_HALF_VECTOR:
708 return _NEW_LIGHT;
709
710 case STATE_PT_SCALE:
711 case STATE_PT_BIAS:
712 return _NEW_PIXEL;
713
714 case STATE_FB_SIZE:
715 case STATE_FB_WPOS_Y_TRANSFORM:
716 return _NEW_BUFFERS;
717
718 default:
719 /* unknown state indexes are silently ignored and
720 * no flag set, since it is handled by the driver.
721 */
722 return 0;
723 }
724
725 default:
726 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
727 return 0;
728 }
729 }
730
731
732 static void
733 append(char *dst, const char *src)
734 {
735 while (*dst)
736 dst++;
737 while (*src)
738 *dst++ = *src++;
739 *dst = 0;
740 }
741
742
743 /**
744 * Convert token 'k' to a string, append it onto 'dst' string.
745 */
746 static void
747 append_token(char *dst, gl_state_index k)
748 {
749 switch (k) {
750 case STATE_MATERIAL:
751 append(dst, "material");
752 break;
753 case STATE_LIGHT:
754 append(dst, "light");
755 break;
756 case STATE_LIGHTMODEL_AMBIENT:
757 append(dst, "lightmodel.ambient");
758 break;
759 case STATE_LIGHTMODEL_SCENECOLOR:
760 break;
761 case STATE_LIGHTPROD:
762 append(dst, "lightprod");
763 break;
764 case STATE_TEXGEN:
765 append(dst, "texgen");
766 break;
767 case STATE_FOG_COLOR:
768 append(dst, "fog.color");
769 break;
770 case STATE_FOG_PARAMS:
771 append(dst, "fog.params");
772 break;
773 case STATE_CLIPPLANE:
774 append(dst, "clip");
775 break;
776 case STATE_POINT_SIZE:
777 append(dst, "point.size");
778 break;
779 case STATE_POINT_ATTENUATION:
780 append(dst, "point.attenuation");
781 break;
782 case STATE_MODELVIEW_MATRIX:
783 append(dst, "matrix.modelview");
784 break;
785 case STATE_PROJECTION_MATRIX:
786 append(dst, "matrix.projection");
787 break;
788 case STATE_MVP_MATRIX:
789 append(dst, "matrix.mvp");
790 break;
791 case STATE_TEXTURE_MATRIX:
792 append(dst, "matrix.texture");
793 break;
794 case STATE_PROGRAM_MATRIX:
795 append(dst, "matrix.program");
796 break;
797 case STATE_MATRIX_INVERSE:
798 append(dst, ".inverse");
799 break;
800 case STATE_MATRIX_TRANSPOSE:
801 append(dst, ".transpose");
802 break;
803 case STATE_MATRIX_INVTRANS:
804 append(dst, ".invtrans");
805 break;
806 case STATE_AMBIENT:
807 append(dst, ".ambient");
808 break;
809 case STATE_DIFFUSE:
810 append(dst, ".diffuse");
811 break;
812 case STATE_SPECULAR:
813 append(dst, ".specular");
814 break;
815 case STATE_EMISSION:
816 append(dst, ".emission");
817 break;
818 case STATE_SHININESS:
819 append(dst, "lshininess");
820 break;
821 case STATE_HALF_VECTOR:
822 append(dst, ".half");
823 break;
824 case STATE_POSITION:
825 append(dst, ".position");
826 break;
827 case STATE_ATTENUATION:
828 append(dst, ".attenuation");
829 break;
830 case STATE_SPOT_DIRECTION:
831 append(dst, ".spot.direction");
832 break;
833 case STATE_SPOT_CUTOFF:
834 append(dst, ".spot.cutoff");
835 break;
836 case STATE_TEXGEN_EYE_S:
837 append(dst, ".eye.s");
838 break;
839 case STATE_TEXGEN_EYE_T:
840 append(dst, ".eye.t");
841 break;
842 case STATE_TEXGEN_EYE_R:
843 append(dst, ".eye.r");
844 break;
845 case STATE_TEXGEN_EYE_Q:
846 append(dst, ".eye.q");
847 break;
848 case STATE_TEXGEN_OBJECT_S:
849 append(dst, ".object.s");
850 break;
851 case STATE_TEXGEN_OBJECT_T:
852 append(dst, ".object.t");
853 break;
854 case STATE_TEXGEN_OBJECT_R:
855 append(dst, ".object.r");
856 break;
857 case STATE_TEXGEN_OBJECT_Q:
858 append(dst, ".object.q");
859 break;
860 case STATE_TEXENV_COLOR:
861 append(dst, "texenv");
862 break;
863 case STATE_NUM_SAMPLES:
864 append(dst, "numsamples");
865 break;
866 case STATE_DEPTH_RANGE:
867 append(dst, "depth.range");
868 break;
869 case STATE_VERTEX_PROGRAM:
870 case STATE_FRAGMENT_PROGRAM:
871 break;
872 case STATE_ENV:
873 append(dst, "env");
874 break;
875 case STATE_LOCAL:
876 append(dst, "local");
877 break;
878 /* BEGIN internal state vars */
879 case STATE_INTERNAL:
880 append(dst, ".internal.");
881 break;
882 case STATE_CURRENT_ATTRIB:
883 append(dst, "current");
884 break;
885 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
886 append(dst, "currentAttribMaybeVPClamped");
887 break;
888 case STATE_NORMAL_SCALE:
889 append(dst, "normalScale");
890 break;
891 case STATE_TEXRECT_SCALE:
892 append(dst, "texrectScale");
893 break;
894 case STATE_FOG_PARAMS_OPTIMIZED:
895 append(dst, "fogParamsOptimized");
896 break;
897 case STATE_POINT_SIZE_CLAMPED:
898 append(dst, "pointSizeClamped");
899 break;
900 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
901 append(dst, "lightSpotDirNormalized");
902 break;
903 case STATE_LIGHT_POSITION:
904 append(dst, "lightPosition");
905 break;
906 case STATE_LIGHT_POSITION_NORMALIZED:
907 append(dst, "light.position.normalized");
908 break;
909 case STATE_LIGHT_HALF_VECTOR:
910 append(dst, "lightHalfVector");
911 break;
912 case STATE_PT_SCALE:
913 append(dst, "PTscale");
914 break;
915 case STATE_PT_BIAS:
916 append(dst, "PTbias");
917 break;
918 case STATE_FB_SIZE:
919 append(dst, "FbSize");
920 break;
921 case STATE_FB_WPOS_Y_TRANSFORM:
922 append(dst, "FbWposYTransform");
923 break;
924 default:
925 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
926 append(dst, "driverState");
927 }
928 }
929
930 static void
931 append_face(char *dst, GLint face)
932 {
933 if (face == 0)
934 append(dst, "front.");
935 else
936 append(dst, "back.");
937 }
938
939 static void
940 append_index(char *dst, GLint index)
941 {
942 char s[20];
943 sprintf(s, "[%d]", index);
944 append(dst, s);
945 }
946
947 /**
948 * Make a string from the given state vector.
949 * For example, return "state.matrix.texture[2].inverse".
950 * Use free() to deallocate the string.
951 */
952 char *
953 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
954 {
955 char str[1000] = "";
956 char tmp[30];
957
958 append(str, "state.");
959 append_token(str, state[0]);
960
961 switch (state[0]) {
962 case STATE_MATERIAL:
963 append_face(str, state[1]);
964 append_token(str, state[2]);
965 break;
966 case STATE_LIGHT:
967 append_index(str, state[1]); /* light number [i]. */
968 append_token(str, state[2]); /* coefficients */
969 break;
970 case STATE_LIGHTMODEL_AMBIENT:
971 append(str, "lightmodel.ambient");
972 break;
973 case STATE_LIGHTMODEL_SCENECOLOR:
974 if (state[1] == 0) {
975 append(str, "lightmodel.front.scenecolor");
976 }
977 else {
978 append(str, "lightmodel.back.scenecolor");
979 }
980 break;
981 case STATE_LIGHTPROD:
982 append_index(str, state[1]); /* light number [i]. */
983 append_face(str, state[2]);
984 append_token(str, state[3]);
985 break;
986 case STATE_TEXGEN:
987 append_index(str, state[1]); /* tex unit [i] */
988 append_token(str, state[2]); /* plane coef */
989 break;
990 case STATE_TEXENV_COLOR:
991 append_index(str, state[1]); /* tex unit [i] */
992 append(str, "color");
993 break;
994 case STATE_CLIPPLANE:
995 append_index(str, state[1]); /* plane [i] */
996 append(str, ".plane");
997 break;
998 case STATE_MODELVIEW_MATRIX:
999 case STATE_PROJECTION_MATRIX:
1000 case STATE_MVP_MATRIX:
1001 case STATE_TEXTURE_MATRIX:
1002 case STATE_PROGRAM_MATRIX:
1003 {
1004 /* state[0] = modelview, projection, texture, etc. */
1005 /* state[1] = which texture matrix or program matrix */
1006 /* state[2] = first row to fetch */
1007 /* state[3] = last row to fetch */
1008 /* state[4] = transpose, inverse or invtrans */
1009 const gl_state_index mat = state[0];
1010 const GLuint index = (GLuint) state[1];
1011 const GLuint firstRow = (GLuint) state[2];
1012 const GLuint lastRow = (GLuint) state[3];
1013 const gl_state_index modifier = state[4];
1014 if (index ||
1015 mat == STATE_TEXTURE_MATRIX ||
1016 mat == STATE_PROGRAM_MATRIX)
1017 append_index(str, index);
1018 if (modifier)
1019 append_token(str, modifier);
1020 if (firstRow == lastRow)
1021 sprintf(tmp, ".row[%d]", firstRow);
1022 else
1023 sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
1024 append(str, tmp);
1025 }
1026 break;
1027 case STATE_POINT_SIZE:
1028 break;
1029 case STATE_POINT_ATTENUATION:
1030 break;
1031 case STATE_FOG_PARAMS:
1032 break;
1033 case STATE_FOG_COLOR:
1034 break;
1035 case STATE_NUM_SAMPLES:
1036 break;
1037 case STATE_DEPTH_RANGE:
1038 break;
1039 case STATE_FRAGMENT_PROGRAM:
1040 case STATE_VERTEX_PROGRAM:
1041 /* state[1] = {STATE_ENV, STATE_LOCAL} */
1042 /* state[2] = parameter index */
1043 append_token(str, state[1]);
1044 append_index(str, state[2]);
1045 break;
1046 case STATE_NORMAL_SCALE:
1047 break;
1048 case STATE_INTERNAL:
1049 append_token(str, state[1]);
1050 if (state[1] == STATE_CURRENT_ATTRIB)
1051 append_index(str, state[2]);
1052 break;
1053 default:
1054 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
1055 break;
1056 }
1057
1058 return strdup(str);
1059 }
1060
1061
1062 /**
1063 * Loop over all the parameters in a parameter list. If the parameter
1064 * is a GL state reference, look up the current value of that state
1065 * variable and put it into the parameter's Value[4] array.
1066 * Other parameter types never change or are explicitly set by the user
1067 * with glUniform() or glProgramParameter(), etc.
1068 * This would be called at glBegin time.
1069 */
1070 void
1071 _mesa_load_state_parameters(struct gl_context *ctx,
1072 struct gl_program_parameter_list *paramList)
1073 {
1074 GLuint i;
1075
1076 if (!paramList)
1077 return;
1078
1079 for (i = 0; i < paramList->NumParameters; i++) {
1080 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1081 _mesa_fetch_state(ctx,
1082 paramList->Parameters[i].StateIndexes,
1083 &paramList->ParameterValues[i][0]);
1084 }
1085 }
1086 }