st/mesa: kill off point size clamping in vertex shaders
[mesa.git] / src / mesa / program / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/imports.h"
35 #include "main/macros.h"
36 #include "main/mtypes.h"
37 #include "prog_statevars.h"
38 #include "prog_parameter.h"
39
40
41 /**
42 * Use the list of tokens in the state[] array to find global GL state
43 * and return it in <value>. Usually, four values are returned in <value>
44 * but matrix queries may return as many as 16 values.
45 * This function is used for ARB vertex/fragment programs.
46 * The program parser will produce the state[] values.
47 */
48 static void
49 _mesa_fetch_state(struct gl_context *ctx, const gl_state_index state[],
50 GLfloat *value)
51 {
52 switch (state[0]) {
53 case STATE_MATERIAL:
54 {
55 /* state[1] is either 0=front or 1=back side */
56 const GLuint face = (GLuint) state[1];
57 const struct gl_material *mat = &ctx->Light.Material;
58 ASSERT(face == 0 || face == 1);
59 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
60 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
61 /* XXX we could get rid of this switch entirely with a little
62 * work in arbprogparse.c's parse_state_single_item().
63 */
64 /* state[2] is the material attribute */
65 switch (state[2]) {
66 case STATE_AMBIENT:
67 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
68 return;
69 case STATE_DIFFUSE:
70 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
71 return;
72 case STATE_SPECULAR:
73 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
74 return;
75 case STATE_EMISSION:
76 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
77 return;
78 case STATE_SHININESS:
79 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
80 value[1] = 0.0F;
81 value[2] = 0.0F;
82 value[3] = 1.0F;
83 return;
84 default:
85 _mesa_problem(ctx, "Invalid material state in fetch_state");
86 return;
87 }
88 }
89 case STATE_LIGHT:
90 {
91 /* state[1] is the light number */
92 const GLuint ln = (GLuint) state[1];
93 /* state[2] is the light attribute */
94 switch (state[2]) {
95 case STATE_AMBIENT:
96 COPY_4V(value, ctx->Light.Light[ln].Ambient);
97 return;
98 case STATE_DIFFUSE:
99 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
100 return;
101 case STATE_SPECULAR:
102 COPY_4V(value, ctx->Light.Light[ln].Specular);
103 return;
104 case STATE_POSITION:
105 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
106 return;
107 case STATE_ATTENUATION:
108 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
109 value[1] = ctx->Light.Light[ln].LinearAttenuation;
110 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
111 value[3] = ctx->Light.Light[ln].SpotExponent;
112 return;
113 case STATE_SPOT_DIRECTION:
114 COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
115 value[3] = ctx->Light.Light[ln]._CosCutoff;
116 return;
117 case STATE_SPOT_CUTOFF:
118 value[0] = ctx->Light.Light[ln].SpotCutoff;
119 return;
120 case STATE_HALF_VECTOR:
121 {
122 static const GLfloat eye_z[] = {0, 0, 1};
123 GLfloat p[3];
124 /* Compute infinite half angle vector:
125 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
126 * light.EyePosition.w should be 0 for infinite lights.
127 */
128 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
129 NORMALIZE_3FV(p);
130 ADD_3V(value, p, eye_z);
131 NORMALIZE_3FV(value);
132 value[3] = 1.0;
133 }
134 return;
135 default:
136 _mesa_problem(ctx, "Invalid light state in fetch_state");
137 return;
138 }
139 }
140 case STATE_LIGHTMODEL_AMBIENT:
141 COPY_4V(value, ctx->Light.Model.Ambient);
142 return;
143 case STATE_LIGHTMODEL_SCENECOLOR:
144 if (state[1] == 0) {
145 /* front */
146 GLint i;
147 for (i = 0; i < 3; i++) {
148 value[i] = ctx->Light.Model.Ambient[i]
149 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
150 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
151 }
152 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
153 }
154 else {
155 /* back */
156 GLint i;
157 for (i = 0; i < 3; i++) {
158 value[i] = ctx->Light.Model.Ambient[i]
159 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
160 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
161 }
162 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
163 }
164 return;
165 case STATE_LIGHTPROD:
166 {
167 const GLuint ln = (GLuint) state[1];
168 const GLuint face = (GLuint) state[2];
169 GLint i;
170 ASSERT(face == 0 || face == 1);
171 switch (state[3]) {
172 case STATE_AMBIENT:
173 for (i = 0; i < 3; i++) {
174 value[i] = ctx->Light.Light[ln].Ambient[i] *
175 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
176 }
177 /* [3] = material alpha */
178 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
179 return;
180 case STATE_DIFFUSE:
181 for (i = 0; i < 3; i++) {
182 value[i] = ctx->Light.Light[ln].Diffuse[i] *
183 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
184 }
185 /* [3] = material alpha */
186 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
187 return;
188 case STATE_SPECULAR:
189 for (i = 0; i < 3; i++) {
190 value[i] = ctx->Light.Light[ln].Specular[i] *
191 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
192 }
193 /* [3] = material alpha */
194 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
195 return;
196 default:
197 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
198 return;
199 }
200 }
201 case STATE_TEXGEN:
202 {
203 /* state[1] is the texture unit */
204 const GLuint unit = (GLuint) state[1];
205 /* state[2] is the texgen attribute */
206 switch (state[2]) {
207 case STATE_TEXGEN_EYE_S:
208 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
209 return;
210 case STATE_TEXGEN_EYE_T:
211 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
212 return;
213 case STATE_TEXGEN_EYE_R:
214 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
215 return;
216 case STATE_TEXGEN_EYE_Q:
217 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
218 return;
219 case STATE_TEXGEN_OBJECT_S:
220 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
221 return;
222 case STATE_TEXGEN_OBJECT_T:
223 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
224 return;
225 case STATE_TEXGEN_OBJECT_R:
226 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
227 return;
228 case STATE_TEXGEN_OBJECT_Q:
229 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
230 return;
231 default:
232 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
233 return;
234 }
235 }
236 case STATE_TEXENV_COLOR:
237 {
238 /* state[1] is the texture unit */
239 const GLuint unit = (GLuint) state[1];
240 if(ctx->Color._ClampFragmentColor)
241 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
242 else
243 COPY_4V(value, ctx->Texture.Unit[unit].EnvColorUnclamped);
244 }
245 return;
246 case STATE_FOG_COLOR:
247 if(ctx->Color._ClampFragmentColor)
248 COPY_4V(value, ctx->Fog.Color);
249 else
250 COPY_4V(value, ctx->Fog.ColorUnclamped);
251 return;
252 case STATE_FOG_PARAMS:
253 value[0] = ctx->Fog.Density;
254 value[1] = ctx->Fog.Start;
255 value[2] = ctx->Fog.End;
256 value[3] = (ctx->Fog.End == ctx->Fog.Start)
257 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
258 return;
259 case STATE_CLIPPLANE:
260 {
261 const GLuint plane = (GLuint) state[1];
262 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
263 }
264 return;
265 case STATE_POINT_SIZE:
266 value[0] = ctx->Point.Size;
267 value[1] = ctx->Point.MinSize;
268 value[2] = ctx->Point.MaxSize;
269 value[3] = ctx->Point.Threshold;
270 return;
271 case STATE_POINT_ATTENUATION:
272 value[0] = ctx->Point.Params[0];
273 value[1] = ctx->Point.Params[1];
274 value[2] = ctx->Point.Params[2];
275 value[3] = 1.0F;
276 return;
277 case STATE_MODELVIEW_MATRIX:
278 case STATE_PROJECTION_MATRIX:
279 case STATE_MVP_MATRIX:
280 case STATE_TEXTURE_MATRIX:
281 case STATE_PROGRAM_MATRIX:
282 {
283 /* state[0] = modelview, projection, texture, etc. */
284 /* state[1] = which texture matrix or program matrix */
285 /* state[2] = first row to fetch */
286 /* state[3] = last row to fetch */
287 /* state[4] = transpose, inverse or invtrans */
288 const GLmatrix *matrix;
289 const gl_state_index mat = state[0];
290 const GLuint index = (GLuint) state[1];
291 const GLuint firstRow = (GLuint) state[2];
292 const GLuint lastRow = (GLuint) state[3];
293 const gl_state_index modifier = state[4];
294 const GLfloat *m;
295 GLuint row, i;
296 ASSERT(firstRow >= 0);
297 ASSERT(firstRow < 4);
298 ASSERT(lastRow >= 0);
299 ASSERT(lastRow < 4);
300 if (mat == STATE_MODELVIEW_MATRIX) {
301 matrix = ctx->ModelviewMatrixStack.Top;
302 }
303 else if (mat == STATE_PROJECTION_MATRIX) {
304 matrix = ctx->ProjectionMatrixStack.Top;
305 }
306 else if (mat == STATE_MVP_MATRIX) {
307 matrix = &ctx->_ModelProjectMatrix;
308 }
309 else if (mat == STATE_TEXTURE_MATRIX) {
310 ASSERT(index < Elements(ctx->TextureMatrixStack));
311 matrix = ctx->TextureMatrixStack[index].Top;
312 }
313 else if (mat == STATE_PROGRAM_MATRIX) {
314 ASSERT(index < Elements(ctx->ProgramMatrixStack));
315 matrix = ctx->ProgramMatrixStack[index].Top;
316 }
317 else {
318 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
319 return;
320 }
321 if (modifier == STATE_MATRIX_INVERSE ||
322 modifier == STATE_MATRIX_INVTRANS) {
323 /* Be sure inverse is up to date:
324 */
325 _math_matrix_alloc_inv( (GLmatrix *) matrix );
326 _math_matrix_analyse( (GLmatrix*) matrix );
327 m = matrix->inv;
328 }
329 else {
330 m = matrix->m;
331 }
332 if (modifier == STATE_MATRIX_TRANSPOSE ||
333 modifier == STATE_MATRIX_INVTRANS) {
334 for (i = 0, row = firstRow; row <= lastRow; row++) {
335 value[i++] = m[row * 4 + 0];
336 value[i++] = m[row * 4 + 1];
337 value[i++] = m[row * 4 + 2];
338 value[i++] = m[row * 4 + 3];
339 }
340 }
341 else {
342 for (i = 0, row = firstRow; row <= lastRow; row++) {
343 value[i++] = m[row + 0];
344 value[i++] = m[row + 4];
345 value[i++] = m[row + 8];
346 value[i++] = m[row + 12];
347 }
348 }
349 }
350 return;
351 case STATE_DEPTH_RANGE:
352 value[0] = ctx->Viewport.Near; /* near */
353 value[1] = ctx->Viewport.Far; /* far */
354 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
355 value[3] = 1.0;
356 return;
357 case STATE_FRAGMENT_PROGRAM:
358 {
359 /* state[1] = {STATE_ENV, STATE_LOCAL} */
360 /* state[2] = parameter index */
361 const int idx = (int) state[2];
362 switch (state[1]) {
363 case STATE_ENV:
364 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
365 return;
366 case STATE_LOCAL:
367 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
368 return;
369 default:
370 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
371 return;
372 }
373 }
374 return;
375
376 case STATE_VERTEX_PROGRAM:
377 {
378 /* state[1] = {STATE_ENV, STATE_LOCAL} */
379 /* state[2] = parameter index */
380 const int idx = (int) state[2];
381 switch (state[1]) {
382 case STATE_ENV:
383 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
384 return;
385 case STATE_LOCAL:
386 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
387 return;
388 default:
389 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
390 return;
391 }
392 }
393 return;
394
395 case STATE_NORMAL_SCALE:
396 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
397 return;
398
399 case STATE_INTERNAL:
400 switch (state[1]) {
401 case STATE_CURRENT_ATTRIB:
402 {
403 const GLuint idx = (GLuint) state[2];
404 COPY_4V(value, ctx->Current.Attrib[idx]);
405 }
406 return;
407
408 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
409 {
410 const GLuint idx = (GLuint) state[2];
411 if(ctx->Light._ClampVertexColor &&
412 (idx == VERT_ATTRIB_COLOR0 ||
413 idx == VERT_ATTRIB_COLOR1)) {
414 value[0] = CLAMP(ctx->Current.Attrib[idx][0], 0.0f, 1.0f);
415 value[1] = CLAMP(ctx->Current.Attrib[idx][1], 0.0f, 1.0f);
416 value[2] = CLAMP(ctx->Current.Attrib[idx][2], 0.0f, 1.0f);
417 value[3] = CLAMP(ctx->Current.Attrib[idx][3], 0.0f, 1.0f);
418 }
419 else
420 COPY_4V(value, ctx->Current.Attrib[idx]);
421 }
422 return;
423
424 case STATE_NORMAL_SCALE:
425 ASSIGN_4V(value,
426 ctx->_ModelViewInvScale,
427 ctx->_ModelViewInvScale,
428 ctx->_ModelViewInvScale,
429 1);
430 return;
431
432 case STATE_TEXRECT_SCALE:
433 /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
434 * Used to convert unnormalized texcoords to normalized texcoords.
435 */
436 {
437 const int unit = (int) state[2];
438 const struct gl_texture_object *texObj
439 = ctx->Texture.Unit[unit]._Current;
440 if (texObj) {
441 struct gl_texture_image *texImage = texObj->Image[0][0];
442 ASSIGN_4V(value,
443 (GLfloat) (1.0 / texImage->Width),
444 (GLfloat) (1.0 / texImage->Height),
445 0.0f, 1.0f);
446 }
447 }
448 return;
449
450 case STATE_FOG_PARAMS_OPTIMIZED:
451 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
452 * might be more expensive than EX2 on some hw, plus it needs
453 * another constant (e) anyway. Linear fog can now be done with a
454 * single MAD.
455 * linear: fogcoord * -1/(end-start) + end/(end-start)
456 * exp: 2^-(density/ln(2) * fogcoord)
457 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
458 */
459 value[0] = (ctx->Fog.End == ctx->Fog.Start)
460 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
461 value[1] = ctx->Fog.End * -value[0];
462 value[2] = (GLfloat)(ctx->Fog.Density * M_LOG2E); /* M_LOG2E == 1/ln(2) */
463 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
464 return;
465
466 case STATE_POINT_SIZE_CLAMPED:
467 {
468 /* this includes implementation dependent limits, to avoid
469 * another potentially necessary clamp.
470 * Note: for sprites, point smooth (point AA) is ignored
471 * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
472 * expect drivers will want to say their minimum for AA size is 0.0
473 * but for non-AA it's 1.0 (because normal points with size below 1.0
474 * need to get rounded up to 1.0, hence never disappear). GL does
475 * not specify max clamp size for sprites, other than it needs to be
476 * at least as large as max AA size, hence use non-AA size there.
477 */
478 GLfloat minImplSize;
479 GLfloat maxImplSize;
480 if (ctx->Point.PointSprite) {
481 minImplSize = ctx->Const.MinPointSizeAA;
482 maxImplSize = ctx->Const.MaxPointSize;
483 }
484 else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
485 minImplSize = ctx->Const.MinPointSizeAA;
486 maxImplSize = ctx->Const.MaxPointSizeAA;
487 }
488 else {
489 minImplSize = ctx->Const.MinPointSize;
490 maxImplSize = ctx->Const.MaxPointSize;
491 }
492 value[0] = ctx->Point.Size;
493 value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
494 value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
495 value[3] = ctx->Point.Threshold;
496 }
497 return;
498 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
499 {
500 /* here, state[2] is the light number */
501 /* pre-normalize spot dir */
502 const GLuint ln = (GLuint) state[2];
503 COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
504 value[3] = ctx->Light.Light[ln]._CosCutoff;
505 }
506 return;
507
508 case STATE_LIGHT_POSITION:
509 {
510 const GLuint ln = (GLuint) state[2];
511 COPY_4V(value, ctx->Light.Light[ln]._Position);
512 }
513 return;
514
515 case STATE_LIGHT_POSITION_NORMALIZED:
516 {
517 const GLuint ln = (GLuint) state[2];
518 COPY_4V(value, ctx->Light.Light[ln]._Position);
519 NORMALIZE_3FV( value );
520 }
521 return;
522
523 case STATE_LIGHT_HALF_VECTOR:
524 {
525 const GLuint ln = (GLuint) state[2];
526 GLfloat p[3];
527 /* Compute infinite half angle vector:
528 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
529 * light.EyePosition.w should be 0 for infinite lights.
530 */
531 COPY_3V(p, ctx->Light.Light[ln]._Position);
532 NORMALIZE_3FV(p);
533 ADD_3V(value, p, ctx->_EyeZDir);
534 NORMALIZE_3FV(value);
535 value[3] = 1.0;
536 }
537 return;
538
539 case STATE_PT_SCALE:
540 value[0] = ctx->Pixel.RedScale;
541 value[1] = ctx->Pixel.GreenScale;
542 value[2] = ctx->Pixel.BlueScale;
543 value[3] = ctx->Pixel.AlphaScale;
544 return;
545
546 case STATE_PT_BIAS:
547 value[0] = ctx->Pixel.RedBias;
548 value[1] = ctx->Pixel.GreenBias;
549 value[2] = ctx->Pixel.BlueBias;
550 value[3] = ctx->Pixel.AlphaBias;
551 return;
552
553 case STATE_SHADOW_AMBIENT:
554 {
555 const int unit = (int) state[2];
556 const struct gl_texture_object *texObj
557 = ctx->Texture.Unit[unit]._Current;
558 if (texObj) {
559 value[0] =
560 value[1] =
561 value[2] =
562 value[3] = texObj->Sampler.CompareFailValue;
563 }
564 }
565 return;
566
567 case STATE_FB_SIZE:
568 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
569 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
570 value[2] = 0.0F;
571 value[3] = 0.0F;
572 return;
573
574 case STATE_FB_WPOS_Y_TRANSFORM:
575 /* A driver may negate this conditional by using ZW swizzle
576 * instead of XY (based on e.g. some other state). */
577 if (ctx->DrawBuffer->Name != 0) {
578 /* Identity (XY) followed by flipping Y upside down (ZW). */
579 value[0] = 1.0F;
580 value[1] = 0.0F;
581 value[2] = -1.0F;
582 value[3] = (GLfloat) ctx->DrawBuffer->Height;
583 } else {
584 /* Flipping Y upside down (XY) followed by identity (ZW). */
585 value[0] = -1.0F;
586 value[1] = (GLfloat) ctx->DrawBuffer->Height;
587 value[2] = 1.0F;
588 value[3] = 0.0F;
589 }
590 return;
591
592 case STATE_ROT_MATRIX_0:
593 {
594 const int unit = (int) state[2];
595 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
596 value[0] = rotMat22[0];
597 value[1] = rotMat22[2];
598 value[2] = 0.0;
599 value[3] = 0.0;
600 }
601 return;
602
603 case STATE_ROT_MATRIX_1:
604 {
605 const int unit = (int) state[2];
606 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
607 value[0] = rotMat22[1];
608 value[1] = rotMat22[3];
609 value[2] = 0.0;
610 value[3] = 0.0;
611 }
612 return;
613
614 /* XXX: make sure new tokens added here are also handled in the
615 * _mesa_program_state_flags() switch, below.
616 */
617 default:
618 /* Unknown state indexes are silently ignored here.
619 * Drivers may do something special.
620 */
621 return;
622 }
623 return;
624
625 default:
626 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
627 return;
628 }
629 }
630
631
632 /**
633 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
634 * indicate that the given context state may have changed.
635 * The bitmask is used during validation to determine if we need to update
636 * vertex/fragment program parameters (like "state.material.color") when
637 * some GL state has changed.
638 */
639 GLbitfield
640 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
641 {
642 switch (state[0]) {
643 case STATE_MATERIAL:
644 case STATE_LIGHTPROD:
645 case STATE_LIGHTMODEL_SCENECOLOR:
646 /* these can be effected by glColor when colormaterial mode is used */
647 return _NEW_LIGHT | _NEW_CURRENT_ATTRIB;
648
649 case STATE_LIGHT:
650 case STATE_LIGHTMODEL_AMBIENT:
651 return _NEW_LIGHT;
652
653 case STATE_TEXGEN:
654 return _NEW_TEXTURE;
655 case STATE_TEXENV_COLOR:
656 return _NEW_TEXTURE | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
657
658 case STATE_FOG_COLOR:
659 return _NEW_FOG | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
660 case STATE_FOG_PARAMS:
661 return _NEW_FOG;
662
663 case STATE_CLIPPLANE:
664 return _NEW_TRANSFORM;
665
666 case STATE_POINT_SIZE:
667 case STATE_POINT_ATTENUATION:
668 return _NEW_POINT;
669
670 case STATE_MODELVIEW_MATRIX:
671 return _NEW_MODELVIEW;
672 case STATE_PROJECTION_MATRIX:
673 return _NEW_PROJECTION;
674 case STATE_MVP_MATRIX:
675 return _NEW_MODELVIEW | _NEW_PROJECTION;
676 case STATE_TEXTURE_MATRIX:
677 return _NEW_TEXTURE_MATRIX;
678 case STATE_PROGRAM_MATRIX:
679 return _NEW_TRACK_MATRIX;
680
681 case STATE_DEPTH_RANGE:
682 return _NEW_VIEWPORT;
683
684 case STATE_FRAGMENT_PROGRAM:
685 case STATE_VERTEX_PROGRAM:
686 return _NEW_PROGRAM;
687
688 case STATE_NORMAL_SCALE:
689 return _NEW_MODELVIEW;
690
691 case STATE_INTERNAL:
692 switch (state[1]) {
693 case STATE_CURRENT_ATTRIB:
694 return _NEW_CURRENT_ATTRIB;
695 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
696 return _NEW_CURRENT_ATTRIB | _NEW_LIGHT | _NEW_BUFFERS;
697
698 case STATE_NORMAL_SCALE:
699 return _NEW_MODELVIEW;
700
701 case STATE_TEXRECT_SCALE:
702 case STATE_SHADOW_AMBIENT:
703 case STATE_ROT_MATRIX_0:
704 case STATE_ROT_MATRIX_1:
705 return _NEW_TEXTURE;
706 case STATE_FOG_PARAMS_OPTIMIZED:
707 return _NEW_FOG;
708 case STATE_POINT_SIZE_CLAMPED:
709 return _NEW_POINT | _NEW_MULTISAMPLE;
710 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
711 case STATE_LIGHT_POSITION:
712 case STATE_LIGHT_POSITION_NORMALIZED:
713 case STATE_LIGHT_HALF_VECTOR:
714 return _NEW_LIGHT;
715
716 case STATE_PT_SCALE:
717 case STATE_PT_BIAS:
718 return _NEW_PIXEL;
719
720 case STATE_FB_SIZE:
721 case STATE_FB_WPOS_Y_TRANSFORM:
722 return _NEW_BUFFERS;
723
724 default:
725 /* unknown state indexes are silently ignored and
726 * no flag set, since it is handled by the driver.
727 */
728 return 0;
729 }
730
731 default:
732 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
733 return 0;
734 }
735 }
736
737
738 static void
739 append(char *dst, const char *src)
740 {
741 while (*dst)
742 dst++;
743 while (*src)
744 *dst++ = *src++;
745 *dst = 0;
746 }
747
748
749 /**
750 * Convert token 'k' to a string, append it onto 'dst' string.
751 */
752 static void
753 append_token(char *dst, gl_state_index k)
754 {
755 switch (k) {
756 case STATE_MATERIAL:
757 append(dst, "material");
758 break;
759 case STATE_LIGHT:
760 append(dst, "light");
761 break;
762 case STATE_LIGHTMODEL_AMBIENT:
763 append(dst, "lightmodel.ambient");
764 break;
765 case STATE_LIGHTMODEL_SCENECOLOR:
766 break;
767 case STATE_LIGHTPROD:
768 append(dst, "lightprod");
769 break;
770 case STATE_TEXGEN:
771 append(dst, "texgen");
772 break;
773 case STATE_FOG_COLOR:
774 append(dst, "fog.color");
775 break;
776 case STATE_FOG_PARAMS:
777 append(dst, "fog.params");
778 break;
779 case STATE_CLIPPLANE:
780 append(dst, "clip");
781 break;
782 case STATE_POINT_SIZE:
783 append(dst, "point.size");
784 break;
785 case STATE_POINT_ATTENUATION:
786 append(dst, "point.attenuation");
787 break;
788 case STATE_MODELVIEW_MATRIX:
789 append(dst, "matrix.modelview");
790 break;
791 case STATE_PROJECTION_MATRIX:
792 append(dst, "matrix.projection");
793 break;
794 case STATE_MVP_MATRIX:
795 append(dst, "matrix.mvp");
796 break;
797 case STATE_TEXTURE_MATRIX:
798 append(dst, "matrix.texture");
799 break;
800 case STATE_PROGRAM_MATRIX:
801 append(dst, "matrix.program");
802 break;
803 case STATE_MATRIX_INVERSE:
804 append(dst, ".inverse");
805 break;
806 case STATE_MATRIX_TRANSPOSE:
807 append(dst, ".transpose");
808 break;
809 case STATE_MATRIX_INVTRANS:
810 append(dst, ".invtrans");
811 break;
812 case STATE_AMBIENT:
813 append(dst, ".ambient");
814 break;
815 case STATE_DIFFUSE:
816 append(dst, ".diffuse");
817 break;
818 case STATE_SPECULAR:
819 append(dst, ".specular");
820 break;
821 case STATE_EMISSION:
822 append(dst, ".emission");
823 break;
824 case STATE_SHININESS:
825 append(dst, "lshininess");
826 break;
827 case STATE_HALF_VECTOR:
828 append(dst, ".half");
829 break;
830 case STATE_POSITION:
831 append(dst, ".position");
832 break;
833 case STATE_ATTENUATION:
834 append(dst, ".attenuation");
835 break;
836 case STATE_SPOT_DIRECTION:
837 append(dst, ".spot.direction");
838 break;
839 case STATE_SPOT_CUTOFF:
840 append(dst, ".spot.cutoff");
841 break;
842 case STATE_TEXGEN_EYE_S:
843 append(dst, ".eye.s");
844 break;
845 case STATE_TEXGEN_EYE_T:
846 append(dst, ".eye.t");
847 break;
848 case STATE_TEXGEN_EYE_R:
849 append(dst, ".eye.r");
850 break;
851 case STATE_TEXGEN_EYE_Q:
852 append(dst, ".eye.q");
853 break;
854 case STATE_TEXGEN_OBJECT_S:
855 append(dst, ".object.s");
856 break;
857 case STATE_TEXGEN_OBJECT_T:
858 append(dst, ".object.t");
859 break;
860 case STATE_TEXGEN_OBJECT_R:
861 append(dst, ".object.r");
862 break;
863 case STATE_TEXGEN_OBJECT_Q:
864 append(dst, ".object.q");
865 break;
866 case STATE_TEXENV_COLOR:
867 append(dst, "texenv");
868 break;
869 case STATE_DEPTH_RANGE:
870 append(dst, "depth.range");
871 break;
872 case STATE_VERTEX_PROGRAM:
873 case STATE_FRAGMENT_PROGRAM:
874 break;
875 case STATE_ENV:
876 append(dst, "env");
877 break;
878 case STATE_LOCAL:
879 append(dst, "local");
880 break;
881 /* BEGIN internal state vars */
882 case STATE_INTERNAL:
883 append(dst, ".internal.");
884 break;
885 case STATE_CURRENT_ATTRIB:
886 append(dst, "current");
887 break;
888 case STATE_NORMAL_SCALE:
889 append(dst, "normalScale");
890 break;
891 case STATE_TEXRECT_SCALE:
892 append(dst, "texrectScale");
893 break;
894 case STATE_FOG_PARAMS_OPTIMIZED:
895 append(dst, "fogParamsOptimized");
896 break;
897 case STATE_POINT_SIZE_CLAMPED:
898 append(dst, "pointSizeClamped");
899 break;
900 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
901 append(dst, "lightSpotDirNormalized");
902 break;
903 case STATE_LIGHT_POSITION:
904 append(dst, "lightPosition");
905 break;
906 case STATE_LIGHT_POSITION_NORMALIZED:
907 append(dst, "light.position.normalized");
908 break;
909 case STATE_LIGHT_HALF_VECTOR:
910 append(dst, "lightHalfVector");
911 break;
912 case STATE_PT_SCALE:
913 append(dst, "PTscale");
914 break;
915 case STATE_PT_BIAS:
916 append(dst, "PTbias");
917 break;
918 case STATE_SHADOW_AMBIENT:
919 append(dst, "CompareFailValue");
920 break;
921 case STATE_FB_SIZE:
922 append(dst, "FbSize");
923 break;
924 case STATE_FB_WPOS_Y_TRANSFORM:
925 append(dst, "FbWposYTransform");
926 break;
927 case STATE_ROT_MATRIX_0:
928 append(dst, "rotMatrixRow0");
929 break;
930 case STATE_ROT_MATRIX_1:
931 append(dst, "rotMatrixRow1");
932 break;
933 default:
934 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
935 append(dst, "driverState");
936 }
937 }
938
939 static void
940 append_face(char *dst, GLint face)
941 {
942 if (face == 0)
943 append(dst, "front.");
944 else
945 append(dst, "back.");
946 }
947
948 static void
949 append_index(char *dst, GLint index)
950 {
951 char s[20];
952 sprintf(s, "[%d]", index);
953 append(dst, s);
954 }
955
956 /**
957 * Make a string from the given state vector.
958 * For example, return "state.matrix.texture[2].inverse".
959 * Use free() to deallocate the string.
960 */
961 char *
962 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
963 {
964 char str[1000] = "";
965 char tmp[30];
966
967 append(str, "state.");
968 append_token(str, state[0]);
969
970 switch (state[0]) {
971 case STATE_MATERIAL:
972 append_face(str, state[1]);
973 append_token(str, state[2]);
974 break;
975 case STATE_LIGHT:
976 append_index(str, state[1]); /* light number [i]. */
977 append_token(str, state[2]); /* coefficients */
978 break;
979 case STATE_LIGHTMODEL_AMBIENT:
980 append(str, "lightmodel.ambient");
981 break;
982 case STATE_LIGHTMODEL_SCENECOLOR:
983 if (state[1] == 0) {
984 append(str, "lightmodel.front.scenecolor");
985 }
986 else {
987 append(str, "lightmodel.back.scenecolor");
988 }
989 break;
990 case STATE_LIGHTPROD:
991 append_index(str, state[1]); /* light number [i]. */
992 append_face(str, state[2]);
993 append_token(str, state[3]);
994 break;
995 case STATE_TEXGEN:
996 append_index(str, state[1]); /* tex unit [i] */
997 append_token(str, state[2]); /* plane coef */
998 break;
999 case STATE_TEXENV_COLOR:
1000 append_index(str, state[1]); /* tex unit [i] */
1001 append(str, "color");
1002 break;
1003 case STATE_CLIPPLANE:
1004 append_index(str, state[1]); /* plane [i] */
1005 append(str, ".plane");
1006 break;
1007 case STATE_MODELVIEW_MATRIX:
1008 case STATE_PROJECTION_MATRIX:
1009 case STATE_MVP_MATRIX:
1010 case STATE_TEXTURE_MATRIX:
1011 case STATE_PROGRAM_MATRIX:
1012 {
1013 /* state[0] = modelview, projection, texture, etc. */
1014 /* state[1] = which texture matrix or program matrix */
1015 /* state[2] = first row to fetch */
1016 /* state[3] = last row to fetch */
1017 /* state[4] = transpose, inverse or invtrans */
1018 const gl_state_index mat = state[0];
1019 const GLuint index = (GLuint) state[1];
1020 const GLuint firstRow = (GLuint) state[2];
1021 const GLuint lastRow = (GLuint) state[3];
1022 const gl_state_index modifier = state[4];
1023 if (index ||
1024 mat == STATE_TEXTURE_MATRIX ||
1025 mat == STATE_PROGRAM_MATRIX)
1026 append_index(str, index);
1027 if (modifier)
1028 append_token(str, modifier);
1029 if (firstRow == lastRow)
1030 sprintf(tmp, ".row[%d]", firstRow);
1031 else
1032 sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
1033 append(str, tmp);
1034 }
1035 break;
1036 case STATE_POINT_SIZE:
1037 break;
1038 case STATE_POINT_ATTENUATION:
1039 break;
1040 case STATE_FOG_PARAMS:
1041 break;
1042 case STATE_FOG_COLOR:
1043 break;
1044 case STATE_DEPTH_RANGE:
1045 break;
1046 case STATE_FRAGMENT_PROGRAM:
1047 case STATE_VERTEX_PROGRAM:
1048 /* state[1] = {STATE_ENV, STATE_LOCAL} */
1049 /* state[2] = parameter index */
1050 append_token(str, state[1]);
1051 append_index(str, state[2]);
1052 break;
1053 case STATE_NORMAL_SCALE:
1054 break;
1055 case STATE_INTERNAL:
1056 append_token(str, state[1]);
1057 if (state[1] == STATE_CURRENT_ATTRIB)
1058 append_index(str, state[2]);
1059 break;
1060 default:
1061 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
1062 break;
1063 }
1064
1065 return _mesa_strdup(str);
1066 }
1067
1068
1069 /**
1070 * Loop over all the parameters in a parameter list. If the parameter
1071 * is a GL state reference, look up the current value of that state
1072 * variable and put it into the parameter's Value[4] array.
1073 * Other parameter types never change or are explicitly set by the user
1074 * with glUniform() or glProgramParameter(), etc.
1075 * This would be called at glBegin time.
1076 */
1077 void
1078 _mesa_load_state_parameters(struct gl_context *ctx,
1079 struct gl_program_parameter_list *paramList)
1080 {
1081 GLuint i;
1082
1083 if (!paramList)
1084 return;
1085
1086 for (i = 0; i < paramList->NumParameters; i++) {
1087 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1088 _mesa_fetch_state(ctx,
1089 paramList->Parameters[i].StateIndexes,
1090 &paramList->ParameterValues[i][0].f);
1091 }
1092 }
1093 }
1094
1095
1096 /**
1097 * Copy the 16 elements of a matrix into four consecutive program
1098 * registers starting at 'pos'.
1099 */
1100 static void
1101 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
1102 {
1103 GLuint i;
1104 for (i = 0; i < 4; i++) {
1105 registers[pos + i][0] = mat[0 + i];
1106 registers[pos + i][1] = mat[4 + i];
1107 registers[pos + i][2] = mat[8 + i];
1108 registers[pos + i][3] = mat[12 + i];
1109 }
1110 }
1111
1112
1113 /**
1114 * As above, but transpose the matrix.
1115 */
1116 static void
1117 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
1118 const GLfloat mat[16])
1119 {
1120 memcpy(registers[pos], mat, 16 * sizeof(GLfloat));
1121 }
1122
1123
1124 /**
1125 * Load current vertex program's parameter registers with tracked
1126 * matrices (if NV program). This only needs to be done per
1127 * glBegin/glEnd, not per-vertex.
1128 */
1129 void
1130 _mesa_load_tracked_matrices(struct gl_context *ctx)
1131 {
1132 GLuint i;
1133
1134 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
1135 /* point 'mat' at source matrix */
1136 GLmatrix *mat;
1137 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
1138 mat = ctx->ModelviewMatrixStack.Top;
1139 }
1140 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
1141 mat = ctx->ProjectionMatrixStack.Top;
1142 }
1143 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
1144 GLuint unit = MIN2(ctx->Texture.CurrentUnit,
1145 Elements(ctx->TextureMatrixStack) - 1);
1146 mat = ctx->TextureMatrixStack[unit].Top;
1147 }
1148 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
1149 /* XXX verify the combined matrix is up to date */
1150 mat = &ctx->_ModelProjectMatrix;
1151 }
1152 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
1153 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
1154 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
1155 ASSERT(n < Elements(ctx->ProgramMatrixStack));
1156 mat = ctx->ProgramMatrixStack[n].Top;
1157 }
1158 else {
1159 /* no matrix is tracked, but we leave the register values as-is */
1160 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
1161 continue;
1162 }
1163
1164 /* load the matrix values into sequential registers */
1165 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
1166 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1167 }
1168 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
1169 _math_matrix_analyse(mat); /* update the inverse */
1170 ASSERT(!_math_matrix_is_dirty(mat));
1171 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1172 }
1173 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
1174 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1175 }
1176 else {
1177 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1178 == GL_INVERSE_TRANSPOSE_NV);
1179 _math_matrix_analyse(mat); /* update the inverse */
1180 ASSERT(!_math_matrix_is_dirty(mat));
1181 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1182 }
1183 }
1184 }