Merge branch 'arb_sampler_objects'
[mesa.git] / src / mesa / program / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/imports.h"
35 #include "main/macros.h"
36 #include "main/mtypes.h"
37 #include "prog_statevars.h"
38 #include "prog_parameter.h"
39
40
41 /**
42 * Use the list of tokens in the state[] array to find global GL state
43 * and return it in <value>. Usually, four values are returned in <value>
44 * but matrix queries may return as many as 16 values.
45 * This function is used for ARB vertex/fragment programs.
46 * The program parser will produce the state[] values.
47 */
48 static void
49 _mesa_fetch_state(struct gl_context *ctx, const gl_state_index state[],
50 GLfloat *value)
51 {
52 switch (state[0]) {
53 case STATE_MATERIAL:
54 {
55 /* state[1] is either 0=front or 1=back side */
56 const GLuint face = (GLuint) state[1];
57 const struct gl_material *mat = &ctx->Light.Material;
58 ASSERT(face == 0 || face == 1);
59 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
60 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
61 /* XXX we could get rid of this switch entirely with a little
62 * work in arbprogparse.c's parse_state_single_item().
63 */
64 /* state[2] is the material attribute */
65 switch (state[2]) {
66 case STATE_AMBIENT:
67 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
68 return;
69 case STATE_DIFFUSE:
70 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
71 return;
72 case STATE_SPECULAR:
73 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
74 return;
75 case STATE_EMISSION:
76 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
77 return;
78 case STATE_SHININESS:
79 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
80 value[1] = 0.0F;
81 value[2] = 0.0F;
82 value[3] = 1.0F;
83 return;
84 default:
85 _mesa_problem(ctx, "Invalid material state in fetch_state");
86 return;
87 }
88 }
89 case STATE_LIGHT:
90 {
91 /* state[1] is the light number */
92 const GLuint ln = (GLuint) state[1];
93 /* state[2] is the light attribute */
94 switch (state[2]) {
95 case STATE_AMBIENT:
96 COPY_4V(value, ctx->Light.Light[ln].Ambient);
97 return;
98 case STATE_DIFFUSE:
99 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
100 return;
101 case STATE_SPECULAR:
102 COPY_4V(value, ctx->Light.Light[ln].Specular);
103 return;
104 case STATE_POSITION:
105 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
106 return;
107 case STATE_ATTENUATION:
108 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
109 value[1] = ctx->Light.Light[ln].LinearAttenuation;
110 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
111 value[3] = ctx->Light.Light[ln].SpotExponent;
112 return;
113 case STATE_SPOT_DIRECTION:
114 COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
115 value[3] = ctx->Light.Light[ln]._CosCutoff;
116 return;
117 case STATE_SPOT_CUTOFF:
118 value[0] = ctx->Light.Light[ln].SpotCutoff;
119 return;
120 case STATE_HALF_VECTOR:
121 {
122 static const GLfloat eye_z[] = {0, 0, 1};
123 GLfloat p[3];
124 /* Compute infinite half angle vector:
125 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
126 * light.EyePosition.w should be 0 for infinite lights.
127 */
128 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
129 NORMALIZE_3FV(p);
130 ADD_3V(value, p, eye_z);
131 NORMALIZE_3FV(value);
132 value[3] = 1.0;
133 }
134 return;
135 default:
136 _mesa_problem(ctx, "Invalid light state in fetch_state");
137 return;
138 }
139 }
140 case STATE_LIGHTMODEL_AMBIENT:
141 COPY_4V(value, ctx->Light.Model.Ambient);
142 return;
143 case STATE_LIGHTMODEL_SCENECOLOR:
144 if (state[1] == 0) {
145 /* front */
146 GLint i;
147 for (i = 0; i < 3; i++) {
148 value[i] = ctx->Light.Model.Ambient[i]
149 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
150 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
151 }
152 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
153 }
154 else {
155 /* back */
156 GLint i;
157 for (i = 0; i < 3; i++) {
158 value[i] = ctx->Light.Model.Ambient[i]
159 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
160 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
161 }
162 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
163 }
164 return;
165 case STATE_LIGHTPROD:
166 {
167 const GLuint ln = (GLuint) state[1];
168 const GLuint face = (GLuint) state[2];
169 GLint i;
170 ASSERT(face == 0 || face == 1);
171 switch (state[3]) {
172 case STATE_AMBIENT:
173 for (i = 0; i < 3; i++) {
174 value[i] = ctx->Light.Light[ln].Ambient[i] *
175 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
176 }
177 /* [3] = material alpha */
178 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
179 return;
180 case STATE_DIFFUSE:
181 for (i = 0; i < 3; i++) {
182 value[i] = ctx->Light.Light[ln].Diffuse[i] *
183 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
184 }
185 /* [3] = material alpha */
186 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
187 return;
188 case STATE_SPECULAR:
189 for (i = 0; i < 3; i++) {
190 value[i] = ctx->Light.Light[ln].Specular[i] *
191 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
192 }
193 /* [3] = material alpha */
194 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
195 return;
196 default:
197 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
198 return;
199 }
200 }
201 case STATE_TEXGEN:
202 {
203 /* state[1] is the texture unit */
204 const GLuint unit = (GLuint) state[1];
205 /* state[2] is the texgen attribute */
206 switch (state[2]) {
207 case STATE_TEXGEN_EYE_S:
208 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
209 return;
210 case STATE_TEXGEN_EYE_T:
211 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
212 return;
213 case STATE_TEXGEN_EYE_R:
214 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
215 return;
216 case STATE_TEXGEN_EYE_Q:
217 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
218 return;
219 case STATE_TEXGEN_OBJECT_S:
220 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
221 return;
222 case STATE_TEXGEN_OBJECT_T:
223 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
224 return;
225 case STATE_TEXGEN_OBJECT_R:
226 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
227 return;
228 case STATE_TEXGEN_OBJECT_Q:
229 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
230 return;
231 default:
232 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
233 return;
234 }
235 }
236 case STATE_TEXENV_COLOR:
237 {
238 /* state[1] is the texture unit */
239 const GLuint unit = (GLuint) state[1];
240 if(ctx->Color._ClampFragmentColor)
241 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
242 else
243 COPY_4V(value, ctx->Texture.Unit[unit].EnvColorUnclamped);
244 }
245 return;
246 case STATE_FOG_COLOR:
247 if(ctx->Color._ClampFragmentColor)
248 COPY_4V(value, ctx->Fog.Color);
249 else
250 COPY_4V(value, ctx->Fog.ColorUnclamped);
251 return;
252 case STATE_FOG_PARAMS:
253 value[0] = ctx->Fog.Density;
254 value[1] = ctx->Fog.Start;
255 value[2] = ctx->Fog.End;
256 value[3] = (ctx->Fog.End == ctx->Fog.Start)
257 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
258 return;
259 case STATE_CLIPPLANE:
260 {
261 const GLuint plane = (GLuint) state[1];
262 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
263 }
264 return;
265 case STATE_POINT_SIZE:
266 value[0] = ctx->Point.Size;
267 value[1] = ctx->Point.MinSize;
268 value[2] = ctx->Point.MaxSize;
269 value[3] = ctx->Point.Threshold;
270 return;
271 case STATE_POINT_ATTENUATION:
272 value[0] = ctx->Point.Params[0];
273 value[1] = ctx->Point.Params[1];
274 value[2] = ctx->Point.Params[2];
275 value[3] = 1.0F;
276 return;
277 case STATE_MODELVIEW_MATRIX:
278 case STATE_PROJECTION_MATRIX:
279 case STATE_MVP_MATRIX:
280 case STATE_TEXTURE_MATRIX:
281 case STATE_PROGRAM_MATRIX:
282 {
283 /* state[0] = modelview, projection, texture, etc. */
284 /* state[1] = which texture matrix or program matrix */
285 /* state[2] = first row to fetch */
286 /* state[3] = last row to fetch */
287 /* state[4] = transpose, inverse or invtrans */
288 const GLmatrix *matrix;
289 const gl_state_index mat = state[0];
290 const GLuint index = (GLuint) state[1];
291 const GLuint firstRow = (GLuint) state[2];
292 const GLuint lastRow = (GLuint) state[3];
293 const gl_state_index modifier = state[4];
294 const GLfloat *m;
295 GLuint row, i;
296 ASSERT(firstRow >= 0);
297 ASSERT(firstRow < 4);
298 ASSERT(lastRow >= 0);
299 ASSERT(lastRow < 4);
300 if (mat == STATE_MODELVIEW_MATRIX) {
301 matrix = ctx->ModelviewMatrixStack.Top;
302 }
303 else if (mat == STATE_PROJECTION_MATRIX) {
304 matrix = ctx->ProjectionMatrixStack.Top;
305 }
306 else if (mat == STATE_MVP_MATRIX) {
307 matrix = &ctx->_ModelProjectMatrix;
308 }
309 else if (mat == STATE_TEXTURE_MATRIX) {
310 ASSERT(index < Elements(ctx->TextureMatrixStack));
311 matrix = ctx->TextureMatrixStack[index].Top;
312 }
313 else if (mat == STATE_PROGRAM_MATRIX) {
314 ASSERT(index < Elements(ctx->ProgramMatrixStack));
315 matrix = ctx->ProgramMatrixStack[index].Top;
316 }
317 else {
318 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
319 return;
320 }
321 if (modifier == STATE_MATRIX_INVERSE ||
322 modifier == STATE_MATRIX_INVTRANS) {
323 /* Be sure inverse is up to date:
324 */
325 _math_matrix_alloc_inv( (GLmatrix *) matrix );
326 _math_matrix_analyse( (GLmatrix*) matrix );
327 m = matrix->inv;
328 }
329 else {
330 m = matrix->m;
331 }
332 if (modifier == STATE_MATRIX_TRANSPOSE ||
333 modifier == STATE_MATRIX_INVTRANS) {
334 for (i = 0, row = firstRow; row <= lastRow; row++) {
335 value[i++] = m[row * 4 + 0];
336 value[i++] = m[row * 4 + 1];
337 value[i++] = m[row * 4 + 2];
338 value[i++] = m[row * 4 + 3];
339 }
340 }
341 else {
342 for (i = 0, row = firstRow; row <= lastRow; row++) {
343 value[i++] = m[row + 0];
344 value[i++] = m[row + 4];
345 value[i++] = m[row + 8];
346 value[i++] = m[row + 12];
347 }
348 }
349 }
350 return;
351 case STATE_DEPTH_RANGE:
352 value[0] = ctx->Viewport.Near; /* near */
353 value[1] = ctx->Viewport.Far; /* far */
354 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
355 value[3] = 1.0;
356 return;
357 case STATE_FRAGMENT_PROGRAM:
358 {
359 /* state[1] = {STATE_ENV, STATE_LOCAL} */
360 /* state[2] = parameter index */
361 const int idx = (int) state[2];
362 switch (state[1]) {
363 case STATE_ENV:
364 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
365 return;
366 case STATE_LOCAL:
367 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
368 return;
369 default:
370 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
371 return;
372 }
373 }
374 return;
375
376 case STATE_VERTEX_PROGRAM:
377 {
378 /* state[1] = {STATE_ENV, STATE_LOCAL} */
379 /* state[2] = parameter index */
380 const int idx = (int) state[2];
381 switch (state[1]) {
382 case STATE_ENV:
383 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
384 return;
385 case STATE_LOCAL:
386 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
387 return;
388 default:
389 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
390 return;
391 }
392 }
393 return;
394
395 case STATE_NORMAL_SCALE:
396 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
397 return;
398
399 case STATE_INTERNAL:
400 switch (state[1]) {
401 case STATE_CURRENT_ATTRIB:
402 {
403 const GLuint idx = (GLuint) state[2];
404 COPY_4V(value, ctx->Current.Attrib[idx]);
405 }
406 return;
407
408 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
409 {
410 const GLuint idx = (GLuint) state[2];
411 if(ctx->Light._ClampVertexColor &&
412 (idx == VERT_ATTRIB_COLOR0 ||
413 idx == VERT_ATTRIB_COLOR1)) {
414 value[0] = CLAMP(ctx->Current.Attrib[idx][0], 0.0f, 1.0f);
415 value[1] = CLAMP(ctx->Current.Attrib[idx][1], 0.0f, 1.0f);
416 value[2] = CLAMP(ctx->Current.Attrib[idx][2], 0.0f, 1.0f);
417 value[3] = CLAMP(ctx->Current.Attrib[idx][3], 0.0f, 1.0f);
418 }
419 else
420 COPY_4V(value, ctx->Current.Attrib[idx]);
421 }
422 return;
423
424 case STATE_NORMAL_SCALE:
425 ASSIGN_4V(value,
426 ctx->_ModelViewInvScale,
427 ctx->_ModelViewInvScale,
428 ctx->_ModelViewInvScale,
429 1);
430 return;
431
432 case STATE_TEXRECT_SCALE:
433 /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
434 * Used to convert unnormalized texcoords to normalized texcoords.
435 */
436 {
437 const int unit = (int) state[2];
438 const struct gl_texture_object *texObj
439 = ctx->Texture.Unit[unit]._Current;
440 if (texObj) {
441 struct gl_texture_image *texImage = texObj->Image[0][0];
442 ASSIGN_4V(value,
443 (GLfloat) (1.0 / texImage->Width),
444 (GLfloat) (1.0 / texImage->Height),
445 0.0f, 1.0f);
446 }
447 }
448 return;
449
450 case STATE_FOG_PARAMS_OPTIMIZED:
451 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
452 * might be more expensive than EX2 on some hw, plus it needs
453 * another constant (e) anyway. Linear fog can now be done with a
454 * single MAD.
455 * linear: fogcoord * -1/(end-start) + end/(end-start)
456 * exp: 2^-(density/ln(2) * fogcoord)
457 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
458 */
459 value[0] = (ctx->Fog.End == ctx->Fog.Start)
460 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
461 value[1] = ctx->Fog.End * -value[0];
462 value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
463 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
464 return;
465
466 case STATE_POINT_SIZE_CLAMPED:
467 {
468 /* this includes implementation dependent limits, to avoid
469 * another potentially necessary clamp.
470 * Note: for sprites, point smooth (point AA) is ignored
471 * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
472 * expect drivers will want to say their minimum for AA size is 0.0
473 * but for non-AA it's 1.0 (because normal points with size below 1.0
474 * need to get rounded up to 1.0, hence never disappear). GL does
475 * not specify max clamp size for sprites, other than it needs to be
476 * at least as large as max AA size, hence use non-AA size there.
477 */
478 GLfloat minImplSize;
479 GLfloat maxImplSize;
480 if (ctx->Point.PointSprite) {
481 minImplSize = ctx->Const.MinPointSizeAA;
482 maxImplSize = ctx->Const.MaxPointSize;
483 }
484 else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
485 minImplSize = ctx->Const.MinPointSizeAA;
486 maxImplSize = ctx->Const.MaxPointSizeAA;
487 }
488 else {
489 minImplSize = ctx->Const.MinPointSize;
490 maxImplSize = ctx->Const.MaxPointSize;
491 }
492 value[0] = ctx->Point.Size;
493 value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
494 value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
495 value[3] = ctx->Point.Threshold;
496 }
497 return;
498 case STATE_POINT_SIZE_IMPL_CLAMP:
499 {
500 /* for implementation clamp only in vs */
501 GLfloat minImplSize;
502 GLfloat maxImplSize;
503 if (ctx->Point.PointSprite) {
504 minImplSize = ctx->Const.MinPointSizeAA;
505 maxImplSize = ctx->Const.MaxPointSize;
506 }
507 else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
508 minImplSize = ctx->Const.MinPointSizeAA;
509 maxImplSize = ctx->Const.MaxPointSizeAA;
510 }
511 else {
512 minImplSize = ctx->Const.MinPointSize;
513 maxImplSize = ctx->Const.MaxPointSize;
514 }
515 value[0] = ctx->Point.Size;
516 value[1] = minImplSize;
517 value[2] = maxImplSize;
518 value[3] = ctx->Point.Threshold;
519 }
520 return;
521 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
522 {
523 /* here, state[2] is the light number */
524 /* pre-normalize spot dir */
525 const GLuint ln = (GLuint) state[2];
526 COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
527 value[3] = ctx->Light.Light[ln]._CosCutoff;
528 }
529 return;
530
531 case STATE_LIGHT_POSITION:
532 {
533 const GLuint ln = (GLuint) state[2];
534 COPY_4V(value, ctx->Light.Light[ln]._Position);
535 }
536 return;
537
538 case STATE_LIGHT_POSITION_NORMALIZED:
539 {
540 const GLuint ln = (GLuint) state[2];
541 COPY_4V(value, ctx->Light.Light[ln]._Position);
542 NORMALIZE_3FV( value );
543 }
544 return;
545
546 case STATE_LIGHT_HALF_VECTOR:
547 {
548 const GLuint ln = (GLuint) state[2];
549 GLfloat p[3];
550 /* Compute infinite half angle vector:
551 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
552 * light.EyePosition.w should be 0 for infinite lights.
553 */
554 COPY_3V(p, ctx->Light.Light[ln]._Position);
555 NORMALIZE_3FV(p);
556 ADD_3V(value, p, ctx->_EyeZDir);
557 NORMALIZE_3FV(value);
558 value[3] = 1.0;
559 }
560 return;
561
562 case STATE_PT_SCALE:
563 value[0] = ctx->Pixel.RedScale;
564 value[1] = ctx->Pixel.GreenScale;
565 value[2] = ctx->Pixel.BlueScale;
566 value[3] = ctx->Pixel.AlphaScale;
567 return;
568
569 case STATE_PT_BIAS:
570 value[0] = ctx->Pixel.RedBias;
571 value[1] = ctx->Pixel.GreenBias;
572 value[2] = ctx->Pixel.BlueBias;
573 value[3] = ctx->Pixel.AlphaBias;
574 return;
575
576 case STATE_SHADOW_AMBIENT:
577 {
578 const int unit = (int) state[2];
579 const struct gl_texture_object *texObj
580 = ctx->Texture.Unit[unit]._Current;
581 if (texObj) {
582 value[0] =
583 value[1] =
584 value[2] =
585 value[3] = texObj->Sampler.CompareFailValue;
586 }
587 }
588 return;
589
590 case STATE_FB_SIZE:
591 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
592 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
593 value[2] = 0.0F;
594 value[3] = 0.0F;
595 return;
596
597 case STATE_FB_WPOS_Y_TRANSFORM:
598 /* A driver may negate this conditional by using ZW swizzle
599 * instead of XY (based on e.g. some other state). */
600 if (ctx->DrawBuffer->Name != 0) {
601 /* Identity (XY) followed by flipping Y upside down (ZW). */
602 value[0] = 1.0F;
603 value[1] = 0.0F;
604 value[2] = -1.0F;
605 value[3] = (GLfloat) (ctx->DrawBuffer->Height - 1);
606 } else {
607 /* Flipping Y upside down (XY) followed by identity (ZW). */
608 value[0] = -1.0F;
609 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
610 value[2] = 1.0F;
611 value[3] = 0.0F;
612 }
613 return;
614
615 case STATE_ROT_MATRIX_0:
616 {
617 const int unit = (int) state[2];
618 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
619 value[0] = rotMat22[0];
620 value[1] = rotMat22[2];
621 value[2] = 0.0;
622 value[3] = 0.0;
623 }
624 return;
625
626 case STATE_ROT_MATRIX_1:
627 {
628 const int unit = (int) state[2];
629 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
630 value[0] = rotMat22[1];
631 value[1] = rotMat22[3];
632 value[2] = 0.0;
633 value[3] = 0.0;
634 }
635 return;
636
637 /* XXX: make sure new tokens added here are also handled in the
638 * _mesa_program_state_flags() switch, below.
639 */
640 default:
641 /* Unknown state indexes are silently ignored here.
642 * Drivers may do something special.
643 */
644 return;
645 }
646 return;
647
648 default:
649 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
650 return;
651 }
652 }
653
654
655 /**
656 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
657 * indicate that the given context state may have changed.
658 * The bitmask is used during validation to determine if we need to update
659 * vertex/fragment program parameters (like "state.material.color") when
660 * some GL state has changed.
661 */
662 GLbitfield
663 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
664 {
665 switch (state[0]) {
666 case STATE_MATERIAL:
667 case STATE_LIGHT:
668 case STATE_LIGHTMODEL_AMBIENT:
669 case STATE_LIGHTMODEL_SCENECOLOR:
670 case STATE_LIGHTPROD:
671 return _NEW_LIGHT;
672
673 case STATE_TEXGEN:
674 return _NEW_TEXTURE;
675 case STATE_TEXENV_COLOR:
676 return _NEW_TEXTURE | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
677
678 case STATE_FOG_COLOR:
679 return _NEW_FOG | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
680 case STATE_FOG_PARAMS:
681 return _NEW_FOG;
682
683 case STATE_CLIPPLANE:
684 return _NEW_TRANSFORM;
685
686 case STATE_POINT_SIZE:
687 case STATE_POINT_ATTENUATION:
688 return _NEW_POINT;
689
690 case STATE_MODELVIEW_MATRIX:
691 return _NEW_MODELVIEW;
692 case STATE_PROJECTION_MATRIX:
693 return _NEW_PROJECTION;
694 case STATE_MVP_MATRIX:
695 return _NEW_MODELVIEW | _NEW_PROJECTION;
696 case STATE_TEXTURE_MATRIX:
697 return _NEW_TEXTURE_MATRIX;
698 case STATE_PROGRAM_MATRIX:
699 return _NEW_TRACK_MATRIX;
700
701 case STATE_DEPTH_RANGE:
702 return _NEW_VIEWPORT;
703
704 case STATE_FRAGMENT_PROGRAM:
705 case STATE_VERTEX_PROGRAM:
706 return _NEW_PROGRAM;
707
708 case STATE_NORMAL_SCALE:
709 return _NEW_MODELVIEW;
710
711 case STATE_INTERNAL:
712 switch (state[1]) {
713 case STATE_CURRENT_ATTRIB:
714 return _NEW_CURRENT_ATTRIB;
715 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
716 return _NEW_CURRENT_ATTRIB | _NEW_LIGHT | _NEW_BUFFERS;
717
718 case STATE_NORMAL_SCALE:
719 return _NEW_MODELVIEW;
720
721 case STATE_TEXRECT_SCALE:
722 case STATE_SHADOW_AMBIENT:
723 case STATE_ROT_MATRIX_0:
724 case STATE_ROT_MATRIX_1:
725 return _NEW_TEXTURE;
726 case STATE_FOG_PARAMS_OPTIMIZED:
727 return _NEW_FOG;
728 case STATE_POINT_SIZE_CLAMPED:
729 case STATE_POINT_SIZE_IMPL_CLAMP:
730 return _NEW_POINT | _NEW_MULTISAMPLE;
731 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
732 case STATE_LIGHT_POSITION:
733 case STATE_LIGHT_POSITION_NORMALIZED:
734 case STATE_LIGHT_HALF_VECTOR:
735 return _NEW_LIGHT;
736
737 case STATE_PT_SCALE:
738 case STATE_PT_BIAS:
739 return _NEW_PIXEL;
740
741 case STATE_FB_SIZE:
742 case STATE_FB_WPOS_Y_TRANSFORM:
743 return _NEW_BUFFERS;
744
745 default:
746 /* unknown state indexes are silently ignored and
747 * no flag set, since it is handled by the driver.
748 */
749 return 0;
750 }
751
752 default:
753 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
754 return 0;
755 }
756 }
757
758
759 static void
760 append(char *dst, const char *src)
761 {
762 while (*dst)
763 dst++;
764 while (*src)
765 *dst++ = *src++;
766 *dst = 0;
767 }
768
769
770 /**
771 * Convert token 'k' to a string, append it onto 'dst' string.
772 */
773 static void
774 append_token(char *dst, gl_state_index k)
775 {
776 switch (k) {
777 case STATE_MATERIAL:
778 append(dst, "material");
779 break;
780 case STATE_LIGHT:
781 append(dst, "light");
782 break;
783 case STATE_LIGHTMODEL_AMBIENT:
784 append(dst, "lightmodel.ambient");
785 break;
786 case STATE_LIGHTMODEL_SCENECOLOR:
787 break;
788 case STATE_LIGHTPROD:
789 append(dst, "lightprod");
790 break;
791 case STATE_TEXGEN:
792 append(dst, "texgen");
793 break;
794 case STATE_FOG_COLOR:
795 append(dst, "fog.color");
796 break;
797 case STATE_FOG_PARAMS:
798 append(dst, "fog.params");
799 break;
800 case STATE_CLIPPLANE:
801 append(dst, "clip");
802 break;
803 case STATE_POINT_SIZE:
804 append(dst, "point.size");
805 break;
806 case STATE_POINT_ATTENUATION:
807 append(dst, "point.attenuation");
808 break;
809 case STATE_MODELVIEW_MATRIX:
810 append(dst, "matrix.modelview");
811 break;
812 case STATE_PROJECTION_MATRIX:
813 append(dst, "matrix.projection");
814 break;
815 case STATE_MVP_MATRIX:
816 append(dst, "matrix.mvp");
817 break;
818 case STATE_TEXTURE_MATRIX:
819 append(dst, "matrix.texture");
820 break;
821 case STATE_PROGRAM_MATRIX:
822 append(dst, "matrix.program");
823 break;
824 case STATE_MATRIX_INVERSE:
825 append(dst, ".inverse");
826 break;
827 case STATE_MATRIX_TRANSPOSE:
828 append(dst, ".transpose");
829 break;
830 case STATE_MATRIX_INVTRANS:
831 append(dst, ".invtrans");
832 break;
833 case STATE_AMBIENT:
834 append(dst, ".ambient");
835 break;
836 case STATE_DIFFUSE:
837 append(dst, ".diffuse");
838 break;
839 case STATE_SPECULAR:
840 append(dst, ".specular");
841 break;
842 case STATE_EMISSION:
843 append(dst, ".emission");
844 break;
845 case STATE_SHININESS:
846 append(dst, "lshininess");
847 break;
848 case STATE_HALF_VECTOR:
849 append(dst, ".half");
850 break;
851 case STATE_POSITION:
852 append(dst, ".position");
853 break;
854 case STATE_ATTENUATION:
855 append(dst, ".attenuation");
856 break;
857 case STATE_SPOT_DIRECTION:
858 append(dst, ".spot.direction");
859 break;
860 case STATE_SPOT_CUTOFF:
861 append(dst, ".spot.cutoff");
862 break;
863 case STATE_TEXGEN_EYE_S:
864 append(dst, ".eye.s");
865 break;
866 case STATE_TEXGEN_EYE_T:
867 append(dst, ".eye.t");
868 break;
869 case STATE_TEXGEN_EYE_R:
870 append(dst, ".eye.r");
871 break;
872 case STATE_TEXGEN_EYE_Q:
873 append(dst, ".eye.q");
874 break;
875 case STATE_TEXGEN_OBJECT_S:
876 append(dst, ".object.s");
877 break;
878 case STATE_TEXGEN_OBJECT_T:
879 append(dst, ".object.t");
880 break;
881 case STATE_TEXGEN_OBJECT_R:
882 append(dst, ".object.r");
883 break;
884 case STATE_TEXGEN_OBJECT_Q:
885 append(dst, ".object.q");
886 break;
887 case STATE_TEXENV_COLOR:
888 append(dst, "texenv");
889 break;
890 case STATE_DEPTH_RANGE:
891 append(dst, "depth.range");
892 break;
893 case STATE_VERTEX_PROGRAM:
894 case STATE_FRAGMENT_PROGRAM:
895 break;
896 case STATE_ENV:
897 append(dst, "env");
898 break;
899 case STATE_LOCAL:
900 append(dst, "local");
901 break;
902 /* BEGIN internal state vars */
903 case STATE_INTERNAL:
904 append(dst, ".internal.");
905 break;
906 case STATE_CURRENT_ATTRIB:
907 append(dst, "current");
908 break;
909 case STATE_NORMAL_SCALE:
910 append(dst, "normalScale");
911 break;
912 case STATE_TEXRECT_SCALE:
913 append(dst, "texrectScale");
914 break;
915 case STATE_FOG_PARAMS_OPTIMIZED:
916 append(dst, "fogParamsOptimized");
917 break;
918 case STATE_POINT_SIZE_CLAMPED:
919 append(dst, "pointSizeClamped");
920 break;
921 case STATE_POINT_SIZE_IMPL_CLAMP:
922 append(dst, "pointSizeImplClamp");
923 break;
924 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
925 append(dst, "lightSpotDirNormalized");
926 break;
927 case STATE_LIGHT_POSITION:
928 append(dst, "lightPosition");
929 break;
930 case STATE_LIGHT_POSITION_NORMALIZED:
931 append(dst, "light.position.normalized");
932 break;
933 case STATE_LIGHT_HALF_VECTOR:
934 append(dst, "lightHalfVector");
935 break;
936 case STATE_PT_SCALE:
937 append(dst, "PTscale");
938 break;
939 case STATE_PT_BIAS:
940 append(dst, "PTbias");
941 break;
942 case STATE_SHADOW_AMBIENT:
943 append(dst, "CompareFailValue");
944 break;
945 case STATE_FB_SIZE:
946 append(dst, "FbSize");
947 break;
948 case STATE_FB_WPOS_Y_TRANSFORM:
949 append(dst, "FbWposYTransform");
950 break;
951 case STATE_ROT_MATRIX_0:
952 append(dst, "rotMatrixRow0");
953 break;
954 case STATE_ROT_MATRIX_1:
955 append(dst, "rotMatrixRow1");
956 break;
957 default:
958 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
959 append(dst, "driverState");
960 }
961 }
962
963 static void
964 append_face(char *dst, GLint face)
965 {
966 if (face == 0)
967 append(dst, "front.");
968 else
969 append(dst, "back.");
970 }
971
972 static void
973 append_index(char *dst, GLint index)
974 {
975 char s[20];
976 sprintf(s, "[%d]", index);
977 append(dst, s);
978 }
979
980 /**
981 * Make a string from the given state vector.
982 * For example, return "state.matrix.texture[2].inverse".
983 * Use free() to deallocate the string.
984 */
985 char *
986 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
987 {
988 char str[1000] = "";
989 char tmp[30];
990
991 append(str, "state.");
992 append_token(str, state[0]);
993
994 switch (state[0]) {
995 case STATE_MATERIAL:
996 append_face(str, state[1]);
997 append_token(str, state[2]);
998 break;
999 case STATE_LIGHT:
1000 append_index(str, state[1]); /* light number [i]. */
1001 append_token(str, state[2]); /* coefficients */
1002 break;
1003 case STATE_LIGHTMODEL_AMBIENT:
1004 append(str, "lightmodel.ambient");
1005 break;
1006 case STATE_LIGHTMODEL_SCENECOLOR:
1007 if (state[1] == 0) {
1008 append(str, "lightmodel.front.scenecolor");
1009 }
1010 else {
1011 append(str, "lightmodel.back.scenecolor");
1012 }
1013 break;
1014 case STATE_LIGHTPROD:
1015 append_index(str, state[1]); /* light number [i]. */
1016 append_face(str, state[2]);
1017 append_token(str, state[3]);
1018 break;
1019 case STATE_TEXGEN:
1020 append_index(str, state[1]); /* tex unit [i] */
1021 append_token(str, state[2]); /* plane coef */
1022 break;
1023 case STATE_TEXENV_COLOR:
1024 append_index(str, state[1]); /* tex unit [i] */
1025 append(str, "color");
1026 break;
1027 case STATE_CLIPPLANE:
1028 append_index(str, state[1]); /* plane [i] */
1029 append(str, ".plane");
1030 break;
1031 case STATE_MODELVIEW_MATRIX:
1032 case STATE_PROJECTION_MATRIX:
1033 case STATE_MVP_MATRIX:
1034 case STATE_TEXTURE_MATRIX:
1035 case STATE_PROGRAM_MATRIX:
1036 {
1037 /* state[0] = modelview, projection, texture, etc. */
1038 /* state[1] = which texture matrix or program matrix */
1039 /* state[2] = first row to fetch */
1040 /* state[3] = last row to fetch */
1041 /* state[4] = transpose, inverse or invtrans */
1042 const gl_state_index mat = state[0];
1043 const GLuint index = (GLuint) state[1];
1044 const GLuint firstRow = (GLuint) state[2];
1045 const GLuint lastRow = (GLuint) state[3];
1046 const gl_state_index modifier = state[4];
1047 if (index ||
1048 mat == STATE_TEXTURE_MATRIX ||
1049 mat == STATE_PROGRAM_MATRIX)
1050 append_index(str, index);
1051 if (modifier)
1052 append_token(str, modifier);
1053 if (firstRow == lastRow)
1054 sprintf(tmp, ".row[%d]", firstRow);
1055 else
1056 sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
1057 append(str, tmp);
1058 }
1059 break;
1060 case STATE_POINT_SIZE:
1061 break;
1062 case STATE_POINT_ATTENUATION:
1063 break;
1064 case STATE_FOG_PARAMS:
1065 break;
1066 case STATE_FOG_COLOR:
1067 break;
1068 case STATE_DEPTH_RANGE:
1069 break;
1070 case STATE_FRAGMENT_PROGRAM:
1071 case STATE_VERTEX_PROGRAM:
1072 /* state[1] = {STATE_ENV, STATE_LOCAL} */
1073 /* state[2] = parameter index */
1074 append_token(str, state[1]);
1075 append_index(str, state[2]);
1076 break;
1077 case STATE_NORMAL_SCALE:
1078 break;
1079 case STATE_INTERNAL:
1080 append_token(str, state[1]);
1081 if (state[1] == STATE_CURRENT_ATTRIB)
1082 append_index(str, state[2]);
1083 break;
1084 default:
1085 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
1086 break;
1087 }
1088
1089 return _mesa_strdup(str);
1090 }
1091
1092
1093 /**
1094 * Loop over all the parameters in a parameter list. If the parameter
1095 * is a GL state reference, look up the current value of that state
1096 * variable and put it into the parameter's Value[4] array.
1097 * Other parameter types never change or are explicitly set by the user
1098 * with glUniform() or glProgramParameter(), etc.
1099 * This would be called at glBegin time.
1100 */
1101 void
1102 _mesa_load_state_parameters(struct gl_context *ctx,
1103 struct gl_program_parameter_list *paramList)
1104 {
1105 GLuint i;
1106
1107 if (!paramList)
1108 return;
1109
1110 for (i = 0; i < paramList->NumParameters; i++) {
1111 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1112 _mesa_fetch_state(ctx,
1113 paramList->Parameters[i].StateIndexes,
1114 paramList->ParameterValues[i]);
1115 }
1116 }
1117 }
1118
1119
1120 /**
1121 * Copy the 16 elements of a matrix into four consecutive program
1122 * registers starting at 'pos'.
1123 */
1124 static void
1125 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
1126 {
1127 GLuint i;
1128 for (i = 0; i < 4; i++) {
1129 registers[pos + i][0] = mat[0 + i];
1130 registers[pos + i][1] = mat[4 + i];
1131 registers[pos + i][2] = mat[8 + i];
1132 registers[pos + i][3] = mat[12 + i];
1133 }
1134 }
1135
1136
1137 /**
1138 * As above, but transpose the matrix.
1139 */
1140 static void
1141 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
1142 const GLfloat mat[16])
1143 {
1144 memcpy(registers[pos], mat, 16 * sizeof(GLfloat));
1145 }
1146
1147
1148 /**
1149 * Load current vertex program's parameter registers with tracked
1150 * matrices (if NV program). This only needs to be done per
1151 * glBegin/glEnd, not per-vertex.
1152 */
1153 void
1154 _mesa_load_tracked_matrices(struct gl_context *ctx)
1155 {
1156 GLuint i;
1157
1158 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
1159 /* point 'mat' at source matrix */
1160 GLmatrix *mat;
1161 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
1162 mat = ctx->ModelviewMatrixStack.Top;
1163 }
1164 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
1165 mat = ctx->ProjectionMatrixStack.Top;
1166 }
1167 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
1168 GLuint unit = MIN2(ctx->Texture.CurrentUnit,
1169 Elements(ctx->TextureMatrixStack) - 1);
1170 mat = ctx->TextureMatrixStack[unit].Top;
1171 }
1172 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
1173 /* XXX verify the combined matrix is up to date */
1174 mat = &ctx->_ModelProjectMatrix;
1175 }
1176 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
1177 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
1178 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
1179 ASSERT(n < Elements(ctx->ProgramMatrixStack));
1180 mat = ctx->ProgramMatrixStack[n].Top;
1181 }
1182 else {
1183 /* no matrix is tracked, but we leave the register values as-is */
1184 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
1185 continue;
1186 }
1187
1188 /* load the matrix values into sequential registers */
1189 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
1190 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1191 }
1192 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
1193 _math_matrix_analyse(mat); /* update the inverse */
1194 ASSERT(!_math_matrix_is_dirty(mat));
1195 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1196 }
1197 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
1198 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1199 }
1200 else {
1201 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1202 == GL_INVERSE_TRANSPOSE_NV);
1203 _math_matrix_analyse(mat); /* update the inverse */
1204 ASSERT(!_math_matrix_is_dirty(mat));
1205 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1206 }
1207 }
1208 }