Merge branch 'master' of ssh://git.freedesktop.org/git/mesa/mesa into pipe-video
[mesa.git] / src / mesa / program / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/imports.h"
35 #include "main/macros.h"
36 #include "main/mtypes.h"
37 #include "prog_statevars.h"
38 #include "prog_parameter.h"
39
40
41 /**
42 * Use the list of tokens in the state[] array to find global GL state
43 * and return it in <value>. Usually, four values are returned in <value>
44 * but matrix queries may return as many as 16 values.
45 * This function is used for ARB vertex/fragment programs.
46 * The program parser will produce the state[] values.
47 */
48 static void
49 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
50 GLfloat *value)
51 {
52 switch (state[0]) {
53 case STATE_MATERIAL:
54 {
55 /* state[1] is either 0=front or 1=back side */
56 const GLuint face = (GLuint) state[1];
57 const struct gl_material *mat = &ctx->Light.Material;
58 ASSERT(face == 0 || face == 1);
59 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
60 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
61 /* XXX we could get rid of this switch entirely with a little
62 * work in arbprogparse.c's parse_state_single_item().
63 */
64 /* state[2] is the material attribute */
65 switch (state[2]) {
66 case STATE_AMBIENT:
67 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
68 return;
69 case STATE_DIFFUSE:
70 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
71 return;
72 case STATE_SPECULAR:
73 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
74 return;
75 case STATE_EMISSION:
76 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
77 return;
78 case STATE_SHININESS:
79 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
80 value[1] = 0.0F;
81 value[2] = 0.0F;
82 value[3] = 1.0F;
83 return;
84 default:
85 _mesa_problem(ctx, "Invalid material state in fetch_state");
86 return;
87 }
88 }
89 case STATE_LIGHT:
90 {
91 /* state[1] is the light number */
92 const GLuint ln = (GLuint) state[1];
93 /* state[2] is the light attribute */
94 switch (state[2]) {
95 case STATE_AMBIENT:
96 COPY_4V(value, ctx->Light.Light[ln].Ambient);
97 return;
98 case STATE_DIFFUSE:
99 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
100 return;
101 case STATE_SPECULAR:
102 COPY_4V(value, ctx->Light.Light[ln].Specular);
103 return;
104 case STATE_POSITION:
105 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
106 return;
107 case STATE_ATTENUATION:
108 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
109 value[1] = ctx->Light.Light[ln].LinearAttenuation;
110 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
111 value[3] = ctx->Light.Light[ln].SpotExponent;
112 return;
113 case STATE_SPOT_DIRECTION:
114 COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
115 value[3] = ctx->Light.Light[ln]._CosCutoff;
116 return;
117 case STATE_SPOT_CUTOFF:
118 value[0] = ctx->Light.Light[ln].SpotCutoff;
119 return;
120 case STATE_HALF_VECTOR:
121 {
122 static const GLfloat eye_z[] = {0, 0, 1};
123 GLfloat p[3];
124 /* Compute infinite half angle vector:
125 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
126 * light.EyePosition.w should be 0 for infinite lights.
127 */
128 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
129 NORMALIZE_3FV(p);
130 ADD_3V(value, p, eye_z);
131 NORMALIZE_3FV(value);
132 value[3] = 1.0;
133 }
134 return;
135 default:
136 _mesa_problem(ctx, "Invalid light state in fetch_state");
137 return;
138 }
139 }
140 case STATE_LIGHTMODEL_AMBIENT:
141 COPY_4V(value, ctx->Light.Model.Ambient);
142 return;
143 case STATE_LIGHTMODEL_SCENECOLOR:
144 if (state[1] == 0) {
145 /* front */
146 GLint i;
147 for (i = 0; i < 3; i++) {
148 value[i] = ctx->Light.Model.Ambient[i]
149 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
150 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
151 }
152 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
153 }
154 else {
155 /* back */
156 GLint i;
157 for (i = 0; i < 3; i++) {
158 value[i] = ctx->Light.Model.Ambient[i]
159 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
160 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
161 }
162 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
163 }
164 return;
165 case STATE_LIGHTPROD:
166 {
167 const GLuint ln = (GLuint) state[1];
168 const GLuint face = (GLuint) state[2];
169 GLint i;
170 ASSERT(face == 0 || face == 1);
171 switch (state[3]) {
172 case STATE_AMBIENT:
173 for (i = 0; i < 3; i++) {
174 value[i] = ctx->Light.Light[ln].Ambient[i] *
175 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
176 }
177 /* [3] = material alpha */
178 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
179 return;
180 case STATE_DIFFUSE:
181 for (i = 0; i < 3; i++) {
182 value[i] = ctx->Light.Light[ln].Diffuse[i] *
183 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
184 }
185 /* [3] = material alpha */
186 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
187 return;
188 case STATE_SPECULAR:
189 for (i = 0; i < 3; i++) {
190 value[i] = ctx->Light.Light[ln].Specular[i] *
191 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
192 }
193 /* [3] = material alpha */
194 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
195 return;
196 default:
197 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
198 return;
199 }
200 }
201 case STATE_TEXGEN:
202 {
203 /* state[1] is the texture unit */
204 const GLuint unit = (GLuint) state[1];
205 /* state[2] is the texgen attribute */
206 switch (state[2]) {
207 case STATE_TEXGEN_EYE_S:
208 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
209 return;
210 case STATE_TEXGEN_EYE_T:
211 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
212 return;
213 case STATE_TEXGEN_EYE_R:
214 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
215 return;
216 case STATE_TEXGEN_EYE_Q:
217 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
218 return;
219 case STATE_TEXGEN_OBJECT_S:
220 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
221 return;
222 case STATE_TEXGEN_OBJECT_T:
223 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
224 return;
225 case STATE_TEXGEN_OBJECT_R:
226 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
227 return;
228 case STATE_TEXGEN_OBJECT_Q:
229 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
230 return;
231 default:
232 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
233 return;
234 }
235 }
236 case STATE_TEXENV_COLOR:
237 {
238 /* state[1] is the texture unit */
239 const GLuint unit = (GLuint) state[1];
240 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
241 }
242 return;
243 case STATE_FOG_COLOR:
244 COPY_4V(value, ctx->Fog.Color);
245 return;
246 case STATE_FOG_PARAMS:
247 value[0] = ctx->Fog.Density;
248 value[1] = ctx->Fog.Start;
249 value[2] = ctx->Fog.End;
250 value[3] = (ctx->Fog.End == ctx->Fog.Start)
251 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
252 return;
253 case STATE_CLIPPLANE:
254 {
255 const GLuint plane = (GLuint) state[1];
256 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
257 }
258 return;
259 case STATE_POINT_SIZE:
260 value[0] = ctx->Point.Size;
261 value[1] = ctx->Point.MinSize;
262 value[2] = ctx->Point.MaxSize;
263 value[3] = ctx->Point.Threshold;
264 return;
265 case STATE_POINT_ATTENUATION:
266 value[0] = ctx->Point.Params[0];
267 value[1] = ctx->Point.Params[1];
268 value[2] = ctx->Point.Params[2];
269 value[3] = 1.0F;
270 return;
271 case STATE_MODELVIEW_MATRIX:
272 case STATE_PROJECTION_MATRIX:
273 case STATE_MVP_MATRIX:
274 case STATE_TEXTURE_MATRIX:
275 case STATE_PROGRAM_MATRIX:
276 {
277 /* state[0] = modelview, projection, texture, etc. */
278 /* state[1] = which texture matrix or program matrix */
279 /* state[2] = first row to fetch */
280 /* state[3] = last row to fetch */
281 /* state[4] = transpose, inverse or invtrans */
282 const GLmatrix *matrix;
283 const gl_state_index mat = state[0];
284 const GLuint index = (GLuint) state[1];
285 const GLuint firstRow = (GLuint) state[2];
286 const GLuint lastRow = (GLuint) state[3];
287 const gl_state_index modifier = state[4];
288 const GLfloat *m;
289 GLuint row, i;
290 ASSERT(firstRow >= 0);
291 ASSERT(firstRow < 4);
292 ASSERT(lastRow >= 0);
293 ASSERT(lastRow < 4);
294 if (mat == STATE_MODELVIEW_MATRIX) {
295 matrix = ctx->ModelviewMatrixStack.Top;
296 }
297 else if (mat == STATE_PROJECTION_MATRIX) {
298 matrix = ctx->ProjectionMatrixStack.Top;
299 }
300 else if (mat == STATE_MVP_MATRIX) {
301 matrix = &ctx->_ModelProjectMatrix;
302 }
303 else if (mat == STATE_TEXTURE_MATRIX) {
304 ASSERT(index < Elements(ctx->TextureMatrixStack));
305 matrix = ctx->TextureMatrixStack[index].Top;
306 }
307 else if (mat == STATE_PROGRAM_MATRIX) {
308 ASSERT(index < Elements(ctx->ProgramMatrixStack));
309 matrix = ctx->ProgramMatrixStack[index].Top;
310 }
311 else {
312 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
313 return;
314 }
315 if (modifier == STATE_MATRIX_INVERSE ||
316 modifier == STATE_MATRIX_INVTRANS) {
317 /* Be sure inverse is up to date:
318 */
319 _math_matrix_alloc_inv( (GLmatrix *) matrix );
320 _math_matrix_analyse( (GLmatrix*) matrix );
321 m = matrix->inv;
322 }
323 else {
324 m = matrix->m;
325 }
326 if (modifier == STATE_MATRIX_TRANSPOSE ||
327 modifier == STATE_MATRIX_INVTRANS) {
328 for (i = 0, row = firstRow; row <= lastRow; row++) {
329 value[i++] = m[row * 4 + 0];
330 value[i++] = m[row * 4 + 1];
331 value[i++] = m[row * 4 + 2];
332 value[i++] = m[row * 4 + 3];
333 }
334 }
335 else {
336 for (i = 0, row = firstRow; row <= lastRow; row++) {
337 value[i++] = m[row + 0];
338 value[i++] = m[row + 4];
339 value[i++] = m[row + 8];
340 value[i++] = m[row + 12];
341 }
342 }
343 }
344 return;
345 case STATE_DEPTH_RANGE:
346 value[0] = ctx->Viewport.Near; /* near */
347 value[1] = ctx->Viewport.Far; /* far */
348 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
349 value[3] = 1.0;
350 return;
351 case STATE_FRAGMENT_PROGRAM:
352 {
353 /* state[1] = {STATE_ENV, STATE_LOCAL} */
354 /* state[2] = parameter index */
355 const int idx = (int) state[2];
356 switch (state[1]) {
357 case STATE_ENV:
358 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
359 return;
360 case STATE_LOCAL:
361 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
362 return;
363 default:
364 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
365 return;
366 }
367 }
368 return;
369
370 case STATE_VERTEX_PROGRAM:
371 {
372 /* state[1] = {STATE_ENV, STATE_LOCAL} */
373 /* state[2] = parameter index */
374 const int idx = (int) state[2];
375 switch (state[1]) {
376 case STATE_ENV:
377 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
378 return;
379 case STATE_LOCAL:
380 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
381 return;
382 default:
383 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
384 return;
385 }
386 }
387 return;
388
389 case STATE_NORMAL_SCALE:
390 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
391 return;
392
393 case STATE_INTERNAL:
394 switch (state[1]) {
395 case STATE_CURRENT_ATTRIB:
396 {
397 const GLuint idx = (GLuint) state[2];
398 COPY_4V(value, ctx->Current.Attrib[idx]);
399 }
400 return;
401
402 case STATE_NORMAL_SCALE:
403 ASSIGN_4V(value,
404 ctx->_ModelViewInvScale,
405 ctx->_ModelViewInvScale,
406 ctx->_ModelViewInvScale,
407 1);
408 return;
409
410 case STATE_TEXRECT_SCALE:
411 /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
412 * Used to convert unnormalized texcoords to normalized texcoords.
413 */
414 {
415 const int unit = (int) state[2];
416 const struct gl_texture_object *texObj
417 = ctx->Texture.Unit[unit]._Current;
418 if (texObj) {
419 struct gl_texture_image *texImage = texObj->Image[0][0];
420 ASSIGN_4V(value,
421 (GLfloat) (1.0 / texImage->Width),
422 (GLfloat) (1.0 / texImage->Height),
423 0.0f, 1.0f);
424 }
425 }
426 return;
427
428 case STATE_FOG_PARAMS_OPTIMIZED:
429 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
430 * might be more expensive than EX2 on some hw, plus it needs
431 * another constant (e) anyway. Linear fog can now be done with a
432 * single MAD.
433 * linear: fogcoord * -1/(end-start) + end/(end-start)
434 * exp: 2^-(density/ln(2) * fogcoord)
435 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
436 */
437 value[0] = (ctx->Fog.End == ctx->Fog.Start)
438 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
439 value[1] = ctx->Fog.End * -value[0];
440 value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
441 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
442 return;
443
444 case STATE_POINT_SIZE_CLAMPED:
445 {
446 /* this includes implementation dependent limits, to avoid
447 * another potentially necessary clamp.
448 * Note: for sprites, point smooth (point AA) is ignored
449 * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
450 * expect drivers will want to say their minimum for AA size is 0.0
451 * but for non-AA it's 1.0 (because normal points with size below 1.0
452 * need to get rounded up to 1.0, hence never disappear). GL does
453 * not specify max clamp size for sprites, other than it needs to be
454 * at least as large as max AA size, hence use non-AA size there.
455 */
456 GLfloat minImplSize;
457 GLfloat maxImplSize;
458 if (ctx->Point.PointSprite) {
459 minImplSize = ctx->Const.MinPointSizeAA;
460 maxImplSize = ctx->Const.MaxPointSize;
461 }
462 else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
463 minImplSize = ctx->Const.MinPointSizeAA;
464 maxImplSize = ctx->Const.MaxPointSizeAA;
465 }
466 else {
467 minImplSize = ctx->Const.MinPointSize;
468 maxImplSize = ctx->Const.MaxPointSize;
469 }
470 value[0] = ctx->Point.Size;
471 value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
472 value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
473 value[3] = ctx->Point.Threshold;
474 }
475 return;
476 case STATE_POINT_SIZE_IMPL_CLAMP:
477 {
478 /* for implementation clamp only in vs */
479 GLfloat minImplSize;
480 GLfloat maxImplSize;
481 if (ctx->Point.PointSprite) {
482 minImplSize = ctx->Const.MinPointSizeAA;
483 maxImplSize = ctx->Const.MaxPointSize;
484 }
485 else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
486 minImplSize = ctx->Const.MinPointSizeAA;
487 maxImplSize = ctx->Const.MaxPointSizeAA;
488 }
489 else {
490 minImplSize = ctx->Const.MinPointSize;
491 maxImplSize = ctx->Const.MaxPointSize;
492 }
493 value[0] = ctx->Point.Size;
494 value[1] = minImplSize;
495 value[2] = maxImplSize;
496 value[3] = ctx->Point.Threshold;
497 }
498 return;
499 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
500 {
501 /* here, state[2] is the light number */
502 /* pre-normalize spot dir */
503 const GLuint ln = (GLuint) state[2];
504 COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
505 value[3] = ctx->Light.Light[ln]._CosCutoff;
506 }
507 return;
508
509 case STATE_LIGHT_POSITION:
510 {
511 const GLuint ln = (GLuint) state[2];
512 COPY_4V(value, ctx->Light.Light[ln]._Position);
513 }
514 return;
515
516 case STATE_LIGHT_POSITION_NORMALIZED:
517 {
518 const GLuint ln = (GLuint) state[2];
519 COPY_4V(value, ctx->Light.Light[ln]._Position);
520 NORMALIZE_3FV( value );
521 }
522 return;
523
524 case STATE_LIGHT_HALF_VECTOR:
525 {
526 const GLuint ln = (GLuint) state[2];
527 GLfloat p[3];
528 /* Compute infinite half angle vector:
529 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
530 * light.EyePosition.w should be 0 for infinite lights.
531 */
532 COPY_3V(p, ctx->Light.Light[ln]._Position);
533 NORMALIZE_3FV(p);
534 ADD_3V(value, p, ctx->_EyeZDir);
535 NORMALIZE_3FV(value);
536 value[3] = 1.0;
537 }
538 return;
539
540 case STATE_PT_SCALE:
541 value[0] = ctx->Pixel.RedScale;
542 value[1] = ctx->Pixel.GreenScale;
543 value[2] = ctx->Pixel.BlueScale;
544 value[3] = ctx->Pixel.AlphaScale;
545 return;
546
547 case STATE_PT_BIAS:
548 value[0] = ctx->Pixel.RedBias;
549 value[1] = ctx->Pixel.GreenBias;
550 value[2] = ctx->Pixel.BlueBias;
551 value[3] = ctx->Pixel.AlphaBias;
552 return;
553
554 case STATE_SHADOW_AMBIENT:
555 {
556 const int unit = (int) state[2];
557 const struct gl_texture_object *texObj
558 = ctx->Texture.Unit[unit]._Current;
559 if (texObj) {
560 value[0] =
561 value[1] =
562 value[2] =
563 value[3] = texObj->CompareFailValue;
564 }
565 }
566 return;
567
568 case STATE_FB_SIZE:
569 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
570 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
571 value[2] = 0.0F;
572 value[3] = 0.0F;
573 return;
574
575 case STATE_ROT_MATRIX_0:
576 {
577 const int unit = (int) state[2];
578 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
579 value[0] = rotMat22[0];
580 value[1] = rotMat22[2];
581 value[2] = 0.0;
582 value[3] = 0.0;
583 }
584 return;
585
586 case STATE_ROT_MATRIX_1:
587 {
588 const int unit = (int) state[2];
589 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
590 value[0] = rotMat22[1];
591 value[1] = rotMat22[3];
592 value[2] = 0.0;
593 value[3] = 0.0;
594 }
595 return;
596
597 /* XXX: make sure new tokens added here are also handled in the
598 * _mesa_program_state_flags() switch, below.
599 */
600 default:
601 /* Unknown state indexes are silently ignored here.
602 * Drivers may do something special.
603 */
604 return;
605 }
606 return;
607
608 default:
609 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
610 return;
611 }
612 }
613
614
615 /**
616 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
617 * indicate that the given context state may have changed.
618 * The bitmask is used during validation to determine if we need to update
619 * vertex/fragment program parameters (like "state.material.color") when
620 * some GL state has changed.
621 */
622 GLbitfield
623 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
624 {
625 switch (state[0]) {
626 case STATE_MATERIAL:
627 case STATE_LIGHT:
628 case STATE_LIGHTMODEL_AMBIENT:
629 case STATE_LIGHTMODEL_SCENECOLOR:
630 case STATE_LIGHTPROD:
631 return _NEW_LIGHT;
632
633 case STATE_TEXGEN:
634 case STATE_TEXENV_COLOR:
635 return _NEW_TEXTURE;
636
637 case STATE_FOG_COLOR:
638 case STATE_FOG_PARAMS:
639 return _NEW_FOG;
640
641 case STATE_CLIPPLANE:
642 return _NEW_TRANSFORM;
643
644 case STATE_POINT_SIZE:
645 case STATE_POINT_ATTENUATION:
646 return _NEW_POINT;
647
648 case STATE_MODELVIEW_MATRIX:
649 return _NEW_MODELVIEW;
650 case STATE_PROJECTION_MATRIX:
651 return _NEW_PROJECTION;
652 case STATE_MVP_MATRIX:
653 return _NEW_MODELVIEW | _NEW_PROJECTION;
654 case STATE_TEXTURE_MATRIX:
655 return _NEW_TEXTURE_MATRIX;
656 case STATE_PROGRAM_MATRIX:
657 return _NEW_TRACK_MATRIX;
658
659 case STATE_DEPTH_RANGE:
660 return _NEW_VIEWPORT;
661
662 case STATE_FRAGMENT_PROGRAM:
663 case STATE_VERTEX_PROGRAM:
664 return _NEW_PROGRAM;
665
666 case STATE_NORMAL_SCALE:
667 return _NEW_MODELVIEW;
668
669 case STATE_INTERNAL:
670 switch (state[1]) {
671 case STATE_CURRENT_ATTRIB:
672 return _NEW_CURRENT_ATTRIB;
673
674 case STATE_NORMAL_SCALE:
675 return _NEW_MODELVIEW;
676
677 case STATE_TEXRECT_SCALE:
678 case STATE_SHADOW_AMBIENT:
679 case STATE_ROT_MATRIX_0:
680 case STATE_ROT_MATRIX_1:
681 return _NEW_TEXTURE;
682 case STATE_FOG_PARAMS_OPTIMIZED:
683 return _NEW_FOG;
684 case STATE_POINT_SIZE_CLAMPED:
685 case STATE_POINT_SIZE_IMPL_CLAMP:
686 return _NEW_POINT | _NEW_MULTISAMPLE;
687 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
688 case STATE_LIGHT_POSITION:
689 case STATE_LIGHT_POSITION_NORMALIZED:
690 case STATE_LIGHT_HALF_VECTOR:
691 return _NEW_LIGHT;
692
693 case STATE_PT_SCALE:
694 case STATE_PT_BIAS:
695 return _NEW_PIXEL;
696
697 case STATE_FB_SIZE:
698 return _NEW_BUFFERS;
699
700 default:
701 /* unknown state indexes are silently ignored and
702 * no flag set, since it is handled by the driver.
703 */
704 return 0;
705 }
706
707 default:
708 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
709 return 0;
710 }
711 }
712
713
714 static void
715 append(char *dst, const char *src)
716 {
717 while (*dst)
718 dst++;
719 while (*src)
720 *dst++ = *src++;
721 *dst = 0;
722 }
723
724
725 /**
726 * Convert token 'k' to a string, append it onto 'dst' string.
727 */
728 static void
729 append_token(char *dst, gl_state_index k)
730 {
731 switch (k) {
732 case STATE_MATERIAL:
733 append(dst, "material");
734 break;
735 case STATE_LIGHT:
736 append(dst, "light");
737 break;
738 case STATE_LIGHTMODEL_AMBIENT:
739 append(dst, "lightmodel.ambient");
740 break;
741 case STATE_LIGHTMODEL_SCENECOLOR:
742 break;
743 case STATE_LIGHTPROD:
744 append(dst, "lightprod");
745 break;
746 case STATE_TEXGEN:
747 append(dst, "texgen");
748 break;
749 case STATE_FOG_COLOR:
750 append(dst, "fog.color");
751 break;
752 case STATE_FOG_PARAMS:
753 append(dst, "fog.params");
754 break;
755 case STATE_CLIPPLANE:
756 append(dst, "clip");
757 break;
758 case STATE_POINT_SIZE:
759 append(dst, "point.size");
760 break;
761 case STATE_POINT_ATTENUATION:
762 append(dst, "point.attenuation");
763 break;
764 case STATE_MODELVIEW_MATRIX:
765 append(dst, "matrix.modelview");
766 break;
767 case STATE_PROJECTION_MATRIX:
768 append(dst, "matrix.projection");
769 break;
770 case STATE_MVP_MATRIX:
771 append(dst, "matrix.mvp");
772 break;
773 case STATE_TEXTURE_MATRIX:
774 append(dst, "matrix.texture");
775 break;
776 case STATE_PROGRAM_MATRIX:
777 append(dst, "matrix.program");
778 break;
779 case STATE_MATRIX_INVERSE:
780 append(dst, ".inverse");
781 break;
782 case STATE_MATRIX_TRANSPOSE:
783 append(dst, ".transpose");
784 break;
785 case STATE_MATRIX_INVTRANS:
786 append(dst, ".invtrans");
787 break;
788 case STATE_AMBIENT:
789 append(dst, ".ambient");
790 break;
791 case STATE_DIFFUSE:
792 append(dst, ".diffuse");
793 break;
794 case STATE_SPECULAR:
795 append(dst, ".specular");
796 break;
797 case STATE_EMISSION:
798 append(dst, ".emission");
799 break;
800 case STATE_SHININESS:
801 append(dst, "lshininess");
802 break;
803 case STATE_HALF_VECTOR:
804 append(dst, ".half");
805 break;
806 case STATE_POSITION:
807 append(dst, ".position");
808 break;
809 case STATE_ATTENUATION:
810 append(dst, ".attenuation");
811 break;
812 case STATE_SPOT_DIRECTION:
813 append(dst, ".spot.direction");
814 break;
815 case STATE_SPOT_CUTOFF:
816 append(dst, ".spot.cutoff");
817 break;
818 case STATE_TEXGEN_EYE_S:
819 append(dst, ".eye.s");
820 break;
821 case STATE_TEXGEN_EYE_T:
822 append(dst, ".eye.t");
823 break;
824 case STATE_TEXGEN_EYE_R:
825 append(dst, ".eye.r");
826 break;
827 case STATE_TEXGEN_EYE_Q:
828 append(dst, ".eye.q");
829 break;
830 case STATE_TEXGEN_OBJECT_S:
831 append(dst, ".object.s");
832 break;
833 case STATE_TEXGEN_OBJECT_T:
834 append(dst, ".object.t");
835 break;
836 case STATE_TEXGEN_OBJECT_R:
837 append(dst, ".object.r");
838 break;
839 case STATE_TEXGEN_OBJECT_Q:
840 append(dst, ".object.q");
841 break;
842 case STATE_TEXENV_COLOR:
843 append(dst, "texenv");
844 break;
845 case STATE_DEPTH_RANGE:
846 append(dst, "depth.range");
847 break;
848 case STATE_VERTEX_PROGRAM:
849 case STATE_FRAGMENT_PROGRAM:
850 break;
851 case STATE_ENV:
852 append(dst, "env");
853 break;
854 case STATE_LOCAL:
855 append(dst, "local");
856 break;
857 /* BEGIN internal state vars */
858 case STATE_INTERNAL:
859 append(dst, ".internal.");
860 break;
861 case STATE_CURRENT_ATTRIB:
862 append(dst, "current");
863 break;
864 case STATE_NORMAL_SCALE:
865 append(dst, "normalScale");
866 break;
867 case STATE_TEXRECT_SCALE:
868 append(dst, "texrectScale");
869 break;
870 case STATE_FOG_PARAMS_OPTIMIZED:
871 append(dst, "fogParamsOptimized");
872 break;
873 case STATE_POINT_SIZE_CLAMPED:
874 append(dst, "pointSizeClamped");
875 break;
876 case STATE_POINT_SIZE_IMPL_CLAMP:
877 append(dst, "pointSizeImplClamp");
878 break;
879 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
880 append(dst, "lightSpotDirNormalized");
881 break;
882 case STATE_LIGHT_POSITION:
883 append(dst, "lightPosition");
884 break;
885 case STATE_LIGHT_POSITION_NORMALIZED:
886 append(dst, "light.position.normalized");
887 break;
888 case STATE_LIGHT_HALF_VECTOR:
889 append(dst, "lightHalfVector");
890 break;
891 case STATE_PT_SCALE:
892 append(dst, "PTscale");
893 break;
894 case STATE_PT_BIAS:
895 append(dst, "PTbias");
896 break;
897 case STATE_SHADOW_AMBIENT:
898 append(dst, "CompareFailValue");
899 break;
900 case STATE_FB_SIZE:
901 append(dst, "FbSize");
902 break;
903 case STATE_ROT_MATRIX_0:
904 append(dst, "rotMatrixRow0");
905 break;
906 case STATE_ROT_MATRIX_1:
907 append(dst, "rotMatrixRow1");
908 break;
909 default:
910 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
911 append(dst, "driverState");
912 }
913 }
914
915 static void
916 append_face(char *dst, GLint face)
917 {
918 if (face == 0)
919 append(dst, "front.");
920 else
921 append(dst, "back.");
922 }
923
924 static void
925 append_index(char *dst, GLint index)
926 {
927 char s[20];
928 sprintf(s, "[%d]", index);
929 append(dst, s);
930 }
931
932 /**
933 * Make a string from the given state vector.
934 * For example, return "state.matrix.texture[2].inverse".
935 * Use free() to deallocate the string.
936 */
937 char *
938 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
939 {
940 char str[1000] = "";
941 char tmp[30];
942
943 append(str, "state.");
944 append_token(str, state[0]);
945
946 switch (state[0]) {
947 case STATE_MATERIAL:
948 append_face(str, state[1]);
949 append_token(str, state[2]);
950 break;
951 case STATE_LIGHT:
952 append_index(str, state[1]); /* light number [i]. */
953 append_token(str, state[2]); /* coefficients */
954 break;
955 case STATE_LIGHTMODEL_AMBIENT:
956 append(str, "lightmodel.ambient");
957 break;
958 case STATE_LIGHTMODEL_SCENECOLOR:
959 if (state[1] == 0) {
960 append(str, "lightmodel.front.scenecolor");
961 }
962 else {
963 append(str, "lightmodel.back.scenecolor");
964 }
965 break;
966 case STATE_LIGHTPROD:
967 append_index(str, state[1]); /* light number [i]. */
968 append_face(str, state[2]);
969 append_token(str, state[3]);
970 break;
971 case STATE_TEXGEN:
972 append_index(str, state[1]); /* tex unit [i] */
973 append_token(str, state[2]); /* plane coef */
974 break;
975 case STATE_TEXENV_COLOR:
976 append_index(str, state[1]); /* tex unit [i] */
977 append(str, "color");
978 break;
979 case STATE_CLIPPLANE:
980 append_index(str, state[1]); /* plane [i] */
981 append(str, ".plane");
982 break;
983 case STATE_MODELVIEW_MATRIX:
984 case STATE_PROJECTION_MATRIX:
985 case STATE_MVP_MATRIX:
986 case STATE_TEXTURE_MATRIX:
987 case STATE_PROGRAM_MATRIX:
988 {
989 /* state[0] = modelview, projection, texture, etc. */
990 /* state[1] = which texture matrix or program matrix */
991 /* state[2] = first row to fetch */
992 /* state[3] = last row to fetch */
993 /* state[4] = transpose, inverse or invtrans */
994 const gl_state_index mat = state[0];
995 const GLuint index = (GLuint) state[1];
996 const GLuint firstRow = (GLuint) state[2];
997 const GLuint lastRow = (GLuint) state[3];
998 const gl_state_index modifier = state[4];
999 if (index ||
1000 mat == STATE_TEXTURE_MATRIX ||
1001 mat == STATE_PROGRAM_MATRIX)
1002 append_index(str, index);
1003 if (modifier)
1004 append_token(str, modifier);
1005 if (firstRow == lastRow)
1006 sprintf(tmp, ".row[%d]", firstRow);
1007 else
1008 sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
1009 append(str, tmp);
1010 }
1011 break;
1012 case STATE_POINT_SIZE:
1013 break;
1014 case STATE_POINT_ATTENUATION:
1015 break;
1016 case STATE_FOG_PARAMS:
1017 break;
1018 case STATE_FOG_COLOR:
1019 break;
1020 case STATE_DEPTH_RANGE:
1021 break;
1022 case STATE_FRAGMENT_PROGRAM:
1023 case STATE_VERTEX_PROGRAM:
1024 /* state[1] = {STATE_ENV, STATE_LOCAL} */
1025 /* state[2] = parameter index */
1026 append_token(str, state[1]);
1027 append_index(str, state[2]);
1028 break;
1029 case STATE_NORMAL_SCALE:
1030 break;
1031 case STATE_INTERNAL:
1032 append_token(str, state[1]);
1033 if (state[1] == STATE_CURRENT_ATTRIB)
1034 append_index(str, state[2]);
1035 break;
1036 default:
1037 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
1038 break;
1039 }
1040
1041 return _mesa_strdup(str);
1042 }
1043
1044
1045 /**
1046 * Loop over all the parameters in a parameter list. If the parameter
1047 * is a GL state reference, look up the current value of that state
1048 * variable and put it into the parameter's Value[4] array.
1049 * This would be called at glBegin time when using a fragment program.
1050 */
1051 void
1052 _mesa_load_state_parameters(GLcontext *ctx,
1053 struct gl_program_parameter_list *paramList)
1054 {
1055 GLuint i;
1056
1057 if (!paramList)
1058 return;
1059
1060 /*assert(ctx->Driver.NeedFlush == 0);*/
1061
1062 for (i = 0; i < paramList->NumParameters; i++) {
1063 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1064 _mesa_fetch_state(ctx,
1065 (gl_state_index *) paramList->Parameters[i].StateIndexes,
1066 paramList->ParameterValues[i]);
1067 }
1068 }
1069 }
1070
1071
1072 /**
1073 * Copy the 16 elements of a matrix into four consecutive program
1074 * registers starting at 'pos'.
1075 */
1076 static void
1077 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
1078 {
1079 GLuint i;
1080 for (i = 0; i < 4; i++) {
1081 registers[pos + i][0] = mat[0 + i];
1082 registers[pos + i][1] = mat[4 + i];
1083 registers[pos + i][2] = mat[8 + i];
1084 registers[pos + i][3] = mat[12 + i];
1085 }
1086 }
1087
1088
1089 /**
1090 * As above, but transpose the matrix.
1091 */
1092 static void
1093 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
1094 const GLfloat mat[16])
1095 {
1096 memcpy(registers[pos], mat, 16 * sizeof(GLfloat));
1097 }
1098
1099
1100 /**
1101 * Load current vertex program's parameter registers with tracked
1102 * matrices (if NV program). This only needs to be done per
1103 * glBegin/glEnd, not per-vertex.
1104 */
1105 void
1106 _mesa_load_tracked_matrices(GLcontext *ctx)
1107 {
1108 GLuint i;
1109
1110 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
1111 /* point 'mat' at source matrix */
1112 GLmatrix *mat;
1113 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
1114 mat = ctx->ModelviewMatrixStack.Top;
1115 }
1116 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
1117 mat = ctx->ProjectionMatrixStack.Top;
1118 }
1119 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
1120 GLuint unit = MIN2(ctx->Texture.CurrentUnit,
1121 Elements(ctx->TextureMatrixStack) - 1);
1122 mat = ctx->TextureMatrixStack[unit].Top;
1123 }
1124 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
1125 /* XXX verify the combined matrix is up to date */
1126 mat = &ctx->_ModelProjectMatrix;
1127 }
1128 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
1129 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
1130 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
1131 ASSERT(n < Elements(ctx->ProgramMatrixStack));
1132 mat = ctx->ProgramMatrixStack[n].Top;
1133 }
1134 else {
1135 /* no matrix is tracked, but we leave the register values as-is */
1136 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
1137 continue;
1138 }
1139
1140 /* load the matrix values into sequential registers */
1141 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
1142 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1143 }
1144 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
1145 _math_matrix_analyse(mat); /* update the inverse */
1146 ASSERT(!_math_matrix_is_dirty(mat));
1147 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1148 }
1149 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
1150 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1151 }
1152 else {
1153 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1154 == GL_INVERSE_TRANSPOSE_NV);
1155 _math_matrix_analyse(mat); /* update the inverse */
1156 ASSERT(!_math_matrix_is_dirty(mat));
1157 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1158 }
1159 }
1160 }