16739fd3982617a235d66e1eafab008c23db5706
[mesa.git] / src / mesa / program / register_allocate.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74 #include <ralloc.h>
75
76 #include "main/imports.h"
77 #include "main/macros.h"
78 #include "main/mtypes.h"
79 #include "main/bitset.h"
80 #include "register_allocate.h"
81
82 #define NO_REG ~0
83
84 struct ra_reg {
85 GLboolean *conflicts;
86 unsigned int *conflict_list;
87 unsigned int conflict_list_size;
88 unsigned int num_conflicts;
89 };
90
91 struct ra_regs {
92 struct ra_reg *regs;
93 unsigned int count;
94
95 struct ra_class **classes;
96 unsigned int class_count;
97
98 bool round_robin;
99 };
100
101 struct ra_class {
102 GLboolean *regs;
103
104 /**
105 * p(B) in Runeson/Nyström paper.
106 *
107 * This is "how many regs are in the set."
108 */
109 unsigned int p;
110
111 /**
112 * q(B,C) (indexed by C, B is this register class) in
113 * Runeson/Nyström paper. This is "how many registers of B could
114 * the worst choice register from C conflict with".
115 */
116 unsigned int *q;
117 };
118
119 struct ra_node {
120 /** @{
121 *
122 * List of which nodes this node interferes with. This should be
123 * symmetric with the other node.
124 */
125 BITSET_WORD *adjacency;
126 unsigned int *adjacency_list;
127 unsigned int adjacency_list_size;
128 unsigned int adjacency_count;
129 /** @} */
130
131 unsigned int class;
132
133 /* Register, if assigned, or NO_REG. */
134 unsigned int reg;
135
136 /**
137 * Set when the node is in the trivially colorable stack. When
138 * set, the adjacency to this node is ignored, to implement the
139 * "remove the edge from the graph" in simplification without
140 * having to actually modify the adjacency_list.
141 */
142 GLboolean in_stack;
143
144 /* For an implementation that needs register spilling, this is the
145 * approximate cost of spilling this node.
146 */
147 float spill_cost;
148 };
149
150 struct ra_graph {
151 struct ra_regs *regs;
152 /**
153 * the variables that need register allocation.
154 */
155 struct ra_node *nodes;
156 unsigned int count; /**< count of nodes. */
157
158 unsigned int *stack;
159 unsigned int stack_count;
160 };
161
162 /**
163 * Creates a set of registers for the allocator.
164 *
165 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
166 * using ralloc_free().
167 */
168 struct ra_regs *
169 ra_alloc_reg_set(void *mem_ctx, unsigned int count)
170 {
171 unsigned int i;
172 struct ra_regs *regs;
173
174 regs = rzalloc(mem_ctx, struct ra_regs);
175 regs->count = count;
176 regs->regs = rzalloc_array(regs, struct ra_reg, count);
177
178 for (i = 0; i < count; i++) {
179 regs->regs[i].conflicts = rzalloc_array(regs->regs, GLboolean, count);
180 regs->regs[i].conflicts[i] = GL_TRUE;
181
182 regs->regs[i].conflict_list = ralloc_array(regs->regs, unsigned int, 4);
183 regs->regs[i].conflict_list_size = 4;
184 regs->regs[i].conflict_list[0] = i;
185 regs->regs[i].num_conflicts = 1;
186 }
187
188 return regs;
189 }
190
191 /**
192 * The register allocator by default prefers to allocate low register numbers,
193 * since it was written for hardware (gen4/5 Intel) that is limited in its
194 * multithreadedness by the number of registers used in a given shader.
195 *
196 * However, for hardware without that restriction, densely packed register
197 * allocation can put serious constraints on instruction scheduling. This
198 * function tells the allocator to rotate around the registers if possible as
199 * it allocates the nodes.
200 */
201 void
202 ra_set_allocate_round_robin(struct ra_regs *regs)
203 {
204 regs->round_robin = true;
205 }
206
207 static void
208 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
209 {
210 struct ra_reg *reg1 = &regs->regs[r1];
211
212 if (reg1->conflict_list_size == reg1->num_conflicts) {
213 reg1->conflict_list_size *= 2;
214 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
215 unsigned int, reg1->conflict_list_size);
216 }
217 reg1->conflict_list[reg1->num_conflicts++] = r2;
218 reg1->conflicts[r2] = GL_TRUE;
219 }
220
221 void
222 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
223 {
224 if (!regs->regs[r1].conflicts[r2]) {
225 ra_add_conflict_list(regs, r1, r2);
226 ra_add_conflict_list(regs, r2, r1);
227 }
228 }
229
230 /**
231 * Adds a conflict between base_reg and reg, and also between reg and
232 * anything that base_reg conflicts with.
233 *
234 * This can simplify code for setting up multiple register classes
235 * which are aggregates of some base hardware registers, compared to
236 * explicitly using ra_add_reg_conflict.
237 */
238 void
239 ra_add_transitive_reg_conflict(struct ra_regs *regs,
240 unsigned int base_reg, unsigned int reg)
241 {
242 int i;
243
244 ra_add_reg_conflict(regs, reg, base_reg);
245
246 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
247 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
248 }
249 }
250
251 unsigned int
252 ra_alloc_reg_class(struct ra_regs *regs)
253 {
254 struct ra_class *class;
255
256 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
257 regs->class_count + 1);
258
259 class = rzalloc(regs, struct ra_class);
260 regs->classes[regs->class_count] = class;
261
262 class->regs = rzalloc_array(class, GLboolean, regs->count);
263
264 return regs->class_count++;
265 }
266
267 void
268 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
269 {
270 struct ra_class *class = regs->classes[c];
271
272 class->regs[r] = GL_TRUE;
273 class->p++;
274 }
275
276 /**
277 * Must be called after all conflicts and register classes have been
278 * set up and before the register set is used for allocation.
279 * To avoid costly q value computation, use the q_values paramater
280 * to pass precomputed q values to this function.
281 */
282 void
283 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
284 {
285 unsigned int b, c;
286
287 for (b = 0; b < regs->class_count; b++) {
288 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
289 }
290
291 if (q_values) {
292 for (b = 0; b < regs->class_count; b++) {
293 for (c = 0; c < regs->class_count; c++) {
294 regs->classes[b]->q[c] = q_values[b][c];
295 }
296 }
297 return;
298 }
299
300 /* Compute, for each class B and C, how many regs of B an
301 * allocation to C could conflict with.
302 */
303 for (b = 0; b < regs->class_count; b++) {
304 for (c = 0; c < regs->class_count; c++) {
305 unsigned int rc;
306 int max_conflicts = 0;
307
308 for (rc = 0; rc < regs->count; rc++) {
309 int conflicts = 0;
310 int i;
311
312 if (!regs->classes[c]->regs[rc])
313 continue;
314
315 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
316 unsigned int rb = regs->regs[rc].conflict_list[i];
317 if (regs->classes[b]->regs[rb])
318 conflicts++;
319 }
320 max_conflicts = MAX2(max_conflicts, conflicts);
321 }
322 regs->classes[b]->q[c] = max_conflicts;
323 }
324 }
325 }
326
327 static void
328 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
329 {
330 BITSET_SET(g->nodes[n1].adjacency, n2);
331
332 if (g->nodes[n1].adjacency_count >=
333 g->nodes[n1].adjacency_list_size) {
334 g->nodes[n1].adjacency_list_size *= 2;
335 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
336 unsigned int,
337 g->nodes[n1].adjacency_list_size);
338 }
339
340 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
341 g->nodes[n1].adjacency_count++;
342 }
343
344 struct ra_graph *
345 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
346 {
347 struct ra_graph *g;
348 unsigned int i;
349
350 g = rzalloc(regs, struct ra_graph);
351 g->regs = regs;
352 g->nodes = rzalloc_array(g, struct ra_node, count);
353 g->count = count;
354
355 g->stack = rzalloc_array(g, unsigned int, count);
356
357 for (i = 0; i < count; i++) {
358 int bitset_count = BITSET_WORDS(count);
359 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
360
361 g->nodes[i].adjacency_list_size = 4;
362 g->nodes[i].adjacency_list =
363 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
364 g->nodes[i].adjacency_count = 0;
365
366 ra_add_node_adjacency(g, i, i);
367 g->nodes[i].reg = NO_REG;
368 }
369
370 return g;
371 }
372
373 void
374 ra_set_node_class(struct ra_graph *g,
375 unsigned int n, unsigned int class)
376 {
377 g->nodes[n].class = class;
378 }
379
380 void
381 ra_add_node_interference(struct ra_graph *g,
382 unsigned int n1, unsigned int n2)
383 {
384 if (!BITSET_TEST(g->nodes[n1].adjacency, n2)) {
385 ra_add_node_adjacency(g, n1, n2);
386 ra_add_node_adjacency(g, n2, n1);
387 }
388 }
389
390 static GLboolean pq_test(struct ra_graph *g, unsigned int n)
391 {
392 unsigned int j;
393 unsigned int q = 0;
394 int n_class = g->nodes[n].class;
395
396 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
397 unsigned int n2 = g->nodes[n].adjacency_list[j];
398 unsigned int n2_class = g->nodes[n2].class;
399
400 if (n != n2 && !g->nodes[n2].in_stack) {
401 q += g->regs->classes[n_class]->q[n2_class];
402 }
403 }
404
405 return q < g->regs->classes[n_class]->p;
406 }
407
408 /**
409 * Simplifies the interference graph by pushing all
410 * trivially-colorable nodes into a stack of nodes to be colored,
411 * removing them from the graph, and rinsing and repeating.
412 *
413 * Returns GL_TRUE if all nodes were removed from the graph. GL_FALSE
414 * means that either spilling will be required, or optimistic coloring
415 * should be applied.
416 */
417 GLboolean
418 ra_simplify(struct ra_graph *g)
419 {
420 GLboolean progress = GL_TRUE;
421 int i;
422
423 while (progress) {
424 progress = GL_FALSE;
425
426 for (i = g->count - 1; i >= 0; i--) {
427 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
428 continue;
429
430 if (pq_test(g, i)) {
431 g->stack[g->stack_count] = i;
432 g->stack_count++;
433 g->nodes[i].in_stack = GL_TRUE;
434 progress = GL_TRUE;
435 }
436 }
437 }
438
439 for (i = 0; i < g->count; i++) {
440 if (!g->nodes[i].in_stack && g->nodes[i].reg == -1)
441 return GL_FALSE;
442 }
443
444 return GL_TRUE;
445 }
446
447 /**
448 * Pops nodes from the stack back into the graph, coloring them with
449 * registers as they go.
450 *
451 * If all nodes were trivially colorable, then this must succeed. If
452 * not (optimistic coloring), then it may return GL_FALSE;
453 */
454 GLboolean
455 ra_select(struct ra_graph *g)
456 {
457 int i;
458 int start_search_reg = 0;
459
460 while (g->stack_count != 0) {
461 unsigned int ri;
462 unsigned int r = -1;
463 int n = g->stack[g->stack_count - 1];
464 struct ra_class *c = g->regs->classes[g->nodes[n].class];
465
466 /* Find the lowest-numbered reg which is not used by a member
467 * of the graph adjacent to us.
468 */
469 for (ri = 0; ri < g->regs->count; ri++) {
470 r = (start_search_reg + ri) % g->regs->count;
471 if (!c->regs[r])
472 continue;
473
474 /* Check if any of our neighbors conflict with this register choice. */
475 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
476 unsigned int n2 = g->nodes[n].adjacency_list[i];
477
478 if (!g->nodes[n2].in_stack &&
479 g->regs->regs[r].conflicts[g->nodes[n2].reg]) {
480 break;
481 }
482 }
483 if (i == g->nodes[n].adjacency_count)
484 break;
485 }
486 if (ri == g->regs->count)
487 return GL_FALSE;
488
489 g->nodes[n].reg = r;
490 g->nodes[n].in_stack = GL_FALSE;
491 g->stack_count--;
492
493 if (g->regs->round_robin)
494 start_search_reg = r + 1;
495 }
496
497 return GL_TRUE;
498 }
499
500 /**
501 * Optimistic register coloring: Just push the remaining nodes
502 * on the stack. They'll be colored first in ra_select(), and
503 * if they succeed then the locally-colorable nodes are still
504 * locally-colorable and the rest of the register allocation
505 * will succeed.
506 */
507 void
508 ra_optimistic_color(struct ra_graph *g)
509 {
510 unsigned int i;
511
512 for (i = 0; i < g->count; i++) {
513 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
514 continue;
515
516 g->stack[g->stack_count] = i;
517 g->stack_count++;
518 g->nodes[i].in_stack = GL_TRUE;
519 }
520 }
521
522 GLboolean
523 ra_allocate_no_spills(struct ra_graph *g)
524 {
525 if (!ra_simplify(g)) {
526 ra_optimistic_color(g);
527 }
528 return ra_select(g);
529 }
530
531 unsigned int
532 ra_get_node_reg(struct ra_graph *g, unsigned int n)
533 {
534 return g->nodes[n].reg;
535 }
536
537 /**
538 * Forces a node to a specific register. This can be used to avoid
539 * creating a register class containing one node when handling data
540 * that must live in a fixed location and is known to not conflict
541 * with other forced register assignment (as is common with shader
542 * input data). These nodes do not end up in the stack during
543 * ra_simplify(), and thus at ra_select() time it is as if they were
544 * the first popped off the stack and assigned their fixed locations.
545 * Nodes that use this function do not need to be assigned a register
546 * class.
547 *
548 * Must be called before ra_simplify().
549 */
550 void
551 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
552 {
553 g->nodes[n].reg = reg;
554 g->nodes[n].in_stack = GL_FALSE;
555 }
556
557 static float
558 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
559 {
560 int j;
561 float benefit = 0;
562 int n_class = g->nodes[n].class;
563
564 /* Define the benefit of eliminating an interference between n, n2
565 * through spilling as q(C, B) / p(C). This is similar to the
566 * "count number of edges" approach of traditional graph coloring,
567 * but takes classes into account.
568 */
569 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
570 unsigned int n2 = g->nodes[n].adjacency_list[j];
571 if (n != n2) {
572 unsigned int n2_class = g->nodes[n2].class;
573 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
574 g->regs->classes[n_class]->p);
575 }
576 }
577
578 return benefit;
579 }
580
581 /**
582 * Returns a node number to be spilled according to the cost/benefit using
583 * the pq test, or -1 if there are no spillable nodes.
584 */
585 int
586 ra_get_best_spill_node(struct ra_graph *g)
587 {
588 unsigned int best_node = -1;
589 float best_benefit = 0.0;
590 unsigned int n;
591
592 for (n = 0; n < g->count; n++) {
593 float cost = g->nodes[n].spill_cost;
594 float benefit;
595
596 if (cost <= 0.0)
597 continue;
598
599 /* Only consider registers for spilling if they are still in the
600 * interference graph (those on the stack have already been proven to be
601 * allocatable without spilling).
602 */
603 if (g->nodes[n].in_stack)
604 continue;
605
606 benefit = ra_get_spill_benefit(g, n);
607
608 if (benefit / cost > best_benefit) {
609 best_benefit = benefit / cost;
610 best_node = n;
611 }
612 }
613
614 return best_node;
615 }
616
617 /**
618 * Only nodes with a spill cost set (cost != 0.0) will be considered
619 * for register spilling.
620 */
621 void
622 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
623 {
624 g->nodes[n].spill_cost = cost;
625 }