consolidate some parsing functions that were pretty much identical for vertex/fragmen...
[mesa.git] / src / mesa / shader / arbprogparse.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #define DEBUG_PARSING 0
26
27 /**
28 * \file arbprogparse.c
29 * ARB_*_program parser core
30 * \author Karl Rasche
31 */
32
33 #include "main/glheader.h"
34 #include "main/imports.h"
35 #include "shader/grammar/grammar_mesa.h"
36 #include "arbprogparse.h"
37 #include "program.h"
38 #include "prog_parameter.h"
39 #include "prog_statevars.h"
40 #include "context.h"
41 #include "macros.h"
42 #include "mtypes.h"
43 #include "prog_instruction.h"
44
45
46 /* For ARB programs, use the NV instruction limits */
47 #define MAX_INSTRUCTIONS MAX2(MAX_NV_FRAGMENT_PROGRAM_INSTRUCTIONS, \
48 MAX_NV_VERTEX_PROGRAM_INSTRUCTIONS)
49
50
51 /**
52 * This is basically a union of the vertex_program and fragment_program
53 * structs that we can use to parse the program into
54 *
55 * XXX we can probably get rid of this entirely someday.
56 */
57 struct arb_program
58 {
59 struct gl_program Base;
60
61 GLuint Position; /* Just used for error reporting while parsing */
62 GLuint MajorVersion;
63 GLuint MinorVersion;
64
65 /* ARB_vertex_progmra options */
66 GLboolean HintPositionInvariant;
67
68 /* ARB_fragment_progmra options */
69 GLenum PrecisionOption; /* GL_DONT_CARE, GL_NICEST or GL_FASTEST */
70 GLenum FogOption; /* GL_NONE, GL_LINEAR, GL_EXP or GL_EXP2 */
71
72 /* ARB_fragment_program specifics */
73 GLbitfield TexturesUsed[MAX_TEXTURE_IMAGE_UNITS];
74 GLbitfield ShadowSamplers;
75 GLuint NumAluInstructions;
76 GLuint NumTexInstructions;
77 GLuint NumTexIndirections;
78
79 GLboolean UsesKill;
80 };
81
82
83
84 /* TODO:
85 * Fragment Program Stuff:
86 * -----------------------------------------------------
87 *
88 * - things from Michal's email
89 * + overflow on atoi
90 * + not-overflowing floats (don't use parse_integer..)
91 * + can remove range checking in arbparse.c
92 *
93 * - check all limits of number of various variables
94 * + parameters
95 *
96 * - test! test! test!
97 *
98 * Vertex Program Stuff:
99 * -----------------------------------------------------
100 * - Optimize param array usage and count limits correctly, see spec,
101 * section 2.14.3.7
102 * + Record if an array is reference absolutly or relatively (or both)
103 * + For absolute arrays, store a bitmap of accesses
104 * + For single parameters, store an access flag
105 * + After parsing, make a parameter cleanup and merging pass, where
106 * relative arrays are layed out first, followed by abs arrays, and
107 * finally single state.
108 * + Remap offsets for param src and dst registers
109 * + Now we can properly count parameter usage
110 *
111 * - Multiple state binding errors in param arrays (see spec, just before
112 * section 2.14.3.3)
113 * - grep for XXX
114 *
115 * Mesa Stuff
116 * -----------------------------------------------------
117 * - User clipping planes vs. PositionInvariant
118 * - Is it sufficient to just multiply by the mvp to transform in the
119 * PositionInvariant case? Or do we need something more involved?
120 *
121 * - vp_src swizzle is GLubyte, fp_src swizzle is GLuint
122 * - fetch state listed in program_parameters list
123 * + WTF should this go???
124 * + currently in nvvertexec.c and s_nvfragprog.c
125 *
126 * - allow for multiple address registers (and fetch address regs properly)
127 *
128 * Cosmetic Stuff
129 * -----------------------------------------------------
130 * - remove any leftover unused grammer.c stuff (dict_ ?)
131 * - fix grammer.c error handling so its not static
132 * - #ifdef around stuff pertaining to extentions
133 *
134 * Outstanding Questions:
135 * -----------------------------------------------------
136 * - ARB_matrix_palette / ARB_vertex_blend -- not supported
137 * what gets hacked off because of this:
138 * + VERTEX_ATTRIB_MATRIXINDEX
139 * + VERTEX_ATTRIB_WEIGHT
140 * + MATRIX_MODELVIEW
141 * + MATRIX_PALETTE
142 *
143 * - When can we fetch env/local params from their own register files, and
144 * when to we have to fetch them into the main state register file?
145 * (think arrays)
146 *
147 * Grammar Changes:
148 * -----------------------------------------------------
149 */
150
151 /* Changes since moving the file to shader directory
152
153 2004-III-4 ------------------------------------------------------------
154 - added #include "grammar_mesa.h"
155 - removed grammar specific code part (it resides now in grammar.c)
156 - added GL_ARB_fragment_program_shadow tokens
157 - modified #include "arbparse_syn.h"
158 - major changes inside _mesa_parse_arb_program()
159 - check the program string for '\0' characters
160 - copy the program string to a one-byte-longer location to have
161 it null-terminated
162 - position invariance test (not writing to result.position) moved
163 to syntax part
164 */
165
166 typedef GLubyte *production;
167
168
169 /**
170 * This is the text describing the rules to parse the grammar
171 */
172 LONGSTRING static char arb_grammar_text[] =
173 #include "arbprogram_syn.h"
174 ;
175
176 /**
177 * These should match up with the values defined in arbprogram.syn
178 */
179
180 /*
181 Changes:
182 - changed and merged V_* and F_* opcode values to OP_*.
183 - added GL_ARB_fragment_program_shadow specific tokens (michal)
184 */
185 #define REVISION 0x0a
186
187 /* program type */
188 #define FRAGMENT_PROGRAM 0x01
189 #define VERTEX_PROGRAM 0x02
190
191 /* program section */
192 #define OPTION 0x01
193 #define INSTRUCTION 0x02
194 #define DECLARATION 0x03
195 #define END 0x04
196
197 /* GL_ARB_fragment_program option */
198 #define ARB_PRECISION_HINT_FASTEST 0x00
199 #define ARB_PRECISION_HINT_NICEST 0x01
200 #define ARB_FOG_EXP 0x02
201 #define ARB_FOG_EXP2 0x03
202 #define ARB_FOG_LINEAR 0x04
203
204 /* GL_ARB_vertex_program option */
205 #define ARB_POSITION_INVARIANT 0x05
206
207 /* GL_ARB_fragment_program_shadow option */
208 #define ARB_FRAGMENT_PROGRAM_SHADOW 0x06
209
210 /* GL_ARB_draw_buffers option */
211 #define ARB_DRAW_BUFFERS 0x07
212
213 /* GL_MESA_texture_array option */
214 #define MESA_TEXTURE_ARRAY 0x08
215
216 /* GL_ARB_fragment_program instruction class */
217 #define OP_ALU_INST 0x00
218 #define OP_TEX_INST 0x01
219
220 /* GL_ARB_vertex_program instruction class */
221 /* OP_ALU_INST */
222
223 /* GL_ARB_fragment_program instruction type */
224 #define OP_ALU_VECTOR 0x00
225 #define OP_ALU_SCALAR 0x01
226 #define OP_ALU_BINSC 0x02
227 #define OP_ALU_BIN 0x03
228 #define OP_ALU_TRI 0x04
229 #define OP_ALU_SWZ 0x05
230 #define OP_TEX_SAMPLE 0x06
231 #define OP_TEX_KIL 0x07
232
233 /* GL_ARB_vertex_program instruction type */
234 #define OP_ALU_ARL 0x08
235 /* OP_ALU_VECTOR */
236 /* OP_ALU_SCALAR */
237 /* OP_ALU_BINSC */
238 /* OP_ALU_BIN */
239 /* OP_ALU_TRI */
240 /* OP_ALU_SWZ */
241
242 /* GL_ARB_fragment_program instruction code */
243 #define OP_ABS 0x00
244 #define OP_ABS_SAT 0x1B
245 #define OP_FLR 0x09
246 #define OP_FLR_SAT 0x26
247 #define OP_FRC 0x0A
248 #define OP_FRC_SAT 0x27
249 #define OP_LIT 0x0C
250 #define OP_LIT_SAT 0x2A
251 #define OP_MOV 0x11
252 #define OP_MOV_SAT 0x30
253 #define OP_COS 0x1F
254 #define OP_COS_SAT 0x20
255 #define OP_EX2 0x07
256 #define OP_EX2_SAT 0x25
257 #define OP_LG2 0x0B
258 #define OP_LG2_SAT 0x29
259 #define OP_RCP 0x14
260 #define OP_RCP_SAT 0x33
261 #define OP_RSQ 0x15
262 #define OP_RSQ_SAT 0x34
263 #define OP_SIN 0x38
264 #define OP_SIN_SAT 0x39
265 #define OP_SCS 0x35
266 #define OP_SCS_SAT 0x36
267 #define OP_POW 0x13
268 #define OP_POW_SAT 0x32
269 #define OP_ADD 0x01
270 #define OP_ADD_SAT 0x1C
271 #define OP_DP3 0x03
272 #define OP_DP3_SAT 0x21
273 #define OP_DP4 0x04
274 #define OP_DP4_SAT 0x22
275 #define OP_DPH 0x05
276 #define OP_DPH_SAT 0x23
277 #define OP_DST 0x06
278 #define OP_DST_SAT 0x24
279 #define OP_MAX 0x0F
280 #define OP_MAX_SAT 0x2E
281 #define OP_MIN 0x10
282 #define OP_MIN_SAT 0x2F
283 #define OP_MUL 0x12
284 #define OP_MUL_SAT 0x31
285 #define OP_SGE 0x16
286 #define OP_SGE_SAT 0x37
287 #define OP_SLT 0x17
288 #define OP_SLT_SAT 0x3A
289 #define OP_SUB 0x18
290 #define OP_SUB_SAT 0x3B
291 #define OP_XPD 0x1A
292 #define OP_XPD_SAT 0x43
293 #define OP_CMP 0x1D
294 #define OP_CMP_SAT 0x1E
295 #define OP_LRP 0x2B
296 #define OP_LRP_SAT 0x2C
297 #define OP_MAD 0x0E
298 #define OP_MAD_SAT 0x2D
299 #define OP_SWZ 0x19
300 #define OP_SWZ_SAT 0x3C
301 #define OP_TEX 0x3D
302 #define OP_TEX_SAT 0x3E
303 #define OP_TXB 0x3F
304 #define OP_TXB_SAT 0x40
305 #define OP_TXP 0x41
306 #define OP_TXP_SAT 0x42
307 #define OP_KIL 0x28
308
309 /* GL_ARB_vertex_program instruction code */
310 #define OP_ARL 0x02
311 /* OP_ABS */
312 /* OP_FLR */
313 /* OP_FRC */
314 /* OP_LIT */
315 /* OP_MOV */
316 /* OP_EX2 */
317 #define OP_EXP 0x08
318 /* OP_LG2 */
319 #define OP_LOG 0x0D
320 /* OP_RCP */
321 /* OP_RSQ */
322 /* OP_POW */
323 /* OP_ADD */
324 /* OP_DP3 */
325 /* OP_DP4 */
326 /* OP_DPH */
327 /* OP_DST */
328 /* OP_MAX */
329 /* OP_MIN */
330 /* OP_MUL */
331 /* OP_SGE */
332 /* OP_SLT */
333 /* OP_SUB */
334 /* OP_XPD */
335 /* OP_MAD */
336 /* OP_SWZ */
337
338 /* fragment attribute binding */
339 #define FRAGMENT_ATTRIB_COLOR 0x01
340 #define FRAGMENT_ATTRIB_TEXCOORD 0x02
341 #define FRAGMENT_ATTRIB_FOGCOORD 0x03
342 #define FRAGMENT_ATTRIB_POSITION 0x04
343
344 /* vertex attribute binding */
345 #define VERTEX_ATTRIB_POSITION 0x01
346 #define VERTEX_ATTRIB_WEIGHT 0x02
347 #define VERTEX_ATTRIB_NORMAL 0x03
348 #define VERTEX_ATTRIB_COLOR 0x04
349 #define VERTEX_ATTRIB_FOGCOORD 0x05
350 #define VERTEX_ATTRIB_TEXCOORD 0x06
351 #define VERTEX_ATTRIB_MATRIXINDEX 0x07
352 #define VERTEX_ATTRIB_GENERIC 0x08
353
354 /* fragment result binding */
355 #define FRAGMENT_RESULT_COLOR 0x01
356 #define FRAGMENT_RESULT_DEPTH 0x02
357
358 /* vertex result binding */
359 #define VERTEX_RESULT_POSITION 0x01
360 #define VERTEX_RESULT_COLOR 0x02
361 #define VERTEX_RESULT_FOGCOORD 0x03
362 #define VERTEX_RESULT_POINTSIZE 0x04
363 #define VERTEX_RESULT_TEXCOORD 0x05
364
365 /* texture target */
366 #define TEXTARGET_1D 0x01
367 #define TEXTARGET_2D 0x02
368 #define TEXTARGET_3D 0x03
369 #define TEXTARGET_RECT 0x04
370 #define TEXTARGET_CUBE 0x05
371 /* GL_ARB_fragment_program_shadow */
372 #define TEXTARGET_SHADOW1D 0x06
373 #define TEXTARGET_SHADOW2D 0x07
374 #define TEXTARGET_SHADOWRECT 0x08
375 /* GL_MESA_texture_array */
376 #define TEXTARGET_1D_ARRAY 0x09
377 #define TEXTARGET_2D_ARRAY 0x0a
378 #define TEXTARGET_SHADOW1D_ARRAY 0x0b
379 #define TEXTARGET_SHADOW2D_ARRAY 0x0c
380
381 /* face type */
382 #define FACE_FRONT 0x00
383 #define FACE_BACK 0x01
384
385 /* color type */
386 #define COLOR_PRIMARY 0x00
387 #define COLOR_SECONDARY 0x01
388
389 /* component */
390 #define COMPONENT_X 0x00
391 #define COMPONENT_Y 0x01
392 #define COMPONENT_Z 0x02
393 #define COMPONENT_W 0x03
394 #define COMPONENT_0 0x04
395 #define COMPONENT_1 0x05
396
397 /* array index type */
398 #define ARRAY_INDEX_ABSOLUTE 0x00
399 #define ARRAY_INDEX_RELATIVE 0x01
400
401 /* matrix name */
402 #define MATRIX_MODELVIEW 0x01
403 #define MATRIX_PROJECTION 0x02
404 #define MATRIX_MVP 0x03
405 #define MATRIX_TEXTURE 0x04
406 #define MATRIX_PALETTE 0x05
407 #define MATRIX_PROGRAM 0x06
408
409 /* matrix modifier */
410 #define MATRIX_MODIFIER_IDENTITY 0x00
411 #define MATRIX_MODIFIER_INVERSE 0x01
412 #define MATRIX_MODIFIER_TRANSPOSE 0x02
413 #define MATRIX_MODIFIER_INVTRANS 0x03
414
415 /* constant type */
416 #define CONSTANT_SCALAR 0x01
417 #define CONSTANT_VECTOR 0x02
418
419 /* program param type */
420 #define PROGRAM_PARAM_ENV 0x01
421 #define PROGRAM_PARAM_LOCAL 0x02
422
423 /* register type */
424 #define REGISTER_ATTRIB 0x01
425 #define REGISTER_PARAM 0x02
426 #define REGISTER_RESULT 0x03
427 #define REGISTER_ESTABLISHED_NAME 0x04
428
429 /* param binding */
430 #define PARAM_NULL 0x00
431 #define PARAM_ARRAY_ELEMENT 0x01
432 #define PARAM_STATE_ELEMENT 0x02
433 #define PARAM_PROGRAM_ELEMENT 0x03
434 #define PARAM_PROGRAM_ELEMENTS 0x04
435 #define PARAM_CONSTANT 0x05
436
437 /* param state property */
438 #define STATE_MATERIAL_PARSER 0x01
439 #define STATE_LIGHT_PARSER 0x02
440 #define STATE_LIGHT_MODEL 0x03
441 #define STATE_LIGHT_PROD 0x04
442 #define STATE_FOG 0x05
443 #define STATE_MATRIX_ROWS 0x06
444 /* GL_ARB_fragment_program */
445 #define STATE_TEX_ENV 0x07
446 #define STATE_DEPTH 0x08
447 /* GL_ARB_vertex_program */
448 #define STATE_TEX_GEN 0x09
449 #define STATE_CLIP_PLANE 0x0A
450 #define STATE_POINT 0x0B
451
452 /* state material property */
453 #define MATERIAL_AMBIENT 0x01
454 #define MATERIAL_DIFFUSE 0x02
455 #define MATERIAL_SPECULAR 0x03
456 #define MATERIAL_EMISSION 0x04
457 #define MATERIAL_SHININESS 0x05
458
459 /* state light property */
460 #define LIGHT_AMBIENT 0x01
461 #define LIGHT_DIFFUSE 0x02
462 #define LIGHT_SPECULAR 0x03
463 #define LIGHT_POSITION 0x04
464 #define LIGHT_ATTENUATION 0x05
465 #define LIGHT_HALF 0x06
466 #define LIGHT_SPOT_DIRECTION 0x07
467
468 /* state light model property */
469 #define LIGHT_MODEL_AMBIENT 0x01
470 #define LIGHT_MODEL_SCENECOLOR 0x02
471
472 /* state light product property */
473 #define LIGHT_PROD_AMBIENT 0x01
474 #define LIGHT_PROD_DIFFUSE 0x02
475 #define LIGHT_PROD_SPECULAR 0x03
476
477 /* state texture environment property */
478 #define TEX_ENV_COLOR 0x01
479
480 /* state texture generation coord property */
481 #define TEX_GEN_EYE 0x01
482 #define TEX_GEN_OBJECT 0x02
483
484 /* state fog property */
485 #define FOG_COLOR 0x01
486 #define FOG_PARAMS 0x02
487
488 /* state depth property */
489 #define DEPTH_RANGE 0x01
490
491 /* state point parameters property */
492 #define POINT_SIZE 0x01
493 #define POINT_ATTENUATION 0x02
494
495 /* declaration */
496 #define ATTRIB 0x01
497 #define PARAM 0x02
498 #define TEMP 0x03
499 #define OUTPUT 0x04
500 #define ALIAS 0x05
501 /* GL_ARB_vertex_program */
502 #define ADDRESS 0x06
503
504 /*-----------------------------------------------------------------------
505 * From here on down is the semantic checking portion
506 *
507 */
508
509 /**
510 * Variable Table Handling functions
511 */
512 typedef enum
513 {
514 vt_none,
515 vt_address,
516 vt_attrib,
517 vt_param,
518 vt_temp,
519 vt_output,
520 vt_alias
521 } var_type;
522
523
524 /**
525 * Setting an explicit field for each of the binding properties is a bit
526 * wasteful of space, but it should be much more clear when reading later on..
527 */
528 struct var_cache
529 {
530 const GLubyte *name; /* don't free() - no need */
531 var_type type;
532 GLuint address_binding; /* The index of the address register we should
533 * be using */
534 GLuint attrib_binding; /* For type vt_attrib, see nvfragprog.h for values */
535 GLuint attrib_is_generic; /* If the attrib was specified through a generic
536 * vertex attrib */
537 GLuint temp_binding; /* The index of the temp register we are to use */
538 GLuint output_binding; /* Output/result register number */
539 struct var_cache *alias_binding; /* For type vt_alias, points to the var_cache entry
540 * that this is aliased to */
541 GLuint param_binding_type; /* {PROGRAM_STATE_VAR, PROGRAM_LOCAL_PARAM,
542 * PROGRAM_ENV_PARAM} */
543 GLuint param_binding_begin; /* This is the offset into the program_parameter_list where
544 * the tokens representing our bound state (or constants)
545 * start */
546 GLuint param_binding_length; /* This is how many entries in the the program_parameter_list
547 * we take up with our state tokens or constants. Note that
548 * this is _not_ the same as the number of param registers
549 * we eventually use */
550 struct var_cache *next;
551 };
552
553 static GLvoid
554 var_cache_create (struct var_cache **va)
555 {
556 *va = (struct var_cache *) _mesa_malloc (sizeof (struct var_cache));
557 if (*va) {
558 (**va).name = NULL;
559 (**va).type = vt_none;
560 (**va).attrib_binding = ~0;
561 (**va).attrib_is_generic = 0;
562 (**va).temp_binding = ~0;
563 (**va).output_binding = ~0;
564 (**va).param_binding_type = ~0;
565 (**va).param_binding_begin = ~0;
566 (**va).param_binding_length = ~0;
567 (**va).alias_binding = NULL;
568 (**va).next = NULL;
569 }
570 }
571
572 static GLvoid
573 var_cache_destroy (struct var_cache **va)
574 {
575 if (*va) {
576 var_cache_destroy (&(**va).next);
577 _mesa_free (*va);
578 *va = NULL;
579 }
580 }
581
582 static GLvoid
583 var_cache_append (struct var_cache **va, struct var_cache *nv)
584 {
585 if (*va)
586 var_cache_append (&(**va).next, nv);
587 else
588 *va = nv;
589 }
590
591 static struct var_cache *
592 var_cache_find (struct var_cache *va, const GLubyte * name)
593 {
594 /*struct var_cache *first = va;*/
595
596 while (va) {
597 if (!_mesa_strcmp ( (const char*) name, (const char*) va->name)) {
598 if (va->type == vt_alias)
599 return va->alias_binding;
600 return va;
601 }
602
603 va = va->next;
604 }
605
606 return NULL;
607 }
608
609
610
611 /**
612 * Called when an error is detected while parsing/compiling a program.
613 * Sets the ctx->Program.ErrorString field to descript and records a
614 * GL_INVALID_OPERATION error.
615 * \param position position of error in program string
616 * \param descrip verbose error description
617 */
618 static void
619 program_error(GLcontext *ctx, GLint position, const char *descrip)
620 {
621 if (descrip) {
622 const char *prefix = "glProgramString(", *suffix = ")";
623 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
624 _mesa_strlen(prefix) +
625 _mesa_strlen(suffix) + 1);
626 if (str) {
627 _mesa_sprintf(str, "%s%s%s", prefix, descrip, suffix);
628 _mesa_error(ctx, GL_INVALID_OPERATION, str);
629 _mesa_free(str);
630 }
631 }
632 _mesa_set_program_error(ctx, position, descrip);
633 }
634
635
636 /**
637 * As above, but with an extra string parameter for more info.
638 */
639 static void
640 program_error2(GLcontext *ctx, GLint position, const char *descrip,
641 const char *var)
642 {
643 if (descrip) {
644 const char *prefix = "glProgramString(", *suffix = ")";
645 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
646 _mesa_strlen(": ") +
647 _mesa_strlen(var) +
648 _mesa_strlen(prefix) +
649 _mesa_strlen(suffix) + 1);
650 if (str) {
651 _mesa_sprintf(str, "%s%s: %s%s", prefix, descrip, var, suffix);
652 _mesa_error(ctx, GL_INVALID_OPERATION, str);
653 _mesa_free(str);
654 }
655 }
656 {
657 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
658 _mesa_strlen(": ") +
659 _mesa_strlen(var) + 1);
660 if (str) {
661 _mesa_sprintf(str, "%s: %s", descrip, var);
662 }
663 _mesa_set_program_error(ctx, position, str);
664 if (str) {
665 _mesa_free(str);
666 }
667 }
668 }
669
670
671
672 /**
673 * constructs an integer from 4 GLubytes in LE format
674 */
675 static GLuint
676 parse_position (const GLubyte ** inst)
677 {
678 GLuint value;
679
680 value = (GLuint) (*(*inst)++);
681 value += (GLuint) (*(*inst)++) * 0x100;
682 value += (GLuint) (*(*inst)++) * 0x10000;
683 value += (GLuint) (*(*inst)++) * 0x1000000;
684
685 return value;
686 }
687
688 /**
689 * This will, given a string, lookup the string as a variable name in the
690 * var cache. If the name is found, the var cache node corresponding to the
691 * var name is returned. If it is not found, a new entry is allocated
692 *
693 * \param I Points into the binary array where the string identifier begins
694 * \param found 1 if the string was found in the var_cache, 0 if it was allocated
695 * \return The location on the var_cache corresponding the the string starting at I
696 */
697 static struct var_cache *
698 parse_string (const GLubyte ** inst, struct var_cache **vc_head,
699 struct arb_program *Program, GLuint * found)
700 {
701 const GLubyte *i = *inst;
702 struct var_cache *va = NULL;
703 (void) Program;
704
705 *inst += _mesa_strlen ((char *) i) + 1;
706
707 va = var_cache_find (*vc_head, i);
708
709 if (va) {
710 *found = 1;
711 return va;
712 }
713
714 *found = 0;
715 var_cache_create (&va);
716 va->name = (const GLubyte *) i;
717
718 var_cache_append (vc_head, va);
719
720 return va;
721 }
722
723 static char *
724 parse_string_without_adding (const GLubyte ** inst, struct arb_program *Program)
725 {
726 const GLubyte *i = *inst;
727 (void) Program;
728
729 *inst += _mesa_strlen ((char *) i) + 1;
730
731 return (char *) i;
732 }
733
734 /**
735 * \return -1 if we parse '-', return 1 otherwise
736 */
737 static GLint
738 parse_sign (const GLubyte ** inst)
739 {
740 /*return *(*inst)++ != '+'; */
741
742 if (**inst == '-') {
743 (*inst)++;
744 return -1;
745 }
746 else if (**inst == '+') {
747 (*inst)++;
748 return 1;
749 }
750
751 return 1;
752 }
753
754 /**
755 * parses and returns signed integer
756 */
757 static GLint
758 parse_integer (const GLubyte ** inst, struct arb_program *Program)
759 {
760 GLint sign;
761 GLint value;
762
763 /* check if *inst points to '+' or '-'
764 * if yes, grab the sign and increment *inst
765 */
766 sign = parse_sign (inst);
767
768 /* now check if *inst points to 0
769 * if yes, increment the *inst and return the default value
770 */
771 if (**inst == 0) {
772 (*inst)++;
773 return 0;
774 }
775
776 /* parse the integer as you normally would do it */
777 value = _mesa_atoi (parse_string_without_adding (inst, Program));
778
779 /* now, after terminating 0 there is a position
780 * to parse it - parse_position()
781 */
782 Program->Position = parse_position (inst);
783
784 return value * sign;
785 }
786
787 /**
788 Accumulate this string of digits, and return them as
789 a large integer represented in floating point (for range).
790 If scale is not NULL, also accumulates a power-of-ten
791 integer scale factor that represents the number of digits
792 in the string.
793 */
794 static GLdouble
795 parse_float_string(const GLubyte ** inst, struct arb_program *Program, GLdouble *scale)
796 {
797 GLdouble value = 0.0;
798 GLdouble oscale = 1.0;
799
800 if (**inst == 0) { /* this string of digits is empty-- do nothing */
801 (*inst)++;
802 }
803 else { /* nonempty string-- parse out the digits */
804 while (**inst >= '0' && **inst <= '9') {
805 GLubyte digit = *((*inst)++);
806 value = value * 10.0 + (GLint) (digit - '0');
807 oscale *= 10.0;
808 }
809 assert(**inst == 0); /* integer string should end with 0 */
810 (*inst)++; /* skip over terminating 0 */
811 Program->Position = parse_position(inst); /* skip position (from integer) */
812 }
813 if (scale)
814 *scale = oscale;
815 return value;
816 }
817
818 /**
819 Parse an unsigned floating-point number from this stream of tokenized
820 characters. Example floating-point formats supported:
821 12.34
822 12
823 0.34
824 .34
825 12.34e-4
826 */
827 static GLfloat
828 parse_float (const GLubyte ** inst, struct arb_program *Program)
829 {
830 GLint exponent;
831 GLdouble whole, fraction, fracScale = 1.0;
832
833 whole = parse_float_string(inst, Program, 0);
834 fraction = parse_float_string(inst, Program, &fracScale);
835
836 /* Parse signed exponent */
837 exponent = parse_integer(inst, Program); /* This is the exponent */
838
839 /* Assemble parts of floating-point number: */
840 return (GLfloat) ((whole + fraction / fracScale) *
841 _mesa_pow(10.0, (GLfloat) exponent));
842 }
843
844
845 /**
846 */
847 static GLfloat
848 parse_signed_float (const GLubyte ** inst, struct arb_program *Program)
849 {
850 GLint sign = parse_sign (inst);
851 GLfloat value = parse_float (inst, Program);
852 return value * sign;
853 }
854
855 /**
856 * This picks out a constant value from the parsed array. The constant vector is r
857 * returned in the *values array, which should be of length 4.
858 *
859 * \param values - The 4 component vector with the constant value in it
860 */
861 static GLvoid
862 parse_constant (const GLubyte ** inst, GLfloat *values, struct arb_program *Program,
863 GLboolean use)
864 {
865 GLuint components, i;
866
867
868 switch (*(*inst)++) {
869 case CONSTANT_SCALAR:
870 if (use == GL_TRUE) {
871 values[0] =
872 values[1] =
873 values[2] = values[3] = parse_float (inst, Program);
874 }
875 else {
876 values[0] =
877 values[1] =
878 values[2] = values[3] = parse_signed_float (inst, Program);
879 }
880
881 break;
882 case CONSTANT_VECTOR:
883 values[0] = values[1] = values[2] = 0;
884 values[3] = 1;
885 components = *(*inst)++;
886 for (i = 0; i < components; i++) {
887 values[i] = parse_signed_float (inst, Program);
888 }
889 break;
890 }
891 }
892
893 /**
894 * \param offset The offset from the address register that we should
895 * address
896 *
897 * \return 0 on sucess, 1 on error
898 */
899 static GLuint
900 parse_relative_offset(GLcontext *ctx, const GLubyte **inst,
901 struct arb_program *Program, GLint *offset)
902 {
903 (void) ctx;
904 *offset = parse_integer(inst, Program);
905 return 0;
906 }
907
908 /**
909 * \param color 0 if color type is primary, 1 if color type is secondary
910 * \return 0 on sucess, 1 on error
911 */
912 static GLuint
913 parse_color_type (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
914 GLint * color)
915 {
916 (void) ctx; (void) Program;
917 *color = *(*inst)++ != COLOR_PRIMARY;
918 return 0;
919 }
920
921 /**
922 * Get an integer corresponding to a generic vertex attribute.
923 *
924 * \return 0 on sucess, 1 on error
925 */
926 static GLuint
927 parse_generic_attrib_num(GLcontext *ctx, const GLubyte ** inst,
928 struct arb_program *Program, GLuint *attrib)
929 {
930 GLint i = parse_integer(inst, Program);
931
932 if ((i < 0) || (i >= MAX_VERTEX_PROGRAM_ATTRIBS))
933 {
934 program_error(ctx, Program->Position,
935 "Invalid generic vertex attribute index");
936 return 1;
937 }
938
939 *attrib = (GLuint) i;
940
941 return 0;
942 }
943
944
945 /**
946 * \param color The index of the color buffer to write into
947 * \return 0 on sucess, 1 on error
948 */
949 static GLuint
950 parse_output_color_num (GLcontext * ctx, const GLubyte ** inst,
951 struct arb_program *Program, GLuint * color)
952 {
953 GLint i = parse_integer (inst, Program);
954
955 if ((i < 0) || (i >= (int)ctx->Const.MaxDrawBuffers)) {
956 program_error(ctx, Program->Position, "Invalid draw buffer index");
957 return 1;
958 }
959
960 *color = (GLuint) i;
961 return 0;
962 }
963
964
965 /**
966 * \param coord The texture unit index
967 * \return 0 on sucess, 1 on error
968 */
969 static GLuint
970 parse_texcoord_num (GLcontext * ctx, const GLubyte ** inst,
971 struct arb_program *Program, GLuint * coord)
972 {
973 GLint i = parse_integer (inst, Program);
974
975 if ((i < 0) || (i >= (int)ctx->Const.MaxTextureUnits)) {
976 program_error(ctx, Program->Position, "Invalid texture unit index");
977 return 1;
978 }
979
980 *coord = (GLuint) i;
981 return 0;
982 }
983
984 /**
985 * \param coord The weight index
986 * \return 0 on sucess, 1 on error
987 */
988 static GLuint
989 parse_weight_num (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
990 GLint * coord)
991 {
992 *coord = parse_integer (inst, Program);
993
994 if ((*coord < 0) || (*coord >= 1)) {
995 program_error(ctx, Program->Position, "Invalid weight index");
996 return 1;
997 }
998
999 return 0;
1000 }
1001
1002 /**
1003 * \param coord The clip plane index
1004 * \return 0 on sucess, 1 on error
1005 */
1006 static GLuint
1007 parse_clipplane_num (GLcontext * ctx, const GLubyte ** inst,
1008 struct arb_program *Program, GLint * coord)
1009 {
1010 *coord = parse_integer (inst, Program);
1011
1012 if ((*coord < 0) || (*coord >= (GLint) ctx->Const.MaxClipPlanes)) {
1013 program_error(ctx, Program->Position, "Invalid clip plane index");
1014 return 1;
1015 }
1016
1017 return 0;
1018 }
1019
1020
1021 /**
1022 * \return 0 on front face, 1 on back face
1023 */
1024 static GLuint
1025 parse_face_type (const GLubyte ** inst)
1026 {
1027 switch (*(*inst)++) {
1028 case FACE_FRONT:
1029 return 0;
1030
1031 case FACE_BACK:
1032 return 1;
1033 }
1034 return 0;
1035 }
1036
1037
1038 /**
1039 * Given a matrix and a modifier token on the binary array, return tokens
1040 * that _mesa_fetch_state() [program.c] can understand.
1041 *
1042 * \param matrix - the matrix we are talking about
1043 * \param matrix_idx - the index of the matrix we have (for texture & program matricies)
1044 * \param matrix_modifier - the matrix modifier (trans, inv, etc)
1045 * \return 0 on sucess, 1 on failure
1046 */
1047 static GLuint
1048 parse_matrix (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
1049 GLint * matrix, GLint * matrix_idx, GLint * matrix_modifier)
1050 {
1051 GLubyte mat = *(*inst)++;
1052
1053 *matrix_idx = 0;
1054
1055 switch (mat) {
1056 case MATRIX_MODELVIEW:
1057 *matrix = STATE_MODELVIEW_MATRIX;
1058 *matrix_idx = parse_integer (inst, Program);
1059 if (*matrix_idx > 0) {
1060 program_error(ctx, Program->Position,
1061 "ARB_vertex_blend not supported");
1062 return 1;
1063 }
1064 break;
1065
1066 case MATRIX_PROJECTION:
1067 *matrix = STATE_PROJECTION_MATRIX;
1068 break;
1069
1070 case MATRIX_MVP:
1071 *matrix = STATE_MVP_MATRIX;
1072 break;
1073
1074 case MATRIX_TEXTURE:
1075 *matrix = STATE_TEXTURE_MATRIX;
1076 *matrix_idx = parse_integer (inst, Program);
1077 if (*matrix_idx >= (GLint) ctx->Const.MaxTextureUnits) {
1078 program_error(ctx, Program->Position, "Invalid Texture Unit");
1079 /* bad *matrix_id */
1080 return 1;
1081 }
1082 break;
1083
1084 /* This is not currently supported (ARB_matrix_palette) */
1085 case MATRIX_PALETTE:
1086 *matrix_idx = parse_integer (inst, Program);
1087 program_error(ctx, Program->Position,
1088 "ARB_matrix_palette not supported");
1089 return 1;
1090 break;
1091
1092 case MATRIX_PROGRAM:
1093 *matrix = STATE_PROGRAM_MATRIX;
1094 *matrix_idx = parse_integer (inst, Program);
1095 if (*matrix_idx >= (GLint) ctx->Const.MaxProgramMatrices) {
1096 program_error(ctx, Program->Position, "Invalid Program Matrix");
1097 /* bad *matrix_idx */
1098 return 1;
1099 }
1100 break;
1101 }
1102
1103 switch (*(*inst)++) {
1104 case MATRIX_MODIFIER_IDENTITY:
1105 *matrix_modifier = 0;
1106 break;
1107 case MATRIX_MODIFIER_INVERSE:
1108 *matrix_modifier = STATE_MATRIX_INVERSE;
1109 break;
1110 case MATRIX_MODIFIER_TRANSPOSE:
1111 *matrix_modifier = STATE_MATRIX_TRANSPOSE;
1112 break;
1113 case MATRIX_MODIFIER_INVTRANS:
1114 *matrix_modifier = STATE_MATRIX_INVTRANS;
1115 break;
1116 }
1117
1118 return 0;
1119 }
1120
1121
1122 /**
1123 * This parses a state string (rather, the binary version of it) into
1124 * a 6-token sequence as described in _mesa_fetch_state() [program.c]
1125 *
1126 * \param inst - the start in the binary arry to start working from
1127 * \param state_tokens - the storage for the 6-token state description
1128 * \return - 0 on sucess, 1 on error
1129 */
1130 static GLuint
1131 parse_state_single_item (GLcontext * ctx, const GLubyte ** inst,
1132 struct arb_program *Program,
1133 gl_state_index state_tokens[STATE_LENGTH])
1134 {
1135 switch (*(*inst)++) {
1136 case STATE_MATERIAL_PARSER:
1137 state_tokens[0] = STATE_MATERIAL;
1138 state_tokens[1] = parse_face_type (inst);
1139 switch (*(*inst)++) {
1140 case MATERIAL_AMBIENT:
1141 state_tokens[2] = STATE_AMBIENT;
1142 break;
1143 case MATERIAL_DIFFUSE:
1144 state_tokens[2] = STATE_DIFFUSE;
1145 break;
1146 case MATERIAL_SPECULAR:
1147 state_tokens[2] = STATE_SPECULAR;
1148 break;
1149 case MATERIAL_EMISSION:
1150 state_tokens[2] = STATE_EMISSION;
1151 break;
1152 case MATERIAL_SHININESS:
1153 state_tokens[2] = STATE_SHININESS;
1154 break;
1155 }
1156 break;
1157
1158 case STATE_LIGHT_PARSER:
1159 state_tokens[0] = STATE_LIGHT;
1160 state_tokens[1] = parse_integer (inst, Program);
1161
1162 /* Check the value of state_tokens[1] against the # of lights */
1163 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1164 program_error(ctx, Program->Position, "Invalid Light Number");
1165 /* bad state_tokens[1] */
1166 return 1;
1167 }
1168
1169 switch (*(*inst)++) {
1170 case LIGHT_AMBIENT:
1171 state_tokens[2] = STATE_AMBIENT;
1172 break;
1173 case LIGHT_DIFFUSE:
1174 state_tokens[2] = STATE_DIFFUSE;
1175 break;
1176 case LIGHT_SPECULAR:
1177 state_tokens[2] = STATE_SPECULAR;
1178 break;
1179 case LIGHT_POSITION:
1180 state_tokens[2] = STATE_POSITION;
1181 break;
1182 case LIGHT_ATTENUATION:
1183 state_tokens[2] = STATE_ATTENUATION;
1184 break;
1185 case LIGHT_HALF:
1186 state_tokens[2] = STATE_HALF_VECTOR;
1187 break;
1188 case LIGHT_SPOT_DIRECTION:
1189 state_tokens[2] = STATE_SPOT_DIRECTION;
1190 break;
1191 }
1192 break;
1193
1194 case STATE_LIGHT_MODEL:
1195 switch (*(*inst)++) {
1196 case LIGHT_MODEL_AMBIENT:
1197 state_tokens[0] = STATE_LIGHTMODEL_AMBIENT;
1198 break;
1199 case LIGHT_MODEL_SCENECOLOR:
1200 state_tokens[0] = STATE_LIGHTMODEL_SCENECOLOR;
1201 state_tokens[1] = parse_face_type (inst);
1202 break;
1203 }
1204 break;
1205
1206 case STATE_LIGHT_PROD:
1207 state_tokens[0] = STATE_LIGHTPROD;
1208 state_tokens[1] = parse_integer (inst, Program);
1209
1210 /* Check the value of state_tokens[1] against the # of lights */
1211 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1212 program_error(ctx, Program->Position, "Invalid Light Number");
1213 /* bad state_tokens[1] */
1214 return 1;
1215 }
1216
1217 state_tokens[2] = parse_face_type (inst);
1218 switch (*(*inst)++) {
1219 case LIGHT_PROD_AMBIENT:
1220 state_tokens[3] = STATE_AMBIENT;
1221 break;
1222 case LIGHT_PROD_DIFFUSE:
1223 state_tokens[3] = STATE_DIFFUSE;
1224 break;
1225 case LIGHT_PROD_SPECULAR:
1226 state_tokens[3] = STATE_SPECULAR;
1227 break;
1228 }
1229 break;
1230
1231
1232 case STATE_FOG:
1233 switch (*(*inst)++) {
1234 case FOG_COLOR:
1235 state_tokens[0] = STATE_FOG_COLOR;
1236 break;
1237 case FOG_PARAMS:
1238 state_tokens[0] = STATE_FOG_PARAMS;
1239 break;
1240 }
1241 break;
1242
1243 case STATE_TEX_ENV:
1244 state_tokens[1] = parse_integer (inst, Program);
1245 switch (*(*inst)++) {
1246 case TEX_ENV_COLOR:
1247 state_tokens[0] = STATE_TEXENV_COLOR;
1248 break;
1249 }
1250 break;
1251
1252 case STATE_TEX_GEN:
1253 {
1254 GLuint type, coord;
1255
1256 state_tokens[0] = STATE_TEXGEN;
1257 /*state_tokens[1] = parse_integer (inst, Program);*/ /* Texture Unit */
1258
1259 if (parse_texcoord_num (ctx, inst, Program, &coord))
1260 return 1;
1261 state_tokens[1] = coord;
1262
1263 /* EYE or OBJECT */
1264 type = *(*inst)++;
1265
1266 /* 0 - s, 1 - t, 2 - r, 3 - q */
1267 coord = *(*inst)++;
1268
1269 if (type == TEX_GEN_EYE) {
1270 switch (coord) {
1271 case COMPONENT_X:
1272 state_tokens[2] = STATE_TEXGEN_EYE_S;
1273 break;
1274 case COMPONENT_Y:
1275 state_tokens[2] = STATE_TEXGEN_EYE_T;
1276 break;
1277 case COMPONENT_Z:
1278 state_tokens[2] = STATE_TEXGEN_EYE_R;
1279 break;
1280 case COMPONENT_W:
1281 state_tokens[2] = STATE_TEXGEN_EYE_Q;
1282 break;
1283 default:
1284 _mesa_problem(ctx, "bad texgen component in "
1285 "parse_state_single_item()");
1286 }
1287 }
1288 else {
1289 switch (coord) {
1290 case COMPONENT_X:
1291 state_tokens[2] = STATE_TEXGEN_OBJECT_S;
1292 break;
1293 case COMPONENT_Y:
1294 state_tokens[2] = STATE_TEXGEN_OBJECT_T;
1295 break;
1296 case COMPONENT_Z:
1297 state_tokens[2] = STATE_TEXGEN_OBJECT_R;
1298 break;
1299 case COMPONENT_W:
1300 state_tokens[2] = STATE_TEXGEN_OBJECT_Q;
1301 break;
1302 default:
1303 _mesa_problem(ctx, "bad texgen component in "
1304 "parse_state_single_item()");
1305 }
1306 }
1307 }
1308 break;
1309
1310 case STATE_DEPTH:
1311 switch (*(*inst)++) {
1312 case DEPTH_RANGE:
1313 state_tokens[0] = STATE_DEPTH_RANGE;
1314 break;
1315 }
1316 break;
1317
1318 case STATE_CLIP_PLANE:
1319 state_tokens[0] = STATE_CLIPPLANE;
1320 state_tokens[1] = parse_integer (inst, Program);
1321 if (parse_clipplane_num (ctx, inst, Program,
1322 (GLint *) &state_tokens[1]))
1323 return 1;
1324 break;
1325
1326 case STATE_POINT:
1327 switch (*(*inst)++) {
1328 case POINT_SIZE:
1329 state_tokens[0] = STATE_POINT_SIZE;
1330 break;
1331
1332 case POINT_ATTENUATION:
1333 state_tokens[0] = STATE_POINT_ATTENUATION;
1334 break;
1335 }
1336 break;
1337
1338 /* XXX: I think this is the correct format for a matrix row */
1339 case STATE_MATRIX_ROWS:
1340 if (parse_matrix(ctx, inst, Program,
1341 (GLint *) &state_tokens[0],
1342 (GLint *) &state_tokens[1],
1343 (GLint *) &state_tokens[4]))
1344 return 1;
1345
1346 state_tokens[2] = parse_integer (inst, Program); /* The first row to grab */
1347
1348 if ((**inst) != 0) { /* Either the last row, 0 */
1349 state_tokens[3] = parse_integer (inst, Program);
1350 if (state_tokens[3] < state_tokens[2]) {
1351 program_error(ctx, Program->Position,
1352 "Second matrix index less than the first");
1353 /* state_tokens[4] vs. state_tokens[3] */
1354 return 1;
1355 }
1356 }
1357 else {
1358 state_tokens[3] = state_tokens[2];
1359 (*inst)++;
1360 }
1361 break;
1362 }
1363
1364 return 0;
1365 }
1366
1367 /**
1368 * This parses a state string (rather, the binary version of it) into
1369 * a 6-token similar for the state fetching code in program.c
1370 *
1371 * One might ask, why fetch these parameters into just like you fetch
1372 * state when they are already stored in other places?
1373 *
1374 * Because of array offsets -> We can stick env/local parameters in the
1375 * middle of a parameter array and then index someplace into the array
1376 * when we execute.
1377 *
1378 * One optimization might be to only do this for the cases where the
1379 * env/local parameters end up inside of an array, and leave the
1380 * single parameters (or arrays of pure env/local pareameters) in their
1381 * respective register files.
1382 *
1383 * For ENV parameters, the format is:
1384 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1385 * state_tokens[1] = STATE_ENV
1386 * state_tokens[2] = the parameter index
1387 *
1388 * for LOCAL parameters, the format is:
1389 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1390 * state_tokens[1] = STATE_LOCAL
1391 * state_tokens[2] = the parameter index
1392 *
1393 * \param inst - the start in the binary arry to start working from
1394 * \param state_tokens - the storage for the 6-token state description
1395 * \return - 0 on sucess, 1 on failure
1396 */
1397 static GLuint
1398 parse_program_single_item (GLcontext * ctx, const GLubyte ** inst,
1399 struct arb_program *Program,
1400 gl_state_index state_tokens[STATE_LENGTH])
1401 {
1402 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1403 state_tokens[0] = STATE_FRAGMENT_PROGRAM;
1404 else
1405 state_tokens[0] = STATE_VERTEX_PROGRAM;
1406
1407
1408 switch (*(*inst)++) {
1409 case PROGRAM_PARAM_ENV:
1410 state_tokens[1] = STATE_ENV;
1411 state_tokens[2] = parse_integer (inst, Program);
1412
1413 /* Check state_tokens[2] against the number of ENV parameters available */
1414 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1415 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxEnvParams))
1416 ||
1417 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1418 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxEnvParams))) {
1419 program_error(ctx, Program->Position,
1420 "Invalid Program Env Parameter");
1421 /* bad state_tokens[2] */
1422 return 1;
1423 }
1424
1425 break;
1426
1427 case PROGRAM_PARAM_LOCAL:
1428 state_tokens[1] = STATE_LOCAL;
1429 state_tokens[2] = parse_integer (inst, Program);
1430
1431 /* Check state_tokens[2] against the number of LOCAL parameters available */
1432 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1433 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxLocalParams))
1434 ||
1435 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1436 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxLocalParams))) {
1437 program_error(ctx, Program->Position,
1438 "Invalid Program Local Parameter");
1439 /* bad state_tokens[2] */
1440 return 1;
1441 }
1442 break;
1443 }
1444
1445 return 0;
1446 }
1447
1448 /**
1449 * For ARB_vertex_program, programs are not allowed to use both an explicit
1450 * vertex attribute and a generic vertex attribute corresponding to the same
1451 * state. See section 2.14.3.1 of the GL_ARB_vertex_program spec.
1452 *
1453 * This will walk our var_cache and make sure that nobody does anything fishy.
1454 *
1455 * \return 0 on sucess, 1 on error
1456 */
1457 static GLuint
1458 generic_attrib_check(struct var_cache *vc_head)
1459 {
1460 int a;
1461 struct var_cache *curr;
1462 GLboolean explicitAttrib[MAX_VERTEX_PROGRAM_ATTRIBS],
1463 genericAttrib[MAX_VERTEX_PROGRAM_ATTRIBS];
1464
1465 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1466 explicitAttrib[a] = GL_FALSE;
1467 genericAttrib[a] = GL_FALSE;
1468 }
1469
1470 curr = vc_head;
1471 while (curr) {
1472 if (curr->type == vt_attrib) {
1473 if (curr->attrib_is_generic)
1474 genericAttrib[ curr->attrib_binding ] = GL_TRUE;
1475 else
1476 explicitAttrib[ curr->attrib_binding ] = GL_TRUE;
1477 }
1478
1479 curr = curr->next;
1480 }
1481
1482 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1483 if ((explicitAttrib[a]) && (genericAttrib[a]))
1484 return 1;
1485 }
1486
1487 return 0;
1488 }
1489
1490 /**
1491 * This will handle the binding side of an ATTRIB var declaration
1492 *
1493 * \param inputReg returns the input register index, one of the
1494 * VERT_ATTRIB_* or FRAG_ATTRIB_* values.
1495 * \return returns 0 on success, 1 on error
1496 */
1497 static GLuint
1498 parse_attrib_binding(GLcontext * ctx, const GLubyte ** inst,
1499 struct arb_program *Program,
1500 GLuint *inputReg, GLuint *is_generic)
1501 {
1502 GLint err = 0;
1503
1504 *is_generic = 0;
1505
1506 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1507 switch (*(*inst)++) {
1508 case FRAGMENT_ATTRIB_COLOR:
1509 {
1510 GLint coord;
1511 err = parse_color_type (ctx, inst, Program, &coord);
1512 *inputReg = FRAG_ATTRIB_COL0 + coord;
1513 }
1514 break;
1515 case FRAGMENT_ATTRIB_TEXCOORD:
1516 {
1517 GLuint texcoord = 0;
1518 err = parse_texcoord_num (ctx, inst, Program, &texcoord);
1519 *inputReg = FRAG_ATTRIB_TEX0 + texcoord;
1520 }
1521 break;
1522 case FRAGMENT_ATTRIB_FOGCOORD:
1523 *inputReg = FRAG_ATTRIB_FOGC;
1524 break;
1525 case FRAGMENT_ATTRIB_POSITION:
1526 *inputReg = FRAG_ATTRIB_WPOS;
1527 break;
1528 default:
1529 err = 1;
1530 break;
1531 }
1532 }
1533 else {
1534 switch (*(*inst)++) {
1535 case VERTEX_ATTRIB_POSITION:
1536 *inputReg = VERT_ATTRIB_POS;
1537 break;
1538
1539 case VERTEX_ATTRIB_WEIGHT:
1540 {
1541 GLint weight;
1542 err = parse_weight_num (ctx, inst, Program, &weight);
1543 *inputReg = VERT_ATTRIB_WEIGHT;
1544 #if 1
1545 /* hack for Warcraft (see bug 8060) */
1546 _mesa_warning(ctx, "Application error: vertex program uses 'vertex.weight' but GL_ARB_vertex_blend not supported.");
1547 break;
1548 #else
1549 program_error(ctx, Program->Position,
1550 "ARB_vertex_blend not supported");
1551 return 1;
1552 #endif
1553 }
1554
1555 case VERTEX_ATTRIB_NORMAL:
1556 *inputReg = VERT_ATTRIB_NORMAL;
1557 break;
1558
1559 case VERTEX_ATTRIB_COLOR:
1560 {
1561 GLint color;
1562 err = parse_color_type (ctx, inst, Program, &color);
1563 if (color) {
1564 *inputReg = VERT_ATTRIB_COLOR1;
1565 }
1566 else {
1567 *inputReg = VERT_ATTRIB_COLOR0;
1568 }
1569 }
1570 break;
1571
1572 case VERTEX_ATTRIB_FOGCOORD:
1573 *inputReg = VERT_ATTRIB_FOG;
1574 break;
1575
1576 case VERTEX_ATTRIB_TEXCOORD:
1577 {
1578 GLuint unit = 0;
1579 err = parse_texcoord_num (ctx, inst, Program, &unit);
1580 *inputReg = VERT_ATTRIB_TEX0 + unit;
1581 }
1582 break;
1583
1584 case VERTEX_ATTRIB_MATRIXINDEX:
1585 /* Not supported at this time */
1586 {
1587 const char *msg = "ARB_palette_matrix not supported";
1588 parse_integer (inst, Program);
1589 program_error(ctx, Program->Position, msg);
1590 }
1591 return 1;
1592
1593 case VERTEX_ATTRIB_GENERIC:
1594 {
1595 GLuint attrib;
1596 err = parse_generic_attrib_num(ctx, inst, Program, &attrib);
1597 if (!err) {
1598 *is_generic = 1;
1599 /* Add VERT_ATTRIB_GENERIC0 here because ARB_vertex_program's
1600 * attributes do not alias the conventional vertex
1601 * attributes.
1602 */
1603 if (attrib > 0)
1604 *inputReg = attrib + VERT_ATTRIB_GENERIC0;
1605 else
1606 *inputReg = 0;
1607 }
1608 }
1609 break;
1610
1611 default:
1612 err = 1;
1613 break;
1614 }
1615 }
1616
1617 if (err) {
1618 program_error(ctx, Program->Position, "Bad attribute binding");
1619 }
1620
1621 return err;
1622 }
1623
1624
1625 /**
1626 * This translates between a binary token for an output variable type
1627 * and the mesa token for the same thing.
1628 *
1629 * \param inst The parsed tokens
1630 * \param outputReg Returned index/number of the output register,
1631 * one of the VERT_RESULT_* or FRAG_RESULT_* values.
1632 */
1633 static GLuint
1634 parse_result_binding(GLcontext *ctx, const GLubyte **inst,
1635 GLuint *outputReg, struct arb_program *Program)
1636 {
1637 const GLubyte token = *(*inst)++;
1638
1639 switch (token) {
1640 case FRAGMENT_RESULT_COLOR:
1641 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1642 GLuint out_color;
1643
1644 /* This gets result of the color buffer we're supposed to
1645 * draw into. This pertains to GL_ARB_draw_buffers.
1646 */
1647 parse_output_color_num(ctx, inst, Program, &out_color);
1648 ASSERT(out_color < MAX_DRAW_BUFFERS);
1649 *outputReg = FRAG_RESULT_COLR;
1650 }
1651 else {
1652 /* for vtx programs, this is VERTEX_RESULT_POSITION */
1653 *outputReg = VERT_RESULT_HPOS;
1654 }
1655 break;
1656
1657 case FRAGMENT_RESULT_DEPTH:
1658 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1659 /* for frag programs, this is FRAGMENT_RESULT_DEPTH */
1660 *outputReg = FRAG_RESULT_DEPR;
1661 }
1662 else {
1663 /* for vtx programs, this is VERTEX_RESULT_COLOR */
1664 GLint color_type;
1665 GLuint face_type = parse_face_type(inst);
1666 GLint err = parse_color_type(ctx, inst, Program, &color_type);
1667 if (err)
1668 return 1;
1669
1670 if (face_type) {
1671 /* back face */
1672 if (color_type) {
1673 *outputReg = VERT_RESULT_BFC1; /* secondary color */
1674 }
1675 else {
1676 *outputReg = VERT_RESULT_BFC0; /* primary color */
1677 }
1678 }
1679 else {
1680 /* front face */
1681 if (color_type) {
1682 *outputReg = VERT_RESULT_COL1; /* secondary color */
1683 }
1684 /* primary color */
1685 else {
1686 *outputReg = VERT_RESULT_COL0; /* primary color */
1687 }
1688 }
1689 }
1690 break;
1691
1692 case VERTEX_RESULT_FOGCOORD:
1693 *outputReg = VERT_RESULT_FOGC;
1694 break;
1695
1696 case VERTEX_RESULT_POINTSIZE:
1697 *outputReg = VERT_RESULT_PSIZ;
1698 break;
1699
1700 case VERTEX_RESULT_TEXCOORD:
1701 {
1702 GLuint unit;
1703 if (parse_texcoord_num (ctx, inst, Program, &unit))
1704 return 1;
1705 *outputReg = VERT_RESULT_TEX0 + unit;
1706 }
1707 break;
1708 }
1709
1710 Program->Base.OutputsWritten |= (1 << *outputReg);
1711
1712 return 0;
1713 }
1714
1715
1716 /**
1717 * This handles the declaration of ATTRIB variables
1718 *
1719 * XXX: Still needs
1720 * parse_vert_attrib_binding(), or something like that
1721 *
1722 * \return 0 on sucess, 1 on error
1723 */
1724 static GLint
1725 parse_attrib (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1726 struct arb_program *Program)
1727 {
1728 GLuint found;
1729 struct var_cache *attrib_var;
1730
1731 attrib_var = parse_string (inst, vc_head, Program, &found);
1732 Program->Position = parse_position (inst);
1733 if (found) {
1734 program_error2(ctx, Program->Position,
1735 "Duplicate variable declaration",
1736 (char *) attrib_var->name);
1737 return 1;
1738 }
1739
1740 attrib_var->type = vt_attrib;
1741
1742 if (parse_attrib_binding(ctx, inst, Program, &attrib_var->attrib_binding,
1743 &attrib_var->attrib_is_generic))
1744 return 1;
1745
1746 if (generic_attrib_check(*vc_head)) {
1747 program_error(ctx, Program->Position,
1748 "Cannot use both a generic vertex attribute "
1749 "and a specific attribute of the same type");
1750 return 1;
1751 }
1752
1753 Program->Base.NumAttributes++;
1754 return 0;
1755 }
1756
1757 /**
1758 * \param use -- TRUE if we're called when declaring implicit parameters,
1759 * FALSE if we're declaraing variables. This has to do with
1760 * if we get a signed or unsigned float for scalar constants
1761 */
1762 static GLuint
1763 parse_param_elements (GLcontext * ctx, const GLubyte ** inst,
1764 struct var_cache *param_var,
1765 struct arb_program *Program, GLboolean use)
1766 {
1767 GLint idx;
1768 GLuint err = 0;
1769 gl_state_index state_tokens[STATE_LENGTH] = {0, 0, 0, 0, 0};
1770 GLfloat const_values[4];
1771
1772 switch (*(*inst)++) {
1773 case PARAM_STATE_ELEMENT:
1774 if (parse_state_single_item (ctx, inst, Program, state_tokens))
1775 return 1;
1776
1777 /* If we adding STATE_MATRIX that has multiple rows, we need to
1778 * unroll it and call _mesa_add_state_reference() for each row
1779 */
1780 if ((state_tokens[0] == STATE_MODELVIEW_MATRIX ||
1781 state_tokens[0] == STATE_PROJECTION_MATRIX ||
1782 state_tokens[0] == STATE_MVP_MATRIX ||
1783 state_tokens[0] == STATE_TEXTURE_MATRIX ||
1784 state_tokens[0] == STATE_PROGRAM_MATRIX)
1785 && (state_tokens[2] != state_tokens[3])) {
1786 GLint row;
1787 const GLint first_row = state_tokens[2];
1788 const GLint last_row = state_tokens[3];
1789
1790 for (row = first_row; row <= last_row; row++) {
1791 state_tokens[2] = state_tokens[3] = row;
1792
1793 idx = _mesa_add_state_reference(Program->Base.Parameters,
1794 state_tokens);
1795 if (param_var->param_binding_begin == ~0U)
1796 param_var->param_binding_begin = idx;
1797 param_var->param_binding_length++;
1798 Program->Base.NumParameters++;
1799 }
1800 }
1801 else {
1802 idx = _mesa_add_state_reference(Program->Base.Parameters,
1803 state_tokens);
1804 if (param_var->param_binding_begin == ~0U)
1805 param_var->param_binding_begin = idx;
1806 param_var->param_binding_length++;
1807 Program->Base.NumParameters++;
1808 }
1809 break;
1810
1811 case PARAM_PROGRAM_ELEMENT:
1812 if (parse_program_single_item (ctx, inst, Program, state_tokens))
1813 return 1;
1814 idx = _mesa_add_state_reference (Program->Base.Parameters, state_tokens);
1815 if (param_var->param_binding_begin == ~0U)
1816 param_var->param_binding_begin = idx;
1817 param_var->param_binding_length++;
1818 Program->Base.NumParameters++;
1819
1820 /* Check if there is more: 0 -> we're done, else its an integer */
1821 if (**inst) {
1822 GLuint out_of_range, new_idx;
1823 GLuint start_idx = state_tokens[2] + 1;
1824 GLuint end_idx = parse_integer (inst, Program);
1825
1826 out_of_range = 0;
1827 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1828 if (((state_tokens[1] == STATE_ENV)
1829 && (end_idx >= ctx->Const.FragmentProgram.MaxEnvParams))
1830 || ((state_tokens[1] == STATE_LOCAL)
1831 && (end_idx >=
1832 ctx->Const.FragmentProgram.MaxLocalParams)))
1833 out_of_range = 1;
1834 }
1835 else {
1836 if (((state_tokens[1] == STATE_ENV)
1837 && (end_idx >= ctx->Const.VertexProgram.MaxEnvParams))
1838 || ((state_tokens[1] == STATE_LOCAL)
1839 && (end_idx >=
1840 ctx->Const.VertexProgram.MaxLocalParams)))
1841 out_of_range = 1;
1842 }
1843 if (out_of_range) {
1844 program_error(ctx, Program->Position,
1845 "Invalid Program Parameter"); /*end_idx*/
1846 return 1;
1847 }
1848
1849 for (new_idx = start_idx; new_idx <= end_idx; new_idx++) {
1850 state_tokens[2] = new_idx;
1851 idx = _mesa_add_state_reference(Program->Base.Parameters,
1852 state_tokens);
1853 param_var->param_binding_length++;
1854 Program->Base.NumParameters++;
1855 }
1856 }
1857 else {
1858 (*inst)++;
1859 }
1860 break;
1861
1862 case PARAM_CONSTANT:
1863 /* parsing something like {1.0, 2.0, 3.0, 4.0} */
1864 parse_constant (inst, const_values, Program, use);
1865 idx = _mesa_add_named_constant(Program->Base.Parameters,
1866 (char *) param_var->name,
1867 const_values, 4);
1868 if (param_var->param_binding_begin == ~0U)
1869 param_var->param_binding_begin = idx;
1870 param_var->param_binding_type = PROGRAM_CONSTANT;
1871 param_var->param_binding_length++;
1872 Program->Base.NumParameters++;
1873 break;
1874
1875 default:
1876 program_error(ctx, Program->Position,
1877 "Unexpected token (in parse_param_elements())");
1878 return 1;
1879 }
1880
1881 /* Make sure we haven't blown past our parameter limits */
1882 if (((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1883 (Program->Base.NumParameters >=
1884 ctx->Const.VertexProgram.MaxLocalParams))
1885 || ((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1886 && (Program->Base.NumParameters >=
1887 ctx->Const.FragmentProgram.MaxLocalParams))) {
1888 program_error(ctx, Program->Position, "Too many parameter variables");
1889 return 1;
1890 }
1891
1892 return err;
1893 }
1894
1895
1896 /**
1897 * This picks out PARAM program parameter bindings.
1898 *
1899 * XXX: This needs to be stressed & tested
1900 *
1901 * \return 0 on sucess, 1 on error
1902 */
1903 static GLuint
1904 parse_param (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1905 struct arb_program *Program)
1906 {
1907 GLuint found, err;
1908 GLint specified_length;
1909 struct var_cache *param_var;
1910
1911 err = 0;
1912 param_var = parse_string (inst, vc_head, Program, &found);
1913 Program->Position = parse_position (inst);
1914
1915 if (found) {
1916 program_error2(ctx, Program->Position,
1917 "Duplicate variable declaration",
1918 (char *) param_var->name);
1919 return 1;
1920 }
1921
1922 specified_length = parse_integer (inst, Program);
1923
1924 if (specified_length < 0) {
1925 program_error(ctx, Program->Position, "Negative parameter array length");
1926 return 1;
1927 }
1928
1929 param_var->type = vt_param;
1930 param_var->param_binding_length = 0;
1931
1932 /* Right now, everything is shoved into the main state register file.
1933 *
1934 * In the future, it would be nice to leave things ENV/LOCAL params
1935 * in their respective register files, if possible
1936 */
1937 param_var->param_binding_type = PROGRAM_STATE_VAR;
1938
1939 /* Remember to:
1940 * * - add each guy to the parameter list
1941 * * - increment the param_var->param_binding_len
1942 * * - store the param_var->param_binding_begin for the first one
1943 * * - compare the actual len to the specified len at the end
1944 */
1945 while (**inst != PARAM_NULL) {
1946 if (parse_param_elements (ctx, inst, param_var, Program, GL_FALSE))
1947 return 1;
1948 }
1949
1950 /* Test array length here! */
1951 if (specified_length) {
1952 if (specified_length != (int)param_var->param_binding_length) {
1953 program_error(ctx, Program->Position,
1954 "Declared parameter array length does not match parameter list");
1955 }
1956 }
1957
1958 (*inst)++;
1959
1960 return 0;
1961 }
1962
1963 /**
1964 *
1965 */
1966 static GLuint
1967 parse_param_use (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1968 struct arb_program *Program, struct var_cache **new_var)
1969 {
1970 struct var_cache *param_var;
1971
1972 /* First, insert a dummy entry into the var_cache */
1973 var_cache_create (&param_var);
1974 param_var->name = (const GLubyte *) " ";
1975 param_var->type = vt_param;
1976
1977 param_var->param_binding_length = 0;
1978 /* Don't fill in binding_begin; We use the default value of -1
1979 * to tell if its already initialized, elsewhere.
1980 *
1981 * param_var->param_binding_begin = 0;
1982 */
1983 param_var->param_binding_type = PROGRAM_STATE_VAR;
1984
1985 var_cache_append (vc_head, param_var);
1986
1987 /* Then fill it with juicy parameter goodness */
1988 if (parse_param_elements (ctx, inst, param_var, Program, GL_TRUE))
1989 return 1;
1990
1991 *new_var = param_var;
1992
1993 return 0;
1994 }
1995
1996
1997 /**
1998 * This handles the declaration of TEMP variables
1999 *
2000 * \return 0 on sucess, 1 on error
2001 */
2002 static GLuint
2003 parse_temp (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2004 struct arb_program *Program)
2005 {
2006 GLuint found;
2007 struct var_cache *temp_var;
2008
2009 while (**inst != 0) {
2010 temp_var = parse_string (inst, vc_head, Program, &found);
2011 Program->Position = parse_position (inst);
2012 if (found) {
2013 program_error2(ctx, Program->Position,
2014 "Duplicate variable declaration",
2015 (char *) temp_var->name);
2016 return 1;
2017 }
2018
2019 temp_var->type = vt_temp;
2020
2021 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
2022 (Program->Base.NumTemporaries >=
2023 ctx->Const.FragmentProgram.MaxTemps))
2024 || ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
2025 && (Program->Base.NumTemporaries >=
2026 ctx->Const.VertexProgram.MaxTemps))) {
2027 program_error(ctx, Program->Position,
2028 "Too many TEMP variables declared");
2029 return 1;
2030 }
2031
2032 temp_var->temp_binding = Program->Base.NumTemporaries;
2033 Program->Base.NumTemporaries++;
2034 }
2035 (*inst)++;
2036
2037 return 0;
2038 }
2039
2040 /**
2041 * This handles variables of the OUTPUT variety
2042 *
2043 * \return 0 on sucess, 1 on error
2044 */
2045 static GLuint
2046 parse_output (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2047 struct arb_program *Program)
2048 {
2049 GLuint found;
2050 struct var_cache *output_var;
2051 GLuint err;
2052
2053 output_var = parse_string (inst, vc_head, Program, &found);
2054 Program->Position = parse_position (inst);
2055 if (found) {
2056 program_error2(ctx, Program->Position,
2057 "Duplicate variable declaration",
2058 (char *) output_var->name);
2059 return 1;
2060 }
2061
2062 output_var->type = vt_output;
2063
2064 err = parse_result_binding(ctx, inst, &output_var->output_binding, Program);
2065 return err;
2066 }
2067
2068 /**
2069 * This handles variables of the ALIAS kind
2070 *
2071 * \return 0 on sucess, 1 on error
2072 */
2073 static GLuint
2074 parse_alias (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2075 struct arb_program *Program)
2076 {
2077 GLuint found;
2078 struct var_cache *temp_var;
2079
2080 temp_var = parse_string (inst, vc_head, Program, &found);
2081 Program->Position = parse_position (inst);
2082
2083 if (found) {
2084 program_error2(ctx, Program->Position,
2085 "Duplicate variable declaration",
2086 (char *) temp_var->name);
2087 return 1;
2088 }
2089
2090 temp_var->type = vt_alias;
2091 temp_var->alias_binding = parse_string (inst, vc_head, Program, &found);
2092 Program->Position = parse_position (inst);
2093
2094 if (!found)
2095 {
2096 program_error2(ctx, Program->Position,
2097 "Undefined alias value",
2098 (char *) temp_var->alias_binding->name);
2099 return 1;
2100 }
2101
2102 return 0;
2103 }
2104
2105 /**
2106 * This handles variables of the ADDRESS kind
2107 *
2108 * \return 0 on sucess, 1 on error
2109 */
2110 static GLuint
2111 parse_address (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2112 struct arb_program *Program)
2113 {
2114 GLuint found;
2115 struct var_cache *temp_var;
2116
2117 while (**inst != 0) {
2118 temp_var = parse_string (inst, vc_head, Program, &found);
2119 Program->Position = parse_position (inst);
2120 if (found) {
2121 program_error2(ctx, Program->Position,
2122 "Duplicate variable declaration",
2123 (char *) temp_var->name);
2124 return 1;
2125 }
2126
2127 temp_var->type = vt_address;
2128
2129 if (Program->Base.NumAddressRegs >=
2130 ctx->Const.VertexProgram.MaxAddressRegs) {
2131 const char *msg = "Too many ADDRESS variables declared";
2132 program_error(ctx, Program->Position, msg);
2133 return 1;
2134 }
2135
2136 temp_var->address_binding = Program->Base.NumAddressRegs;
2137 Program->Base.NumAddressRegs++;
2138 }
2139 (*inst)++;
2140
2141 return 0;
2142 }
2143
2144 /**
2145 * Parse a program declaration
2146 *
2147 * \return 0 on sucess, 1 on error
2148 */
2149 static GLint
2150 parse_declaration (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2151 struct arb_program *Program)
2152 {
2153 GLint err = 0;
2154
2155 switch (*(*inst)++) {
2156 case ADDRESS:
2157 err = parse_address (ctx, inst, vc_head, Program);
2158 break;
2159
2160 case ALIAS:
2161 err = parse_alias (ctx, inst, vc_head, Program);
2162 break;
2163
2164 case ATTRIB:
2165 err = parse_attrib (ctx, inst, vc_head, Program);
2166 break;
2167
2168 case OUTPUT:
2169 err = parse_output (ctx, inst, vc_head, Program);
2170 break;
2171
2172 case PARAM:
2173 err = parse_param (ctx, inst, vc_head, Program);
2174 break;
2175
2176 case TEMP:
2177 err = parse_temp (ctx, inst, vc_head, Program);
2178 break;
2179 }
2180
2181 return err;
2182 }
2183
2184 /**
2185 * Handle the parsing out of a masked destination register, either for a
2186 * vertex or fragment program.
2187 *
2188 * If we are a vertex program, make sure we don't write to
2189 * result.position if we have specified that the program is
2190 * position invariant
2191 *
2192 * \param File - The register file we write to
2193 * \param Index - The register index we write to
2194 * \param WriteMask - The mask controlling which components we write (1->write)
2195 *
2196 * \return 0 on sucess, 1 on error
2197 */
2198 static GLuint
2199 parse_masked_dst_reg (GLcontext * ctx, const GLubyte ** inst,
2200 struct var_cache **vc_head, struct arb_program *Program,
2201 enum register_file *File, GLuint *Index, GLint *WriteMask)
2202 {
2203 GLuint tmp, result;
2204 struct var_cache *dst;
2205
2206 /* We either have a result register specified, or a
2207 * variable that may or may not be writable
2208 */
2209 switch (*(*inst)++) {
2210 case REGISTER_RESULT:
2211 if (parse_result_binding(ctx, inst, Index, Program))
2212 return 1;
2213 *File = PROGRAM_OUTPUT;
2214 break;
2215
2216 case REGISTER_ESTABLISHED_NAME:
2217 dst = parse_string (inst, vc_head, Program, &result);
2218 Program->Position = parse_position (inst);
2219
2220 /* If the name has never been added to our symbol table, we're hosed */
2221 if (!result) {
2222 program_error(ctx, Program->Position, "0: Undefined variable");
2223 return 1;
2224 }
2225
2226 switch (dst->type) {
2227 case vt_output:
2228 *File = PROGRAM_OUTPUT;
2229 *Index = dst->output_binding;
2230 break;
2231
2232 case vt_temp:
2233 *File = PROGRAM_TEMPORARY;
2234 *Index = dst->temp_binding;
2235 break;
2236
2237 /* If the var type is not vt_output or vt_temp, no go */
2238 default:
2239 program_error(ctx, Program->Position,
2240 "Destination register is read only");
2241 return 1;
2242 }
2243 break;
2244
2245 default:
2246 program_error(ctx, Program->Position,
2247 "Unexpected opcode in parse_masked_dst_reg()");
2248 return 1;
2249 }
2250
2251
2252 /* Position invariance test */
2253 /* This test is done now in syntax portion - when position invariance OPTION
2254 is specified, "result.position" rule is disabled so there is no way
2255 to write the position
2256 */
2257 /*if ((Program->HintPositionInvariant) && (*File == PROGRAM_OUTPUT) &&
2258 (*Index == 0)) {
2259 program_error(ctx, Program->Position,
2260 "Vertex program specified position invariance and wrote vertex position");
2261 }*/
2262
2263 /* And then the mask.
2264 * w,a -> bit 0
2265 * z,b -> bit 1
2266 * y,g -> bit 2
2267 * x,r -> bit 3
2268 *
2269 * ==> Need to reverse the order of bits for this!
2270 */
2271 tmp = (GLint) *(*inst)++;
2272 *WriteMask = (((tmp>>3) & 0x1) |
2273 ((tmp>>1) & 0x2) |
2274 ((tmp<<1) & 0x4) |
2275 ((tmp<<3) & 0x8));
2276
2277 return 0;
2278 }
2279
2280
2281 /**
2282 * Handle the parsing of a address register
2283 *
2284 * \param Index - The register index we write to
2285 *
2286 * \return 0 on sucess, 1 on error
2287 */
2288 static GLuint
2289 parse_address_reg (GLcontext * ctx, const GLubyte ** inst,
2290 struct var_cache **vc_head,
2291 struct arb_program *Program, GLint * Index)
2292 {
2293 struct var_cache *dst;
2294 GLuint result;
2295
2296 *Index = 0; /* XXX */
2297
2298 dst = parse_string (inst, vc_head, Program, &result);
2299 Program->Position = parse_position (inst);
2300
2301 /* If the name has never been added to our symbol table, we're hosed */
2302 if (!result) {
2303 program_error(ctx, Program->Position, "Undefined variable");
2304 return 1;
2305 }
2306
2307 if (dst->type != vt_address) {
2308 program_error(ctx, Program->Position, "Variable is not of type ADDRESS");
2309 return 1;
2310 }
2311
2312 return 0;
2313 }
2314
2315 #if 0 /* unused */
2316 /**
2317 * Handle the parsing out of a masked address register
2318 *
2319 * \param Index - The register index we write to
2320 * \param WriteMask - The mask controlling which components we write (1->write)
2321 *
2322 * \return 0 on sucess, 1 on error
2323 */
2324 static GLuint
2325 parse_masked_address_reg (GLcontext * ctx, const GLubyte ** inst,
2326 struct var_cache **vc_head,
2327 struct arb_program *Program, GLint * Index,
2328 GLboolean * WriteMask)
2329 {
2330 if (parse_address_reg (ctx, inst, vc_head, Program, Index))
2331 return 1;
2332
2333 /* This should be 0x8 */
2334 (*inst)++;
2335
2336 /* Writemask of .x is implied */
2337 WriteMask[0] = 1;
2338 WriteMask[1] = WriteMask[2] = WriteMask[3] = 0;
2339
2340 return 0;
2341 }
2342 #endif
2343
2344 /**
2345 * Parse out a swizzle mask.
2346 *
2347 * Basically convert COMPONENT_X/Y/Z/W to SWIZZLE_X/Y/Z/W
2348 *
2349 * The len parameter allows us to grab 4 components for a vector
2350 * swizzle, or just 1 component for a scalar src register selection
2351 */
2352 static void
2353 parse_swizzle_mask(const GLubyte ** inst, GLubyte *swizzle, GLint len)
2354 {
2355 GLint i;
2356
2357 for (i = 0; i < 4; i++)
2358 swizzle[i] = i;
2359
2360 for (i = 0; i < len; i++) {
2361 switch (*(*inst)++) {
2362 case COMPONENT_X:
2363 swizzle[i] = SWIZZLE_X;
2364 break;
2365 case COMPONENT_Y:
2366 swizzle[i] = SWIZZLE_Y;
2367 break;
2368 case COMPONENT_Z:
2369 swizzle[i] = SWIZZLE_Z;
2370 break;
2371 case COMPONENT_W:
2372 swizzle[i] = SWIZZLE_W;
2373 break;
2374 default:
2375 _mesa_problem(NULL, "bad component in parse_swizzle_mask()");
2376 return;
2377 }
2378 }
2379 }
2380
2381
2382 /**
2383 * Parse an extended swizzle mask which is a sequence of
2384 * four x/y/z/w/0/1 tokens.
2385 * \return swizzle four swizzle values
2386 * \return negateMask four element bitfield
2387 */
2388 static void
2389 parse_extended_swizzle_mask(const GLubyte **inst, GLubyte swizzle[4],
2390 GLubyte *negateMask)
2391 {
2392 GLint i;
2393
2394 *negateMask = 0x0;
2395 for (i = 0; i < 4; i++) {
2396 GLubyte swz;
2397 if (parse_sign(inst) == -1)
2398 *negateMask |= (1 << i);
2399
2400 swz = *(*inst)++;
2401
2402 switch (swz) {
2403 case COMPONENT_0:
2404 swizzle[i] = SWIZZLE_ZERO;
2405 break;
2406 case COMPONENT_1:
2407 swizzle[i] = SWIZZLE_ONE;
2408 break;
2409 case COMPONENT_X:
2410 swizzle[i] = SWIZZLE_X;
2411 break;
2412 case COMPONENT_Y:
2413 swizzle[i] = SWIZZLE_Y;
2414 break;
2415 case COMPONENT_Z:
2416 swizzle[i] = SWIZZLE_Z;
2417 break;
2418 case COMPONENT_W:
2419 swizzle[i] = SWIZZLE_W;
2420 break;
2421 default:
2422 _mesa_problem(NULL, "bad case in parse_extended_swizzle_mask()");
2423 return;
2424 }
2425 }
2426 }
2427
2428
2429 static GLuint
2430 parse_src_reg (GLcontext * ctx, const GLubyte ** inst,
2431 struct var_cache **vc_head,
2432 struct arb_program *Program,
2433 enum register_file * File, GLint * Index,
2434 GLboolean *IsRelOffset )
2435 {
2436 struct var_cache *src;
2437 GLuint binding, is_generic, found;
2438 GLint offset;
2439
2440 *IsRelOffset = 0;
2441
2442 /* And the binding for the src */
2443 switch (*(*inst)++) {
2444 case REGISTER_ATTRIB:
2445 if (parse_attrib_binding
2446 (ctx, inst, Program, &binding, &is_generic))
2447 return 1;
2448 *File = PROGRAM_INPUT;
2449 *Index = binding;
2450
2451 /* We need to insert a dummy variable into the var_cache so we can
2452 * catch generic vertex attrib aliasing errors
2453 */
2454 var_cache_create(&src);
2455 src->type = vt_attrib;
2456 src->name = (const GLubyte *) "Dummy Attrib Variable";
2457 src->attrib_binding = binding;
2458 src->attrib_is_generic = is_generic;
2459 var_cache_append(vc_head, src);
2460 if (generic_attrib_check(*vc_head)) {
2461 program_error(ctx, Program->Position,
2462 "Cannot use both a generic vertex attribute "
2463 "and a specific attribute of the same type");
2464 return 1;
2465 }
2466 break;
2467
2468 case REGISTER_PARAM:
2469 switch (**inst) {
2470 case PARAM_ARRAY_ELEMENT:
2471 (*inst)++;
2472 src = parse_string (inst, vc_head, Program, &found);
2473 Program->Position = parse_position (inst);
2474
2475 if (!found) {
2476 program_error2(ctx, Program->Position,
2477 "Undefined variable",
2478 (char *) src->name);
2479 return 1;
2480 }
2481
2482 *File = (enum register_file) src->param_binding_type;
2483
2484 switch (*(*inst)++) {
2485 case ARRAY_INDEX_ABSOLUTE:
2486 offset = parse_integer (inst, Program);
2487
2488 if ((offset < 0)
2489 || (offset >= (int)src->param_binding_length)) {
2490 program_error(ctx, Program->Position,
2491 "Index out of range");
2492 /* offset, src->name */
2493 return 1;
2494 }
2495
2496 *Index = src->param_binding_begin + offset;
2497 break;
2498
2499 case ARRAY_INDEX_RELATIVE:
2500 {
2501 GLint addr_reg_idx, rel_off;
2502
2503 /* First, grab the address regiseter */
2504 if (parse_address_reg (ctx, inst, vc_head, Program, &addr_reg_idx))
2505 return 1;
2506
2507 /* And the .x */
2508 ((*inst)++);
2509 ((*inst)++);
2510 ((*inst)++);
2511 ((*inst)++);
2512
2513 /* Then the relative offset */
2514 if (parse_relative_offset(ctx, inst, Program, &rel_off)) return 1;
2515
2516 /* And store it properly */
2517 *Index = src->param_binding_begin + rel_off;
2518 *IsRelOffset = 1;
2519 }
2520 break;
2521 }
2522 break;
2523
2524 default:
2525 if (parse_param_use (ctx, inst, vc_head, Program, &src))
2526 return 1;
2527
2528 *File = (enum register_file) src->param_binding_type;
2529 *Index = src->param_binding_begin;
2530 break;
2531 }
2532 break;
2533
2534 case REGISTER_ESTABLISHED_NAME:
2535 src = parse_string (inst, vc_head, Program, &found);
2536 Program->Position = parse_position (inst);
2537
2538 /* If the name has never been added to our symbol table, we're hosed */
2539 if (!found) {
2540 program_error(ctx, Program->Position,
2541 "3: Undefined variable"); /* src->name */
2542 return 1;
2543 }
2544
2545 switch (src->type) {
2546 case vt_attrib:
2547 *File = PROGRAM_INPUT;
2548 *Index = src->attrib_binding;
2549 break;
2550
2551 /* XXX: We have to handle offsets someplace in here! -- or are those above? */
2552 case vt_param:
2553 *File = (enum register_file) src->param_binding_type;
2554 *Index = src->param_binding_begin;
2555 break;
2556
2557 case vt_temp:
2558 *File = PROGRAM_TEMPORARY;
2559 *Index = src->temp_binding;
2560 break;
2561
2562 /* If the var type is vt_output no go */
2563 default:
2564 program_error(ctx, Program->Position,
2565 "destination register is read only");
2566 /* bad src->name */
2567 return 1;
2568 }
2569 break;
2570
2571 default:
2572 program_error(ctx, Program->Position,
2573 "Unknown token in parse_src_reg");
2574 return 1;
2575 }
2576
2577 /* Add attributes to InputsRead only if they are used the program.
2578 * This avoids the handling of unused ATTRIB declarations in the drivers. */
2579 if (*File == PROGRAM_INPUT)
2580 Program->Base.InputsRead |= (1 << *Index);
2581
2582 return 0;
2583 }
2584
2585
2586 /**
2587 * Parse vertex/fragment program vector source register.
2588 */
2589 static GLuint
2590 parse_vector_src_reg(GLcontext *ctx, const GLubyte **inst,
2591 struct var_cache **vc_head,
2592 struct arb_program *program,
2593 struct prog_src_register *reg)
2594 {
2595 enum register_file file;
2596 GLint index;
2597 GLubyte negateMask;
2598 GLubyte swizzle[4];
2599 GLboolean isRelOffset;
2600
2601 /* Grab the sign */
2602 negateMask = (parse_sign (inst) == -1) ? NEGATE_XYZW : NEGATE_NONE;
2603
2604 /* And the src reg */
2605 if (parse_src_reg(ctx, inst, vc_head, program, &file, &index, &isRelOffset))
2606 return 1;
2607
2608 /* finally, the swizzle */
2609 parse_swizzle_mask(inst, swizzle, 4);
2610
2611 reg->File = file;
2612 reg->Index = index;
2613 reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2614 reg->NegateBase = negateMask;
2615 reg->RelAddr = isRelOffset;
2616 return 0;
2617 }
2618
2619
2620 /**
2621 * Parse vertex/fragment program scalar source register.
2622 */
2623 static GLuint
2624 parse_scalar_src_reg(GLcontext *ctx, const GLubyte **inst,
2625 struct var_cache **vc_head,
2626 struct arb_program *program,
2627 struct prog_src_register *reg)
2628 {
2629 enum register_file file;
2630 GLint index;
2631 GLubyte negateMask;
2632 GLubyte swizzle[4];
2633 GLboolean isRelOffset;
2634
2635 /* Grab the sign */
2636 negateMask = (parse_sign (inst) == -1) ? NEGATE_XYZW : NEGATE_NONE;
2637
2638 /* And the src reg */
2639 if (parse_src_reg(ctx, inst, vc_head, program, &file, &index, &isRelOffset))
2640 return 1;
2641
2642 /* finally, the swizzle */
2643 parse_swizzle_mask(inst, swizzle, 1);
2644
2645 reg->File = file;
2646 reg->Index = index;
2647 reg->Swizzle = (swizzle[0] << 0);
2648 reg->NegateBase = negateMask;
2649 reg->RelAddr = isRelOffset;
2650 return 0;
2651 }
2652
2653
2654 /**
2655 * Parse vertex/fragment program destination register.
2656 * \return 1 if error, 0 if no error.
2657 */
2658 static GLuint
2659 parse_dst_reg(GLcontext * ctx, const GLubyte ** inst,
2660 struct var_cache **vc_head, struct arb_program *program,
2661 struct prog_dst_register *reg )
2662 {
2663 GLint mask;
2664 GLuint idx;
2665 enum register_file file;
2666
2667 if (parse_masked_dst_reg (ctx, inst, vc_head, program, &file, &idx, &mask))
2668 return 1;
2669
2670 reg->File = file;
2671 reg->Index = idx;
2672 reg->WriteMask = mask;
2673 return 0;
2674 }
2675
2676
2677 /**
2678 * This is a big mother that handles getting opcodes into the instruction
2679 * and handling the src & dst registers for fragment program instructions
2680 * \return 1 if error, 0 if no error
2681 */
2682 static GLuint
2683 parse_fp_instruction (GLcontext * ctx, const GLubyte ** inst,
2684 struct var_cache **vc_head, struct arb_program *Program,
2685 struct prog_instruction *fp)
2686 {
2687 GLint a;
2688 GLuint texcoord;
2689 GLubyte instClass, type, code;
2690 GLboolean rel;
2691 GLuint shadow_tex = 0;
2692
2693 _mesa_init_instructions(fp, 1);
2694
2695 /* Record the position in the program string for debugging */
2696 fp->StringPos = Program->Position;
2697
2698 /* OP_ALU_INST or OP_TEX_INST */
2699 instClass = *(*inst)++;
2700
2701 /* OP_ALU_{VECTOR, SCALAR, BINSC, BIN, TRI, SWZ},
2702 * OP_TEX_{SAMPLE, KIL}
2703 */
2704 type = *(*inst)++;
2705
2706 /* The actual opcode name */
2707 code = *(*inst)++;
2708
2709 /* Increment the correct count */
2710 switch (instClass) {
2711 case OP_ALU_INST:
2712 Program->NumAluInstructions++;
2713 break;
2714 case OP_TEX_INST:
2715 Program->NumTexInstructions++;
2716 break;
2717 }
2718
2719 switch (type) {
2720 case OP_ALU_VECTOR:
2721 switch (code) {
2722 case OP_ABS_SAT:
2723 fp->SaturateMode = SATURATE_ZERO_ONE;
2724 case OP_ABS:
2725 fp->Opcode = OPCODE_ABS;
2726 break;
2727
2728 case OP_FLR_SAT:
2729 fp->SaturateMode = SATURATE_ZERO_ONE;
2730 case OP_FLR:
2731 fp->Opcode = OPCODE_FLR;
2732 break;
2733
2734 case OP_FRC_SAT:
2735 fp->SaturateMode = SATURATE_ZERO_ONE;
2736 case OP_FRC:
2737 fp->Opcode = OPCODE_FRC;
2738 break;
2739
2740 case OP_LIT_SAT:
2741 fp->SaturateMode = SATURATE_ZERO_ONE;
2742 case OP_LIT:
2743 fp->Opcode = OPCODE_LIT;
2744 break;
2745
2746 case OP_MOV_SAT:
2747 fp->SaturateMode = SATURATE_ZERO_ONE;
2748 case OP_MOV:
2749 fp->Opcode = OPCODE_MOV;
2750 break;
2751 }
2752
2753 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2754 return 1;
2755
2756 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2757 return 1;
2758 break;
2759
2760 case OP_ALU_SCALAR:
2761 switch (code) {
2762 case OP_COS_SAT:
2763 fp->SaturateMode = SATURATE_ZERO_ONE;
2764 case OP_COS:
2765 fp->Opcode = OPCODE_COS;
2766 break;
2767
2768 case OP_EX2_SAT:
2769 fp->SaturateMode = SATURATE_ZERO_ONE;
2770 case OP_EX2:
2771 fp->Opcode = OPCODE_EX2;
2772 break;
2773
2774 case OP_LG2_SAT:
2775 fp->SaturateMode = SATURATE_ZERO_ONE;
2776 case OP_LG2:
2777 fp->Opcode = OPCODE_LG2;
2778 break;
2779
2780 case OP_RCP_SAT:
2781 fp->SaturateMode = SATURATE_ZERO_ONE;
2782 case OP_RCP:
2783 fp->Opcode = OPCODE_RCP;
2784 break;
2785
2786 case OP_RSQ_SAT:
2787 fp->SaturateMode = SATURATE_ZERO_ONE;
2788 case OP_RSQ:
2789 fp->Opcode = OPCODE_RSQ;
2790 break;
2791
2792 case OP_SIN_SAT:
2793 fp->SaturateMode = SATURATE_ZERO_ONE;
2794 case OP_SIN:
2795 fp->Opcode = OPCODE_SIN;
2796 break;
2797
2798 case OP_SCS_SAT:
2799 fp->SaturateMode = SATURATE_ZERO_ONE;
2800 case OP_SCS:
2801
2802 fp->Opcode = OPCODE_SCS;
2803 break;
2804 }
2805
2806 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2807 return 1;
2808
2809 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2810 return 1;
2811 break;
2812
2813 case OP_ALU_BINSC:
2814 switch (code) {
2815 case OP_POW_SAT:
2816 fp->SaturateMode = SATURATE_ZERO_ONE;
2817 case OP_POW:
2818 fp->Opcode = OPCODE_POW;
2819 break;
2820 }
2821
2822 if (parse_dst_reg(ctx, inst, vc_head, Program, &fp->DstReg))
2823 return 1;
2824
2825 for (a = 0; a < 2; a++) {
2826 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2827 return 1;
2828 }
2829 break;
2830
2831
2832 case OP_ALU_BIN:
2833 switch (code) {
2834 case OP_ADD_SAT:
2835 fp->SaturateMode = SATURATE_ZERO_ONE;
2836 case OP_ADD:
2837 fp->Opcode = OPCODE_ADD;
2838 break;
2839
2840 case OP_DP3_SAT:
2841 fp->SaturateMode = SATURATE_ZERO_ONE;
2842 case OP_DP3:
2843 fp->Opcode = OPCODE_DP3;
2844 break;
2845
2846 case OP_DP4_SAT:
2847 fp->SaturateMode = SATURATE_ZERO_ONE;
2848 case OP_DP4:
2849 fp->Opcode = OPCODE_DP4;
2850 break;
2851
2852 case OP_DPH_SAT:
2853 fp->SaturateMode = SATURATE_ZERO_ONE;
2854 case OP_DPH:
2855 fp->Opcode = OPCODE_DPH;
2856 break;
2857
2858 case OP_DST_SAT:
2859 fp->SaturateMode = SATURATE_ZERO_ONE;
2860 case OP_DST:
2861 fp->Opcode = OPCODE_DST;
2862 break;
2863
2864 case OP_MAX_SAT:
2865 fp->SaturateMode = SATURATE_ZERO_ONE;
2866 case OP_MAX:
2867 fp->Opcode = OPCODE_MAX;
2868 break;
2869
2870 case OP_MIN_SAT:
2871 fp->SaturateMode = SATURATE_ZERO_ONE;
2872 case OP_MIN:
2873 fp->Opcode = OPCODE_MIN;
2874 break;
2875
2876 case OP_MUL_SAT:
2877 fp->SaturateMode = SATURATE_ZERO_ONE;
2878 case OP_MUL:
2879 fp->Opcode = OPCODE_MUL;
2880 break;
2881
2882 case OP_SGE_SAT:
2883 fp->SaturateMode = SATURATE_ZERO_ONE;
2884 case OP_SGE:
2885 fp->Opcode = OPCODE_SGE;
2886 break;
2887
2888 case OP_SLT_SAT:
2889 fp->SaturateMode = SATURATE_ZERO_ONE;
2890 case OP_SLT:
2891 fp->Opcode = OPCODE_SLT;
2892 break;
2893
2894 case OP_SUB_SAT:
2895 fp->SaturateMode = SATURATE_ZERO_ONE;
2896 case OP_SUB:
2897 fp->Opcode = OPCODE_SUB;
2898 break;
2899
2900 case OP_XPD_SAT:
2901 fp->SaturateMode = SATURATE_ZERO_ONE;
2902 case OP_XPD:
2903 fp->Opcode = OPCODE_XPD;
2904 break;
2905 }
2906
2907 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2908 return 1;
2909 for (a = 0; a < 2; a++) {
2910 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2911 return 1;
2912 }
2913 break;
2914
2915 case OP_ALU_TRI:
2916 switch (code) {
2917 case OP_CMP_SAT:
2918 fp->SaturateMode = SATURATE_ZERO_ONE;
2919 case OP_CMP:
2920 fp->Opcode = OPCODE_CMP;
2921 break;
2922
2923 case OP_LRP_SAT:
2924 fp->SaturateMode = SATURATE_ZERO_ONE;
2925 case OP_LRP:
2926 fp->Opcode = OPCODE_LRP;
2927 break;
2928
2929 case OP_MAD_SAT:
2930 fp->SaturateMode = SATURATE_ZERO_ONE;
2931 case OP_MAD:
2932 fp->Opcode = OPCODE_MAD;
2933 break;
2934 }
2935
2936 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2937 return 1;
2938
2939 for (a = 0; a < 3; a++) {
2940 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2941 return 1;
2942 }
2943 break;
2944
2945 case OP_ALU_SWZ:
2946 switch (code) {
2947 case OP_SWZ_SAT:
2948 fp->SaturateMode = SATURATE_ZERO_ONE;
2949 case OP_SWZ:
2950 fp->Opcode = OPCODE_SWZ;
2951 break;
2952 }
2953 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2954 return 1;
2955
2956 {
2957 GLubyte swizzle[4];
2958 GLubyte negateMask;
2959 enum register_file file;
2960 GLint index;
2961
2962 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &rel))
2963 return 1;
2964 parse_extended_swizzle_mask(inst, swizzle, &negateMask);
2965 fp->SrcReg[0].File = file;
2966 fp->SrcReg[0].Index = index;
2967 fp->SrcReg[0].NegateBase = negateMask;
2968 fp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
2969 swizzle[1],
2970 swizzle[2],
2971 swizzle[3]);
2972 }
2973 break;
2974
2975 case OP_TEX_SAMPLE:
2976 switch (code) {
2977 case OP_TEX_SAT:
2978 fp->SaturateMode = SATURATE_ZERO_ONE;
2979 case OP_TEX:
2980 fp->Opcode = OPCODE_TEX;
2981 break;
2982
2983 case OP_TXP_SAT:
2984 fp->SaturateMode = SATURATE_ZERO_ONE;
2985 case OP_TXP:
2986 fp->Opcode = OPCODE_TXP;
2987 break;
2988
2989 case OP_TXB_SAT:
2990 fp->SaturateMode = SATURATE_ZERO_ONE;
2991 case OP_TXB:
2992 fp->Opcode = OPCODE_TXB;
2993 break;
2994 }
2995
2996 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2997 return 1;
2998
2999 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
3000 return 1;
3001
3002 /* texImageUnit */
3003 if (parse_texcoord_num (ctx, inst, Program, &texcoord))
3004 return 1;
3005 fp->TexSrcUnit = texcoord;
3006
3007 /* texTarget */
3008 switch (*(*inst)++) {
3009 case TEXTARGET_SHADOW1D:
3010 shadow_tex = 1 << texcoord;
3011 /* FALLTHROUGH */
3012 case TEXTARGET_1D:
3013 fp->TexSrcTarget = TEXTURE_1D_INDEX;
3014 break;
3015 case TEXTARGET_SHADOW2D:
3016 shadow_tex = 1 << texcoord;
3017 /* FALLTHROUGH */
3018 case TEXTARGET_2D:
3019 fp->TexSrcTarget = TEXTURE_2D_INDEX;
3020 break;
3021 case TEXTARGET_3D:
3022 fp->TexSrcTarget = TEXTURE_3D_INDEX;
3023 break;
3024 case TEXTARGET_SHADOWRECT:
3025 shadow_tex = 1 << texcoord;
3026 /* FALLTHROUGH */
3027 case TEXTARGET_RECT:
3028 fp->TexSrcTarget = TEXTURE_RECT_INDEX;
3029 break;
3030 case TEXTARGET_CUBE:
3031 fp->TexSrcTarget = TEXTURE_CUBE_INDEX;
3032 break;
3033 case TEXTARGET_SHADOW1D_ARRAY:
3034 shadow_tex = 1 << texcoord;
3035 /* FALLTHROUGH */
3036 case TEXTARGET_1D_ARRAY:
3037 fp->TexSrcTarget = TEXTURE_1D_ARRAY_INDEX;
3038 break;
3039 case TEXTARGET_SHADOW2D_ARRAY:
3040 shadow_tex = 1 << texcoord;
3041 /* FALLTHROUGH */
3042 case TEXTARGET_2D_ARRAY:
3043 fp->TexSrcTarget = TEXTURE_2D_ARRAY_INDEX;
3044 break;
3045 }
3046
3047 /* Don't test the first time a particular sampler is seen. Each time
3048 * after that, make sure the shadow state is the same.
3049 */
3050 if ((_mesa_bitcount(Program->TexturesUsed[texcoord]) > 0)
3051 && ((Program->ShadowSamplers & (1 << texcoord)) != shadow_tex)) {
3052 program_error(ctx, Program->Position,
3053 "texture image unit used for shadow sampling and non-shadow sampling");
3054 return 1;
3055 }
3056
3057 Program->TexturesUsed[texcoord] |= (1 << fp->TexSrcTarget);
3058 /* Check that both "2D" and "CUBE" (for example) aren't both used */
3059 if (_mesa_bitcount(Program->TexturesUsed[texcoord]) > 1) {
3060 program_error(ctx, Program->Position,
3061 "multiple targets used on one texture image unit");
3062 return 1;
3063 }
3064
3065
3066 Program->ShadowSamplers |= shadow_tex;
3067 break;
3068
3069 case OP_TEX_KIL:
3070 Program->UsesKill = 1;
3071 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
3072 return 1;
3073 fp->Opcode = OPCODE_KIL;
3074 break;
3075 default:
3076 _mesa_problem(ctx, "bad type 0x%x in parse_fp_instruction()", type);
3077 return 1;
3078 }
3079
3080 return 0;
3081 }
3082
3083
3084 /**
3085 * Handle the parsing out of a masked address register
3086 *
3087 * \param Index - The register index we write to
3088 * \param WriteMask - The mask controlling which components we write (1->write)
3089 *
3090 * \return 0 on sucess, 1 on error
3091 */
3092 static GLuint
3093 parse_vp_address_reg (GLcontext * ctx, const GLubyte ** inst,
3094 struct var_cache **vc_head,
3095 struct arb_program *Program,
3096 struct prog_dst_register *reg)
3097 {
3098 GLint idx;
3099
3100 if (parse_address_reg (ctx, inst, vc_head, Program, &idx))
3101 return 1;
3102
3103 /* This should be 0x8 */
3104 (*inst)++;
3105
3106 reg->File = PROGRAM_ADDRESS;
3107 reg->Index = idx;
3108
3109 /* Writemask of .x is implied */
3110 reg->WriteMask = 0x1;
3111 return 0;
3112 }
3113
3114
3115 /**
3116 * This is a big mother that handles getting opcodes into the instruction
3117 * and handling the src & dst registers for vertex program instructions
3118 */
3119 static GLuint
3120 parse_vp_instruction (GLcontext * ctx, const GLubyte ** inst,
3121 struct var_cache **vc_head, struct arb_program *Program,
3122 struct prog_instruction *vp)
3123 {
3124 GLint a;
3125 GLubyte type, code;
3126
3127 /* OP_ALU_{ARL, VECTOR, SCALAR, BINSC, BIN, TRI, SWZ} */
3128 type = *(*inst)++;
3129
3130 /* The actual opcode name */
3131 code = *(*inst)++;
3132
3133 _mesa_init_instructions(vp, 1);
3134 /* Record the position in the program string for debugging */
3135 vp->StringPos = Program->Position;
3136
3137 switch (type) {
3138 /* XXX: */
3139 case OP_ALU_ARL:
3140 vp->Opcode = OPCODE_ARL;
3141
3142 /* Remember to set SrcReg.RelAddr; */
3143
3144 /* Get the masked address register [dst] */
3145 if (parse_vp_address_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3146 return 1;
3147
3148 vp->DstReg.File = PROGRAM_ADDRESS;
3149
3150 /* Get a scalar src register */
3151 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3152 return 1;
3153
3154 break;
3155
3156 case OP_ALU_VECTOR:
3157 switch (code) {
3158 case OP_ABS:
3159 vp->Opcode = OPCODE_ABS;
3160 break;
3161 case OP_FLR:
3162 vp->Opcode = OPCODE_FLR;
3163 break;
3164 case OP_FRC:
3165 vp->Opcode = OPCODE_FRC;
3166 break;
3167 case OP_LIT:
3168 vp->Opcode = OPCODE_LIT;
3169 break;
3170 case OP_MOV:
3171 vp->Opcode = OPCODE_MOV;
3172 break;
3173 }
3174
3175 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3176 return 1;
3177
3178 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3179 return 1;
3180 break;
3181
3182 case OP_ALU_SCALAR:
3183 switch (code) {
3184 case OP_EX2:
3185 vp->Opcode = OPCODE_EX2;
3186 break;
3187 case OP_EXP:
3188 vp->Opcode = OPCODE_EXP;
3189 break;
3190 case OP_LG2:
3191 vp->Opcode = OPCODE_LG2;
3192 break;
3193 case OP_LOG:
3194 vp->Opcode = OPCODE_LOG;
3195 break;
3196 case OP_RCP:
3197 vp->Opcode = OPCODE_RCP;
3198 break;
3199 case OP_RSQ:
3200 vp->Opcode = OPCODE_RSQ;
3201 break;
3202 }
3203 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3204 return 1;
3205
3206 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3207 return 1;
3208 break;
3209
3210 case OP_ALU_BINSC:
3211 switch (code) {
3212 case OP_POW:
3213 vp->Opcode = OPCODE_POW;
3214 break;
3215 }
3216 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3217 return 1;
3218
3219 for (a = 0; a < 2; a++) {
3220 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3221 return 1;
3222 }
3223 break;
3224
3225 case OP_ALU_BIN:
3226 switch (code) {
3227 case OP_ADD:
3228 vp->Opcode = OPCODE_ADD;
3229 break;
3230 case OP_DP3:
3231 vp->Opcode = OPCODE_DP3;
3232 break;
3233 case OP_DP4:
3234 vp->Opcode = OPCODE_DP4;
3235 break;
3236 case OP_DPH:
3237 vp->Opcode = OPCODE_DPH;
3238 break;
3239 case OP_DST:
3240 vp->Opcode = OPCODE_DST;
3241 break;
3242 case OP_MAX:
3243 vp->Opcode = OPCODE_MAX;
3244 break;
3245 case OP_MIN:
3246 vp->Opcode = OPCODE_MIN;
3247 break;
3248 case OP_MUL:
3249 vp->Opcode = OPCODE_MUL;
3250 break;
3251 case OP_SGE:
3252 vp->Opcode = OPCODE_SGE;
3253 break;
3254 case OP_SLT:
3255 vp->Opcode = OPCODE_SLT;
3256 break;
3257 case OP_SUB:
3258 vp->Opcode = OPCODE_SUB;
3259 break;
3260 case OP_XPD:
3261 vp->Opcode = OPCODE_XPD;
3262 break;
3263 }
3264 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3265 return 1;
3266
3267 for (a = 0; a < 2; a++) {
3268 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3269 return 1;
3270 }
3271 break;
3272
3273 case OP_ALU_TRI:
3274 switch (code) {
3275 case OP_MAD:
3276 vp->Opcode = OPCODE_MAD;
3277 break;
3278 }
3279
3280 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3281 return 1;
3282
3283 for (a = 0; a < 3; a++) {
3284 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3285 return 1;
3286 }
3287 break;
3288
3289 case OP_ALU_SWZ:
3290 switch (code) {
3291 case OP_SWZ:
3292 vp->Opcode = OPCODE_SWZ;
3293 break;
3294 }
3295 {
3296 GLubyte swizzle[4];
3297 GLubyte negateMask;
3298 GLboolean relAddr;
3299 enum register_file file;
3300 GLint index;
3301
3302 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3303 return 1;
3304
3305 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &relAddr))
3306 return 1;
3307 parse_extended_swizzle_mask (inst, swizzle, &negateMask);
3308 vp->SrcReg[0].File = file;
3309 vp->SrcReg[0].Index = index;
3310 vp->SrcReg[0].NegateBase = negateMask;
3311 vp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
3312 swizzle[1],
3313 swizzle[2],
3314 swizzle[3]);
3315 vp->SrcReg[0].RelAddr = relAddr;
3316 }
3317 break;
3318 }
3319 return 0;
3320 }
3321
3322 #if DEBUG_PARSING
3323
3324 static GLvoid
3325 debug_variables (GLcontext * ctx, struct var_cache *vc_head,
3326 struct arb_program *Program)
3327 {
3328 struct var_cache *vc;
3329 GLint a, b;
3330
3331 fprintf (stderr, "debug_variables, vc_head: %p\n", (void*) vc_head);
3332
3333 /* First of all, print out the contents of the var_cache */
3334 vc = vc_head;
3335 while (vc) {
3336 fprintf (stderr, "[%p]\n", (void*) vc);
3337 switch (vc->type) {
3338 case vt_none:
3339 fprintf (stderr, "UNDEFINED %s\n", vc->name);
3340 break;
3341 case vt_attrib:
3342 fprintf (stderr, "ATTRIB %s\n", vc->name);
3343 fprintf (stderr, " binding: 0x%x\n", vc->attrib_binding);
3344 break;
3345 case vt_param:
3346 fprintf (stderr, "PARAM %s begin: %d len: %d\n", vc->name,
3347 vc->param_binding_begin, vc->param_binding_length);
3348 b = vc->param_binding_begin;
3349 for (a = 0; a < vc->param_binding_length; a++) {
3350 fprintf (stderr, "%s\n",
3351 Program->Base.Parameters->Parameters[a + b].Name);
3352 if (Program->Base.Parameters->Parameters[a + b].Type == PROGRAM_STATE_VAR) {
3353 const char *s;
3354 s = _mesa_program_state_string(Program->Base.Parameters->Parameters
3355 [a + b].StateIndexes);
3356 fprintf(stderr, "%s\n", s);
3357 _mesa_free((char *) s);
3358 }
3359 else
3360 fprintf (stderr, "%f %f %f %f\n",
3361 Program->Base.Parameters->ParameterValues[a + b][0],
3362 Program->Base.Parameters->ParameterValues[a + b][1],
3363 Program->Base.Parameters->ParameterValues[a + b][2],
3364 Program->Base.Parameters->ParameterValues[a + b][3]);
3365 }
3366 break;
3367 case vt_temp:
3368 fprintf (stderr, "TEMP %s\n", vc->name);
3369 fprintf (stderr, " binding: 0x%x\n", vc->temp_binding);
3370 break;
3371 case vt_output:
3372 fprintf (stderr, "OUTPUT %s\n", vc->name);
3373 fprintf (stderr, " binding: 0x%x\n", vc->output_binding);
3374 break;
3375 case vt_alias:
3376 fprintf (stderr, "ALIAS %s\n", vc->name);
3377 fprintf (stderr, " binding: 0x%p (%s)\n",
3378 (void*) vc->alias_binding, vc->alias_binding->name);
3379 break;
3380 default:
3381 /* nothing */
3382 ;
3383 }
3384 vc = vc->next;
3385 }
3386 }
3387
3388 #endif /* DEBUG_PARSING */
3389
3390
3391 /**
3392 * The main loop for parsing a fragment or vertex program
3393 *
3394 * \return 1 on error, 0 on success
3395 */
3396 static GLint
3397 parse_instructions(GLcontext * ctx, const GLubyte * inst,
3398 struct var_cache **vc_head, struct arb_program *Program)
3399 {
3400 const GLuint maxInst = (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
3401 ? ctx->Const.FragmentProgram.MaxInstructions
3402 : ctx->Const.VertexProgram.MaxInstructions;
3403 GLint err = 0;
3404
3405 ASSERT(MAX_INSTRUCTIONS >= maxInst);
3406
3407 Program->MajorVersion = (GLuint) * inst++;
3408 Program->MinorVersion = (GLuint) * inst++;
3409
3410 while (*inst != END) {
3411 switch (*inst++) {
3412
3413 case OPTION:
3414 switch (*inst++) {
3415 case ARB_PRECISION_HINT_FASTEST:
3416 Program->PrecisionOption = GL_FASTEST;
3417 break;
3418
3419 case ARB_PRECISION_HINT_NICEST:
3420 Program->PrecisionOption = GL_NICEST;
3421 break;
3422
3423 case ARB_FOG_EXP:
3424 Program->FogOption = GL_EXP;
3425 break;
3426
3427 case ARB_FOG_EXP2:
3428 Program->FogOption = GL_EXP2;
3429 break;
3430
3431 case ARB_FOG_LINEAR:
3432 Program->FogOption = GL_LINEAR;
3433 break;
3434
3435 case ARB_POSITION_INVARIANT:
3436 if (Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
3437 Program->HintPositionInvariant = GL_TRUE;
3438 break;
3439
3440 case ARB_FRAGMENT_PROGRAM_SHADOW:
3441 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3442 /* TODO ARB_fragment_program_shadow code */
3443 }
3444 break;
3445
3446 case ARB_DRAW_BUFFERS:
3447 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3448 /* do nothing for now */
3449 }
3450 break;
3451
3452 case MESA_TEXTURE_ARRAY:
3453 /* do nothing for now */
3454 break;
3455 }
3456 break;
3457
3458 case INSTRUCTION:
3459 /* check length */
3460 if (Program->Base.NumInstructions + 1 >= maxInst) {
3461 program_error(ctx, Program->Position,
3462 "Max instruction count exceeded");
3463 return 1;
3464 }
3465 Program->Position = parse_position (&inst);
3466 /* parse the current instruction */
3467 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3468 err = parse_fp_instruction (ctx, &inst, vc_head, Program,
3469 &Program->Base.Instructions[Program->Base.NumInstructions]);
3470 }
3471 else {
3472 err = parse_vp_instruction (ctx, &inst, vc_head, Program,
3473 &Program->Base.Instructions[Program->Base.NumInstructions]);
3474 }
3475
3476 /* increment instuction count */
3477 Program->Base.NumInstructions++;
3478 break;
3479
3480 case DECLARATION:
3481 err = parse_declaration (ctx, &inst, vc_head, Program);
3482 break;
3483
3484 default:
3485 break;
3486 }
3487
3488 if (err)
3489 break;
3490 }
3491
3492 /* Finally, tag on an OPCODE_END instruction */
3493 {
3494 const GLuint numInst = Program->Base.NumInstructions;
3495 _mesa_init_instructions(Program->Base.Instructions + numInst, 1);
3496 Program->Base.Instructions[numInst].Opcode = OPCODE_END;
3497 /* YYY Wrong Position in program, whatever, at least not random -> crash
3498 Program->Position = parse_position (&inst);
3499 */
3500 Program->Base.Instructions[numInst].StringPos = Program->Position;
3501 }
3502 Program->Base.NumInstructions++;
3503
3504 /*
3505 * Initialize native counts to logical counts. The device driver may
3506 * change them if program is translated into a hardware program.
3507 */
3508 Program->Base.NumNativeInstructions = Program->Base.NumInstructions;
3509 Program->Base.NumNativeTemporaries = Program->Base.NumTemporaries;
3510 Program->Base.NumNativeParameters = Program->Base.NumParameters;
3511 Program->Base.NumNativeAttributes = Program->Base.NumAttributes;
3512 Program->Base.NumNativeAddressRegs = Program->Base.NumAddressRegs;
3513
3514 return err;
3515 }
3516
3517
3518 /* XXX temporary */
3519 LONGSTRING static char core_grammar_text[] =
3520 #include "shader/grammar/grammar_syn.h"
3521 ;
3522
3523
3524 /**
3525 * Set a grammar parameter.
3526 * \param name the grammar parameter
3527 * \param value the new parameter value
3528 * \return 0 if OK, 1 if error
3529 */
3530 static int
3531 set_reg8 (GLcontext *ctx, grammar id, const char *name, GLubyte value)
3532 {
3533 char error_msg[300];
3534 GLint error_pos;
3535
3536 if (grammar_set_reg8 (id, (const byte *) name, value))
3537 return 0;
3538
3539 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3540 _mesa_set_program_error (ctx, error_pos, error_msg);
3541 _mesa_error (ctx, GL_INVALID_OPERATION, "Grammar Register Error");
3542 return 1;
3543 }
3544
3545
3546 /**
3547 * Enable support for the given language option in the parser.
3548 * \return 1 if OK, 0 if error
3549 */
3550 static int
3551 enable_ext(GLcontext *ctx, grammar id, const char *name)
3552 {
3553 return !set_reg8(ctx, id, name, 1);
3554 }
3555
3556
3557 /**
3558 * Enable parser extensions based on which OpenGL extensions are supported
3559 * by this rendering context.
3560 *
3561 * \return GL_TRUE if OK, GL_FALSE if error.
3562 */
3563 static GLboolean
3564 enable_parser_extensions(GLcontext *ctx, grammar id)
3565 {
3566 #if 0
3567 /* These are not supported at this time */
3568 if ((ctx->Extensions.ARB_vertex_blend ||
3569 ctx->Extensions.EXT_vertex_weighting)
3570 && !enable_ext(ctx, id, "vertex_blend"))
3571 return GL_FALSE;
3572 if (ctx->Extensions.ARB_matrix_palette
3573 && !enable_ext(ctx, id, "matrix_palette"))
3574 return GL_FALSE;
3575 #endif
3576 if (ctx->Extensions.ARB_fragment_program_shadow
3577 && !enable_ext(ctx, id, "fragment_program_shadow"))
3578 return GL_FALSE;
3579 if (ctx->Extensions.EXT_point_parameters
3580 && !enable_ext(ctx, id, "point_parameters"))
3581 return GL_FALSE;
3582 if (ctx->Extensions.EXT_secondary_color
3583 && !enable_ext(ctx, id, "secondary_color"))
3584 return GL_FALSE;
3585 if (ctx->Extensions.EXT_fog_coord
3586 && !enable_ext(ctx, id, "fog_coord"))
3587 return GL_FALSE;
3588 if (ctx->Extensions.NV_texture_rectangle
3589 && !enable_ext(ctx, id, "texture_rectangle"))
3590 return GL_FALSE;
3591 if (ctx->Extensions.ARB_draw_buffers
3592 && !enable_ext(ctx, id, "draw_buffers"))
3593 return GL_FALSE;
3594 if (ctx->Extensions.MESA_texture_array
3595 && !enable_ext(ctx, id, "texture_array"))
3596 return GL_FALSE;
3597 #if 1
3598 /* hack for Warcraft (see bug 8060) */
3599 enable_ext(ctx, id, "vertex_blend");
3600 #endif
3601
3602 return GL_TRUE;
3603 }
3604
3605
3606 /**
3607 * This kicks everything off.
3608 *
3609 * \param ctx - The GL Context
3610 * \param str - The program string
3611 * \param len - The program string length
3612 * \param program - The arb_program struct to return all the parsed info in
3613 * \return GL_TRUE on sucess, GL_FALSE on error
3614 */
3615 static GLboolean
3616 _mesa_parse_arb_program(GLcontext *ctx, GLenum target,
3617 const GLubyte *str, GLsizei len,
3618 struct arb_program *program)
3619 {
3620 GLint a, err, error_pos;
3621 char error_msg[300];
3622 GLuint parsed_len;
3623 struct var_cache *vc_head;
3624 grammar arbprogram_syn_id;
3625 GLubyte *parsed, *inst;
3626 GLubyte *strz = NULL;
3627 static int arbprogram_syn_is_ok = 0; /* XXX temporary */
3628
3629 /* set the program target before parsing */
3630 program->Base.Target = target;
3631
3632 /* Reset error state */
3633 _mesa_set_program_error(ctx, -1, NULL);
3634
3635 /* check if arb_grammar_text (arbprogram.syn) is syntactically correct */
3636 if (!arbprogram_syn_is_ok) {
3637 /* One-time initialization of parsing system */
3638 grammar grammar_syn_id;
3639 GLuint parsed_len;
3640
3641 grammar_syn_id = grammar_load_from_text ((byte *) core_grammar_text);
3642 if (grammar_syn_id == 0) {
3643 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3644 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3645 _mesa_set_program_error (ctx, error_pos, error_msg);
3646 _mesa_error (ctx, GL_INVALID_OPERATION,
3647 "glProgramStringARB(Error loading grammar rule set)");
3648 return GL_FALSE;
3649 }
3650
3651 err = !grammar_check(grammar_syn_id, (byte *) arb_grammar_text,
3652 &parsed, &parsed_len);
3653
3654 /* 'parsed' is unused here */
3655 _mesa_free (parsed);
3656 parsed = NULL;
3657
3658 /* NOTE: we can't destroy grammar_syn_id right here because
3659 * grammar_destroy() can reset the last error
3660 */
3661 if (err) {
3662 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3663 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3664 _mesa_set_program_error (ctx, error_pos, error_msg);
3665 _mesa_error (ctx, GL_INVALID_OPERATION,
3666 "glProgramString(Error loading grammar rule set");
3667 grammar_destroy (grammar_syn_id);
3668 return GL_FALSE;
3669 }
3670
3671 grammar_destroy (grammar_syn_id);
3672
3673 arbprogram_syn_is_ok = 1;
3674 }
3675
3676 /* create the grammar object */
3677 arbprogram_syn_id = grammar_load_from_text ((byte *) arb_grammar_text);
3678 if (arbprogram_syn_id == 0) {
3679 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3680 grammar_get_last_error ((GLubyte *) error_msg, 300, &error_pos);
3681 _mesa_set_program_error (ctx, error_pos, error_msg);
3682 _mesa_error (ctx, GL_INVALID_OPERATION,
3683 "glProgramString(Error loading grammer rule set)");
3684 return GL_FALSE;
3685 }
3686
3687 /* Set program_target register value */
3688 if (set_reg8 (ctx, arbprogram_syn_id, "program_target",
3689 program->Base.Target == GL_FRAGMENT_PROGRAM_ARB ? 0x10 : 0x20)) {
3690 grammar_destroy (arbprogram_syn_id);
3691 return GL_FALSE;
3692 }
3693
3694 if (!enable_parser_extensions(ctx, arbprogram_syn_id)) {
3695 grammar_destroy(arbprogram_syn_id);
3696 return GL_FALSE;
3697 }
3698
3699 /* check for NULL character occurences */
3700 {
3701 GLint i;
3702 for (i = 0; i < len; i++) {
3703 if (str[i] == '\0') {
3704 program_error(ctx, i, "illegal character");
3705 grammar_destroy (arbprogram_syn_id);
3706 return GL_FALSE;
3707 }
3708 }
3709 }
3710
3711 /* copy the program string to a null-terminated string */
3712 strz = (GLubyte *) _mesa_malloc (len + 1);
3713 if (!strz) {
3714 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB");
3715 grammar_destroy (arbprogram_syn_id);
3716 return GL_FALSE;
3717 }
3718 _mesa_memcpy (strz, str, len);
3719 strz[len] = '\0';
3720
3721 /* do a fast check on program string - initial production buffer is 4K */
3722 err = !grammar_fast_check(arbprogram_syn_id, strz,
3723 &parsed, &parsed_len, 0x1000);
3724
3725 /* Syntax parse error */
3726 if (err) {
3727 grammar_get_last_error((GLubyte *) error_msg, 300, &error_pos);
3728 program_error(ctx, error_pos, error_msg);
3729
3730 #if DEBUG_PARSING
3731 /* useful for debugging */
3732 do {
3733 int line, col;
3734 char *s;
3735 fprintf(stderr, "program: %s\n", (char *) strz);
3736 fprintf(stderr, "Error Pos: %d\n", ctx->Program.ErrorPos);
3737 s = (char *) _mesa_find_line_column(strz, strz+ctx->Program.ErrorPos,
3738 &line, &col);
3739 fprintf(stderr, "line %d col %d: %s\n", line, col, s);
3740 } while (0);
3741 #endif
3742
3743 _mesa_free(strz);
3744 _mesa_free(parsed);
3745
3746 grammar_destroy (arbprogram_syn_id);
3747 return GL_FALSE;
3748 }
3749
3750 grammar_destroy (arbprogram_syn_id);
3751
3752 /*
3753 * Program string is syntactically correct at this point
3754 * Parse the tokenized version of the program now, generating
3755 * vertex/fragment program instructions.
3756 */
3757
3758 /* Initialize the arb_program struct */
3759 program->Base.String = strz;
3760 program->Base.Instructions = _mesa_alloc_instructions(MAX_INSTRUCTIONS);
3761 program->Base.NumInstructions =
3762 program->Base.NumTemporaries =
3763 program->Base.NumParameters =
3764 program->Base.NumAttributes = program->Base.NumAddressRegs = 0;
3765 program->Base.Parameters = _mesa_new_parameter_list ();
3766 program->Base.InputsRead = 0x0;
3767 program->Base.OutputsWritten = 0x0;
3768 program->Position = 0;
3769 program->MajorVersion = program->MinorVersion = 0;
3770 program->PrecisionOption = GL_DONT_CARE;
3771 program->FogOption = GL_NONE;
3772 program->HintPositionInvariant = GL_FALSE;
3773 for (a = 0; a < MAX_TEXTURE_IMAGE_UNITS; a++)
3774 program->TexturesUsed[a] = 0x0;
3775 program->ShadowSamplers = 0x0;
3776 program->NumAluInstructions =
3777 program->NumTexInstructions =
3778 program->NumTexIndirections = 0;
3779 program->UsesKill = 0;
3780
3781 vc_head = NULL;
3782 err = GL_FALSE;
3783
3784 /* Start examining the tokens in the array */
3785 inst = parsed;
3786
3787 /* Check the grammer rev */
3788 if (*inst++ != REVISION) {
3789 program_error (ctx, 0, "Grammar version mismatch");
3790 err = GL_TRUE;
3791 }
3792 else {
3793 /* ignore program target */
3794 inst++;
3795 err = parse_instructions(ctx, inst, &vc_head, program);
3796 }
3797
3798 /*debug_variables(ctx, vc_head, program); */
3799
3800 /* We're done with the parsed binary array */
3801 var_cache_destroy (&vc_head);
3802
3803 _mesa_free (parsed);
3804
3805 /* Reallocate the instruction array from size [MAX_INSTRUCTIONS]
3806 * to size [ap.Base.NumInstructions].
3807 */
3808 program->Base.Instructions
3809 = _mesa_realloc_instructions(program->Base.Instructions,
3810 MAX_INSTRUCTIONS,
3811 program->Base.NumInstructions);
3812
3813 return !err;
3814 }
3815
3816
3817
3818 void
3819 _mesa_parse_arb_fragment_program(GLcontext* ctx, GLenum target,
3820 const GLvoid *str, GLsizei len,
3821 struct gl_fragment_program *program)
3822 {
3823 struct arb_program ap;
3824 GLuint i;
3825
3826 ASSERT(target == GL_FRAGMENT_PROGRAM_ARB);
3827 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3828 /* Error in the program. Just return. */
3829 return;
3830 }
3831
3832 /* Copy the relevant contents of the arb_program struct into the
3833 * fragment_program struct.
3834 */
3835 program->Base.String = ap.Base.String;
3836 program->Base.NumInstructions = ap.Base.NumInstructions;
3837 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3838 program->Base.NumParameters = ap.Base.NumParameters;
3839 program->Base.NumAttributes = ap.Base.NumAttributes;
3840 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3841 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3842 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3843 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3844 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3845 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3846 program->Base.NumAluInstructions = ap.Base.NumAluInstructions;
3847 program->Base.NumTexInstructions = ap.Base.NumTexInstructions;
3848 program->Base.NumTexIndirections = ap.Base.NumTexIndirections;
3849 program->Base.NumNativeAluInstructions = ap.Base.NumAluInstructions;
3850 program->Base.NumNativeTexInstructions = ap.Base.NumTexInstructions;
3851 program->Base.NumNativeTexIndirections = ap.Base.NumTexIndirections;
3852 program->Base.InputsRead = ap.Base.InputsRead;
3853 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3854 for (i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++)
3855 program->Base.TexturesUsed[i] = ap.TexturesUsed[i];
3856 program->Base.ShadowSamplers = ap.ShadowSamplers;
3857 program->FogOption = ap.FogOption;
3858 program->UsesKill = ap.UsesKill;
3859
3860 if (program->Base.Instructions)
3861 _mesa_free(program->Base.Instructions);
3862 program->Base.Instructions = ap.Base.Instructions;
3863
3864 if (program->Base.Parameters)
3865 _mesa_free_parameter_list(program->Base.Parameters);
3866 program->Base.Parameters = ap.Base.Parameters;
3867
3868 #if DEBUG_FP
3869 _mesa_printf("____________Fragment program %u ________\n", program->Base.ID);
3870 _mesa_print_program(&program->Base);
3871 #endif
3872 }
3873
3874
3875
3876 /**
3877 * Parse the vertex program string. If success, update the given
3878 * vertex_program object with the new program. Else, leave the vertex_program
3879 * object unchanged.
3880 */
3881 void
3882 _mesa_parse_arb_vertex_program(GLcontext *ctx, GLenum target,
3883 const GLvoid *str, GLsizei len,
3884 struct gl_vertex_program *program)
3885 {
3886 struct arb_program ap;
3887
3888 ASSERT(target == GL_VERTEX_PROGRAM_ARB);
3889
3890 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3891 _mesa_error(ctx, GL_INVALID_OPERATION, "glProgramString(bad program)");
3892 return;
3893 }
3894
3895 /* Copy the relevant contents of the arb_program struct into the
3896 * vertex_program struct.
3897 */
3898 program->Base.String = ap.Base.String;
3899 program->Base.NumInstructions = ap.Base.NumInstructions;
3900 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3901 program->Base.NumParameters = ap.Base.NumParameters;
3902 program->Base.NumAttributes = ap.Base.NumAttributes;
3903 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3904 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3905 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3906 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3907 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3908 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3909 program->Base.InputsRead = ap.Base.InputsRead;
3910 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3911 program->IsPositionInvariant = ap.HintPositionInvariant;
3912
3913 if (program->Base.Instructions)
3914 _mesa_free(program->Base.Instructions);
3915 program->Base.Instructions = ap.Base.Instructions;
3916
3917 if (program->Base.Parameters)
3918 _mesa_free_parameter_list(program->Base.Parameters);
3919 program->Base.Parameters = ap.Base.Parameters;
3920
3921 #if DEBUG_VP
3922 _mesa_printf("____________Vertex program %u __________\n", program->Base.Id);
3923 _mesa_print_program(&program->Base);
3924 #endif
3925 }