slang: Use _mesa_snprintf() wrapper.
[mesa.git] / src / mesa / shader / arbprogparse.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #define DEBUG_PARSING 0
26
27 /**
28 * \file arbprogparse.c
29 * ARB_*_program parser core
30 * \author Karl Rasche
31 */
32
33 /**
34 Notes on program parameters, etc.
35
36 The instructions we emit will use six kinds of source registers:
37
38 PROGRAM_INPUT - input registers
39 PROGRAM_TEMPORARY - temp registers
40 PROGRAM_ADDRESS - address/indirect register
41 PROGRAM_SAMPLER - texture sampler
42 PROGRAM_CONSTANT - indexes into program->Parameters, a known constant/literal
43 PROGRAM_STATE_VAR - indexes into program->Parameters, and may actually be:
44 + a state variable, like "state.fog.color", or
45 + a pointer to a "program.local[k]" parameter, or
46 + a pointer to a "program.env[k]" parameter
47
48 Basically, all the program.local[] and program.env[] values will get mapped
49 into the unified gl_program->Parameters array. This solves the problem of
50 having three separate program parameter arrays.
51 */
52
53
54 #include "main/glheader.h"
55 #include "main/imports.h"
56 #include "main/context.h"
57 #include "main/macros.h"
58 #include "main/mtypes.h"
59 #include "shader/grammar/grammar_mesa.h"
60 #include "arbprogparse.h"
61 #include "program.h"
62 #include "programopt.h"
63 #include "prog_parameter.h"
64 #include "prog_statevars.h"
65 #include "prog_instruction.h"
66
67 /**
68 * This is basically a union of the vertex_program and fragment_program
69 * structs that we can use to parse the program into
70 *
71 * XXX we can probably get rid of this entirely someday.
72 */
73 struct arb_program
74 {
75 struct gl_program Base;
76
77 GLuint Position; /* Just used for error reporting while parsing */
78 GLuint MajorVersion;
79 GLuint MinorVersion;
80
81 /* ARB_vertex_progmra options */
82 GLboolean HintPositionInvariant;
83
84 /* ARB_fragment_progmra options */
85 GLenum PrecisionOption; /* GL_DONT_CARE, GL_NICEST or GL_FASTEST */
86 GLenum FogOption; /* GL_NONE, GL_LINEAR, GL_EXP or GL_EXP2 */
87
88 /* ARB_fragment_program specifics */
89 GLbitfield TexturesUsed[MAX_TEXTURE_IMAGE_UNITS];
90 GLbitfield ShadowSamplers;
91 GLuint NumAluInstructions;
92 GLuint NumTexInstructions;
93 GLuint NumTexIndirections;
94
95 GLboolean UsesKill;
96 };
97
98
99
100 /* TODO:
101 * Fragment Program Stuff:
102 * -----------------------------------------------------
103 *
104 * - things from Michal's email
105 * + overflow on atoi
106 * + not-overflowing floats (don't use parse_integer..)
107 * + can remove range checking in arbparse.c
108 *
109 * - check all limits of number of various variables
110 * + parameters
111 *
112 * - test! test! test!
113 *
114 * Vertex Program Stuff:
115 * -----------------------------------------------------
116 * - Optimize param array usage and count limits correctly, see spec,
117 * section 2.14.3.7
118 * + Record if an array is reference absolutly or relatively (or both)
119 * + For absolute arrays, store a bitmap of accesses
120 * + For single parameters, store an access flag
121 * + After parsing, make a parameter cleanup and merging pass, where
122 * relative arrays are layed out first, followed by abs arrays, and
123 * finally single state.
124 * + Remap offsets for param src and dst registers
125 * + Now we can properly count parameter usage
126 *
127 * - Multiple state binding errors in param arrays (see spec, just before
128 * section 2.14.3.3)
129 * - grep for XXX
130 *
131 * Mesa Stuff
132 * -----------------------------------------------------
133 * - User clipping planes vs. PositionInvariant
134 * - Is it sufficient to just multiply by the mvp to transform in the
135 * PositionInvariant case? Or do we need something more involved?
136 *
137 * - vp_src swizzle is GLubyte, fp_src swizzle is GLuint
138 * - fetch state listed in program_parameters list
139 * + WTF should this go???
140 * + currently in nvvertexec.c and s_nvfragprog.c
141 *
142 * - allow for multiple address registers (and fetch address regs properly)
143 *
144 * Cosmetic Stuff
145 * -----------------------------------------------------
146 * - remove any leftover unused grammer.c stuff (dict_ ?)
147 * - fix grammer.c error handling so its not static
148 * - #ifdef around stuff pertaining to extentions
149 *
150 * Outstanding Questions:
151 * -----------------------------------------------------
152 * - ARB_matrix_palette / ARB_vertex_blend -- not supported
153 * what gets hacked off because of this:
154 * + VERTEX_ATTRIB_MATRIXINDEX
155 * + VERTEX_ATTRIB_WEIGHT
156 * + MATRIX_MODELVIEW
157 * + MATRIX_PALETTE
158 *
159 * - When can we fetch env/local params from their own register files, and
160 * when to we have to fetch them into the main state register file?
161 * (think arrays)
162 *
163 * Grammar Changes:
164 * -----------------------------------------------------
165 */
166
167 /* Changes since moving the file to shader directory
168
169 2004-III-4 ------------------------------------------------------------
170 - added #include "grammar_mesa.h"
171 - removed grammar specific code part (it resides now in grammar.c)
172 - added GL_ARB_fragment_program_shadow tokens
173 - modified #include "arbparse_syn.h"
174 - major changes inside _mesa_parse_arb_program()
175 - check the program string for '\0' characters
176 - copy the program string to a one-byte-longer location to have
177 it null-terminated
178 - position invariance test (not writing to result.position) moved
179 to syntax part
180 */
181
182 typedef GLubyte *production;
183
184
185 /**
186 * This is the text describing the rules to parse the grammar
187 */
188 LONGSTRING static char arb_grammar_text[] =
189 #include "arbprogram_syn.h"
190 ;
191
192 /**
193 * These should match up with the values defined in arbprogram.syn
194 */
195
196 /*
197 Changes:
198 - changed and merged V_* and F_* opcode values to OP_*.
199 - added GL_ARB_fragment_program_shadow specific tokens (michal)
200 */
201 #define REVISION 0x0a
202
203 /* program type */
204 #define FRAGMENT_PROGRAM 0x01
205 #define VERTEX_PROGRAM 0x02
206
207 /* program section */
208 #define OPTION 0x01
209 #define INSTRUCTION 0x02
210 #define DECLARATION 0x03
211 #define END 0x04
212
213 /* GL_ARB_fragment_program option */
214 #define ARB_PRECISION_HINT_FASTEST 0x00
215 #define ARB_PRECISION_HINT_NICEST 0x01
216 #define ARB_FOG_EXP 0x02
217 #define ARB_FOG_EXP2 0x03
218 #define ARB_FOG_LINEAR 0x04
219
220 /* GL_ARB_vertex_program option */
221 #define ARB_POSITION_INVARIANT 0x05
222
223 /* GL_ARB_fragment_program_shadow option */
224 #define ARB_FRAGMENT_PROGRAM_SHADOW 0x06
225
226 /* GL_ARB_draw_buffers option */
227 #define ARB_DRAW_BUFFERS 0x07
228
229 /* GL_MESA_texture_array option */
230 #define MESA_TEXTURE_ARRAY 0x08
231
232 /* GL_ARB_fragment_program instruction class */
233 #define OP_ALU_INST 0x00
234 #define OP_TEX_INST 0x01
235
236 /* GL_ARB_vertex_program instruction class */
237 /* OP_ALU_INST */
238
239 /* GL_ARB_fragment_program instruction type */
240 #define OP_ALU_VECTOR 0x00
241 #define OP_ALU_SCALAR 0x01
242 #define OP_ALU_BINSC 0x02
243 #define OP_ALU_BIN 0x03
244 #define OP_ALU_TRI 0x04
245 #define OP_ALU_SWZ 0x05
246 #define OP_TEX_SAMPLE 0x06
247 #define OP_TEX_KIL 0x07
248
249 /* GL_ARB_vertex_program instruction type */
250 #define OP_ALU_ARL 0x08
251 /* OP_ALU_VECTOR */
252 /* OP_ALU_SCALAR */
253 /* OP_ALU_BINSC */
254 /* OP_ALU_BIN */
255 /* OP_ALU_TRI */
256 /* OP_ALU_SWZ */
257
258 /* GL_ARB_fragment_program instruction code */
259 #define OP_ABS 0x00
260 #define OP_ABS_SAT 0x1B
261 #define OP_FLR 0x09
262 #define OP_FLR_SAT 0x26
263 #define OP_FRC 0x0A
264 #define OP_FRC_SAT 0x27
265 #define OP_LIT 0x0C
266 #define OP_LIT_SAT 0x2A
267 #define OP_MOV 0x11
268 #define OP_MOV_SAT 0x30
269 #define OP_COS 0x1F
270 #define OP_COS_SAT 0x20
271 #define OP_EX2 0x07
272 #define OP_EX2_SAT 0x25
273 #define OP_LG2 0x0B
274 #define OP_LG2_SAT 0x29
275 #define OP_RCP 0x14
276 #define OP_RCP_SAT 0x33
277 #define OP_RSQ 0x15
278 #define OP_RSQ_SAT 0x34
279 #define OP_SIN 0x38
280 #define OP_SIN_SAT 0x39
281 #define OP_SCS 0x35
282 #define OP_SCS_SAT 0x36
283 #define OP_POW 0x13
284 #define OP_POW_SAT 0x32
285 #define OP_ADD 0x01
286 #define OP_ADD_SAT 0x1C
287 #define OP_DP3 0x03
288 #define OP_DP3_SAT 0x21
289 #define OP_DP4 0x04
290 #define OP_DP4_SAT 0x22
291 #define OP_DPH 0x05
292 #define OP_DPH_SAT 0x23
293 #define OP_DST 0x06
294 #define OP_DST_SAT 0x24
295 #define OP_MAX 0x0F
296 #define OP_MAX_SAT 0x2E
297 #define OP_MIN 0x10
298 #define OP_MIN_SAT 0x2F
299 #define OP_MUL 0x12
300 #define OP_MUL_SAT 0x31
301 #define OP_SGE 0x16
302 #define OP_SGE_SAT 0x37
303 #define OP_SLT 0x17
304 #define OP_SLT_SAT 0x3A
305 #define OP_SUB 0x18
306 #define OP_SUB_SAT 0x3B
307 #define OP_XPD 0x1A
308 #define OP_XPD_SAT 0x43
309 #define OP_CMP 0x1D
310 #define OP_CMP_SAT 0x1E
311 #define OP_LRP 0x2B
312 #define OP_LRP_SAT 0x2C
313 #define OP_MAD 0x0E
314 #define OP_MAD_SAT 0x2D
315 #define OP_SWZ 0x19
316 #define OP_SWZ_SAT 0x3C
317 #define OP_TEX 0x3D
318 #define OP_TEX_SAT 0x3E
319 #define OP_TXB 0x3F
320 #define OP_TXB_SAT 0x40
321 #define OP_TXP 0x41
322 #define OP_TXP_SAT 0x42
323 #define OP_KIL 0x28
324
325 /* GL_ARB_vertex_program instruction code */
326 #define OP_ARL 0x02
327 /* OP_ABS */
328 /* OP_FLR */
329 /* OP_FRC */
330 /* OP_LIT */
331 /* OP_MOV */
332 /* OP_EX2 */
333 #define OP_EXP 0x08
334 /* OP_LG2 */
335 #define OP_LOG 0x0D
336 /* OP_RCP */
337 /* OP_RSQ */
338 /* OP_POW */
339 /* OP_ADD */
340 /* OP_DP3 */
341 /* OP_DP4 */
342 /* OP_DPH */
343 /* OP_DST */
344 /* OP_MAX */
345 /* OP_MIN */
346 /* OP_MUL */
347 /* OP_SGE */
348 /* OP_SLT */
349 /* OP_SUB */
350 /* OP_XPD */
351 /* OP_MAD */
352 /* OP_SWZ */
353
354 /* fragment attribute binding */
355 #define FRAGMENT_ATTRIB_COLOR 0x01
356 #define FRAGMENT_ATTRIB_TEXCOORD 0x02
357 #define FRAGMENT_ATTRIB_FOGCOORD 0x03
358 #define FRAGMENT_ATTRIB_POSITION 0x04
359
360 /* vertex attribute binding */
361 #define VERTEX_ATTRIB_POSITION 0x01
362 #define VERTEX_ATTRIB_WEIGHT 0x02
363 #define VERTEX_ATTRIB_NORMAL 0x03
364 #define VERTEX_ATTRIB_COLOR 0x04
365 #define VERTEX_ATTRIB_FOGCOORD 0x05
366 #define VERTEX_ATTRIB_TEXCOORD 0x06
367 #define VERTEX_ATTRIB_MATRIXINDEX 0x07
368 #define VERTEX_ATTRIB_GENERIC 0x08
369
370 /* fragment result binding */
371 #define FRAGMENT_RESULT_COLOR 0x01
372 #define FRAGMENT_RESULT_DEPTH 0x02
373
374 /* vertex result binding */
375 #define VERTEX_RESULT_POSITION 0x01
376 #define VERTEX_RESULT_COLOR 0x02
377 #define VERTEX_RESULT_FOGCOORD 0x03
378 #define VERTEX_RESULT_POINTSIZE 0x04
379 #define VERTEX_RESULT_TEXCOORD 0x05
380
381 /* texture target */
382 #define TEXTARGET_1D 0x01
383 #define TEXTARGET_2D 0x02
384 #define TEXTARGET_3D 0x03
385 #define TEXTARGET_RECT 0x04
386 #define TEXTARGET_CUBE 0x05
387 /* GL_ARB_fragment_program_shadow */
388 #define TEXTARGET_SHADOW1D 0x06
389 #define TEXTARGET_SHADOW2D 0x07
390 #define TEXTARGET_SHADOWRECT 0x08
391 /* GL_MESA_texture_array */
392 #define TEXTARGET_1D_ARRAY 0x09
393 #define TEXTARGET_2D_ARRAY 0x0a
394 #define TEXTARGET_SHADOW1D_ARRAY 0x0b
395 #define TEXTARGET_SHADOW2D_ARRAY 0x0c
396
397 /* face type */
398 #define FACE_FRONT 0x00
399 #define FACE_BACK 0x01
400
401 /* color type */
402 #define COLOR_PRIMARY 0x00
403 #define COLOR_SECONDARY 0x01
404
405 /* component */
406 #define COMPONENT_X 0x00
407 #define COMPONENT_Y 0x01
408 #define COMPONENT_Z 0x02
409 #define COMPONENT_W 0x03
410 #define COMPONENT_0 0x04
411 #define COMPONENT_1 0x05
412
413 /* array index type */
414 #define ARRAY_INDEX_ABSOLUTE 0x00
415 #define ARRAY_INDEX_RELATIVE 0x01
416
417 /* matrix name */
418 #define MATRIX_MODELVIEW 0x01
419 #define MATRIX_PROJECTION 0x02
420 #define MATRIX_MVP 0x03
421 #define MATRIX_TEXTURE 0x04
422 #define MATRIX_PALETTE 0x05
423 #define MATRIX_PROGRAM 0x06
424
425 /* matrix modifier */
426 #define MATRIX_MODIFIER_IDENTITY 0x00
427 #define MATRIX_MODIFIER_INVERSE 0x01
428 #define MATRIX_MODIFIER_TRANSPOSE 0x02
429 #define MATRIX_MODIFIER_INVTRANS 0x03
430
431 /* constant type */
432 #define CONSTANT_SCALAR 0x01
433 #define CONSTANT_VECTOR 0x02
434
435 /* program param type */
436 #define PROGRAM_PARAM_ENV 0x01
437 #define PROGRAM_PARAM_LOCAL 0x02
438
439 /* register type */
440 #define REGISTER_ATTRIB 0x01
441 #define REGISTER_PARAM 0x02
442 #define REGISTER_RESULT 0x03
443 #define REGISTER_ESTABLISHED_NAME 0x04
444
445 /* param binding */
446 #define PARAM_NULL 0x00
447 #define PARAM_ARRAY_ELEMENT 0x01
448 #define PARAM_STATE_ELEMENT 0x02
449 #define PARAM_PROGRAM_ELEMENT 0x03
450 #define PARAM_PROGRAM_ELEMENTS 0x04
451 #define PARAM_CONSTANT 0x05
452
453 /* param state property */
454 #define STATE_MATERIAL_PARSER 0x01
455 #define STATE_LIGHT_PARSER 0x02
456 #define STATE_LIGHT_MODEL 0x03
457 #define STATE_LIGHT_PROD 0x04
458 #define STATE_FOG 0x05
459 #define STATE_MATRIX_ROWS 0x06
460 /* GL_ARB_fragment_program */
461 #define STATE_TEX_ENV 0x07
462 #define STATE_DEPTH 0x08
463 /* GL_ARB_vertex_program */
464 #define STATE_TEX_GEN 0x09
465 #define STATE_CLIP_PLANE 0x0A
466 #define STATE_POINT 0x0B
467
468 /* state material property */
469 #define MATERIAL_AMBIENT 0x01
470 #define MATERIAL_DIFFUSE 0x02
471 #define MATERIAL_SPECULAR 0x03
472 #define MATERIAL_EMISSION 0x04
473 #define MATERIAL_SHININESS 0x05
474
475 /* state light property */
476 #define LIGHT_AMBIENT 0x01
477 #define LIGHT_DIFFUSE 0x02
478 #define LIGHT_SPECULAR 0x03
479 #define LIGHT_POSITION 0x04
480 #define LIGHT_ATTENUATION 0x05
481 #define LIGHT_HALF 0x06
482 #define LIGHT_SPOT_DIRECTION 0x07
483
484 /* state light model property */
485 #define LIGHT_MODEL_AMBIENT 0x01
486 #define LIGHT_MODEL_SCENECOLOR 0x02
487
488 /* state light product property */
489 #define LIGHT_PROD_AMBIENT 0x01
490 #define LIGHT_PROD_DIFFUSE 0x02
491 #define LIGHT_PROD_SPECULAR 0x03
492
493 /* state texture environment property */
494 #define TEX_ENV_COLOR 0x01
495
496 /* state texture generation coord property */
497 #define TEX_GEN_EYE 0x01
498 #define TEX_GEN_OBJECT 0x02
499
500 /* state fog property */
501 #define FOG_COLOR 0x01
502 #define FOG_PARAMS 0x02
503
504 /* state depth property */
505 #define DEPTH_RANGE 0x01
506
507 /* state point parameters property */
508 #define POINT_SIZE 0x01
509 #define POINT_ATTENUATION 0x02
510
511 /* declaration */
512 #define ATTRIB 0x01
513 #define PARAM 0x02
514 #define TEMP 0x03
515 #define OUTPUT 0x04
516 #define ALIAS 0x05
517 /* GL_ARB_vertex_program */
518 #define ADDRESS 0x06
519
520 /*-----------------------------------------------------------------------
521 * From here on down is the semantic checking portion
522 *
523 */
524
525 /**
526 * Variable Table Handling functions
527 */
528 typedef enum
529 {
530 vt_none,
531 vt_address,
532 vt_attrib,
533 vt_param,
534 vt_temp,
535 vt_output,
536 vt_alias
537 } var_type;
538
539
540 /**
541 * Setting an explicit field for each of the binding properties is a bit
542 * wasteful of space, but it should be much more clear when reading later on..
543 */
544 struct var_cache
545 {
546 const GLubyte *name; /* don't free() - no need */
547 var_type type;
548 GLuint address_binding; /* The index of the address register we should
549 * be using */
550 GLuint attrib_binding; /* For type vt_attrib, see nvfragprog.h for values */
551 GLuint attrib_is_generic; /* If the attrib was specified through a generic
552 * vertex attrib */
553 GLuint temp_binding; /* The index of the temp register we are to use */
554 GLuint output_binding; /* Output/result register number */
555 struct var_cache *alias_binding; /* For type vt_alias, points to the var_cache entry
556 * that this is aliased to */
557 GLuint param_binding_type; /* {PROGRAM_STATE_VAR, PROGRAM_LOCAL_PARAM,
558 * PROGRAM_ENV_PARAM} */
559 GLuint param_binding_begin; /* This is the offset into the program_parameter_list where
560 * the tokens representing our bound state (or constants)
561 * start */
562 GLuint param_binding_length; /* This is how many entries in the the program_parameter_list
563 * we take up with our state tokens or constants. Note that
564 * this is _not_ the same as the number of param registers
565 * we eventually use */
566 struct var_cache *next;
567 };
568
569 static GLvoid
570 var_cache_create (struct var_cache **va)
571 {
572 *va = (struct var_cache *) _mesa_malloc (sizeof (struct var_cache));
573 if (*va) {
574 (**va).name = NULL;
575 (**va).type = vt_none;
576 (**va).attrib_binding = ~0;
577 (**va).attrib_is_generic = 0;
578 (**va).temp_binding = ~0;
579 (**va).output_binding = ~0;
580 (**va).param_binding_type = ~0;
581 (**va).param_binding_begin = ~0;
582 (**va).param_binding_length = ~0;
583 (**va).alias_binding = NULL;
584 (**va).next = NULL;
585 }
586 }
587
588 static GLvoid
589 var_cache_destroy (struct var_cache **va)
590 {
591 if (*va) {
592 var_cache_destroy (&(**va).next);
593 _mesa_free (*va);
594 *va = NULL;
595 }
596 }
597
598 static GLvoid
599 var_cache_append (struct var_cache **va, struct var_cache *nv)
600 {
601 if (*va)
602 var_cache_append (&(**va).next, nv);
603 else
604 *va = nv;
605 }
606
607 static struct var_cache *
608 var_cache_find (struct var_cache *va, const GLubyte * name)
609 {
610 /*struct var_cache *first = va;*/
611
612 while (va) {
613 if (!_mesa_strcmp ( (const char*) name, (const char*) va->name)) {
614 if (va->type == vt_alias)
615 return va->alias_binding;
616 return va;
617 }
618
619 va = va->next;
620 }
621
622 return NULL;
623 }
624
625
626
627 /**
628 * Called when an error is detected while parsing/compiling a program.
629 * Sets the ctx->Program.ErrorString field to descript and records a
630 * GL_INVALID_OPERATION error.
631 * \param position position of error in program string
632 * \param descrip verbose error description
633 */
634 static void
635 program_error(GLcontext *ctx, GLint position, const char *descrip)
636 {
637 if (descrip) {
638 const char *prefix = "glProgramString(", *suffix = ")";
639 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
640 _mesa_strlen(prefix) +
641 _mesa_strlen(suffix) + 1);
642 if (str) {
643 _mesa_sprintf(str, "%s%s%s", prefix, descrip, suffix);
644 _mesa_error(ctx, GL_INVALID_OPERATION, str);
645 _mesa_free(str);
646 }
647 }
648 _mesa_set_program_error(ctx, position, descrip);
649 }
650
651
652 /**
653 * As above, but with an extra string parameter for more info.
654 */
655 static void
656 program_error2(GLcontext *ctx, GLint position, const char *descrip,
657 const char *var)
658 {
659 if (descrip) {
660 const char *prefix = "glProgramString(", *suffix = ")";
661 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
662 _mesa_strlen(": ") +
663 _mesa_strlen(var) +
664 _mesa_strlen(prefix) +
665 _mesa_strlen(suffix) + 1);
666 if (str) {
667 _mesa_sprintf(str, "%s%s: %s%s", prefix, descrip, var, suffix);
668 _mesa_error(ctx, GL_INVALID_OPERATION, str);
669 _mesa_free(str);
670 }
671 }
672 {
673 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
674 _mesa_strlen(": ") +
675 _mesa_strlen(var) + 1);
676 if (str) {
677 _mesa_sprintf(str, "%s: %s", descrip, var);
678 }
679 _mesa_set_program_error(ctx, position, str);
680 if (str) {
681 _mesa_free(str);
682 }
683 }
684 }
685
686
687
688 /**
689 * constructs an integer from 4 GLubytes in LE format
690 */
691 static GLuint
692 parse_position (const GLubyte ** inst)
693 {
694 GLuint value;
695
696 value = (GLuint) (*(*inst)++);
697 value += (GLuint) (*(*inst)++) * 0x100;
698 value += (GLuint) (*(*inst)++) * 0x10000;
699 value += (GLuint) (*(*inst)++) * 0x1000000;
700
701 return value;
702 }
703
704 /**
705 * This will, given a string, lookup the string as a variable name in the
706 * var cache. If the name is found, the var cache node corresponding to the
707 * var name is returned. If it is not found, a new entry is allocated
708 *
709 * \param I Points into the binary array where the string identifier begins
710 * \param found 1 if the string was found in the var_cache, 0 if it was allocated
711 * \return The location on the var_cache corresponding the the string starting at I
712 */
713 static struct var_cache *
714 parse_string (const GLubyte ** inst, struct var_cache **vc_head,
715 struct arb_program *Program, GLuint * found)
716 {
717 const GLubyte *i = *inst;
718 struct var_cache *va = NULL;
719 (void) Program;
720
721 *inst += _mesa_strlen ((char *) i) + 1;
722
723 va = var_cache_find (*vc_head, i);
724
725 if (va) {
726 *found = 1;
727 return va;
728 }
729
730 *found = 0;
731 var_cache_create (&va);
732 va->name = (const GLubyte *) i;
733
734 var_cache_append (vc_head, va);
735
736 return va;
737 }
738
739 static char *
740 parse_string_without_adding (const GLubyte ** inst, struct arb_program *Program)
741 {
742 const GLubyte *i = *inst;
743 (void) Program;
744
745 *inst += _mesa_strlen ((char *) i) + 1;
746
747 return (char *) i;
748 }
749
750 /**
751 * \return -1 if we parse '-', return 1 otherwise
752 */
753 static GLint
754 parse_sign (const GLubyte ** inst)
755 {
756 /*return *(*inst)++ != '+'; */
757
758 if (**inst == '-') {
759 (*inst)++;
760 return -1;
761 }
762 else if (**inst == '+') {
763 (*inst)++;
764 return 1;
765 }
766
767 return 1;
768 }
769
770 /**
771 * parses and returns signed integer
772 */
773 static GLint
774 parse_integer (const GLubyte ** inst, struct arb_program *Program)
775 {
776 GLint sign;
777 GLint value;
778
779 /* check if *inst points to '+' or '-'
780 * if yes, grab the sign and increment *inst
781 */
782 sign = parse_sign (inst);
783
784 /* now check if *inst points to 0
785 * if yes, increment the *inst and return the default value
786 */
787 if (**inst == 0) {
788 (*inst)++;
789 return 0;
790 }
791
792 /* parse the integer as you normally would do it */
793 value = _mesa_atoi (parse_string_without_adding (inst, Program));
794
795 /* now, after terminating 0 there is a position
796 * to parse it - parse_position()
797 */
798 Program->Position = parse_position (inst);
799
800 return value * sign;
801 }
802
803 /**
804 Accumulate this string of digits, and return them as
805 a large integer represented in floating point (for range).
806 If scale is not NULL, also accumulates a power-of-ten
807 integer scale factor that represents the number of digits
808 in the string.
809 */
810 static GLdouble
811 parse_float_string(const GLubyte ** inst, struct arb_program *Program, GLdouble *scale)
812 {
813 GLdouble value = 0.0;
814 GLdouble oscale = 1.0;
815
816 if (**inst == 0) { /* this string of digits is empty-- do nothing */
817 (*inst)++;
818 }
819 else { /* nonempty string-- parse out the digits */
820 while (**inst >= '0' && **inst <= '9') {
821 GLubyte digit = *((*inst)++);
822 value = value * 10.0 + (GLint) (digit - '0');
823 oscale *= 10.0;
824 }
825 assert(**inst == 0); /* integer string should end with 0 */
826 (*inst)++; /* skip over terminating 0 */
827 Program->Position = parse_position(inst); /* skip position (from integer) */
828 }
829 if (scale)
830 *scale = oscale;
831 return value;
832 }
833
834 /**
835 Parse an unsigned floating-point number from this stream of tokenized
836 characters. Example floating-point formats supported:
837 12.34
838 12
839 0.34
840 .34
841 12.34e-4
842 */
843 static GLfloat
844 parse_float (const GLubyte ** inst, struct arb_program *Program)
845 {
846 GLint exponent;
847 GLdouble whole, fraction, fracScale = 1.0;
848
849 whole = parse_float_string(inst, Program, 0);
850 fraction = parse_float_string(inst, Program, &fracScale);
851
852 /* Parse signed exponent */
853 exponent = parse_integer(inst, Program); /* This is the exponent */
854
855 /* Assemble parts of floating-point number: */
856 return (GLfloat) ((whole + fraction / fracScale) *
857 _mesa_pow(10.0, (GLfloat) exponent));
858 }
859
860
861 /**
862 */
863 static GLfloat
864 parse_signed_float (const GLubyte ** inst, struct arb_program *Program)
865 {
866 GLint sign = parse_sign (inst);
867 GLfloat value = parse_float (inst, Program);
868 return value * sign;
869 }
870
871 /**
872 * This picks out a constant value from the parsed array. The constant vector is r
873 * returned in the *values array, which should be of length 4.
874 *
875 * \param values - The 4 component vector with the constant value in it
876 */
877 static GLvoid
878 parse_constant (const GLubyte ** inst, GLfloat *values, struct arb_program *Program,
879 GLboolean use)
880 {
881 GLuint components, i;
882
883
884 switch (*(*inst)++) {
885 case CONSTANT_SCALAR:
886 if (use == GL_TRUE) {
887 values[0] =
888 values[1] =
889 values[2] = values[3] = parse_float (inst, Program);
890 }
891 else {
892 values[0] =
893 values[1] =
894 values[2] = values[3] = parse_signed_float (inst, Program);
895 }
896
897 break;
898 case CONSTANT_VECTOR:
899 values[0] = values[1] = values[2] = 0;
900 values[3] = 1;
901 components = *(*inst)++;
902 for (i = 0; i < components; i++) {
903 values[i] = parse_signed_float (inst, Program);
904 }
905 break;
906 }
907 }
908
909 /**
910 * \param offset The offset from the address register that we should
911 * address
912 *
913 * \return 0 on sucess, 1 on error
914 */
915 static GLuint
916 parse_relative_offset(GLcontext *ctx, const GLubyte **inst,
917 struct arb_program *Program, GLint *offset)
918 {
919 (void) ctx;
920 *offset = parse_integer(inst, Program);
921 return 0;
922 }
923
924 /**
925 * \param color 0 if color type is primary, 1 if color type is secondary
926 * \return 0 on sucess, 1 on error
927 */
928 static GLuint
929 parse_color_type (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
930 GLint * color)
931 {
932 (void) ctx; (void) Program;
933 *color = *(*inst)++ != COLOR_PRIMARY;
934 return 0;
935 }
936
937 /**
938 * Get an integer corresponding to a generic vertex attribute.
939 *
940 * \return 0 on sucess, 1 on error
941 */
942 static GLuint
943 parse_generic_attrib_num(GLcontext *ctx, const GLubyte ** inst,
944 struct arb_program *Program, GLuint *attrib)
945 {
946 GLint i = parse_integer(inst, Program);
947
948 if ((i < 0) || (i >= MAX_VERTEX_PROGRAM_ATTRIBS))
949 {
950 program_error(ctx, Program->Position,
951 "Invalid generic vertex attribute index");
952 return 1;
953 }
954
955 *attrib = (GLuint) i;
956
957 return 0;
958 }
959
960
961 /**
962 * \param color The index of the color buffer to write into
963 * \return 0 on sucess, 1 on error
964 */
965 static GLuint
966 parse_output_color_num (GLcontext * ctx, const GLubyte ** inst,
967 struct arb_program *Program, GLuint * color)
968 {
969 GLint i = parse_integer (inst, Program);
970
971 if ((i < 0) || (i >= (int)ctx->Const.MaxDrawBuffers)) {
972 *color = 0;
973 program_error(ctx, Program->Position, "Invalid draw buffer index");
974 return 1;
975 }
976
977 *color = (GLuint) i;
978 return 0;
979 }
980
981
982 /**
983 * Validate the index of a texture coordinate
984 *
985 * \param coord The texture unit index
986 * \return 0 on sucess, 1 on error
987 */
988 static GLuint
989 parse_texcoord_num (GLcontext * ctx, const GLubyte ** inst,
990 struct arb_program *Program, GLuint * coord)
991 {
992 GLint i = parse_integer (inst, Program);
993
994 if ((i < 0) || (i >= (int)ctx->Const.MaxTextureCoordUnits)) {
995 program_error(ctx, Program->Position, "Invalid texture coordinate index");
996 return 1;
997 }
998
999 *coord = (GLuint) i;
1000 return 0;
1001 }
1002
1003
1004 /**
1005 * Validate the index of a texture image unit
1006 *
1007 * \param coord The texture unit index
1008 * \return 0 on sucess, 1 on error
1009 */
1010 static GLuint
1011 parse_teximage_num (GLcontext * ctx, const GLubyte ** inst,
1012 struct arb_program *Program, GLuint * coord)
1013 {
1014 GLint i = parse_integer (inst, Program);
1015
1016 if ((i < 0) || (i >= (int)ctx->Const.MaxTextureImageUnits)) {
1017 program_error(ctx, Program->Position, "Invalid texture image index");
1018 return 1;
1019 }
1020
1021 *coord = (GLuint) i;
1022 return 0;
1023 }
1024
1025
1026 /**
1027 * \param coord The weight index
1028 * \return 0 on sucess, 1 on error
1029 */
1030 static GLuint
1031 parse_weight_num (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
1032 GLint * coord)
1033 {
1034 *coord = parse_integer (inst, Program);
1035
1036 if ((*coord < 0) || (*coord >= 1)) {
1037 program_error(ctx, Program->Position, "Invalid weight index");
1038 return 1;
1039 }
1040
1041 return 0;
1042 }
1043
1044 /**
1045 * \param coord The clip plane index
1046 * \return 0 on sucess, 1 on error
1047 */
1048 static GLuint
1049 parse_clipplane_num (GLcontext * ctx, const GLubyte ** inst,
1050 struct arb_program *Program, GLint * coord)
1051 {
1052 *coord = parse_integer (inst, Program);
1053
1054 if ((*coord < 0) || (*coord >= (GLint) ctx->Const.MaxClipPlanes)) {
1055 program_error(ctx, Program->Position, "Invalid clip plane index");
1056 return 1;
1057 }
1058
1059 return 0;
1060 }
1061
1062
1063 /**
1064 * \return 0 on front face, 1 on back face
1065 */
1066 static GLuint
1067 parse_face_type (const GLubyte ** inst)
1068 {
1069 switch (*(*inst)++) {
1070 case FACE_FRONT:
1071 return 0;
1072
1073 case FACE_BACK:
1074 return 1;
1075 }
1076 return 0;
1077 }
1078
1079
1080 /**
1081 * Given a matrix and a modifier token on the binary array, return tokens
1082 * that _mesa_fetch_state() [program.c] can understand.
1083 *
1084 * \param matrix - the matrix we are talking about
1085 * \param matrix_idx - the index of the matrix we have (for texture & program matricies)
1086 * \param matrix_modifier - the matrix modifier (trans, inv, etc)
1087 * \return 0 on sucess, 1 on failure
1088 */
1089 static GLuint
1090 parse_matrix (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
1091 GLint * matrix, GLint * matrix_idx, GLint * matrix_modifier)
1092 {
1093 GLubyte mat = *(*inst)++;
1094
1095 *matrix_idx = 0;
1096
1097 switch (mat) {
1098 case MATRIX_MODELVIEW:
1099 *matrix = STATE_MODELVIEW_MATRIX;
1100 *matrix_idx = parse_integer (inst, Program);
1101 if (*matrix_idx > 0) {
1102 program_error(ctx, Program->Position,
1103 "ARB_vertex_blend not supported");
1104 return 1;
1105 }
1106 break;
1107
1108 case MATRIX_PROJECTION:
1109 *matrix = STATE_PROJECTION_MATRIX;
1110 break;
1111
1112 case MATRIX_MVP:
1113 *matrix = STATE_MVP_MATRIX;
1114 break;
1115
1116 case MATRIX_TEXTURE:
1117 *matrix = STATE_TEXTURE_MATRIX;
1118 *matrix_idx = parse_integer (inst, Program);
1119 if (*matrix_idx >= (GLint) ctx->Const.MaxTextureUnits) {
1120 program_error(ctx, Program->Position, "Invalid Texture Unit");
1121 /* bad *matrix_id */
1122 return 1;
1123 }
1124 break;
1125
1126 /* This is not currently supported (ARB_matrix_palette) */
1127 case MATRIX_PALETTE:
1128 *matrix_idx = parse_integer (inst, Program);
1129 program_error(ctx, Program->Position,
1130 "ARB_matrix_palette not supported");
1131 return 1;
1132 break;
1133
1134 case MATRIX_PROGRAM:
1135 *matrix = STATE_PROGRAM_MATRIX;
1136 *matrix_idx = parse_integer (inst, Program);
1137 if (*matrix_idx >= (GLint) ctx->Const.MaxProgramMatrices) {
1138 program_error(ctx, Program->Position, "Invalid Program Matrix");
1139 /* bad *matrix_idx */
1140 return 1;
1141 }
1142 break;
1143 }
1144
1145 switch (*(*inst)++) {
1146 case MATRIX_MODIFIER_IDENTITY:
1147 *matrix_modifier = 0;
1148 break;
1149 case MATRIX_MODIFIER_INVERSE:
1150 *matrix_modifier = STATE_MATRIX_INVERSE;
1151 break;
1152 case MATRIX_MODIFIER_TRANSPOSE:
1153 *matrix_modifier = STATE_MATRIX_TRANSPOSE;
1154 break;
1155 case MATRIX_MODIFIER_INVTRANS:
1156 *matrix_modifier = STATE_MATRIX_INVTRANS;
1157 break;
1158 }
1159
1160 return 0;
1161 }
1162
1163
1164 /**
1165 * This parses a state string (rather, the binary version of it) into
1166 * a 6-token sequence as described in _mesa_fetch_state() [program.c]
1167 *
1168 * \param inst - the start in the binary arry to start working from
1169 * \param state_tokens - the storage for the 6-token state description
1170 * \return - 0 on sucess, 1 on error
1171 */
1172 static GLuint
1173 parse_state_single_item (GLcontext * ctx, const GLubyte ** inst,
1174 struct arb_program *Program,
1175 gl_state_index state_tokens[STATE_LENGTH])
1176 {
1177 GLubyte token = *(*inst)++;
1178
1179 switch (token) {
1180 case STATE_MATERIAL_PARSER:
1181 state_tokens[0] = STATE_MATERIAL;
1182 state_tokens[1] = parse_face_type (inst);
1183 switch (*(*inst)++) {
1184 case MATERIAL_AMBIENT:
1185 state_tokens[2] = STATE_AMBIENT;
1186 break;
1187 case MATERIAL_DIFFUSE:
1188 state_tokens[2] = STATE_DIFFUSE;
1189 break;
1190 case MATERIAL_SPECULAR:
1191 state_tokens[2] = STATE_SPECULAR;
1192 break;
1193 case MATERIAL_EMISSION:
1194 state_tokens[2] = STATE_EMISSION;
1195 break;
1196 case MATERIAL_SHININESS:
1197 state_tokens[2] = STATE_SHININESS;
1198 break;
1199 }
1200 break;
1201
1202 case STATE_LIGHT_PARSER:
1203 state_tokens[0] = STATE_LIGHT;
1204 state_tokens[1] = parse_integer (inst, Program);
1205
1206 /* Check the value of state_tokens[1] against the # of lights */
1207 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1208 program_error(ctx, Program->Position, "Invalid Light Number");
1209 /* bad state_tokens[1] */
1210 return 1;
1211 }
1212
1213 switch (*(*inst)++) {
1214 case LIGHT_AMBIENT:
1215 state_tokens[2] = STATE_AMBIENT;
1216 break;
1217 case LIGHT_DIFFUSE:
1218 state_tokens[2] = STATE_DIFFUSE;
1219 break;
1220 case LIGHT_SPECULAR:
1221 state_tokens[2] = STATE_SPECULAR;
1222 break;
1223 case LIGHT_POSITION:
1224 state_tokens[2] = STATE_POSITION;
1225 break;
1226 case LIGHT_ATTENUATION:
1227 state_tokens[2] = STATE_ATTENUATION;
1228 break;
1229 case LIGHT_HALF:
1230 state_tokens[2] = STATE_HALF_VECTOR;
1231 break;
1232 case LIGHT_SPOT_DIRECTION:
1233 state_tokens[2] = STATE_SPOT_DIRECTION;
1234 break;
1235 }
1236 break;
1237
1238 case STATE_LIGHT_MODEL:
1239 switch (*(*inst)++) {
1240 case LIGHT_MODEL_AMBIENT:
1241 state_tokens[0] = STATE_LIGHTMODEL_AMBIENT;
1242 break;
1243 case LIGHT_MODEL_SCENECOLOR:
1244 state_tokens[0] = STATE_LIGHTMODEL_SCENECOLOR;
1245 state_tokens[1] = parse_face_type (inst);
1246 break;
1247 }
1248 break;
1249
1250 case STATE_LIGHT_PROD:
1251 state_tokens[0] = STATE_LIGHTPROD;
1252 state_tokens[1] = parse_integer (inst, Program);
1253
1254 /* Check the value of state_tokens[1] against the # of lights */
1255 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1256 program_error(ctx, Program->Position, "Invalid Light Number");
1257 /* bad state_tokens[1] */
1258 return 1;
1259 }
1260
1261 state_tokens[2] = parse_face_type (inst);
1262 switch (*(*inst)++) {
1263 case LIGHT_PROD_AMBIENT:
1264 state_tokens[3] = STATE_AMBIENT;
1265 break;
1266 case LIGHT_PROD_DIFFUSE:
1267 state_tokens[3] = STATE_DIFFUSE;
1268 break;
1269 case LIGHT_PROD_SPECULAR:
1270 state_tokens[3] = STATE_SPECULAR;
1271 break;
1272 }
1273 break;
1274
1275
1276 case STATE_FOG:
1277 switch (*(*inst)++) {
1278 case FOG_COLOR:
1279 state_tokens[0] = STATE_FOG_COLOR;
1280 break;
1281 case FOG_PARAMS:
1282 state_tokens[0] = STATE_FOG_PARAMS;
1283 break;
1284 }
1285 break;
1286
1287 case STATE_TEX_ENV:
1288 state_tokens[1] = parse_integer (inst, Program);
1289 switch (*(*inst)++) {
1290 case TEX_ENV_COLOR:
1291 state_tokens[0] = STATE_TEXENV_COLOR;
1292 break;
1293 }
1294 break;
1295
1296 case STATE_TEX_GEN:
1297 {
1298 GLuint type, coord;
1299
1300 state_tokens[0] = STATE_TEXGEN;
1301 /*state_tokens[1] = parse_integer (inst, Program);*/ /* Texture Unit */
1302
1303 if (parse_texcoord_num (ctx, inst, Program, &coord))
1304 return 1;
1305 state_tokens[1] = coord;
1306
1307 /* EYE or OBJECT */
1308 type = *(*inst)++;
1309
1310 /* 0 - s, 1 - t, 2 - r, 3 - q */
1311 coord = *(*inst)++;
1312
1313 if (type == TEX_GEN_EYE) {
1314 switch (coord) {
1315 case COMPONENT_X:
1316 state_tokens[2] = STATE_TEXGEN_EYE_S;
1317 break;
1318 case COMPONENT_Y:
1319 state_tokens[2] = STATE_TEXGEN_EYE_T;
1320 break;
1321 case COMPONENT_Z:
1322 state_tokens[2] = STATE_TEXGEN_EYE_R;
1323 break;
1324 case COMPONENT_W:
1325 state_tokens[2] = STATE_TEXGEN_EYE_Q;
1326 break;
1327 default:
1328 _mesa_problem(ctx, "bad texgen component in "
1329 "parse_state_single_item()");
1330 }
1331 }
1332 else {
1333 switch (coord) {
1334 case COMPONENT_X:
1335 state_tokens[2] = STATE_TEXGEN_OBJECT_S;
1336 break;
1337 case COMPONENT_Y:
1338 state_tokens[2] = STATE_TEXGEN_OBJECT_T;
1339 break;
1340 case COMPONENT_Z:
1341 state_tokens[2] = STATE_TEXGEN_OBJECT_R;
1342 break;
1343 case COMPONENT_W:
1344 state_tokens[2] = STATE_TEXGEN_OBJECT_Q;
1345 break;
1346 default:
1347 _mesa_problem(ctx, "bad texgen component in "
1348 "parse_state_single_item()");
1349 }
1350 }
1351 }
1352 break;
1353
1354 case STATE_DEPTH:
1355 switch (*(*inst)++) {
1356 case DEPTH_RANGE:
1357 state_tokens[0] = STATE_DEPTH_RANGE;
1358 break;
1359 }
1360 break;
1361
1362 case STATE_CLIP_PLANE:
1363 state_tokens[0] = STATE_CLIPPLANE;
1364 if (parse_clipplane_num (ctx, inst, Program,
1365 (GLint *) &state_tokens[1]))
1366 return 1;
1367 break;
1368
1369 case STATE_POINT:
1370 switch (*(*inst)++) {
1371 case POINT_SIZE:
1372 state_tokens[0] = STATE_POINT_SIZE;
1373 break;
1374
1375 case POINT_ATTENUATION:
1376 state_tokens[0] = STATE_POINT_ATTENUATION;
1377 break;
1378 }
1379 break;
1380
1381 /* XXX: I think this is the correct format for a matrix row */
1382 case STATE_MATRIX_ROWS:
1383 if (parse_matrix(ctx, inst, Program,
1384 (GLint *) &state_tokens[0],
1385 (GLint *) &state_tokens[1],
1386 (GLint *) &state_tokens[4]))
1387 return 1;
1388
1389 state_tokens[2] = parse_integer (inst, Program); /* The first row to grab */
1390
1391 if ((**inst) != 0) { /* Either the last row, 0 */
1392 state_tokens[3] = parse_integer (inst, Program);
1393 if (state_tokens[3] < state_tokens[2]) {
1394 program_error(ctx, Program->Position,
1395 "Second matrix index less than the first");
1396 /* state_tokens[4] vs. state_tokens[3] */
1397 return 1;
1398 }
1399 }
1400 else {
1401 state_tokens[3] = state_tokens[2];
1402 (*inst)++;
1403 }
1404 break;
1405 }
1406
1407 return 0;
1408 }
1409
1410 /**
1411 * This parses a state string (rather, the binary version of it) into
1412 * a 6-token similar for the state fetching code in program.c
1413 *
1414 * One might ask, why fetch these parameters into just like you fetch
1415 * state when they are already stored in other places?
1416 *
1417 * Because of array offsets -> We can stick env/local parameters in the
1418 * middle of a parameter array and then index someplace into the array
1419 * when we execute.
1420 *
1421 * One optimization might be to only do this for the cases where the
1422 * env/local parameters end up inside of an array, and leave the
1423 * single parameters (or arrays of pure env/local pareameters) in their
1424 * respective register files.
1425 *
1426 * For ENV parameters, the format is:
1427 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1428 * state_tokens[1] = STATE_ENV
1429 * state_tokens[2] = the parameter index
1430 *
1431 * for LOCAL parameters, the format is:
1432 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1433 * state_tokens[1] = STATE_LOCAL
1434 * state_tokens[2] = the parameter index
1435 *
1436 * \param inst - the start in the binary arry to start working from
1437 * \param state_tokens - the storage for the 6-token state description
1438 * \return - 0 on sucess, 1 on failure
1439 */
1440 static GLuint
1441 parse_program_single_item (GLcontext * ctx, const GLubyte ** inst,
1442 struct arb_program *Program,
1443 gl_state_index state_tokens[STATE_LENGTH])
1444 {
1445 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1446 state_tokens[0] = STATE_FRAGMENT_PROGRAM;
1447 else
1448 state_tokens[0] = STATE_VERTEX_PROGRAM;
1449
1450
1451 switch (*(*inst)++) {
1452 case PROGRAM_PARAM_ENV:
1453 state_tokens[1] = STATE_ENV;
1454 state_tokens[2] = parse_integer (inst, Program);
1455
1456 /* Check state_tokens[2] against the number of ENV parameters available */
1457 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1458 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxEnvParams))
1459 ||
1460 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1461 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxEnvParams))) {
1462 program_error(ctx, Program->Position,
1463 "Invalid Program Env Parameter");
1464 /* bad state_tokens[2] */
1465 return 1;
1466 }
1467
1468 break;
1469
1470 case PROGRAM_PARAM_LOCAL:
1471 state_tokens[1] = STATE_LOCAL;
1472 state_tokens[2] = parse_integer (inst, Program);
1473
1474 /* Check state_tokens[2] against the number of LOCAL parameters available */
1475 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1476 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxLocalParams))
1477 ||
1478 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1479 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxLocalParams))) {
1480 program_error(ctx, Program->Position,
1481 "Invalid Program Local Parameter");
1482 /* bad state_tokens[2] */
1483 return 1;
1484 }
1485 break;
1486 }
1487
1488 return 0;
1489 }
1490
1491 /**
1492 * For ARB_vertex_program, programs are not allowed to use both an explicit
1493 * vertex attribute and a generic vertex attribute corresponding to the same
1494 * state. See section 2.14.3.1 of the GL_ARB_vertex_program spec.
1495 *
1496 * This will walk our var_cache and make sure that nobody does anything fishy.
1497 *
1498 * \return 0 on sucess, 1 on error
1499 */
1500 static GLuint
1501 generic_attrib_check(struct var_cache *vc_head)
1502 {
1503 int a;
1504 struct var_cache *curr;
1505 GLboolean explicitAttrib[MAX_VERTEX_PROGRAM_ATTRIBS],
1506 genericAttrib[MAX_VERTEX_PROGRAM_ATTRIBS];
1507
1508 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1509 explicitAttrib[a] = GL_FALSE;
1510 genericAttrib[a] = GL_FALSE;
1511 }
1512
1513 curr = vc_head;
1514 while (curr) {
1515 if (curr->type == vt_attrib) {
1516 if (curr->attrib_is_generic)
1517 genericAttrib[ curr->attrib_binding ] = GL_TRUE;
1518 else
1519 explicitAttrib[ curr->attrib_binding ] = GL_TRUE;
1520 }
1521
1522 curr = curr->next;
1523 }
1524
1525 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1526 if ((explicitAttrib[a]) && (genericAttrib[a]))
1527 return 1;
1528 }
1529
1530 return 0;
1531 }
1532
1533 /**
1534 * This will handle the binding side of an ATTRIB var declaration
1535 *
1536 * \param inputReg returns the input register index, one of the
1537 * VERT_ATTRIB_* or FRAG_ATTRIB_* values.
1538 * \return returns 0 on success, 1 on error
1539 */
1540 static GLuint
1541 parse_attrib_binding(GLcontext * ctx, const GLubyte ** inst,
1542 struct arb_program *Program,
1543 GLuint *inputReg, GLuint *is_generic)
1544 {
1545 GLint err = 0;
1546
1547 *is_generic = 0;
1548
1549 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1550 switch (*(*inst)++) {
1551 case FRAGMENT_ATTRIB_COLOR:
1552 {
1553 GLint coord;
1554 err = parse_color_type (ctx, inst, Program, &coord);
1555 *inputReg = FRAG_ATTRIB_COL0 + coord;
1556 }
1557 break;
1558 case FRAGMENT_ATTRIB_TEXCOORD:
1559 {
1560 GLuint texcoord = 0;
1561 err = parse_texcoord_num (ctx, inst, Program, &texcoord);
1562 *inputReg = FRAG_ATTRIB_TEX0 + texcoord;
1563 }
1564 break;
1565 case FRAGMENT_ATTRIB_FOGCOORD:
1566 *inputReg = FRAG_ATTRIB_FOGC;
1567 break;
1568 case FRAGMENT_ATTRIB_POSITION:
1569 *inputReg = FRAG_ATTRIB_WPOS;
1570 break;
1571 default:
1572 err = 1;
1573 break;
1574 }
1575 }
1576 else {
1577 switch (*(*inst)++) {
1578 case VERTEX_ATTRIB_POSITION:
1579 *inputReg = VERT_ATTRIB_POS;
1580 break;
1581
1582 case VERTEX_ATTRIB_WEIGHT:
1583 {
1584 GLint weight;
1585 err = parse_weight_num (ctx, inst, Program, &weight);
1586 *inputReg = VERT_ATTRIB_WEIGHT;
1587 #if 1
1588 /* hack for Warcraft (see bug 8060) */
1589 _mesa_warning(ctx, "Application error: vertex program uses 'vertex.weight' but GL_ARB_vertex_blend not supported.");
1590 break;
1591 #else
1592 program_error(ctx, Program->Position,
1593 "ARB_vertex_blend not supported");
1594 return 1;
1595 #endif
1596 }
1597
1598 case VERTEX_ATTRIB_NORMAL:
1599 *inputReg = VERT_ATTRIB_NORMAL;
1600 break;
1601
1602 case VERTEX_ATTRIB_COLOR:
1603 {
1604 GLint color;
1605 err = parse_color_type (ctx, inst, Program, &color);
1606 if (color) {
1607 *inputReg = VERT_ATTRIB_COLOR1;
1608 }
1609 else {
1610 *inputReg = VERT_ATTRIB_COLOR0;
1611 }
1612 }
1613 break;
1614
1615 case VERTEX_ATTRIB_FOGCOORD:
1616 *inputReg = VERT_ATTRIB_FOG;
1617 break;
1618
1619 case VERTEX_ATTRIB_TEXCOORD:
1620 {
1621 GLuint unit = 0;
1622 err = parse_texcoord_num (ctx, inst, Program, &unit);
1623 *inputReg = VERT_ATTRIB_TEX0 + unit;
1624 }
1625 break;
1626
1627 case VERTEX_ATTRIB_MATRIXINDEX:
1628 /* Not supported at this time */
1629 {
1630 const char *msg = "ARB_palette_matrix not supported";
1631 parse_integer (inst, Program);
1632 program_error(ctx, Program->Position, msg);
1633 }
1634 return 1;
1635
1636 case VERTEX_ATTRIB_GENERIC:
1637 {
1638 GLuint attrib;
1639 err = parse_generic_attrib_num(ctx, inst, Program, &attrib);
1640 if (!err) {
1641 *is_generic = 1;
1642 /* Add VERT_ATTRIB_GENERIC0 here because ARB_vertex_program's
1643 * attributes do not alias the conventional vertex
1644 * attributes.
1645 */
1646 if (attrib > 0)
1647 *inputReg = attrib + VERT_ATTRIB_GENERIC0;
1648 else
1649 *inputReg = 0;
1650 }
1651 }
1652 break;
1653
1654 default:
1655 err = 1;
1656 break;
1657 }
1658 }
1659
1660 if (err) {
1661 program_error(ctx, Program->Position, "Bad attribute binding");
1662 }
1663
1664 return err;
1665 }
1666
1667
1668 /**
1669 * This translates between a binary token for an output variable type
1670 * and the mesa token for the same thing.
1671 *
1672 * \param inst The parsed tokens
1673 * \param outputReg Returned index/number of the output register,
1674 * one of the VERT_RESULT_* or FRAG_RESULT_* values.
1675 */
1676 static GLuint
1677 parse_result_binding(GLcontext *ctx, const GLubyte **inst,
1678 GLuint *outputReg, struct arb_program *Program)
1679 {
1680 const GLubyte token = *(*inst)++;
1681
1682 switch (token) {
1683 case FRAGMENT_RESULT_COLOR:
1684 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1685 GLuint out_color;
1686
1687 /* This gets result of the color buffer we're supposed to
1688 * draw into. This pertains to GL_ARB_draw_buffers.
1689 */
1690 parse_output_color_num(ctx, inst, Program, &out_color);
1691 ASSERT(out_color < MAX_DRAW_BUFFERS);
1692 *outputReg = FRAG_RESULT_COLOR;
1693 }
1694 else {
1695 /* for vtx programs, this is VERTEX_RESULT_POSITION */
1696 *outputReg = VERT_RESULT_HPOS;
1697 }
1698 break;
1699
1700 case FRAGMENT_RESULT_DEPTH:
1701 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1702 /* for frag programs, this is FRAGMENT_RESULT_DEPTH */
1703 *outputReg = FRAG_RESULT_DEPTH;
1704 }
1705 else {
1706 /* for vtx programs, this is VERTEX_RESULT_COLOR */
1707 GLint color_type;
1708 GLuint face_type = parse_face_type(inst);
1709 GLint err = parse_color_type(ctx, inst, Program, &color_type);
1710 if (err)
1711 return 1;
1712
1713 if (face_type) {
1714 /* back face */
1715 if (color_type) {
1716 *outputReg = VERT_RESULT_BFC1; /* secondary color */
1717 }
1718 else {
1719 *outputReg = VERT_RESULT_BFC0; /* primary color */
1720 }
1721 }
1722 else {
1723 /* front face */
1724 if (color_type) {
1725 *outputReg = VERT_RESULT_COL1; /* secondary color */
1726 }
1727 /* primary color */
1728 else {
1729 *outputReg = VERT_RESULT_COL0; /* primary color */
1730 }
1731 }
1732 }
1733 break;
1734
1735 case VERTEX_RESULT_FOGCOORD:
1736 *outputReg = VERT_RESULT_FOGC;
1737 break;
1738
1739 case VERTEX_RESULT_POINTSIZE:
1740 *outputReg = VERT_RESULT_PSIZ;
1741 break;
1742
1743 case VERTEX_RESULT_TEXCOORD:
1744 {
1745 GLuint unit;
1746 if (parse_texcoord_num (ctx, inst, Program, &unit))
1747 return 1;
1748 *outputReg = VERT_RESULT_TEX0 + unit;
1749 }
1750 break;
1751 }
1752
1753 Program->Base.OutputsWritten |= (1 << *outputReg);
1754
1755 return 0;
1756 }
1757
1758
1759 /**
1760 * This handles the declaration of ATTRIB variables
1761 *
1762 * XXX: Still needs
1763 * parse_vert_attrib_binding(), or something like that
1764 *
1765 * \return 0 on sucess, 1 on error
1766 */
1767 static GLint
1768 parse_attrib (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1769 struct arb_program *Program)
1770 {
1771 GLuint found;
1772 struct var_cache *attrib_var;
1773
1774 attrib_var = parse_string (inst, vc_head, Program, &found);
1775 Program->Position = parse_position (inst);
1776 if (found) {
1777 program_error2(ctx, Program->Position,
1778 "Duplicate variable declaration",
1779 (char *) attrib_var->name);
1780 return 1;
1781 }
1782
1783 attrib_var->type = vt_attrib;
1784
1785 if (parse_attrib_binding(ctx, inst, Program, &attrib_var->attrib_binding,
1786 &attrib_var->attrib_is_generic))
1787 return 1;
1788
1789 if (generic_attrib_check(*vc_head)) {
1790 program_error(ctx, Program->Position,
1791 "Cannot use both a generic vertex attribute "
1792 "and a specific attribute of the same type");
1793 return 1;
1794 }
1795
1796 Program->Base.NumAttributes++;
1797 return 0;
1798 }
1799
1800 /**
1801 * \param use -- TRUE if we're called when declaring implicit parameters,
1802 * FALSE if we're declaraing variables. This has to do with
1803 * if we get a signed or unsigned float for scalar constants
1804 */
1805 static GLuint
1806 parse_param_elements (GLcontext * ctx, const GLubyte ** inst,
1807 struct var_cache *param_var,
1808 struct arb_program *Program, GLboolean use)
1809 {
1810 GLint idx;
1811 GLuint err = 0;
1812 gl_state_index state_tokens[STATE_LENGTH] = {0, 0, 0, 0, 0};
1813 GLfloat const_values[4];
1814
1815 GLubyte token = *(*inst)++;
1816
1817 switch (token) {
1818 case PARAM_STATE_ELEMENT:
1819 if (parse_state_single_item (ctx, inst, Program, state_tokens))
1820 return 1;
1821
1822 /* If we adding STATE_MATRIX that has multiple rows, we need to
1823 * unroll it and call _mesa_add_state_reference() for each row
1824 */
1825 if ((state_tokens[0] == STATE_MODELVIEW_MATRIX ||
1826 state_tokens[0] == STATE_PROJECTION_MATRIX ||
1827 state_tokens[0] == STATE_MVP_MATRIX ||
1828 state_tokens[0] == STATE_TEXTURE_MATRIX ||
1829 state_tokens[0] == STATE_PROGRAM_MATRIX)
1830 && (state_tokens[2] != state_tokens[3])) {
1831 GLint row;
1832 const GLint first_row = state_tokens[2];
1833 const GLint last_row = state_tokens[3];
1834
1835 for (row = first_row; row <= last_row; row++) {
1836 state_tokens[2] = state_tokens[3] = row;
1837
1838 idx = _mesa_add_state_reference(Program->Base.Parameters,
1839 state_tokens);
1840 if (param_var->param_binding_begin == ~0U)
1841 param_var->param_binding_begin = idx;
1842 param_var->param_binding_length++;
1843 Program->Base.NumParameters++;
1844 }
1845 }
1846 else {
1847 idx = _mesa_add_state_reference(Program->Base.Parameters,
1848 state_tokens);
1849 if (param_var->param_binding_begin == ~0U)
1850 param_var->param_binding_begin = idx;
1851 param_var->param_binding_length++;
1852 Program->Base.NumParameters++;
1853 }
1854 break;
1855
1856 case PARAM_PROGRAM_ELEMENT:
1857 if (parse_program_single_item (ctx, inst, Program, state_tokens))
1858 return 1;
1859 idx = _mesa_add_state_reference (Program->Base.Parameters, state_tokens);
1860 if (param_var->param_binding_begin == ~0U)
1861 param_var->param_binding_begin = idx;
1862 param_var->param_binding_length++;
1863 Program->Base.NumParameters++;
1864
1865 /* Check if there is more: 0 -> we're done, else its an integer */
1866 if (**inst) {
1867 GLuint out_of_range, new_idx;
1868 GLuint start_idx = state_tokens[2] + 1;
1869 GLuint end_idx = parse_integer (inst, Program);
1870
1871 out_of_range = 0;
1872 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1873 if (((state_tokens[1] == STATE_ENV)
1874 && (end_idx >= ctx->Const.FragmentProgram.MaxEnvParams))
1875 || ((state_tokens[1] == STATE_LOCAL)
1876 && (end_idx >=
1877 ctx->Const.FragmentProgram.MaxLocalParams)))
1878 out_of_range = 1;
1879 }
1880 else {
1881 if (((state_tokens[1] == STATE_ENV)
1882 && (end_idx >= ctx->Const.VertexProgram.MaxEnvParams))
1883 || ((state_tokens[1] == STATE_LOCAL)
1884 && (end_idx >=
1885 ctx->Const.VertexProgram.MaxLocalParams)))
1886 out_of_range = 1;
1887 }
1888 if (out_of_range) {
1889 program_error(ctx, Program->Position,
1890 "Invalid Program Parameter"); /*end_idx*/
1891 return 1;
1892 }
1893
1894 for (new_idx = start_idx; new_idx <= end_idx; new_idx++) {
1895 state_tokens[2] = new_idx;
1896 idx = _mesa_add_state_reference(Program->Base.Parameters,
1897 state_tokens);
1898 param_var->param_binding_length++;
1899 Program->Base.NumParameters++;
1900 }
1901 }
1902 else {
1903 (*inst)++;
1904 }
1905 break;
1906
1907 case PARAM_CONSTANT:
1908 /* parsing something like {1.0, 2.0, 3.0, 4.0} */
1909 parse_constant (inst, const_values, Program, use);
1910 idx = _mesa_add_named_constant(Program->Base.Parameters,
1911 (char *) param_var->name,
1912 const_values, 4);
1913 if (param_var->param_binding_begin == ~0U)
1914 param_var->param_binding_begin = idx;
1915 param_var->param_binding_type = PROGRAM_STATE_VAR;
1916 /* Note: when we reference this parameter in an instruction later,
1917 * we'll check if it's really a constant/immediate and set the
1918 * instruction register type appropriately.
1919 */
1920 param_var->param_binding_length++;
1921 Program->Base.NumParameters++;
1922 break;
1923
1924 default:
1925 program_error(ctx, Program->Position,
1926 "Unexpected token (in parse_param_elements())");
1927 return 1;
1928 }
1929
1930 /* Make sure we haven't blown past our parameter limits */
1931 if (((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1932 (Program->Base.NumParameters >=
1933 ctx->Const.VertexProgram.MaxLocalParams))
1934 || ((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1935 && (Program->Base.NumParameters >=
1936 ctx->Const.FragmentProgram.MaxLocalParams))) {
1937 program_error(ctx, Program->Position, "Too many parameter variables");
1938 return 1;
1939 }
1940
1941 return err;
1942 }
1943
1944
1945 /**
1946 * This picks out PARAM program parameter bindings.
1947 *
1948 * XXX: This needs to be stressed & tested
1949 *
1950 * \return 0 on sucess, 1 on error
1951 */
1952 static GLuint
1953 parse_param (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1954 struct arb_program *Program)
1955 {
1956 GLuint found, err;
1957 GLint specified_length;
1958 struct var_cache *param_var;
1959
1960 err = 0;
1961 param_var = parse_string (inst, vc_head, Program, &found);
1962 Program->Position = parse_position (inst);
1963
1964 if (found) {
1965 program_error2(ctx, Program->Position,
1966 "Duplicate variable declaration",
1967 (char *) param_var->name);
1968 return 1;
1969 }
1970
1971 specified_length = parse_integer (inst, Program);
1972
1973 if (specified_length < 0) {
1974 program_error(ctx, Program->Position, "Negative parameter array length");
1975 return 1;
1976 }
1977
1978 param_var->type = vt_param;
1979 param_var->param_binding_length = 0;
1980
1981 /* Right now, everything is shoved into the main state register file.
1982 *
1983 * In the future, it would be nice to leave things ENV/LOCAL params
1984 * in their respective register files, if possible
1985 */
1986 param_var->param_binding_type = PROGRAM_STATE_VAR;
1987
1988 /* Remember to:
1989 * * - add each guy to the parameter list
1990 * * - increment the param_var->param_binding_len
1991 * * - store the param_var->param_binding_begin for the first one
1992 * * - compare the actual len to the specified len at the end
1993 */
1994 while (**inst != PARAM_NULL) {
1995 if (parse_param_elements (ctx, inst, param_var, Program, GL_FALSE))
1996 return 1;
1997 }
1998
1999 /* Test array length here! */
2000 if (specified_length) {
2001 if (specified_length != (int)param_var->param_binding_length) {
2002 program_error(ctx, Program->Position,
2003 "Declared parameter array length does not match parameter list");
2004 }
2005 }
2006
2007 (*inst)++;
2008
2009 return 0;
2010 }
2011
2012 /**
2013 *
2014 */
2015 static GLuint
2016 parse_param_use (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2017 struct arb_program *Program, struct var_cache **new_var)
2018 {
2019 struct var_cache *param_var;
2020
2021 /* First, insert a dummy entry into the var_cache */
2022 var_cache_create (&param_var);
2023 param_var->name = (const GLubyte *) " ";
2024 param_var->type = vt_param;
2025
2026 param_var->param_binding_length = 0;
2027 /* Don't fill in binding_begin; We use the default value of -1
2028 * to tell if its already initialized, elsewhere.
2029 *
2030 * param_var->param_binding_begin = 0;
2031 */
2032 param_var->param_binding_type = PROGRAM_STATE_VAR;
2033
2034 var_cache_append (vc_head, param_var);
2035
2036 /* Then fill it with juicy parameter goodness */
2037 if (parse_param_elements (ctx, inst, param_var, Program, GL_TRUE))
2038 return 1;
2039
2040 *new_var = param_var;
2041
2042 return 0;
2043 }
2044
2045
2046 /**
2047 * This handles the declaration of TEMP variables
2048 *
2049 * \return 0 on sucess, 1 on error
2050 */
2051 static GLuint
2052 parse_temp (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2053 struct arb_program *Program)
2054 {
2055 GLuint found;
2056 struct var_cache *temp_var;
2057
2058 while (**inst != 0) {
2059 temp_var = parse_string (inst, vc_head, Program, &found);
2060 Program->Position = parse_position (inst);
2061 if (found) {
2062 program_error2(ctx, Program->Position,
2063 "Duplicate variable declaration",
2064 (char *) temp_var->name);
2065 return 1;
2066 }
2067
2068 temp_var->type = vt_temp;
2069
2070 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
2071 (Program->Base.NumTemporaries >=
2072 ctx->Const.FragmentProgram.MaxTemps))
2073 || ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
2074 && (Program->Base.NumTemporaries >=
2075 ctx->Const.VertexProgram.MaxTemps))) {
2076 program_error(ctx, Program->Position,
2077 "Too many TEMP variables declared");
2078 return 1;
2079 }
2080
2081 temp_var->temp_binding = Program->Base.NumTemporaries;
2082 Program->Base.NumTemporaries++;
2083 }
2084 (*inst)++;
2085
2086 return 0;
2087 }
2088
2089 /**
2090 * This handles variables of the OUTPUT variety
2091 *
2092 * \return 0 on sucess, 1 on error
2093 */
2094 static GLuint
2095 parse_output (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2096 struct arb_program *Program)
2097 {
2098 GLuint found;
2099 struct var_cache *output_var;
2100 GLuint err;
2101
2102 output_var = parse_string (inst, vc_head, Program, &found);
2103 Program->Position = parse_position (inst);
2104 if (found) {
2105 program_error2(ctx, Program->Position,
2106 "Duplicate variable declaration",
2107 (char *) output_var->name);
2108 return 1;
2109 }
2110
2111 output_var->type = vt_output;
2112
2113 err = parse_result_binding(ctx, inst, &output_var->output_binding, Program);
2114 return err;
2115 }
2116
2117 /**
2118 * This handles variables of the ALIAS kind
2119 *
2120 * \return 0 on sucess, 1 on error
2121 */
2122 static GLuint
2123 parse_alias (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2124 struct arb_program *Program)
2125 {
2126 GLuint found;
2127 struct var_cache *temp_var;
2128
2129 temp_var = parse_string (inst, vc_head, Program, &found);
2130 Program->Position = parse_position (inst);
2131
2132 if (found) {
2133 program_error2(ctx, Program->Position,
2134 "Duplicate variable declaration",
2135 (char *) temp_var->name);
2136 return 1;
2137 }
2138
2139 temp_var->type = vt_alias;
2140 temp_var->alias_binding = parse_string (inst, vc_head, Program, &found);
2141 Program->Position = parse_position (inst);
2142
2143 if (!found)
2144 {
2145 program_error2(ctx, Program->Position,
2146 "Undefined alias value",
2147 (char *) temp_var->alias_binding->name);
2148 return 1;
2149 }
2150
2151 return 0;
2152 }
2153
2154 /**
2155 * This handles variables of the ADDRESS kind
2156 *
2157 * \return 0 on sucess, 1 on error
2158 */
2159 static GLuint
2160 parse_address (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2161 struct arb_program *Program)
2162 {
2163 GLuint found;
2164 struct var_cache *temp_var;
2165
2166 while (**inst != 0) {
2167 temp_var = parse_string (inst, vc_head, Program, &found);
2168 Program->Position = parse_position (inst);
2169 if (found) {
2170 program_error2(ctx, Program->Position,
2171 "Duplicate variable declaration",
2172 (char *) temp_var->name);
2173 return 1;
2174 }
2175
2176 temp_var->type = vt_address;
2177
2178 if (Program->Base.NumAddressRegs >=
2179 ctx->Const.VertexProgram.MaxAddressRegs) {
2180 const char *msg = "Too many ADDRESS variables declared";
2181 program_error(ctx, Program->Position, msg);
2182 return 1;
2183 }
2184
2185 temp_var->address_binding = Program->Base.NumAddressRegs;
2186 Program->Base.NumAddressRegs++;
2187 }
2188 (*inst)++;
2189
2190 return 0;
2191 }
2192
2193 /**
2194 * Parse a program declaration
2195 *
2196 * \return 0 on sucess, 1 on error
2197 */
2198 static GLint
2199 parse_declaration (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2200 struct arb_program *Program)
2201 {
2202 GLint err = 0;
2203
2204 switch (*(*inst)++) {
2205 case ADDRESS:
2206 err = parse_address (ctx, inst, vc_head, Program);
2207 break;
2208
2209 case ALIAS:
2210 err = parse_alias (ctx, inst, vc_head, Program);
2211 break;
2212
2213 case ATTRIB:
2214 err = parse_attrib (ctx, inst, vc_head, Program);
2215 break;
2216
2217 case OUTPUT:
2218 err = parse_output (ctx, inst, vc_head, Program);
2219 break;
2220
2221 case PARAM:
2222 err = parse_param (ctx, inst, vc_head, Program);
2223 break;
2224
2225 case TEMP:
2226 err = parse_temp (ctx, inst, vc_head, Program);
2227 break;
2228 }
2229
2230 return err;
2231 }
2232
2233 /**
2234 * Handle the parsing out of a masked destination register, either for a
2235 * vertex or fragment program.
2236 *
2237 * If we are a vertex program, make sure we don't write to
2238 * result.position if we have specified that the program is
2239 * position invariant
2240 *
2241 * \param File - The register file we write to
2242 * \param Index - The register index we write to
2243 * \param WriteMask - The mask controlling which components we write (1->write)
2244 *
2245 * \return 0 on sucess, 1 on error
2246 */
2247 static GLuint
2248 parse_masked_dst_reg (GLcontext * ctx, const GLubyte ** inst,
2249 struct var_cache **vc_head, struct arb_program *Program,
2250 gl_register_file *File, GLuint *Index, GLint *WriteMask)
2251 {
2252 GLuint tmp, result;
2253 struct var_cache *dst;
2254
2255 /* We either have a result register specified, or a
2256 * variable that may or may not be writable
2257 */
2258 switch (*(*inst)++) {
2259 case REGISTER_RESULT:
2260 if (parse_result_binding(ctx, inst, Index, Program))
2261 return 1;
2262 *File = PROGRAM_OUTPUT;
2263 break;
2264
2265 case REGISTER_ESTABLISHED_NAME:
2266 dst = parse_string (inst, vc_head, Program, &result);
2267 Program->Position = parse_position (inst);
2268
2269 /* If the name has never been added to our symbol table, we're hosed */
2270 if (!result) {
2271 program_error(ctx, Program->Position, "0: Undefined variable");
2272 return 1;
2273 }
2274
2275 switch (dst->type) {
2276 case vt_output:
2277 *File = PROGRAM_OUTPUT;
2278 *Index = dst->output_binding;
2279 break;
2280
2281 case vt_temp:
2282 *File = PROGRAM_TEMPORARY;
2283 *Index = dst->temp_binding;
2284 break;
2285
2286 /* If the var type is not vt_output or vt_temp, no go */
2287 default:
2288 program_error(ctx, Program->Position,
2289 "Destination register is read only");
2290 return 1;
2291 }
2292 break;
2293
2294 default:
2295 program_error(ctx, Program->Position,
2296 "Unexpected opcode in parse_masked_dst_reg()");
2297 return 1;
2298 }
2299
2300
2301 /* Position invariance test */
2302 /* This test is done now in syntax portion - when position invariance OPTION
2303 is specified, "result.position" rule is disabled so there is no way
2304 to write the position
2305 */
2306 /*if ((Program->HintPositionInvariant) && (*File == PROGRAM_OUTPUT) &&
2307 (*Index == 0)) {
2308 program_error(ctx, Program->Position,
2309 "Vertex program specified position invariance and wrote vertex position");
2310 }*/
2311
2312 /* And then the mask.
2313 * w,a -> bit 0
2314 * z,b -> bit 1
2315 * y,g -> bit 2
2316 * x,r -> bit 3
2317 *
2318 * ==> Need to reverse the order of bits for this!
2319 */
2320 tmp = (GLint) *(*inst)++;
2321 *WriteMask = (((tmp>>3) & 0x1) |
2322 ((tmp>>1) & 0x2) |
2323 ((tmp<<1) & 0x4) |
2324 ((tmp<<3) & 0x8));
2325
2326 return 0;
2327 }
2328
2329
2330 /**
2331 * Handle the parsing of a address register
2332 *
2333 * \param Index - The register index we write to
2334 *
2335 * \return 0 on sucess, 1 on error
2336 */
2337 static GLuint
2338 parse_address_reg (GLcontext * ctx, const GLubyte ** inst,
2339 struct var_cache **vc_head,
2340 struct arb_program *Program, GLint * Index)
2341 {
2342 struct var_cache *dst;
2343 GLuint result;
2344
2345 *Index = 0; /* XXX */
2346
2347 dst = parse_string (inst, vc_head, Program, &result);
2348 Program->Position = parse_position (inst);
2349
2350 /* If the name has never been added to our symbol table, we're hosed */
2351 if (!result) {
2352 program_error(ctx, Program->Position, "Undefined variable");
2353 return 1;
2354 }
2355
2356 if (dst->type != vt_address) {
2357 program_error(ctx, Program->Position, "Variable is not of type ADDRESS");
2358 return 1;
2359 }
2360
2361 return 0;
2362 }
2363
2364 #if 0 /* unused */
2365 /**
2366 * Handle the parsing out of a masked address register
2367 *
2368 * \param Index - The register index we write to
2369 * \param WriteMask - The mask controlling which components we write (1->write)
2370 *
2371 * \return 0 on sucess, 1 on error
2372 */
2373 static GLuint
2374 parse_masked_address_reg (GLcontext * ctx, const GLubyte ** inst,
2375 struct var_cache **vc_head,
2376 struct arb_program *Program, GLint * Index,
2377 GLboolean * WriteMask)
2378 {
2379 if (parse_address_reg (ctx, inst, vc_head, Program, Index))
2380 return 1;
2381
2382 /* This should be 0x8 */
2383 (*inst)++;
2384
2385 /* Writemask of .x is implied */
2386 WriteMask[0] = 1;
2387 WriteMask[1] = WriteMask[2] = WriteMask[3] = 0;
2388
2389 return 0;
2390 }
2391 #endif
2392
2393 /**
2394 * Parse out a swizzle mask.
2395 *
2396 * Basically convert COMPONENT_X/Y/Z/W to SWIZZLE_X/Y/Z/W
2397 *
2398 * The len parameter allows us to grab 4 components for a vector
2399 * swizzle, or just 1 component for a scalar src register selection
2400 */
2401 static void
2402 parse_swizzle_mask(const GLubyte ** inst, GLubyte *swizzle, GLint len)
2403 {
2404 GLint i;
2405
2406 for (i = 0; i < 4; i++)
2407 swizzle[i] = i;
2408
2409 for (i = 0; i < len; i++) {
2410 switch (*(*inst)++) {
2411 case COMPONENT_X:
2412 swizzle[i] = SWIZZLE_X;
2413 break;
2414 case COMPONENT_Y:
2415 swizzle[i] = SWIZZLE_Y;
2416 break;
2417 case COMPONENT_Z:
2418 swizzle[i] = SWIZZLE_Z;
2419 break;
2420 case COMPONENT_W:
2421 swizzle[i] = SWIZZLE_W;
2422 break;
2423 default:
2424 _mesa_problem(NULL, "bad component in parse_swizzle_mask()");
2425 return;
2426 }
2427 }
2428 }
2429
2430
2431 /**
2432 * Parse an extended swizzle mask which is a sequence of
2433 * four x/y/z/w/0/1 tokens.
2434 * \return swizzle four swizzle values
2435 * \return negateMask four element bitfield
2436 */
2437 static void
2438 parse_extended_swizzle_mask(const GLubyte **inst, GLubyte swizzle[4],
2439 GLubyte *negateMask)
2440 {
2441 GLint i;
2442
2443 *negateMask = 0x0;
2444 for (i = 0; i < 4; i++) {
2445 GLubyte swz;
2446 if (parse_sign(inst) == -1)
2447 *negateMask |= (1 << i);
2448
2449 swz = *(*inst)++;
2450
2451 switch (swz) {
2452 case COMPONENT_0:
2453 swizzle[i] = SWIZZLE_ZERO;
2454 break;
2455 case COMPONENT_1:
2456 swizzle[i] = SWIZZLE_ONE;
2457 break;
2458 case COMPONENT_X:
2459 swizzle[i] = SWIZZLE_X;
2460 break;
2461 case COMPONENT_Y:
2462 swizzle[i] = SWIZZLE_Y;
2463 break;
2464 case COMPONENT_Z:
2465 swizzle[i] = SWIZZLE_Z;
2466 break;
2467 case COMPONENT_W:
2468 swizzle[i] = SWIZZLE_W;
2469 break;
2470 default:
2471 _mesa_problem(NULL, "bad case in parse_extended_swizzle_mask()");
2472 return;
2473 }
2474 }
2475 }
2476
2477
2478 static GLuint
2479 parse_src_reg (GLcontext * ctx, const GLubyte ** inst,
2480 struct var_cache **vc_head,
2481 struct arb_program *Program,
2482 gl_register_file * File, GLint * Index,
2483 GLboolean *IsRelOffset )
2484 {
2485 struct var_cache *src;
2486 GLuint binding, is_generic, found;
2487 GLint offset;
2488
2489 *IsRelOffset = 0;
2490
2491 /* And the binding for the src */
2492 switch (*(*inst)++) {
2493 case REGISTER_ATTRIB:
2494 if (parse_attrib_binding
2495 (ctx, inst, Program, &binding, &is_generic))
2496 return 1;
2497 *File = PROGRAM_INPUT;
2498 *Index = binding;
2499
2500 /* We need to insert a dummy variable into the var_cache so we can
2501 * catch generic vertex attrib aliasing errors
2502 */
2503 var_cache_create(&src);
2504 src->type = vt_attrib;
2505 src->name = (const GLubyte *) "Dummy Attrib Variable";
2506 src->attrib_binding = binding;
2507 src->attrib_is_generic = is_generic;
2508 var_cache_append(vc_head, src);
2509 if (generic_attrib_check(*vc_head)) {
2510 program_error(ctx, Program->Position,
2511 "Cannot use both a generic vertex attribute "
2512 "and a specific attribute of the same type");
2513 return 1;
2514 }
2515 break;
2516
2517 case REGISTER_PARAM:
2518 switch (**inst) {
2519 case PARAM_ARRAY_ELEMENT:
2520 (*inst)++;
2521 src = parse_string (inst, vc_head, Program, &found);
2522 Program->Position = parse_position (inst);
2523
2524 if (!found) {
2525 program_error2(ctx, Program->Position,
2526 "Undefined variable",
2527 (char *) src->name);
2528 return 1;
2529 }
2530
2531 *File = (gl_register_file) src->param_binding_type;
2532
2533 switch (*(*inst)++) {
2534 case ARRAY_INDEX_ABSOLUTE:
2535 offset = parse_integer (inst, Program);
2536
2537 if ((offset < 0)
2538 || (offset >= (int)src->param_binding_length)) {
2539 program_error(ctx, Program->Position,
2540 "Index out of range");
2541 /* offset, src->name */
2542 return 1;
2543 }
2544
2545 *Index = src->param_binding_begin + offset;
2546 break;
2547
2548 case ARRAY_INDEX_RELATIVE:
2549 {
2550 GLint addr_reg_idx, rel_off;
2551
2552 /* First, grab the address regiseter */
2553 if (parse_address_reg (ctx, inst, vc_head, Program, &addr_reg_idx))
2554 return 1;
2555
2556 /* And the .x */
2557 ((*inst)++);
2558 ((*inst)++);
2559 ((*inst)++);
2560 ((*inst)++);
2561
2562 /* Then the relative offset */
2563 if (parse_relative_offset(ctx, inst, Program, &rel_off)) return 1;
2564
2565 /* And store it properly */
2566 *Index = src->param_binding_begin + rel_off;
2567 *IsRelOffset = 1;
2568 }
2569 break;
2570 }
2571 break;
2572
2573 default:
2574 if (parse_param_use (ctx, inst, vc_head, Program, &src))
2575 return 1;
2576
2577 *File = (gl_register_file) src->param_binding_type;
2578 *Index = src->param_binding_begin;
2579 break;
2580 }
2581 break;
2582
2583 case REGISTER_ESTABLISHED_NAME:
2584 src = parse_string (inst, vc_head, Program, &found);
2585 Program->Position = parse_position (inst);
2586
2587 /* If the name has never been added to our symbol table, we're hosed */
2588 if (!found) {
2589 program_error(ctx, Program->Position,
2590 "3: Undefined variable"); /* src->name */
2591 return 1;
2592 }
2593
2594 switch (src->type) {
2595 case vt_attrib:
2596 *File = PROGRAM_INPUT;
2597 *Index = src->attrib_binding;
2598 break;
2599
2600 /* XXX: We have to handle offsets someplace in here! -- or are those above? */
2601 case vt_param:
2602 *File = (gl_register_file) src->param_binding_type;
2603 *Index = src->param_binding_begin;
2604 break;
2605
2606 case vt_temp:
2607 *File = PROGRAM_TEMPORARY;
2608 *Index = src->temp_binding;
2609 break;
2610
2611 /* If the var type is vt_output no go */
2612 default:
2613 program_error(ctx, Program->Position,
2614 "destination register is read only");
2615 /* bad src->name */
2616 return 1;
2617 }
2618 break;
2619
2620 default:
2621 program_error(ctx, Program->Position,
2622 "Unknown token in parse_src_reg");
2623 return 1;
2624 }
2625
2626 if (*File == PROGRAM_STATE_VAR) {
2627 gl_register_file file;
2628
2629 /* If we're referencing the Program->Parameters[] array, check if the
2630 * parameter is really a constant/literal. If so, set File to CONSTANT.
2631 */
2632 assert(*Index < (GLint) Program->Base.Parameters->NumParameters);
2633 file = Program->Base.Parameters->Parameters[*Index].Type;
2634 if (file == PROGRAM_CONSTANT)
2635 *File = PROGRAM_CONSTANT;
2636 }
2637
2638 /* Add attributes to InputsRead only if they are used the program.
2639 * This avoids the handling of unused ATTRIB declarations in the drivers. */
2640 if (*File == PROGRAM_INPUT)
2641 Program->Base.InputsRead |= (1 << *Index);
2642
2643 return 0;
2644 }
2645
2646
2647 /**
2648 * Parse vertex/fragment program vector source register.
2649 */
2650 static GLuint
2651 parse_vector_src_reg(GLcontext *ctx, const GLubyte **inst,
2652 struct var_cache **vc_head,
2653 struct arb_program *program,
2654 struct prog_src_register *reg)
2655 {
2656 gl_register_file file;
2657 GLint index;
2658 GLubyte negateMask;
2659 GLubyte swizzle[4];
2660 GLboolean isRelOffset;
2661
2662 /* Grab the sign */
2663 negateMask = (parse_sign (inst) == -1) ? NEGATE_XYZW : NEGATE_NONE;
2664
2665 /* And the src reg */
2666 if (parse_src_reg(ctx, inst, vc_head, program, &file, &index, &isRelOffset))
2667 return 1;
2668
2669 /* finally, the swizzle */
2670 parse_swizzle_mask(inst, swizzle, 4);
2671
2672 reg->File = file;
2673 reg->Index = index;
2674 reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2675 reg->NegateBase = negateMask;
2676 reg->RelAddr = isRelOffset;
2677 return 0;
2678 }
2679
2680
2681 /**
2682 * Parse vertex/fragment program scalar source register.
2683 */
2684 static GLuint
2685 parse_scalar_src_reg(GLcontext *ctx, const GLubyte **inst,
2686 struct var_cache **vc_head,
2687 struct arb_program *program,
2688 struct prog_src_register *reg)
2689 {
2690 gl_register_file file;
2691 GLint index;
2692 GLubyte negateMask;
2693 GLubyte swizzle[4];
2694 GLboolean isRelOffset;
2695
2696 /* Grab the sign */
2697 negateMask = (parse_sign (inst) == -1) ? NEGATE_XYZW : NEGATE_NONE;
2698
2699 /* And the src reg */
2700 if (parse_src_reg(ctx, inst, vc_head, program, &file, &index, &isRelOffset))
2701 return 1;
2702
2703 /* finally, the swizzle */
2704 parse_swizzle_mask(inst, swizzle, 1);
2705
2706 reg->File = file;
2707 reg->Index = index;
2708 reg->Swizzle = (swizzle[0] << 0);
2709 reg->NegateBase = negateMask;
2710 reg->RelAddr = isRelOffset;
2711 return 0;
2712 }
2713
2714
2715 /**
2716 * Parse vertex/fragment program destination register.
2717 * \return 1 if error, 0 if no error.
2718 */
2719 static GLuint
2720 parse_dst_reg(GLcontext * ctx, const GLubyte ** inst,
2721 struct var_cache **vc_head, struct arb_program *program,
2722 struct prog_dst_register *reg )
2723 {
2724 GLint mask;
2725 GLuint idx;
2726 gl_register_file file;
2727
2728 if (parse_masked_dst_reg (ctx, inst, vc_head, program, &file, &idx, &mask))
2729 return 1;
2730
2731 reg->File = file;
2732 reg->Index = idx;
2733 reg->WriteMask = mask;
2734 return 0;
2735 }
2736
2737
2738 /**
2739 * This is a big mother that handles getting opcodes into the instruction
2740 * and handling the src & dst registers for fragment program instructions
2741 * \return 1 if error, 0 if no error
2742 */
2743 static GLuint
2744 parse_fp_instruction (GLcontext * ctx, const GLubyte ** inst,
2745 struct var_cache **vc_head, struct arb_program *Program,
2746 struct prog_instruction *fp)
2747 {
2748 GLint a;
2749 GLuint texcoord;
2750 GLubyte instClass, type, code;
2751 GLboolean rel;
2752 GLuint shadow_tex = 0;
2753
2754 _mesa_init_instructions(fp, 1);
2755
2756 /* OP_ALU_INST or OP_TEX_INST */
2757 instClass = *(*inst)++;
2758
2759 /* OP_ALU_{VECTOR, SCALAR, BINSC, BIN, TRI, SWZ},
2760 * OP_TEX_{SAMPLE, KIL}
2761 */
2762 type = *(*inst)++;
2763
2764 /* The actual opcode name */
2765 code = *(*inst)++;
2766
2767 /* Increment the correct count */
2768 switch (instClass) {
2769 case OP_ALU_INST:
2770 Program->NumAluInstructions++;
2771 break;
2772 case OP_TEX_INST:
2773 Program->NumTexInstructions++;
2774 break;
2775 }
2776
2777 switch (type) {
2778 case OP_ALU_VECTOR:
2779 switch (code) {
2780 case OP_ABS_SAT:
2781 fp->SaturateMode = SATURATE_ZERO_ONE;
2782 case OP_ABS:
2783 fp->Opcode = OPCODE_ABS;
2784 break;
2785
2786 case OP_FLR_SAT:
2787 fp->SaturateMode = SATURATE_ZERO_ONE;
2788 case OP_FLR:
2789 fp->Opcode = OPCODE_FLR;
2790 break;
2791
2792 case OP_FRC_SAT:
2793 fp->SaturateMode = SATURATE_ZERO_ONE;
2794 case OP_FRC:
2795 fp->Opcode = OPCODE_FRC;
2796 break;
2797
2798 case OP_LIT_SAT:
2799 fp->SaturateMode = SATURATE_ZERO_ONE;
2800 case OP_LIT:
2801 fp->Opcode = OPCODE_LIT;
2802 break;
2803
2804 case OP_MOV_SAT:
2805 fp->SaturateMode = SATURATE_ZERO_ONE;
2806 case OP_MOV:
2807 fp->Opcode = OPCODE_MOV;
2808 break;
2809 }
2810
2811 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2812 return 1;
2813
2814 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2815 return 1;
2816 break;
2817
2818 case OP_ALU_SCALAR:
2819 switch (code) {
2820 case OP_COS_SAT:
2821 fp->SaturateMode = SATURATE_ZERO_ONE;
2822 case OP_COS:
2823 fp->Opcode = OPCODE_COS;
2824 break;
2825
2826 case OP_EX2_SAT:
2827 fp->SaturateMode = SATURATE_ZERO_ONE;
2828 case OP_EX2:
2829 fp->Opcode = OPCODE_EX2;
2830 break;
2831
2832 case OP_LG2_SAT:
2833 fp->SaturateMode = SATURATE_ZERO_ONE;
2834 case OP_LG2:
2835 fp->Opcode = OPCODE_LG2;
2836 break;
2837
2838 case OP_RCP_SAT:
2839 fp->SaturateMode = SATURATE_ZERO_ONE;
2840 case OP_RCP:
2841 fp->Opcode = OPCODE_RCP;
2842 break;
2843
2844 case OP_RSQ_SAT:
2845 fp->SaturateMode = SATURATE_ZERO_ONE;
2846 case OP_RSQ:
2847 fp->Opcode = OPCODE_RSQ;
2848 break;
2849
2850 case OP_SIN_SAT:
2851 fp->SaturateMode = SATURATE_ZERO_ONE;
2852 case OP_SIN:
2853 fp->Opcode = OPCODE_SIN;
2854 break;
2855
2856 case OP_SCS_SAT:
2857 fp->SaturateMode = SATURATE_ZERO_ONE;
2858 case OP_SCS:
2859
2860 fp->Opcode = OPCODE_SCS;
2861 break;
2862 }
2863
2864 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2865 return 1;
2866
2867 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2868 return 1;
2869 break;
2870
2871 case OP_ALU_BINSC:
2872 switch (code) {
2873 case OP_POW_SAT:
2874 fp->SaturateMode = SATURATE_ZERO_ONE;
2875 case OP_POW:
2876 fp->Opcode = OPCODE_POW;
2877 break;
2878 }
2879
2880 if (parse_dst_reg(ctx, inst, vc_head, Program, &fp->DstReg))
2881 return 1;
2882
2883 for (a = 0; a < 2; a++) {
2884 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2885 return 1;
2886 }
2887 break;
2888
2889
2890 case OP_ALU_BIN:
2891 switch (code) {
2892 case OP_ADD_SAT:
2893 fp->SaturateMode = SATURATE_ZERO_ONE;
2894 case OP_ADD:
2895 fp->Opcode = OPCODE_ADD;
2896 break;
2897
2898 case OP_DP3_SAT:
2899 fp->SaturateMode = SATURATE_ZERO_ONE;
2900 case OP_DP3:
2901 fp->Opcode = OPCODE_DP3;
2902 break;
2903
2904 case OP_DP4_SAT:
2905 fp->SaturateMode = SATURATE_ZERO_ONE;
2906 case OP_DP4:
2907 fp->Opcode = OPCODE_DP4;
2908 break;
2909
2910 case OP_DPH_SAT:
2911 fp->SaturateMode = SATURATE_ZERO_ONE;
2912 case OP_DPH:
2913 fp->Opcode = OPCODE_DPH;
2914 break;
2915
2916 case OP_DST_SAT:
2917 fp->SaturateMode = SATURATE_ZERO_ONE;
2918 case OP_DST:
2919 fp->Opcode = OPCODE_DST;
2920 break;
2921
2922 case OP_MAX_SAT:
2923 fp->SaturateMode = SATURATE_ZERO_ONE;
2924 case OP_MAX:
2925 fp->Opcode = OPCODE_MAX;
2926 break;
2927
2928 case OP_MIN_SAT:
2929 fp->SaturateMode = SATURATE_ZERO_ONE;
2930 case OP_MIN:
2931 fp->Opcode = OPCODE_MIN;
2932 break;
2933
2934 case OP_MUL_SAT:
2935 fp->SaturateMode = SATURATE_ZERO_ONE;
2936 case OP_MUL:
2937 fp->Opcode = OPCODE_MUL;
2938 break;
2939
2940 case OP_SGE_SAT:
2941 fp->SaturateMode = SATURATE_ZERO_ONE;
2942 case OP_SGE:
2943 fp->Opcode = OPCODE_SGE;
2944 break;
2945
2946 case OP_SLT_SAT:
2947 fp->SaturateMode = SATURATE_ZERO_ONE;
2948 case OP_SLT:
2949 fp->Opcode = OPCODE_SLT;
2950 break;
2951
2952 case OP_SUB_SAT:
2953 fp->SaturateMode = SATURATE_ZERO_ONE;
2954 case OP_SUB:
2955 fp->Opcode = OPCODE_SUB;
2956 break;
2957
2958 case OP_XPD_SAT:
2959 fp->SaturateMode = SATURATE_ZERO_ONE;
2960 case OP_XPD:
2961 fp->Opcode = OPCODE_XPD;
2962 break;
2963 }
2964
2965 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2966 return 1;
2967 for (a = 0; a < 2; a++) {
2968 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2969 return 1;
2970 }
2971 break;
2972
2973 case OP_ALU_TRI:
2974 switch (code) {
2975 case OP_CMP_SAT:
2976 fp->SaturateMode = SATURATE_ZERO_ONE;
2977 case OP_CMP:
2978 fp->Opcode = OPCODE_CMP;
2979 break;
2980
2981 case OP_LRP_SAT:
2982 fp->SaturateMode = SATURATE_ZERO_ONE;
2983 case OP_LRP:
2984 fp->Opcode = OPCODE_LRP;
2985 break;
2986
2987 case OP_MAD_SAT:
2988 fp->SaturateMode = SATURATE_ZERO_ONE;
2989 case OP_MAD:
2990 fp->Opcode = OPCODE_MAD;
2991 break;
2992 }
2993
2994 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2995 return 1;
2996
2997 for (a = 0; a < 3; a++) {
2998 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2999 return 1;
3000 }
3001 break;
3002
3003 case OP_ALU_SWZ:
3004 switch (code) {
3005 case OP_SWZ_SAT:
3006 fp->SaturateMode = SATURATE_ZERO_ONE;
3007 case OP_SWZ:
3008 fp->Opcode = OPCODE_SWZ;
3009 break;
3010 }
3011 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
3012 return 1;
3013
3014 {
3015 GLubyte swizzle[4];
3016 GLubyte negateMask;
3017 gl_register_file file;
3018 GLint index;
3019
3020 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &rel))
3021 return 1;
3022 parse_extended_swizzle_mask(inst, swizzle, &negateMask);
3023 fp->SrcReg[0].File = file;
3024 fp->SrcReg[0].Index = index;
3025 fp->SrcReg[0].NegateBase = negateMask;
3026 fp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
3027 swizzle[1],
3028 swizzle[2],
3029 swizzle[3]);
3030 }
3031 break;
3032
3033 case OP_TEX_SAMPLE:
3034 switch (code) {
3035 case OP_TEX_SAT:
3036 fp->SaturateMode = SATURATE_ZERO_ONE;
3037 case OP_TEX:
3038 fp->Opcode = OPCODE_TEX;
3039 break;
3040
3041 case OP_TXP_SAT:
3042 fp->SaturateMode = SATURATE_ZERO_ONE;
3043 case OP_TXP:
3044 fp->Opcode = OPCODE_TXP;
3045 break;
3046
3047 case OP_TXB_SAT:
3048 fp->SaturateMode = SATURATE_ZERO_ONE;
3049 case OP_TXB:
3050 fp->Opcode = OPCODE_TXB;
3051 break;
3052 }
3053
3054 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
3055 return 1;
3056
3057 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
3058 return 1;
3059
3060 /* texImageUnit */
3061 if (parse_teximage_num (ctx, inst, Program, &texcoord))
3062 return 1;
3063 fp->TexSrcUnit = texcoord;
3064
3065 /* texTarget */
3066 switch (*(*inst)++) {
3067 case TEXTARGET_SHADOW1D:
3068 shadow_tex = 1 << texcoord;
3069 /* FALLTHROUGH */
3070 case TEXTARGET_1D:
3071 fp->TexSrcTarget = TEXTURE_1D_INDEX;
3072 break;
3073 case TEXTARGET_SHADOW2D:
3074 shadow_tex = 1 << texcoord;
3075 /* FALLTHROUGH */
3076 case TEXTARGET_2D:
3077 fp->TexSrcTarget = TEXTURE_2D_INDEX;
3078 break;
3079 case TEXTARGET_3D:
3080 fp->TexSrcTarget = TEXTURE_3D_INDEX;
3081 break;
3082 case TEXTARGET_SHADOWRECT:
3083 shadow_tex = 1 << texcoord;
3084 /* FALLTHROUGH */
3085 case TEXTARGET_RECT:
3086 fp->TexSrcTarget = TEXTURE_RECT_INDEX;
3087 break;
3088 case TEXTARGET_CUBE:
3089 fp->TexSrcTarget = TEXTURE_CUBE_INDEX;
3090 break;
3091 case TEXTARGET_SHADOW1D_ARRAY:
3092 shadow_tex = 1 << texcoord;
3093 /* FALLTHROUGH */
3094 case TEXTARGET_1D_ARRAY:
3095 fp->TexSrcTarget = TEXTURE_1D_ARRAY_INDEX;
3096 break;
3097 case TEXTARGET_SHADOW2D_ARRAY:
3098 shadow_tex = 1 << texcoord;
3099 /* FALLTHROUGH */
3100 case TEXTARGET_2D_ARRAY:
3101 fp->TexSrcTarget = TEXTURE_2D_ARRAY_INDEX;
3102 break;
3103 }
3104
3105 if (shadow_tex)
3106 fp->TexShadow = 1;
3107
3108 /* Don't test the first time a particular sampler is seen. Each time
3109 * after that, make sure the shadow state is the same.
3110 */
3111 if ((_mesa_bitcount(Program->TexturesUsed[texcoord]) > 0)
3112 && ((Program->ShadowSamplers & (1 << texcoord)) != shadow_tex)) {
3113 program_error(ctx, Program->Position,
3114 "texture image unit used for shadow sampling and non-shadow sampling");
3115 return 1;
3116 }
3117
3118 Program->TexturesUsed[texcoord] |= (1 << fp->TexSrcTarget);
3119 /* Check that both "2D" and "CUBE" (for example) aren't both used */
3120 if (_mesa_bitcount(Program->TexturesUsed[texcoord]) > 1) {
3121 program_error(ctx, Program->Position,
3122 "multiple targets used on one texture image unit");
3123 return 1;
3124 }
3125
3126
3127 Program->ShadowSamplers |= shadow_tex;
3128 break;
3129
3130 case OP_TEX_KIL:
3131 Program->UsesKill = 1;
3132 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
3133 return 1;
3134 fp->Opcode = OPCODE_KIL;
3135 break;
3136 default:
3137 _mesa_problem(ctx, "bad type 0x%x in parse_fp_instruction()", type);
3138 return 1;
3139 }
3140
3141 return 0;
3142 }
3143
3144
3145 /**
3146 * Handle the parsing out of a masked address register
3147 *
3148 * \param Index - The register index we write to
3149 * \param WriteMask - The mask controlling which components we write (1->write)
3150 *
3151 * \return 0 on sucess, 1 on error
3152 */
3153 static GLuint
3154 parse_vp_address_reg (GLcontext * ctx, const GLubyte ** inst,
3155 struct var_cache **vc_head,
3156 struct arb_program *Program,
3157 struct prog_dst_register *reg)
3158 {
3159 GLint idx;
3160
3161 if (parse_address_reg (ctx, inst, vc_head, Program, &idx))
3162 return 1;
3163
3164 /* This should be 0x8 */
3165 (*inst)++;
3166
3167 reg->File = PROGRAM_ADDRESS;
3168 reg->Index = idx;
3169
3170 /* Writemask of .x is implied */
3171 reg->WriteMask = 0x1;
3172 return 0;
3173 }
3174
3175
3176 /**
3177 * This is a big mother that handles getting opcodes into the instruction
3178 * and handling the src & dst registers for vertex program instructions
3179 */
3180 static GLuint
3181 parse_vp_instruction (GLcontext * ctx, const GLubyte ** inst,
3182 struct var_cache **vc_head, struct arb_program *Program,
3183 struct prog_instruction *vp)
3184 {
3185 GLint a;
3186 GLubyte type, code;
3187
3188 /* OP_ALU_{ARL, VECTOR, SCALAR, BINSC, BIN, TRI, SWZ} */
3189 type = *(*inst)++;
3190
3191 /* The actual opcode name */
3192 code = *(*inst)++;
3193
3194 _mesa_init_instructions(vp, 1);
3195
3196 switch (type) {
3197 /* XXX: */
3198 case OP_ALU_ARL:
3199 vp->Opcode = OPCODE_ARL;
3200
3201 /* Remember to set SrcReg.RelAddr; */
3202
3203 /* Get the masked address register [dst] */
3204 if (parse_vp_address_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3205 return 1;
3206
3207 vp->DstReg.File = PROGRAM_ADDRESS;
3208
3209 /* Get a scalar src register */
3210 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3211 return 1;
3212
3213 break;
3214
3215 case OP_ALU_VECTOR:
3216 switch (code) {
3217 case OP_ABS:
3218 vp->Opcode = OPCODE_ABS;
3219 break;
3220 case OP_FLR:
3221 vp->Opcode = OPCODE_FLR;
3222 break;
3223 case OP_FRC:
3224 vp->Opcode = OPCODE_FRC;
3225 break;
3226 case OP_LIT:
3227 vp->Opcode = OPCODE_LIT;
3228 break;
3229 case OP_MOV:
3230 vp->Opcode = OPCODE_MOV;
3231 break;
3232 }
3233
3234 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3235 return 1;
3236
3237 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3238 return 1;
3239 break;
3240
3241 case OP_ALU_SCALAR:
3242 switch (code) {
3243 case OP_EX2:
3244 vp->Opcode = OPCODE_EX2;
3245 break;
3246 case OP_EXP:
3247 vp->Opcode = OPCODE_EXP;
3248 break;
3249 case OP_LG2:
3250 vp->Opcode = OPCODE_LG2;
3251 break;
3252 case OP_LOG:
3253 vp->Opcode = OPCODE_LOG;
3254 break;
3255 case OP_RCP:
3256 vp->Opcode = OPCODE_RCP;
3257 break;
3258 case OP_RSQ:
3259 vp->Opcode = OPCODE_RSQ;
3260 break;
3261 }
3262 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3263 return 1;
3264
3265 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3266 return 1;
3267 break;
3268
3269 case OP_ALU_BINSC:
3270 switch (code) {
3271 case OP_POW:
3272 vp->Opcode = OPCODE_POW;
3273 break;
3274 }
3275 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3276 return 1;
3277
3278 for (a = 0; a < 2; a++) {
3279 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3280 return 1;
3281 }
3282 break;
3283
3284 case OP_ALU_BIN:
3285 switch (code) {
3286 case OP_ADD:
3287 vp->Opcode = OPCODE_ADD;
3288 break;
3289 case OP_DP3:
3290 vp->Opcode = OPCODE_DP3;
3291 break;
3292 case OP_DP4:
3293 vp->Opcode = OPCODE_DP4;
3294 break;
3295 case OP_DPH:
3296 vp->Opcode = OPCODE_DPH;
3297 break;
3298 case OP_DST:
3299 vp->Opcode = OPCODE_DST;
3300 break;
3301 case OP_MAX:
3302 vp->Opcode = OPCODE_MAX;
3303 break;
3304 case OP_MIN:
3305 vp->Opcode = OPCODE_MIN;
3306 break;
3307 case OP_MUL:
3308 vp->Opcode = OPCODE_MUL;
3309 break;
3310 case OP_SGE:
3311 vp->Opcode = OPCODE_SGE;
3312 break;
3313 case OP_SLT:
3314 vp->Opcode = OPCODE_SLT;
3315 break;
3316 case OP_SUB:
3317 vp->Opcode = OPCODE_SUB;
3318 break;
3319 case OP_XPD:
3320 vp->Opcode = OPCODE_XPD;
3321 break;
3322 }
3323 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3324 return 1;
3325
3326 for (a = 0; a < 2; a++) {
3327 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3328 return 1;
3329 }
3330 break;
3331
3332 case OP_ALU_TRI:
3333 switch (code) {
3334 case OP_MAD:
3335 vp->Opcode = OPCODE_MAD;
3336 break;
3337 }
3338
3339 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3340 return 1;
3341
3342 for (a = 0; a < 3; a++) {
3343 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3344 return 1;
3345 }
3346 break;
3347
3348 case OP_ALU_SWZ:
3349 switch (code) {
3350 case OP_SWZ:
3351 vp->Opcode = OPCODE_SWZ;
3352 break;
3353 }
3354 {
3355 GLubyte swizzle[4];
3356 GLubyte negateMask;
3357 GLboolean relAddr;
3358 gl_register_file file;
3359 GLint index;
3360
3361 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3362 return 1;
3363
3364 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &relAddr))
3365 return 1;
3366 parse_extended_swizzle_mask (inst, swizzle, &negateMask);
3367 vp->SrcReg[0].File = file;
3368 vp->SrcReg[0].Index = index;
3369 vp->SrcReg[0].NegateBase = negateMask;
3370 vp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
3371 swizzle[1],
3372 swizzle[2],
3373 swizzle[3]);
3374 vp->SrcReg[0].RelAddr = relAddr;
3375 }
3376 break;
3377 }
3378 return 0;
3379 }
3380
3381 #if DEBUG_PARSING
3382
3383 static GLvoid
3384 debug_variables (GLcontext * ctx, struct var_cache *vc_head,
3385 struct arb_program *Program)
3386 {
3387 struct var_cache *vc;
3388 GLint a, b;
3389
3390 fprintf (stderr, "debug_variables, vc_head: %p\n", (void*) vc_head);
3391
3392 /* First of all, print out the contents of the var_cache */
3393 vc = vc_head;
3394 while (vc) {
3395 fprintf (stderr, "[%p]\n", (void*) vc);
3396 switch (vc->type) {
3397 case vt_none:
3398 fprintf (stderr, "UNDEFINED %s\n", vc->name);
3399 break;
3400 case vt_attrib:
3401 fprintf (stderr, "ATTRIB %s\n", vc->name);
3402 fprintf (stderr, " binding: 0x%x\n", vc->attrib_binding);
3403 break;
3404 case vt_param:
3405 fprintf (stderr, "PARAM %s begin: %d len: %d\n", vc->name,
3406 vc->param_binding_begin, vc->param_binding_length);
3407 b = vc->param_binding_begin;
3408 for (a = 0; a < vc->param_binding_length; a++) {
3409 fprintf (stderr, "%s\n",
3410 Program->Base.Parameters->Parameters[a + b].Name);
3411 if (Program->Base.Parameters->Parameters[a + b].Type == PROGRAM_STATE_VAR) {
3412 char *s;
3413 s = _mesa_program_state_string(Program->Base.Parameters->Parameters
3414 [a + b].StateIndexes);
3415 fprintf(stderr, "%s\n", s);
3416 _mesa_free(s);
3417 }
3418 else
3419 fprintf (stderr, "%f %f %f %f\n",
3420 Program->Base.Parameters->ParameterValues[a + b][0],
3421 Program->Base.Parameters->ParameterValues[a + b][1],
3422 Program->Base.Parameters->ParameterValues[a + b][2],
3423 Program->Base.Parameters->ParameterValues[a + b][3]);
3424 }
3425 break;
3426 case vt_temp:
3427 fprintf (stderr, "TEMP %s\n", vc->name);
3428 fprintf (stderr, " binding: 0x%x\n", vc->temp_binding);
3429 break;
3430 case vt_output:
3431 fprintf (stderr, "OUTPUT %s\n", vc->name);
3432 fprintf (stderr, " binding: 0x%x\n", vc->output_binding);
3433 break;
3434 case vt_alias:
3435 fprintf (stderr, "ALIAS %s\n", vc->name);
3436 fprintf (stderr, " binding: 0x%p (%s)\n",
3437 (void*) vc->alias_binding, vc->alias_binding->name);
3438 break;
3439 default:
3440 /* nothing */
3441 ;
3442 }
3443 vc = vc->next;
3444 }
3445 }
3446
3447 #endif /* DEBUG_PARSING */
3448
3449
3450 /**
3451 * The main loop for parsing a fragment or vertex program
3452 *
3453 * \return 1 on error, 0 on success
3454 */
3455 static GLint
3456 parse_instructions(GLcontext * ctx, const GLubyte * inst,
3457 struct var_cache **vc_head, struct arb_program *Program)
3458 {
3459 const GLuint maxInst = (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
3460 ? ctx->Const.FragmentProgram.MaxInstructions
3461 : ctx->Const.VertexProgram.MaxInstructions;
3462 GLint err = 0;
3463
3464 ASSERT(MAX_PROGRAM_INSTRUCTIONS >= maxInst);
3465
3466 Program->MajorVersion = (GLuint) * inst++;
3467 Program->MinorVersion = (GLuint) * inst++;
3468
3469 while (*inst != END) {
3470 switch (*inst++) {
3471
3472 case OPTION:
3473 switch (*inst++) {
3474 case ARB_PRECISION_HINT_FASTEST:
3475 Program->PrecisionOption = GL_FASTEST;
3476 break;
3477
3478 case ARB_PRECISION_HINT_NICEST:
3479 Program->PrecisionOption = GL_NICEST;
3480 break;
3481
3482 case ARB_FOG_EXP:
3483 Program->FogOption = GL_EXP;
3484 break;
3485
3486 case ARB_FOG_EXP2:
3487 Program->FogOption = GL_EXP2;
3488 break;
3489
3490 case ARB_FOG_LINEAR:
3491 Program->FogOption = GL_LINEAR;
3492 break;
3493
3494 case ARB_POSITION_INVARIANT:
3495 if (Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
3496 Program->HintPositionInvariant = GL_TRUE;
3497 break;
3498
3499 case ARB_FRAGMENT_PROGRAM_SHADOW:
3500 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3501 /* TODO ARB_fragment_program_shadow code */
3502 }
3503 break;
3504
3505 case ARB_DRAW_BUFFERS:
3506 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3507 /* do nothing for now */
3508 }
3509 break;
3510
3511 case MESA_TEXTURE_ARRAY:
3512 /* do nothing for now */
3513 break;
3514 }
3515 break;
3516
3517 case INSTRUCTION:
3518 /* check length */
3519 if (Program->Base.NumInstructions + 1 >= maxInst) {
3520 program_error(ctx, Program->Position,
3521 "Max instruction count exceeded");
3522 return 1;
3523 }
3524 Program->Position = parse_position (&inst);
3525 /* parse the current instruction */
3526 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3527 err = parse_fp_instruction (ctx, &inst, vc_head, Program,
3528 &Program->Base.Instructions[Program->Base.NumInstructions]);
3529 }
3530 else {
3531 err = parse_vp_instruction (ctx, &inst, vc_head, Program,
3532 &Program->Base.Instructions[Program->Base.NumInstructions]);
3533 }
3534
3535 /* increment instuction count */
3536 Program->Base.NumInstructions++;
3537 break;
3538
3539 case DECLARATION:
3540 err = parse_declaration (ctx, &inst, vc_head, Program);
3541 break;
3542
3543 default:
3544 break;
3545 }
3546
3547 if (err)
3548 break;
3549 }
3550
3551 /* Finally, tag on an OPCODE_END instruction */
3552 {
3553 const GLuint numInst = Program->Base.NumInstructions;
3554 _mesa_init_instructions(Program->Base.Instructions + numInst, 1);
3555 Program->Base.Instructions[numInst].Opcode = OPCODE_END;
3556 }
3557 Program->Base.NumInstructions++;
3558
3559 /*
3560 * Initialize native counts to logical counts. The device driver may
3561 * change them if program is translated into a hardware program.
3562 */
3563 Program->Base.NumNativeInstructions = Program->Base.NumInstructions;
3564 Program->Base.NumNativeTemporaries = Program->Base.NumTemporaries;
3565 Program->Base.NumNativeParameters = Program->Base.NumParameters;
3566 Program->Base.NumNativeAttributes = Program->Base.NumAttributes;
3567 Program->Base.NumNativeAddressRegs = Program->Base.NumAddressRegs;
3568
3569 return err;
3570 }
3571
3572
3573 /* XXX temporary */
3574 LONGSTRING static char core_grammar_text[] =
3575 #include "shader/grammar/grammar_syn.h"
3576 ;
3577
3578
3579 /**
3580 * Set a grammar parameter.
3581 * \param name the grammar parameter
3582 * \param value the new parameter value
3583 * \return 0 if OK, 1 if error
3584 */
3585 static int
3586 set_reg8 (GLcontext *ctx, grammar id, const char *name, GLubyte value)
3587 {
3588 char error_msg[300];
3589 GLint error_pos;
3590
3591 if (grammar_set_reg8 (id, (const byte *) name, value))
3592 return 0;
3593
3594 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3595 _mesa_set_program_error (ctx, error_pos, error_msg);
3596 _mesa_error (ctx, GL_INVALID_OPERATION, "Grammar Register Error");
3597 return 1;
3598 }
3599
3600
3601 /**
3602 * Enable support for the given language option in the parser.
3603 * \return 1 if OK, 0 if error
3604 */
3605 static int
3606 enable_ext(GLcontext *ctx, grammar id, const char *name)
3607 {
3608 return !set_reg8(ctx, id, name, 1);
3609 }
3610
3611
3612 /**
3613 * Enable parser extensions based on which OpenGL extensions are supported
3614 * by this rendering context.
3615 *
3616 * \return GL_TRUE if OK, GL_FALSE if error.
3617 */
3618 static GLboolean
3619 enable_parser_extensions(GLcontext *ctx, grammar id)
3620 {
3621 #if 0
3622 /* These are not supported at this time */
3623 if ((ctx->Extensions.ARB_vertex_blend ||
3624 ctx->Extensions.EXT_vertex_weighting)
3625 && !enable_ext(ctx, id, "vertex_blend"))
3626 return GL_FALSE;
3627 if (ctx->Extensions.ARB_matrix_palette
3628 && !enable_ext(ctx, id, "matrix_palette"))
3629 return GL_FALSE;
3630 #endif
3631 if (ctx->Extensions.ARB_fragment_program_shadow
3632 && !enable_ext(ctx, id, "fragment_program_shadow"))
3633 return GL_FALSE;
3634 if (ctx->Extensions.EXT_point_parameters
3635 && !enable_ext(ctx, id, "point_parameters"))
3636 return GL_FALSE;
3637 if (ctx->Extensions.EXT_secondary_color
3638 && !enable_ext(ctx, id, "secondary_color"))
3639 return GL_FALSE;
3640 if (ctx->Extensions.EXT_fog_coord
3641 && !enable_ext(ctx, id, "fog_coord"))
3642 return GL_FALSE;
3643 if (ctx->Extensions.NV_texture_rectangle
3644 && !enable_ext(ctx, id, "texture_rectangle"))
3645 return GL_FALSE;
3646 if (!enable_ext(ctx, id, "draw_buffers"))
3647 return GL_FALSE;
3648 if (ctx->Extensions.MESA_texture_array
3649 && !enable_ext(ctx, id, "texture_array"))
3650 return GL_FALSE;
3651 #if 1
3652 /* hack for Warcraft (see bug 8060) */
3653 enable_ext(ctx, id, "vertex_blend");
3654 #endif
3655
3656 return GL_TRUE;
3657 }
3658
3659
3660 /**
3661 * This kicks everything off.
3662 *
3663 * \param ctx - The GL Context
3664 * \param str - The program string
3665 * \param len - The program string length
3666 * \param program - The arb_program struct to return all the parsed info in
3667 * \return GL_TRUE on sucess, GL_FALSE on error
3668 */
3669 static GLboolean
3670 _mesa_parse_arb_program(GLcontext *ctx, GLenum target,
3671 const GLubyte *str, GLsizei len,
3672 struct arb_program *program)
3673 {
3674 GLint a, err, error_pos;
3675 char error_msg[300];
3676 GLuint parsed_len;
3677 struct var_cache *vc_head;
3678 grammar arbprogram_syn_id;
3679 GLubyte *parsed, *inst;
3680 GLubyte *strz = NULL;
3681 static int arbprogram_syn_is_ok = 0; /* XXX temporary */
3682
3683 /* set the program target before parsing */
3684 program->Base.Target = target;
3685
3686 /* Reset error state */
3687 _mesa_set_program_error(ctx, -1, NULL);
3688
3689 /* check if arb_grammar_text (arbprogram.syn) is syntactically correct */
3690 if (!arbprogram_syn_is_ok) {
3691 /* One-time initialization of parsing system */
3692 grammar grammar_syn_id;
3693 GLuint parsed_len;
3694
3695 grammar_syn_id = grammar_load_from_text ((byte *) core_grammar_text);
3696 if (grammar_syn_id == 0) {
3697 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3698 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3699 _mesa_set_program_error (ctx, error_pos, error_msg);
3700 _mesa_error (ctx, GL_INVALID_OPERATION,
3701 "glProgramStringARB(Error loading grammar rule set)");
3702 return GL_FALSE;
3703 }
3704
3705 err = !grammar_check(grammar_syn_id, (byte *) arb_grammar_text,
3706 &parsed, &parsed_len);
3707
3708 /* 'parsed' is unused here */
3709 _mesa_free (parsed);
3710 parsed = NULL;
3711
3712 /* NOTE: we can't destroy grammar_syn_id right here because
3713 * grammar_destroy() can reset the last error
3714 */
3715 if (err) {
3716 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3717 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3718 _mesa_set_program_error (ctx, error_pos, error_msg);
3719 _mesa_error (ctx, GL_INVALID_OPERATION,
3720 "glProgramString(Error loading grammar rule set");
3721 grammar_destroy (grammar_syn_id);
3722 return GL_FALSE;
3723 }
3724
3725 grammar_destroy (grammar_syn_id);
3726
3727 arbprogram_syn_is_ok = 1;
3728 }
3729
3730 /* create the grammar object */
3731 arbprogram_syn_id = grammar_load_from_text ((byte *) arb_grammar_text);
3732 if (arbprogram_syn_id == 0) {
3733 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3734 grammar_get_last_error ((GLubyte *) error_msg, 300, &error_pos);
3735 _mesa_set_program_error (ctx, error_pos, error_msg);
3736 _mesa_error (ctx, GL_INVALID_OPERATION,
3737 "glProgramString(Error loading grammer rule set)");
3738 return GL_FALSE;
3739 }
3740
3741 /* Set program_target register value */
3742 if (set_reg8 (ctx, arbprogram_syn_id, "program_target",
3743 program->Base.Target == GL_FRAGMENT_PROGRAM_ARB ? 0x10 : 0x20)) {
3744 grammar_destroy (arbprogram_syn_id);
3745 return GL_FALSE;
3746 }
3747
3748 if (!enable_parser_extensions(ctx, arbprogram_syn_id)) {
3749 grammar_destroy(arbprogram_syn_id);
3750 return GL_FALSE;
3751 }
3752
3753 /* check for NULL character occurences */
3754 {
3755 GLint i;
3756 for (i = 0; i < len; i++) {
3757 if (str[i] == '\0') {
3758 program_error(ctx, i, "illegal character");
3759 grammar_destroy (arbprogram_syn_id);
3760 return GL_FALSE;
3761 }
3762 }
3763 }
3764
3765 /* copy the program string to a null-terminated string */
3766 strz = (GLubyte *) _mesa_malloc (len + 1);
3767 if (!strz) {
3768 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB");
3769 grammar_destroy (arbprogram_syn_id);
3770 return GL_FALSE;
3771 }
3772 _mesa_memcpy (strz, str, len);
3773 strz[len] = '\0';
3774
3775 /* do a fast check on program string - initial production buffer is 4K */
3776 err = !grammar_fast_check(arbprogram_syn_id, strz,
3777 &parsed, &parsed_len, 0x1000);
3778
3779 /* Syntax parse error */
3780 if (err) {
3781 grammar_get_last_error((GLubyte *) error_msg, 300, &error_pos);
3782 program_error(ctx, error_pos, error_msg);
3783
3784 #if DEBUG_PARSING
3785 /* useful for debugging */
3786 do {
3787 int line, col;
3788 char *s;
3789 fprintf(stderr, "program: %s\n", (char *) strz);
3790 fprintf(stderr, "Error Pos: %d\n", ctx->Program.ErrorPos);
3791 s = (char *) _mesa_find_line_column(strz, strz+ctx->Program.ErrorPos,
3792 &line, &col);
3793 fprintf(stderr, "line %d col %d: %s\n", line, col, s);
3794 } while (0);
3795 #endif
3796
3797 _mesa_free(strz);
3798 _mesa_free(parsed);
3799
3800 grammar_destroy (arbprogram_syn_id);
3801 return GL_FALSE;
3802 }
3803
3804 grammar_destroy (arbprogram_syn_id);
3805
3806 /*
3807 * Program string is syntactically correct at this point
3808 * Parse the tokenized version of the program now, generating
3809 * vertex/fragment program instructions.
3810 */
3811
3812 /* Initialize the arb_program struct */
3813 program->Base.String = strz;
3814 program->Base.Instructions = _mesa_alloc_instructions(MAX_PROGRAM_INSTRUCTIONS);
3815 program->Base.NumInstructions =
3816 program->Base.NumTemporaries =
3817 program->Base.NumParameters =
3818 program->Base.NumAttributes = program->Base.NumAddressRegs = 0;
3819 program->Base.Parameters = _mesa_new_parameter_list ();
3820 program->Base.InputsRead = 0x0;
3821 program->Base.OutputsWritten = 0x0;
3822 program->Position = 0;
3823 program->MajorVersion = program->MinorVersion = 0;
3824 program->PrecisionOption = GL_DONT_CARE;
3825 program->FogOption = GL_NONE;
3826 program->HintPositionInvariant = GL_FALSE;
3827 for (a = 0; a < MAX_TEXTURE_IMAGE_UNITS; a++)
3828 program->TexturesUsed[a] = 0x0;
3829 program->ShadowSamplers = 0x0;
3830 program->NumAluInstructions =
3831 program->NumTexInstructions =
3832 program->NumTexIndirections = 0;
3833 program->UsesKill = 0;
3834
3835 vc_head = NULL;
3836 err = GL_FALSE;
3837
3838 /* Start examining the tokens in the array */
3839 inst = parsed;
3840
3841 /* Check the grammer rev */
3842 if (*inst++ != REVISION) {
3843 program_error (ctx, 0, "Grammar version mismatch");
3844 err = GL_TRUE;
3845 }
3846 else {
3847 /* ignore program target */
3848 inst++;
3849 err = parse_instructions(ctx, inst, &vc_head, program);
3850 }
3851
3852 /*debug_variables(ctx, vc_head, program); */
3853
3854 /* We're done with the parsed binary array */
3855 var_cache_destroy (&vc_head);
3856
3857 _mesa_free (parsed);
3858
3859 /* Reallocate the instruction array from size [MAX_PROGRAM_INSTRUCTIONS]
3860 * to size [ap.Base.NumInstructions].
3861 */
3862 program->Base.Instructions
3863 = _mesa_realloc_instructions(program->Base.Instructions,
3864 MAX_PROGRAM_INSTRUCTIONS,
3865 program->Base.NumInstructions);
3866
3867 return !err;
3868 }
3869
3870
3871
3872 void
3873 _mesa_parse_arb_fragment_program(GLcontext* ctx, GLenum target,
3874 const GLvoid *str, GLsizei len,
3875 struct gl_fragment_program *program)
3876 {
3877 struct arb_program ap;
3878 GLuint i;
3879
3880 ASSERT(target == GL_FRAGMENT_PROGRAM_ARB);
3881 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3882 /* Error in the program. Just return. */
3883 return;
3884 }
3885
3886 /* Copy the relevant contents of the arb_program struct into the
3887 * fragment_program struct.
3888 */
3889 program->Base.String = ap.Base.String;
3890 program->Base.NumInstructions = ap.Base.NumInstructions;
3891 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3892 program->Base.NumParameters = ap.Base.NumParameters;
3893 program->Base.NumAttributes = ap.Base.NumAttributes;
3894 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3895 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3896 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3897 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3898 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3899 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3900 program->Base.NumAluInstructions = ap.Base.NumAluInstructions;
3901 program->Base.NumTexInstructions = ap.Base.NumTexInstructions;
3902 program->Base.NumTexIndirections = ap.Base.NumTexIndirections;
3903 program->Base.NumNativeAluInstructions = ap.Base.NumAluInstructions;
3904 program->Base.NumNativeTexInstructions = ap.Base.NumTexInstructions;
3905 program->Base.NumNativeTexIndirections = ap.Base.NumTexIndirections;
3906 program->Base.InputsRead = ap.Base.InputsRead;
3907 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3908 for (i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++) {
3909 program->Base.TexturesUsed[i] = ap.TexturesUsed[i];
3910 if (ap.TexturesUsed[i])
3911 program->Base.SamplersUsed |= (1 << i);
3912 }
3913 program->Base.ShadowSamplers = ap.ShadowSamplers;
3914 program->FogOption = ap.FogOption;
3915 program->UsesKill = ap.UsesKill;
3916
3917 if (program->FogOption)
3918 program->Base.InputsRead |= FRAG_BIT_FOGC;
3919
3920 if (program->Base.Instructions)
3921 _mesa_free(program->Base.Instructions);
3922 program->Base.Instructions = ap.Base.Instructions;
3923
3924 if (program->Base.Parameters)
3925 _mesa_free_parameter_list(program->Base.Parameters);
3926 program->Base.Parameters = ap.Base.Parameters;
3927
3928 /* Append fog instructions now if the program has "OPTION ARB_fog_exp"
3929 * or similar. We used to leave this up to drivers, but it appears
3930 * there's no hardware that wants to do fog in a discrete stage separate
3931 * from the fragment shader.
3932 */
3933 if (program->FogOption != GL_NONE) {
3934 _mesa_append_fog_code(ctx, program);
3935 program->FogOption = GL_NONE;
3936 }
3937
3938 #if DEBUG_FP
3939 _mesa_printf("____________Fragment program %u ________\n", program->Base.Id);
3940 _mesa_print_program(&program->Base);
3941 #endif
3942 }
3943
3944
3945
3946 /**
3947 * Parse the vertex program string. If success, update the given
3948 * vertex_program object with the new program. Else, leave the vertex_program
3949 * object unchanged.
3950 */
3951 void
3952 _mesa_parse_arb_vertex_program(GLcontext *ctx, GLenum target,
3953 const GLvoid *str, GLsizei len,
3954 struct gl_vertex_program *program)
3955 {
3956 struct arb_program ap;
3957
3958 ASSERT(target == GL_VERTEX_PROGRAM_ARB);
3959
3960 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3961 _mesa_error(ctx, GL_INVALID_OPERATION, "glProgramString(bad program)");
3962 return;
3963 }
3964
3965 /* Copy the relevant contents of the arb_program struct into the
3966 * vertex_program struct.
3967 */
3968 program->Base.String = ap.Base.String;
3969 program->Base.NumInstructions = ap.Base.NumInstructions;
3970 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3971 program->Base.NumParameters = ap.Base.NumParameters;
3972 program->Base.NumAttributes = ap.Base.NumAttributes;
3973 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3974 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3975 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3976 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3977 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3978 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3979 program->Base.InputsRead = ap.Base.InputsRead;
3980 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3981 program->IsPositionInvariant = ap.HintPositionInvariant;
3982
3983 if (program->Base.Instructions)
3984 _mesa_free(program->Base.Instructions);
3985 program->Base.Instructions = ap.Base.Instructions;
3986
3987 if (program->Base.Parameters)
3988 _mesa_free_parameter_list(program->Base.Parameters);
3989 program->Base.Parameters = ap.Base.Parameters;
3990
3991 #if DEBUG_VP
3992 _mesa_printf("____________Vertex program %u __________\n", program->Base.Id);
3993 _mesa_print_program(&program->Base);
3994 #endif
3995 }