scons: Place the .sconsign file on the builddir too.
[mesa.git] / src / mesa / shader / arbprogparse.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #define DEBUG_PARSING 0
26
27 /**
28 * \file arbprogparse.c
29 * ARB_*_program parser core
30 * \author Karl Rasche
31 */
32
33 #include "main/glheader.h"
34 #include "main/imports.h"
35 #include "shader/grammar/grammar_mesa.h"
36 #include "arbprogparse.h"
37 #include "program.h"
38 #include "prog_parameter.h"
39 #include "prog_statevars.h"
40 #include "context.h"
41 #include "macros.h"
42 #include "mtypes.h"
43 #include "prog_instruction.h"
44
45
46 /* For ARB programs, use the NV instruction limits */
47 #define MAX_INSTRUCTIONS MAX2(MAX_NV_FRAGMENT_PROGRAM_INSTRUCTIONS, \
48 MAX_NV_VERTEX_PROGRAM_INSTRUCTIONS)
49
50
51 /**
52 * This is basically a union of the vertex_program and fragment_program
53 * structs that we can use to parse the program into
54 *
55 * XXX we can probably get rid of this entirely someday.
56 */
57 struct arb_program
58 {
59 struct gl_program Base;
60
61 GLuint Position; /* Just used for error reporting while parsing */
62 GLuint MajorVersion;
63 GLuint MinorVersion;
64
65 /* ARB_vertex_progmra options */
66 GLboolean HintPositionInvariant;
67
68 /* ARB_fragment_progmra options */
69 GLenum PrecisionOption; /* GL_DONT_CARE, GL_NICEST or GL_FASTEST */
70 GLenum FogOption; /* GL_NONE, GL_LINEAR, GL_EXP or GL_EXP2 */
71
72 /* ARB_fragment_program specifics */
73 GLbitfield TexturesUsed[MAX_TEXTURE_IMAGE_UNITS];
74 GLbitfield ShadowSamplers;
75 GLuint NumAluInstructions;
76 GLuint NumTexInstructions;
77 GLuint NumTexIndirections;
78
79 GLboolean UsesKill;
80 };
81
82
83
84 /* TODO:
85 * Fragment Program Stuff:
86 * -----------------------------------------------------
87 *
88 * - things from Michal's email
89 * + overflow on atoi
90 * + not-overflowing floats (don't use parse_integer..)
91 * + can remove range checking in arbparse.c
92 *
93 * - check all limits of number of various variables
94 * + parameters
95 *
96 * - test! test! test!
97 *
98 * Vertex Program Stuff:
99 * -----------------------------------------------------
100 * - Optimize param array usage and count limits correctly, see spec,
101 * section 2.14.3.7
102 * + Record if an array is reference absolutly or relatively (or both)
103 * + For absolute arrays, store a bitmap of accesses
104 * + For single parameters, store an access flag
105 * + After parsing, make a parameter cleanup and merging pass, where
106 * relative arrays are layed out first, followed by abs arrays, and
107 * finally single state.
108 * + Remap offsets for param src and dst registers
109 * + Now we can properly count parameter usage
110 *
111 * - Multiple state binding errors in param arrays (see spec, just before
112 * section 2.14.3.3)
113 * - grep for XXX
114 *
115 * Mesa Stuff
116 * -----------------------------------------------------
117 * - User clipping planes vs. PositionInvariant
118 * - Is it sufficient to just multiply by the mvp to transform in the
119 * PositionInvariant case? Or do we need something more involved?
120 *
121 * - vp_src swizzle is GLubyte, fp_src swizzle is GLuint
122 * - fetch state listed in program_parameters list
123 * + WTF should this go???
124 * + currently in nvvertexec.c and s_nvfragprog.c
125 *
126 * - allow for multiple address registers (and fetch address regs properly)
127 *
128 * Cosmetic Stuff
129 * -----------------------------------------------------
130 * - remove any leftover unused grammer.c stuff (dict_ ?)
131 * - fix grammer.c error handling so its not static
132 * - #ifdef around stuff pertaining to extentions
133 *
134 * Outstanding Questions:
135 * -----------------------------------------------------
136 * - ARB_matrix_palette / ARB_vertex_blend -- not supported
137 * what gets hacked off because of this:
138 * + VERTEX_ATTRIB_MATRIXINDEX
139 * + VERTEX_ATTRIB_WEIGHT
140 * + MATRIX_MODELVIEW
141 * + MATRIX_PALETTE
142 *
143 * - When can we fetch env/local params from their own register files, and
144 * when to we have to fetch them into the main state register file?
145 * (think arrays)
146 *
147 * Grammar Changes:
148 * -----------------------------------------------------
149 */
150
151 /* Changes since moving the file to shader directory
152
153 2004-III-4 ------------------------------------------------------------
154 - added #include "grammar_mesa.h"
155 - removed grammar specific code part (it resides now in grammar.c)
156 - added GL_ARB_fragment_program_shadow tokens
157 - modified #include "arbparse_syn.h"
158 - major changes inside _mesa_parse_arb_program()
159 - check the program string for '\0' characters
160 - copy the program string to a one-byte-longer location to have
161 it null-terminated
162 - position invariance test (not writing to result.position) moved
163 to syntax part
164 */
165
166 typedef GLubyte *production;
167
168
169 /**
170 * This is the text describing the rules to parse the grammar
171 */
172 LONGSTRING static char arb_grammar_text[] =
173 #include "arbprogram_syn.h"
174 ;
175
176 /**
177 * These should match up with the values defined in arbprogram.syn
178 */
179
180 /*
181 Changes:
182 - changed and merged V_* and F_* opcode values to OP_*.
183 - added GL_ARB_fragment_program_shadow specific tokens (michal)
184 */
185 #define REVISION 0x0a
186
187 /* program type */
188 #define FRAGMENT_PROGRAM 0x01
189 #define VERTEX_PROGRAM 0x02
190
191 /* program section */
192 #define OPTION 0x01
193 #define INSTRUCTION 0x02
194 #define DECLARATION 0x03
195 #define END 0x04
196
197 /* GL_ARB_fragment_program option */
198 #define ARB_PRECISION_HINT_FASTEST 0x00
199 #define ARB_PRECISION_HINT_NICEST 0x01
200 #define ARB_FOG_EXP 0x02
201 #define ARB_FOG_EXP2 0x03
202 #define ARB_FOG_LINEAR 0x04
203
204 /* GL_ARB_vertex_program option */
205 #define ARB_POSITION_INVARIANT 0x05
206
207 /* GL_ARB_fragment_program_shadow option */
208 #define ARB_FRAGMENT_PROGRAM_SHADOW 0x06
209
210 /* GL_ARB_draw_buffers option */
211 #define ARB_DRAW_BUFFERS 0x07
212
213 /* GL_MESA_texture_array option */
214 #define MESA_TEXTURE_ARRAY 0x08
215
216 /* GL_ARB_fragment_program instruction class */
217 #define OP_ALU_INST 0x00
218 #define OP_TEX_INST 0x01
219
220 /* GL_ARB_vertex_program instruction class */
221 /* OP_ALU_INST */
222
223 /* GL_ARB_fragment_program instruction type */
224 #define OP_ALU_VECTOR 0x00
225 #define OP_ALU_SCALAR 0x01
226 #define OP_ALU_BINSC 0x02
227 #define OP_ALU_BIN 0x03
228 #define OP_ALU_TRI 0x04
229 #define OP_ALU_SWZ 0x05
230 #define OP_TEX_SAMPLE 0x06
231 #define OP_TEX_KIL 0x07
232
233 /* GL_ARB_vertex_program instruction type */
234 #define OP_ALU_ARL 0x08
235 /* OP_ALU_VECTOR */
236 /* OP_ALU_SCALAR */
237 /* OP_ALU_BINSC */
238 /* OP_ALU_BIN */
239 /* OP_ALU_TRI */
240 /* OP_ALU_SWZ */
241
242 /* GL_ARB_fragment_program instruction code */
243 #define OP_ABS 0x00
244 #define OP_ABS_SAT 0x1B
245 #define OP_FLR 0x09
246 #define OP_FLR_SAT 0x26
247 #define OP_FRC 0x0A
248 #define OP_FRC_SAT 0x27
249 #define OP_LIT 0x0C
250 #define OP_LIT_SAT 0x2A
251 #define OP_MOV 0x11
252 #define OP_MOV_SAT 0x30
253 #define OP_COS 0x1F
254 #define OP_COS_SAT 0x20
255 #define OP_EX2 0x07
256 #define OP_EX2_SAT 0x25
257 #define OP_LG2 0x0B
258 #define OP_LG2_SAT 0x29
259 #define OP_RCP 0x14
260 #define OP_RCP_SAT 0x33
261 #define OP_RSQ 0x15
262 #define OP_RSQ_SAT 0x34
263 #define OP_SIN 0x38
264 #define OP_SIN_SAT 0x39
265 #define OP_SCS 0x35
266 #define OP_SCS_SAT 0x36
267 #define OP_POW 0x13
268 #define OP_POW_SAT 0x32
269 #define OP_ADD 0x01
270 #define OP_ADD_SAT 0x1C
271 #define OP_DP3 0x03
272 #define OP_DP3_SAT 0x21
273 #define OP_DP4 0x04
274 #define OP_DP4_SAT 0x22
275 #define OP_DPH 0x05
276 #define OP_DPH_SAT 0x23
277 #define OP_DST 0x06
278 #define OP_DST_SAT 0x24
279 #define OP_MAX 0x0F
280 #define OP_MAX_SAT 0x2E
281 #define OP_MIN 0x10
282 #define OP_MIN_SAT 0x2F
283 #define OP_MUL 0x12
284 #define OP_MUL_SAT 0x31
285 #define OP_SGE 0x16
286 #define OP_SGE_SAT 0x37
287 #define OP_SLT 0x17
288 #define OP_SLT_SAT 0x3A
289 #define OP_SUB 0x18
290 #define OP_SUB_SAT 0x3B
291 #define OP_XPD 0x1A
292 #define OP_XPD_SAT 0x43
293 #define OP_CMP 0x1D
294 #define OP_CMP_SAT 0x1E
295 #define OP_LRP 0x2B
296 #define OP_LRP_SAT 0x2C
297 #define OP_MAD 0x0E
298 #define OP_MAD_SAT 0x2D
299 #define OP_SWZ 0x19
300 #define OP_SWZ_SAT 0x3C
301 #define OP_TEX 0x3D
302 #define OP_TEX_SAT 0x3E
303 #define OP_TXB 0x3F
304 #define OP_TXB_SAT 0x40
305 #define OP_TXP 0x41
306 #define OP_TXP_SAT 0x42
307 #define OP_KIL 0x28
308
309 /* GL_ARB_vertex_program instruction code */
310 #define OP_ARL 0x02
311 /* OP_ABS */
312 /* OP_FLR */
313 /* OP_FRC */
314 /* OP_LIT */
315 /* OP_MOV */
316 /* OP_EX2 */
317 #define OP_EXP 0x08
318 /* OP_LG2 */
319 #define OP_LOG 0x0D
320 /* OP_RCP */
321 /* OP_RSQ */
322 /* OP_POW */
323 /* OP_ADD */
324 /* OP_DP3 */
325 /* OP_DP4 */
326 /* OP_DPH */
327 /* OP_DST */
328 /* OP_MAX */
329 /* OP_MIN */
330 /* OP_MUL */
331 /* OP_SGE */
332 /* OP_SLT */
333 /* OP_SUB */
334 /* OP_XPD */
335 /* OP_MAD */
336 /* OP_SWZ */
337
338 /* fragment attribute binding */
339 #define FRAGMENT_ATTRIB_COLOR 0x01
340 #define FRAGMENT_ATTRIB_TEXCOORD 0x02
341 #define FRAGMENT_ATTRIB_FOGCOORD 0x03
342 #define FRAGMENT_ATTRIB_POSITION 0x04
343
344 /* vertex attribute binding */
345 #define VERTEX_ATTRIB_POSITION 0x01
346 #define VERTEX_ATTRIB_WEIGHT 0x02
347 #define VERTEX_ATTRIB_NORMAL 0x03
348 #define VERTEX_ATTRIB_COLOR 0x04
349 #define VERTEX_ATTRIB_FOGCOORD 0x05
350 #define VERTEX_ATTRIB_TEXCOORD 0x06
351 #define VERTEX_ATTRIB_MATRIXINDEX 0x07
352 #define VERTEX_ATTRIB_GENERIC 0x08
353
354 /* fragment result binding */
355 #define FRAGMENT_RESULT_COLOR 0x01
356 #define FRAGMENT_RESULT_DEPTH 0x02
357
358 /* vertex result binding */
359 #define VERTEX_RESULT_POSITION 0x01
360 #define VERTEX_RESULT_COLOR 0x02
361 #define VERTEX_RESULT_FOGCOORD 0x03
362 #define VERTEX_RESULT_POINTSIZE 0x04
363 #define VERTEX_RESULT_TEXCOORD 0x05
364
365 /* texture target */
366 #define TEXTARGET_1D 0x01
367 #define TEXTARGET_2D 0x02
368 #define TEXTARGET_3D 0x03
369 #define TEXTARGET_RECT 0x04
370 #define TEXTARGET_CUBE 0x05
371 /* GL_ARB_fragment_program_shadow */
372 #define TEXTARGET_SHADOW1D 0x06
373 #define TEXTARGET_SHADOW2D 0x07
374 #define TEXTARGET_SHADOWRECT 0x08
375 /* GL_MESA_texture_array */
376 #define TEXTARGET_1D_ARRAY 0x09
377 #define TEXTARGET_2D_ARRAY 0x0a
378 #define TEXTARGET_SHADOW1D_ARRAY 0x0b
379 #define TEXTARGET_SHADOW2D_ARRAY 0x0c
380
381 /* face type */
382 #define FACE_FRONT 0x00
383 #define FACE_BACK 0x01
384
385 /* color type */
386 #define COLOR_PRIMARY 0x00
387 #define COLOR_SECONDARY 0x01
388
389 /* component */
390 #define COMPONENT_X 0x00
391 #define COMPONENT_Y 0x01
392 #define COMPONENT_Z 0x02
393 #define COMPONENT_W 0x03
394 #define COMPONENT_0 0x04
395 #define COMPONENT_1 0x05
396
397 /* array index type */
398 #define ARRAY_INDEX_ABSOLUTE 0x00
399 #define ARRAY_INDEX_RELATIVE 0x01
400
401 /* matrix name */
402 #define MATRIX_MODELVIEW 0x01
403 #define MATRIX_PROJECTION 0x02
404 #define MATRIX_MVP 0x03
405 #define MATRIX_TEXTURE 0x04
406 #define MATRIX_PALETTE 0x05
407 #define MATRIX_PROGRAM 0x06
408
409 /* matrix modifier */
410 #define MATRIX_MODIFIER_IDENTITY 0x00
411 #define MATRIX_MODIFIER_INVERSE 0x01
412 #define MATRIX_MODIFIER_TRANSPOSE 0x02
413 #define MATRIX_MODIFIER_INVTRANS 0x03
414
415 /* constant type */
416 #define CONSTANT_SCALAR 0x01
417 #define CONSTANT_VECTOR 0x02
418
419 /* program param type */
420 #define PROGRAM_PARAM_ENV 0x01
421 #define PROGRAM_PARAM_LOCAL 0x02
422
423 /* register type */
424 #define REGISTER_ATTRIB 0x01
425 #define REGISTER_PARAM 0x02
426 #define REGISTER_RESULT 0x03
427 #define REGISTER_ESTABLISHED_NAME 0x04
428
429 /* param binding */
430 #define PARAM_NULL 0x00
431 #define PARAM_ARRAY_ELEMENT 0x01
432 #define PARAM_STATE_ELEMENT 0x02
433 #define PARAM_PROGRAM_ELEMENT 0x03
434 #define PARAM_PROGRAM_ELEMENTS 0x04
435 #define PARAM_CONSTANT 0x05
436
437 /* param state property */
438 #define STATE_MATERIAL_PARSER 0x01
439 #define STATE_LIGHT_PARSER 0x02
440 #define STATE_LIGHT_MODEL 0x03
441 #define STATE_LIGHT_PROD 0x04
442 #define STATE_FOG 0x05
443 #define STATE_MATRIX_ROWS 0x06
444 /* GL_ARB_fragment_program */
445 #define STATE_TEX_ENV 0x07
446 #define STATE_DEPTH 0x08
447 /* GL_ARB_vertex_program */
448 #define STATE_TEX_GEN 0x09
449 #define STATE_CLIP_PLANE 0x0A
450 #define STATE_POINT 0x0B
451
452 /* state material property */
453 #define MATERIAL_AMBIENT 0x01
454 #define MATERIAL_DIFFUSE 0x02
455 #define MATERIAL_SPECULAR 0x03
456 #define MATERIAL_EMISSION 0x04
457 #define MATERIAL_SHININESS 0x05
458
459 /* state light property */
460 #define LIGHT_AMBIENT 0x01
461 #define LIGHT_DIFFUSE 0x02
462 #define LIGHT_SPECULAR 0x03
463 #define LIGHT_POSITION 0x04
464 #define LIGHT_ATTENUATION 0x05
465 #define LIGHT_HALF 0x06
466 #define LIGHT_SPOT_DIRECTION 0x07
467
468 /* state light model property */
469 #define LIGHT_MODEL_AMBIENT 0x01
470 #define LIGHT_MODEL_SCENECOLOR 0x02
471
472 /* state light product property */
473 #define LIGHT_PROD_AMBIENT 0x01
474 #define LIGHT_PROD_DIFFUSE 0x02
475 #define LIGHT_PROD_SPECULAR 0x03
476
477 /* state texture environment property */
478 #define TEX_ENV_COLOR 0x01
479
480 /* state texture generation coord property */
481 #define TEX_GEN_EYE 0x01
482 #define TEX_GEN_OBJECT 0x02
483
484 /* state fog property */
485 #define FOG_COLOR 0x01
486 #define FOG_PARAMS 0x02
487
488 /* state depth property */
489 #define DEPTH_RANGE 0x01
490
491 /* state point parameters property */
492 #define POINT_SIZE 0x01
493 #define POINT_ATTENUATION 0x02
494
495 /* declaration */
496 #define ATTRIB 0x01
497 #define PARAM 0x02
498 #define TEMP 0x03
499 #define OUTPUT 0x04
500 #define ALIAS 0x05
501 /* GL_ARB_vertex_program */
502 #define ADDRESS 0x06
503
504 /*-----------------------------------------------------------------------
505 * From here on down is the semantic checking portion
506 *
507 */
508
509 /**
510 * Variable Table Handling functions
511 */
512 typedef enum
513 {
514 vt_none,
515 vt_address,
516 vt_attrib,
517 vt_param,
518 vt_temp,
519 vt_output,
520 vt_alias
521 } var_type;
522
523
524 /**
525 * Setting an explicit field for each of the binding properties is a bit
526 * wasteful of space, but it should be much more clear when reading later on..
527 */
528 struct var_cache
529 {
530 const GLubyte *name; /* don't free() - no need */
531 var_type type;
532 GLuint address_binding; /* The index of the address register we should
533 * be using */
534 GLuint attrib_binding; /* For type vt_attrib, see nvfragprog.h for values */
535 GLuint attrib_is_generic; /* If the attrib was specified through a generic
536 * vertex attrib */
537 GLuint temp_binding; /* The index of the temp register we are to use */
538 GLuint output_binding; /* Output/result register number */
539 struct var_cache *alias_binding; /* For type vt_alias, points to the var_cache entry
540 * that this is aliased to */
541 GLuint param_binding_type; /* {PROGRAM_STATE_VAR, PROGRAM_LOCAL_PARAM,
542 * PROGRAM_ENV_PARAM} */
543 GLuint param_binding_begin; /* This is the offset into the program_parameter_list where
544 * the tokens representing our bound state (or constants)
545 * start */
546 GLuint param_binding_length; /* This is how many entries in the the program_parameter_list
547 * we take up with our state tokens or constants. Note that
548 * this is _not_ the same as the number of param registers
549 * we eventually use */
550 struct var_cache *next;
551 };
552
553 static GLvoid
554 var_cache_create (struct var_cache **va)
555 {
556 *va = (struct var_cache *) _mesa_malloc (sizeof (struct var_cache));
557 if (*va) {
558 (**va).name = NULL;
559 (**va).type = vt_none;
560 (**va).attrib_binding = ~0;
561 (**va).attrib_is_generic = 0;
562 (**va).temp_binding = ~0;
563 (**va).output_binding = ~0;
564 (**va).param_binding_type = ~0;
565 (**va).param_binding_begin = ~0;
566 (**va).param_binding_length = ~0;
567 (**va).alias_binding = NULL;
568 (**va).next = NULL;
569 }
570 }
571
572 static GLvoid
573 var_cache_destroy (struct var_cache **va)
574 {
575 if (*va) {
576 var_cache_destroy (&(**va).next);
577 _mesa_free (*va);
578 *va = NULL;
579 }
580 }
581
582 static GLvoid
583 var_cache_append (struct var_cache **va, struct var_cache *nv)
584 {
585 if (*va)
586 var_cache_append (&(**va).next, nv);
587 else
588 *va = nv;
589 }
590
591 static struct var_cache *
592 var_cache_find (struct var_cache *va, const GLubyte * name)
593 {
594 /*struct var_cache *first = va;*/
595
596 while (va) {
597 if (!_mesa_strcmp ( (const char*) name, (const char*) va->name)) {
598 if (va->type == vt_alias)
599 return va->alias_binding;
600 return va;
601 }
602
603 va = va->next;
604 }
605
606 return NULL;
607 }
608
609
610
611 /**
612 * Called when an error is detected while parsing/compiling a program.
613 * Sets the ctx->Program.ErrorString field to descript and records a
614 * GL_INVALID_OPERATION error.
615 * \param position position of error in program string
616 * \param descrip verbose error description
617 */
618 static void
619 program_error(GLcontext *ctx, GLint position, const char *descrip)
620 {
621 if (descrip) {
622 const char *prefix = "glProgramString(", *suffix = ")";
623 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
624 _mesa_strlen(prefix) +
625 _mesa_strlen(suffix) + 1);
626 if (str) {
627 _mesa_sprintf(str, "%s%s%s", prefix, descrip, suffix);
628 _mesa_error(ctx, GL_INVALID_OPERATION, str);
629 _mesa_free(str);
630 }
631 }
632 _mesa_set_program_error(ctx, position, descrip);
633 }
634
635
636
637 /**
638 * constructs an integer from 4 GLubytes in LE format
639 */
640 static GLuint
641 parse_position (const GLubyte ** inst)
642 {
643 GLuint value;
644
645 value = (GLuint) (*(*inst)++);
646 value += (GLuint) (*(*inst)++) * 0x100;
647 value += (GLuint) (*(*inst)++) * 0x10000;
648 value += (GLuint) (*(*inst)++) * 0x1000000;
649
650 return value;
651 }
652
653 /**
654 * This will, given a string, lookup the string as a variable name in the
655 * var cache. If the name is found, the var cache node corresponding to the
656 * var name is returned. If it is not found, a new entry is allocated
657 *
658 * \param I Points into the binary array where the string identifier begins
659 * \param found 1 if the string was found in the var_cache, 0 if it was allocated
660 * \return The location on the var_cache corresponding the the string starting at I
661 */
662 static struct var_cache *
663 parse_string (const GLubyte ** inst, struct var_cache **vc_head,
664 struct arb_program *Program, GLuint * found)
665 {
666 const GLubyte *i = *inst;
667 struct var_cache *va = NULL;
668 (void) Program;
669
670 *inst += _mesa_strlen ((char *) i) + 1;
671
672 va = var_cache_find (*vc_head, i);
673
674 if (va) {
675 *found = 1;
676 return va;
677 }
678
679 *found = 0;
680 var_cache_create (&va);
681 va->name = (const GLubyte *) i;
682
683 var_cache_append (vc_head, va);
684
685 return va;
686 }
687
688 static char *
689 parse_string_without_adding (const GLubyte ** inst, struct arb_program *Program)
690 {
691 const GLubyte *i = *inst;
692 (void) Program;
693
694 *inst += _mesa_strlen ((char *) i) + 1;
695
696 return (char *) i;
697 }
698
699 /**
700 * \return -1 if we parse '-', return 1 otherwise
701 */
702 static GLint
703 parse_sign (const GLubyte ** inst)
704 {
705 /*return *(*inst)++ != '+'; */
706
707 if (**inst == '-') {
708 (*inst)++;
709 return -1;
710 }
711 else if (**inst == '+') {
712 (*inst)++;
713 return 1;
714 }
715
716 return 1;
717 }
718
719 /**
720 * parses and returns signed integer
721 */
722 static GLint
723 parse_integer (const GLubyte ** inst, struct arb_program *Program)
724 {
725 GLint sign;
726 GLint value;
727
728 /* check if *inst points to '+' or '-'
729 * if yes, grab the sign and increment *inst
730 */
731 sign = parse_sign (inst);
732
733 /* now check if *inst points to 0
734 * if yes, increment the *inst and return the default value
735 */
736 if (**inst == 0) {
737 (*inst)++;
738 return 0;
739 }
740
741 /* parse the integer as you normally would do it */
742 value = _mesa_atoi (parse_string_without_adding (inst, Program));
743
744 /* now, after terminating 0 there is a position
745 * to parse it - parse_position()
746 */
747 Program->Position = parse_position (inst);
748
749 return value * sign;
750 }
751
752 /**
753 Accumulate this string of digits, and return them as
754 a large integer represented in floating point (for range).
755 If scale is not NULL, also accumulates a power-of-ten
756 integer scale factor that represents the number of digits
757 in the string.
758 */
759 static GLdouble
760 parse_float_string(const GLubyte ** inst, struct arb_program *Program, GLdouble *scale)
761 {
762 GLdouble value = 0.0;
763 GLdouble oscale = 1.0;
764
765 if (**inst == 0) { /* this string of digits is empty-- do nothing */
766 (*inst)++;
767 }
768 else { /* nonempty string-- parse out the digits */
769 while (**inst >= '0' && **inst <= '9') {
770 GLubyte digit = *((*inst)++);
771 value = value * 10.0 + (GLint) (digit - '0');
772 oscale *= 10.0;
773 }
774 assert(**inst == 0); /* integer string should end with 0 */
775 (*inst)++; /* skip over terminating 0 */
776 Program->Position = parse_position(inst); /* skip position (from integer) */
777 }
778 if (scale)
779 *scale = oscale;
780 return value;
781 }
782
783 /**
784 Parse an unsigned floating-point number from this stream of tokenized
785 characters. Example floating-point formats supported:
786 12.34
787 12
788 0.34
789 .34
790 12.34e-4
791 */
792 static GLfloat
793 parse_float (const GLubyte ** inst, struct arb_program *Program)
794 {
795 GLint exponent;
796 GLdouble whole, fraction, fracScale = 1.0;
797
798 whole = parse_float_string(inst, Program, 0);
799 fraction = parse_float_string(inst, Program, &fracScale);
800
801 /* Parse signed exponent */
802 exponent = parse_integer(inst, Program); /* This is the exponent */
803
804 /* Assemble parts of floating-point number: */
805 return (GLfloat) ((whole + fraction / fracScale) *
806 _mesa_pow(10.0, (GLfloat) exponent));
807 }
808
809
810 /**
811 */
812 static GLfloat
813 parse_signed_float (const GLubyte ** inst, struct arb_program *Program)
814 {
815 GLint sign = parse_sign (inst);
816 GLfloat value = parse_float (inst, Program);
817 return value * sign;
818 }
819
820 /**
821 * This picks out a constant value from the parsed array. The constant vector is r
822 * returned in the *values array, which should be of length 4.
823 *
824 * \param values - The 4 component vector with the constant value in it
825 */
826 static GLvoid
827 parse_constant (const GLubyte ** inst, GLfloat *values, struct arb_program *Program,
828 GLboolean use)
829 {
830 GLuint components, i;
831
832
833 switch (*(*inst)++) {
834 case CONSTANT_SCALAR:
835 if (use == GL_TRUE) {
836 values[0] =
837 values[1] =
838 values[2] = values[3] = parse_float (inst, Program);
839 }
840 else {
841 values[0] =
842 values[1] =
843 values[2] = values[3] = parse_signed_float (inst, Program);
844 }
845
846 break;
847 case CONSTANT_VECTOR:
848 values[0] = values[1] = values[2] = 0;
849 values[3] = 1;
850 components = *(*inst)++;
851 for (i = 0; i < components; i++) {
852 values[i] = parse_signed_float (inst, Program);
853 }
854 break;
855 }
856 }
857
858 /**
859 * \param offset The offset from the address register that we should
860 * address
861 *
862 * \return 0 on sucess, 1 on error
863 */
864 static GLuint
865 parse_relative_offset(GLcontext *ctx, const GLubyte **inst,
866 struct arb_program *Program, GLint *offset)
867 {
868 (void) ctx;
869 *offset = parse_integer(inst, Program);
870 return 0;
871 }
872
873 /**
874 * \param color 0 if color type is primary, 1 if color type is secondary
875 * \return 0 on sucess, 1 on error
876 */
877 static GLuint
878 parse_color_type (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
879 GLint * color)
880 {
881 (void) ctx; (void) Program;
882 *color = *(*inst)++ != COLOR_PRIMARY;
883 return 0;
884 }
885
886 /**
887 * Get an integer corresponding to a generic vertex attribute.
888 *
889 * \return 0 on sucess, 1 on error
890 */
891 static GLuint
892 parse_generic_attrib_num(GLcontext *ctx, const GLubyte ** inst,
893 struct arb_program *Program, GLuint *attrib)
894 {
895 GLint i = parse_integer(inst, Program);
896
897 if ((i < 0) || (i >= MAX_VERTEX_PROGRAM_ATTRIBS))
898 {
899 program_error(ctx, Program->Position,
900 "Invalid generic vertex attribute index");
901 return 1;
902 }
903
904 *attrib = (GLuint) i;
905
906 return 0;
907 }
908
909
910 /**
911 * \param color The index of the color buffer to write into
912 * \return 0 on sucess, 1 on error
913 */
914 static GLuint
915 parse_output_color_num (GLcontext * ctx, const GLubyte ** inst,
916 struct arb_program *Program, GLuint * color)
917 {
918 GLint i = parse_integer (inst, Program);
919
920 if ((i < 0) || (i >= (int)ctx->Const.MaxDrawBuffers)) {
921 program_error(ctx, Program->Position, "Invalid draw buffer index");
922 return 1;
923 }
924
925 *color = (GLuint) i;
926 return 0;
927 }
928
929
930 /**
931 * \param coord The texture unit index
932 * \return 0 on sucess, 1 on error
933 */
934 static GLuint
935 parse_texcoord_num (GLcontext * ctx, const GLubyte ** inst,
936 struct arb_program *Program, GLuint * coord)
937 {
938 GLint i = parse_integer (inst, Program);
939
940 if ((i < 0) || (i >= (int)ctx->Const.MaxTextureUnits)) {
941 program_error(ctx, Program->Position, "Invalid texture unit index");
942 return 1;
943 }
944
945 *coord = (GLuint) i;
946 return 0;
947 }
948
949 /**
950 * \param coord The weight index
951 * \return 0 on sucess, 1 on error
952 */
953 static GLuint
954 parse_weight_num (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
955 GLint * coord)
956 {
957 *coord = parse_integer (inst, Program);
958
959 if ((*coord < 0) || (*coord >= 1)) {
960 program_error(ctx, Program->Position, "Invalid weight index");
961 return 1;
962 }
963
964 return 0;
965 }
966
967 /**
968 * \param coord The clip plane index
969 * \return 0 on sucess, 1 on error
970 */
971 static GLuint
972 parse_clipplane_num (GLcontext * ctx, const GLubyte ** inst,
973 struct arb_program *Program, GLint * coord)
974 {
975 *coord = parse_integer (inst, Program);
976
977 if ((*coord < 0) || (*coord >= (GLint) ctx->Const.MaxClipPlanes)) {
978 program_error(ctx, Program->Position, "Invalid clip plane index");
979 return 1;
980 }
981
982 return 0;
983 }
984
985
986 /**
987 * \return 0 on front face, 1 on back face
988 */
989 static GLuint
990 parse_face_type (const GLubyte ** inst)
991 {
992 switch (*(*inst)++) {
993 case FACE_FRONT:
994 return 0;
995
996 case FACE_BACK:
997 return 1;
998 }
999 return 0;
1000 }
1001
1002
1003 /**
1004 * Given a matrix and a modifier token on the binary array, return tokens
1005 * that _mesa_fetch_state() [program.c] can understand.
1006 *
1007 * \param matrix - the matrix we are talking about
1008 * \param matrix_idx - the index of the matrix we have (for texture & program matricies)
1009 * \param matrix_modifier - the matrix modifier (trans, inv, etc)
1010 * \return 0 on sucess, 1 on failure
1011 */
1012 static GLuint
1013 parse_matrix (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
1014 GLint * matrix, GLint * matrix_idx, GLint * matrix_modifier)
1015 {
1016 GLubyte mat = *(*inst)++;
1017
1018 *matrix_idx = 0;
1019
1020 switch (mat) {
1021 case MATRIX_MODELVIEW:
1022 *matrix = STATE_MODELVIEW_MATRIX;
1023 *matrix_idx = parse_integer (inst, Program);
1024 if (*matrix_idx > 0) {
1025 program_error(ctx, Program->Position,
1026 "ARB_vertex_blend not supported");
1027 return 1;
1028 }
1029 break;
1030
1031 case MATRIX_PROJECTION:
1032 *matrix = STATE_PROJECTION_MATRIX;
1033 break;
1034
1035 case MATRIX_MVP:
1036 *matrix = STATE_MVP_MATRIX;
1037 break;
1038
1039 case MATRIX_TEXTURE:
1040 *matrix = STATE_TEXTURE_MATRIX;
1041 *matrix_idx = parse_integer (inst, Program);
1042 if (*matrix_idx >= (GLint) ctx->Const.MaxTextureUnits) {
1043 program_error(ctx, Program->Position, "Invalid Texture Unit");
1044 /* bad *matrix_id */
1045 return 1;
1046 }
1047 break;
1048
1049 /* This is not currently supported (ARB_matrix_palette) */
1050 case MATRIX_PALETTE:
1051 *matrix_idx = parse_integer (inst, Program);
1052 program_error(ctx, Program->Position,
1053 "ARB_matrix_palette not supported");
1054 return 1;
1055 break;
1056
1057 case MATRIX_PROGRAM:
1058 *matrix = STATE_PROGRAM_MATRIX;
1059 *matrix_idx = parse_integer (inst, Program);
1060 if (*matrix_idx >= (GLint) ctx->Const.MaxProgramMatrices) {
1061 program_error(ctx, Program->Position, "Invalid Program Matrix");
1062 /* bad *matrix_idx */
1063 return 1;
1064 }
1065 break;
1066 }
1067
1068 switch (*(*inst)++) {
1069 case MATRIX_MODIFIER_IDENTITY:
1070 *matrix_modifier = 0;
1071 break;
1072 case MATRIX_MODIFIER_INVERSE:
1073 *matrix_modifier = STATE_MATRIX_INVERSE;
1074 break;
1075 case MATRIX_MODIFIER_TRANSPOSE:
1076 *matrix_modifier = STATE_MATRIX_TRANSPOSE;
1077 break;
1078 case MATRIX_MODIFIER_INVTRANS:
1079 *matrix_modifier = STATE_MATRIX_INVTRANS;
1080 break;
1081 }
1082
1083 return 0;
1084 }
1085
1086
1087 /**
1088 * This parses a state string (rather, the binary version of it) into
1089 * a 6-token sequence as described in _mesa_fetch_state() [program.c]
1090 *
1091 * \param inst - the start in the binary arry to start working from
1092 * \param state_tokens - the storage for the 6-token state description
1093 * \return - 0 on sucess, 1 on error
1094 */
1095 static GLuint
1096 parse_state_single_item (GLcontext * ctx, const GLubyte ** inst,
1097 struct arb_program *Program,
1098 gl_state_index state_tokens[STATE_LENGTH])
1099 {
1100 switch (*(*inst)++) {
1101 case STATE_MATERIAL_PARSER:
1102 state_tokens[0] = STATE_MATERIAL;
1103 state_tokens[1] = parse_face_type (inst);
1104 switch (*(*inst)++) {
1105 case MATERIAL_AMBIENT:
1106 state_tokens[2] = STATE_AMBIENT;
1107 break;
1108 case MATERIAL_DIFFUSE:
1109 state_tokens[2] = STATE_DIFFUSE;
1110 break;
1111 case MATERIAL_SPECULAR:
1112 state_tokens[2] = STATE_SPECULAR;
1113 break;
1114 case MATERIAL_EMISSION:
1115 state_tokens[2] = STATE_EMISSION;
1116 break;
1117 case MATERIAL_SHININESS:
1118 state_tokens[2] = STATE_SHININESS;
1119 break;
1120 }
1121 break;
1122
1123 case STATE_LIGHT_PARSER:
1124 state_tokens[0] = STATE_LIGHT;
1125 state_tokens[1] = parse_integer (inst, Program);
1126
1127 /* Check the value of state_tokens[1] against the # of lights */
1128 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1129 program_error(ctx, Program->Position, "Invalid Light Number");
1130 /* bad state_tokens[1] */
1131 return 1;
1132 }
1133
1134 switch (*(*inst)++) {
1135 case LIGHT_AMBIENT:
1136 state_tokens[2] = STATE_AMBIENT;
1137 break;
1138 case LIGHT_DIFFUSE:
1139 state_tokens[2] = STATE_DIFFUSE;
1140 break;
1141 case LIGHT_SPECULAR:
1142 state_tokens[2] = STATE_SPECULAR;
1143 break;
1144 case LIGHT_POSITION:
1145 state_tokens[2] = STATE_POSITION;
1146 break;
1147 case LIGHT_ATTENUATION:
1148 state_tokens[2] = STATE_ATTENUATION;
1149 break;
1150 case LIGHT_HALF:
1151 state_tokens[2] = STATE_HALF_VECTOR;
1152 break;
1153 case LIGHT_SPOT_DIRECTION:
1154 state_tokens[2] = STATE_SPOT_DIRECTION;
1155 break;
1156 }
1157 break;
1158
1159 case STATE_LIGHT_MODEL:
1160 switch (*(*inst)++) {
1161 case LIGHT_MODEL_AMBIENT:
1162 state_tokens[0] = STATE_LIGHTMODEL_AMBIENT;
1163 break;
1164 case LIGHT_MODEL_SCENECOLOR:
1165 state_tokens[0] = STATE_LIGHTMODEL_SCENECOLOR;
1166 state_tokens[1] = parse_face_type (inst);
1167 break;
1168 }
1169 break;
1170
1171 case STATE_LIGHT_PROD:
1172 state_tokens[0] = STATE_LIGHTPROD;
1173 state_tokens[1] = parse_integer (inst, Program);
1174
1175 /* Check the value of state_tokens[1] against the # of lights */
1176 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1177 program_error(ctx, Program->Position, "Invalid Light Number");
1178 /* bad state_tokens[1] */
1179 return 1;
1180 }
1181
1182 state_tokens[2] = parse_face_type (inst);
1183 switch (*(*inst)++) {
1184 case LIGHT_PROD_AMBIENT:
1185 state_tokens[3] = STATE_AMBIENT;
1186 break;
1187 case LIGHT_PROD_DIFFUSE:
1188 state_tokens[3] = STATE_DIFFUSE;
1189 break;
1190 case LIGHT_PROD_SPECULAR:
1191 state_tokens[3] = STATE_SPECULAR;
1192 break;
1193 }
1194 break;
1195
1196
1197 case STATE_FOG:
1198 switch (*(*inst)++) {
1199 case FOG_COLOR:
1200 state_tokens[0] = STATE_FOG_COLOR;
1201 break;
1202 case FOG_PARAMS:
1203 state_tokens[0] = STATE_FOG_PARAMS;
1204 break;
1205 }
1206 break;
1207
1208 case STATE_TEX_ENV:
1209 state_tokens[1] = parse_integer (inst, Program);
1210 switch (*(*inst)++) {
1211 case TEX_ENV_COLOR:
1212 state_tokens[0] = STATE_TEXENV_COLOR;
1213 break;
1214 }
1215 break;
1216
1217 case STATE_TEX_GEN:
1218 {
1219 GLuint type, coord;
1220
1221 state_tokens[0] = STATE_TEXGEN;
1222 /*state_tokens[1] = parse_integer (inst, Program);*/ /* Texture Unit */
1223
1224 if (parse_texcoord_num (ctx, inst, Program, &coord))
1225 return 1;
1226 state_tokens[1] = coord;
1227
1228 /* EYE or OBJECT */
1229 type = *(*inst++);
1230
1231 /* 0 - s, 1 - t, 2 - r, 3 - q */
1232 coord = *(*inst++);
1233
1234 if (type == TEX_GEN_EYE) {
1235 switch (coord) {
1236 case COMPONENT_X:
1237 state_tokens[2] = STATE_TEXGEN_EYE_S;
1238 break;
1239 case COMPONENT_Y:
1240 state_tokens[2] = STATE_TEXGEN_EYE_T;
1241 break;
1242 case COMPONENT_Z:
1243 state_tokens[2] = STATE_TEXGEN_EYE_R;
1244 break;
1245 case COMPONENT_W:
1246 state_tokens[2] = STATE_TEXGEN_EYE_Q;
1247 break;
1248 }
1249 }
1250 else {
1251 switch (coord) {
1252 case COMPONENT_X:
1253 state_tokens[2] = STATE_TEXGEN_OBJECT_S;
1254 break;
1255 case COMPONENT_Y:
1256 state_tokens[2] = STATE_TEXGEN_OBJECT_T;
1257 break;
1258 case COMPONENT_Z:
1259 state_tokens[2] = STATE_TEXGEN_OBJECT_R;
1260 break;
1261 case COMPONENT_W:
1262 state_tokens[2] = STATE_TEXGEN_OBJECT_Q;
1263 break;
1264 }
1265 }
1266 }
1267 break;
1268
1269 case STATE_DEPTH:
1270 switch (*(*inst)++) {
1271 case DEPTH_RANGE:
1272 state_tokens[0] = STATE_DEPTH_RANGE;
1273 break;
1274 }
1275 break;
1276
1277 case STATE_CLIP_PLANE:
1278 state_tokens[0] = STATE_CLIPPLANE;
1279 state_tokens[1] = parse_integer (inst, Program);
1280 if (parse_clipplane_num (ctx, inst, Program,
1281 (GLint *) &state_tokens[1]))
1282 return 1;
1283 break;
1284
1285 case STATE_POINT:
1286 switch (*(*inst++)) {
1287 case POINT_SIZE:
1288 state_tokens[0] = STATE_POINT_SIZE;
1289 break;
1290
1291 case POINT_ATTENUATION:
1292 state_tokens[0] = STATE_POINT_ATTENUATION;
1293 break;
1294 }
1295 break;
1296
1297 /* XXX: I think this is the correct format for a matrix row */
1298 case STATE_MATRIX_ROWS:
1299 if (parse_matrix(ctx, inst, Program,
1300 (GLint *) &state_tokens[0],
1301 (GLint *) &state_tokens[1],
1302 (GLint *) &state_tokens[4]))
1303 return 1;
1304
1305 state_tokens[2] = parse_integer (inst, Program); /* The first row to grab */
1306
1307 if ((**inst) != 0) { /* Either the last row, 0 */
1308 state_tokens[3] = parse_integer (inst, Program);
1309 if (state_tokens[3] < state_tokens[2]) {
1310 program_error(ctx, Program->Position,
1311 "Second matrix index less than the first");
1312 /* state_tokens[4] vs. state_tokens[3] */
1313 return 1;
1314 }
1315 }
1316 else {
1317 state_tokens[3] = state_tokens[2];
1318 (*inst)++;
1319 }
1320 break;
1321 }
1322
1323 return 0;
1324 }
1325
1326 /**
1327 * This parses a state string (rather, the binary version of it) into
1328 * a 6-token similar for the state fetching code in program.c
1329 *
1330 * One might ask, why fetch these parameters into just like you fetch
1331 * state when they are already stored in other places?
1332 *
1333 * Because of array offsets -> We can stick env/local parameters in the
1334 * middle of a parameter array and then index someplace into the array
1335 * when we execute.
1336 *
1337 * One optimization might be to only do this for the cases where the
1338 * env/local parameters end up inside of an array, and leave the
1339 * single parameters (or arrays of pure env/local pareameters) in their
1340 * respective register files.
1341 *
1342 * For ENV parameters, the format is:
1343 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1344 * state_tokens[1] = STATE_ENV
1345 * state_tokens[2] = the parameter index
1346 *
1347 * for LOCAL parameters, the format is:
1348 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1349 * state_tokens[1] = STATE_LOCAL
1350 * state_tokens[2] = the parameter index
1351 *
1352 * \param inst - the start in the binary arry to start working from
1353 * \param state_tokens - the storage for the 6-token state description
1354 * \return - 0 on sucess, 1 on failure
1355 */
1356 static GLuint
1357 parse_program_single_item (GLcontext * ctx, const GLubyte ** inst,
1358 struct arb_program *Program,
1359 gl_state_index state_tokens[STATE_LENGTH])
1360 {
1361 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1362 state_tokens[0] = STATE_FRAGMENT_PROGRAM;
1363 else
1364 state_tokens[0] = STATE_VERTEX_PROGRAM;
1365
1366
1367 switch (*(*inst)++) {
1368 case PROGRAM_PARAM_ENV:
1369 state_tokens[1] = STATE_ENV;
1370 state_tokens[2] = parse_integer (inst, Program);
1371
1372 /* Check state_tokens[2] against the number of ENV parameters available */
1373 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1374 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxEnvParams))
1375 ||
1376 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1377 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxEnvParams))) {
1378 program_error(ctx, Program->Position,
1379 "Invalid Program Env Parameter");
1380 /* bad state_tokens[2] */
1381 return 1;
1382 }
1383
1384 break;
1385
1386 case PROGRAM_PARAM_LOCAL:
1387 state_tokens[1] = STATE_LOCAL;
1388 state_tokens[2] = parse_integer (inst, Program);
1389
1390 /* Check state_tokens[2] against the number of LOCAL parameters available */
1391 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1392 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxLocalParams))
1393 ||
1394 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1395 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxLocalParams))) {
1396 program_error(ctx, Program->Position,
1397 "Invalid Program Local Parameter");
1398 /* bad state_tokens[2] */
1399 return 1;
1400 }
1401 break;
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * For ARB_vertex_program, programs are not allowed to use both an explicit
1409 * vertex attribute and a generic vertex attribute corresponding to the same
1410 * state. See section 2.14.3.1 of the GL_ARB_vertex_program spec.
1411 *
1412 * This will walk our var_cache and make sure that nobody does anything fishy.
1413 *
1414 * \return 0 on sucess, 1 on error
1415 */
1416 static GLuint
1417 generic_attrib_check(struct var_cache *vc_head)
1418 {
1419 int a;
1420 struct var_cache *curr;
1421 GLboolean explicitAttrib[MAX_VERTEX_PROGRAM_ATTRIBS],
1422 genericAttrib[MAX_VERTEX_PROGRAM_ATTRIBS];
1423
1424 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1425 explicitAttrib[a] = GL_FALSE;
1426 genericAttrib[a] = GL_FALSE;
1427 }
1428
1429 curr = vc_head;
1430 while (curr) {
1431 if (curr->type == vt_attrib) {
1432 if (curr->attrib_is_generic)
1433 genericAttrib[ curr->attrib_binding ] = GL_TRUE;
1434 else
1435 explicitAttrib[ curr->attrib_binding ] = GL_TRUE;
1436 }
1437
1438 curr = curr->next;
1439 }
1440
1441 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1442 if ((explicitAttrib[a]) && (genericAttrib[a]))
1443 return 1;
1444 }
1445
1446 return 0;
1447 }
1448
1449 /**
1450 * This will handle the binding side of an ATTRIB var declaration
1451 *
1452 * \param inputReg returns the input register index, one of the
1453 * VERT_ATTRIB_* or FRAG_ATTRIB_* values.
1454 * \return returns 0 on success, 1 on error
1455 */
1456 static GLuint
1457 parse_attrib_binding(GLcontext * ctx, const GLubyte ** inst,
1458 struct arb_program *Program,
1459 GLuint *inputReg, GLuint *is_generic)
1460 {
1461 GLint err = 0;
1462
1463 *is_generic = 0;
1464
1465 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1466 switch (*(*inst)++) {
1467 case FRAGMENT_ATTRIB_COLOR:
1468 {
1469 GLint coord;
1470 err = parse_color_type (ctx, inst, Program, &coord);
1471 *inputReg = FRAG_ATTRIB_COL0 + coord;
1472 }
1473 break;
1474 case FRAGMENT_ATTRIB_TEXCOORD:
1475 {
1476 GLuint texcoord = 0;
1477 err = parse_texcoord_num (ctx, inst, Program, &texcoord);
1478 *inputReg = FRAG_ATTRIB_TEX0 + texcoord;
1479 }
1480 break;
1481 case FRAGMENT_ATTRIB_FOGCOORD:
1482 *inputReg = FRAG_ATTRIB_FOGC;
1483 break;
1484 case FRAGMENT_ATTRIB_POSITION:
1485 *inputReg = FRAG_ATTRIB_WPOS;
1486 break;
1487 default:
1488 err = 1;
1489 break;
1490 }
1491 }
1492 else {
1493 switch (*(*inst)++) {
1494 case VERTEX_ATTRIB_POSITION:
1495 *inputReg = VERT_ATTRIB_POS;
1496 break;
1497
1498 case VERTEX_ATTRIB_WEIGHT:
1499 {
1500 GLint weight;
1501 err = parse_weight_num (ctx, inst, Program, &weight);
1502 *inputReg = VERT_ATTRIB_WEIGHT;
1503 #if 1
1504 /* hack for Warcraft (see bug 8060) */
1505 _mesa_warning(ctx, "Application error: vertex program uses 'vertex.weight' but GL_ARB_vertex_blend not supported.");
1506 break;
1507 #else
1508 program_error(ctx, Program->Position,
1509 "ARB_vertex_blend not supported");
1510 return 1;
1511 #endif
1512 }
1513
1514 case VERTEX_ATTRIB_NORMAL:
1515 *inputReg = VERT_ATTRIB_NORMAL;
1516 break;
1517
1518 case VERTEX_ATTRIB_COLOR:
1519 {
1520 GLint color;
1521 err = parse_color_type (ctx, inst, Program, &color);
1522 if (color) {
1523 *inputReg = VERT_ATTRIB_COLOR1;
1524 }
1525 else {
1526 *inputReg = VERT_ATTRIB_COLOR0;
1527 }
1528 }
1529 break;
1530
1531 case VERTEX_ATTRIB_FOGCOORD:
1532 *inputReg = VERT_ATTRIB_FOG;
1533 break;
1534
1535 case VERTEX_ATTRIB_TEXCOORD:
1536 {
1537 GLuint unit = 0;
1538 err = parse_texcoord_num (ctx, inst, Program, &unit);
1539 *inputReg = VERT_ATTRIB_TEX0 + unit;
1540 }
1541 break;
1542
1543 case VERTEX_ATTRIB_MATRIXINDEX:
1544 /* Not supported at this time */
1545 {
1546 const char *msg = "ARB_palette_matrix not supported";
1547 parse_integer (inst, Program);
1548 program_error(ctx, Program->Position, msg);
1549 }
1550 return 1;
1551
1552 case VERTEX_ATTRIB_GENERIC:
1553 {
1554 GLuint attrib;
1555 err = parse_generic_attrib_num(ctx, inst, Program, &attrib);
1556 if (!err) {
1557 *is_generic = 1;
1558 /* Add VERT_ATTRIB_GENERIC0 here because ARB_vertex_program's
1559 * attributes do not alias the conventional vertex
1560 * attributes.
1561 */
1562 if (attrib > 0)
1563 *inputReg = attrib + VERT_ATTRIB_GENERIC0;
1564 else
1565 *inputReg = 0;
1566 }
1567 }
1568 break;
1569
1570 default:
1571 err = 1;
1572 break;
1573 }
1574 }
1575
1576 if (err) {
1577 program_error(ctx, Program->Position, "Bad attribute binding");
1578 }
1579
1580 Program->Base.InputsRead |= (1 << *inputReg);
1581
1582 return err;
1583 }
1584
1585
1586 /**
1587 * This translates between a binary token for an output variable type
1588 * and the mesa token for the same thing.
1589 *
1590 * \param inst The parsed tokens
1591 * \param outputReg Returned index/number of the output register,
1592 * one of the VERT_RESULT_* or FRAG_RESULT_* values.
1593 */
1594 static GLuint
1595 parse_result_binding(GLcontext *ctx, const GLubyte **inst,
1596 GLuint *outputReg, struct arb_program *Program)
1597 {
1598 const GLubyte token = *(*inst)++;
1599
1600 switch (token) {
1601 case FRAGMENT_RESULT_COLOR:
1602 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1603 GLuint out_color;
1604
1605 /* This gets result of the color buffer we're supposed to
1606 * draw into. This pertains to GL_ARB_draw_buffers.
1607 */
1608 parse_output_color_num(ctx, inst, Program, &out_color);
1609 ASSERT(out_color < MAX_DRAW_BUFFERS);
1610 *outputReg = FRAG_RESULT_COLR;
1611 }
1612 else {
1613 /* for vtx programs, this is VERTEX_RESULT_POSITION */
1614 *outputReg = VERT_RESULT_HPOS;
1615 }
1616 break;
1617
1618 case FRAGMENT_RESULT_DEPTH:
1619 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1620 /* for frag programs, this is FRAGMENT_RESULT_DEPTH */
1621 *outputReg = FRAG_RESULT_DEPR;
1622 }
1623 else {
1624 /* for vtx programs, this is VERTEX_RESULT_COLOR */
1625 GLint color_type;
1626 GLuint face_type = parse_face_type(inst);
1627 GLint err = parse_color_type(ctx, inst, Program, &color_type);
1628 if (err)
1629 return 1;
1630
1631 if (face_type) {
1632 /* back face */
1633 if (color_type) {
1634 *outputReg = VERT_RESULT_BFC1; /* secondary color */
1635 }
1636 else {
1637 *outputReg = VERT_RESULT_BFC0; /* primary color */
1638 }
1639 }
1640 else {
1641 /* front face */
1642 if (color_type) {
1643 *outputReg = VERT_RESULT_COL1; /* secondary color */
1644 }
1645 /* primary color */
1646 else {
1647 *outputReg = VERT_RESULT_COL0; /* primary color */
1648 }
1649 }
1650 }
1651 break;
1652
1653 case VERTEX_RESULT_FOGCOORD:
1654 *outputReg = VERT_RESULT_FOGC;
1655 break;
1656
1657 case VERTEX_RESULT_POINTSIZE:
1658 *outputReg = VERT_RESULT_PSIZ;
1659 break;
1660
1661 case VERTEX_RESULT_TEXCOORD:
1662 {
1663 GLuint unit;
1664 if (parse_texcoord_num (ctx, inst, Program, &unit))
1665 return 1;
1666 *outputReg = VERT_RESULT_TEX0 + unit;
1667 }
1668 break;
1669 }
1670
1671 Program->Base.OutputsWritten |= (1 << *outputReg);
1672
1673 return 0;
1674 }
1675
1676
1677 /**
1678 * This handles the declaration of ATTRIB variables
1679 *
1680 * XXX: Still needs
1681 * parse_vert_attrib_binding(), or something like that
1682 *
1683 * \return 0 on sucess, 1 on error
1684 */
1685 static GLint
1686 parse_attrib (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1687 struct arb_program *Program)
1688 {
1689 GLuint found;
1690 char *error_msg;
1691 struct var_cache *attrib_var;
1692
1693 attrib_var = parse_string (inst, vc_head, Program, &found);
1694 Program->Position = parse_position (inst);
1695 if (found) {
1696 error_msg = (char *)
1697 _mesa_malloc (_mesa_strlen ((char *) attrib_var->name) + 40);
1698 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
1699 attrib_var->name);
1700 program_error(ctx, Program->Position, error_msg);
1701 _mesa_free (error_msg);
1702 return 1;
1703 }
1704
1705 attrib_var->type = vt_attrib;
1706
1707 if (parse_attrib_binding(ctx, inst, Program, &attrib_var->attrib_binding,
1708 &attrib_var->attrib_is_generic))
1709 return 1;
1710
1711 if (generic_attrib_check(*vc_head)) {
1712 program_error(ctx, Program->Position,
1713 "Cannot use both a generic vertex attribute "
1714 "and a specific attribute of the same type");
1715 return 1;
1716 }
1717
1718 Program->Base.NumAttributes++;
1719 return 0;
1720 }
1721
1722 /**
1723 * \param use -- TRUE if we're called when declaring implicit parameters,
1724 * FALSE if we're declaraing variables. This has to do with
1725 * if we get a signed or unsigned float for scalar constants
1726 */
1727 static GLuint
1728 parse_param_elements (GLcontext * ctx, const GLubyte ** inst,
1729 struct var_cache *param_var,
1730 struct arb_program *Program, GLboolean use)
1731 {
1732 GLint idx;
1733 GLuint err = 0;
1734 gl_state_index state_tokens[STATE_LENGTH];
1735 GLfloat const_values[4];
1736
1737 switch (*(*inst)++) {
1738 case PARAM_STATE_ELEMENT:
1739 if (parse_state_single_item (ctx, inst, Program, state_tokens))
1740 return 1;
1741
1742 /* If we adding STATE_MATRIX that has multiple rows, we need to
1743 * unroll it and call _mesa_add_state_reference() for each row
1744 */
1745 if ((state_tokens[0] == STATE_MODELVIEW_MATRIX ||
1746 state_tokens[0] == STATE_PROJECTION_MATRIX ||
1747 state_tokens[0] == STATE_MVP_MATRIX ||
1748 state_tokens[0] == STATE_TEXTURE_MATRIX ||
1749 state_tokens[0] == STATE_PROGRAM_MATRIX)
1750 && (state_tokens[2] != state_tokens[3])) {
1751 GLint row;
1752 const GLint first_row = state_tokens[2];
1753 const GLint last_row = state_tokens[3];
1754
1755 for (row = first_row; row <= last_row; row++) {
1756 state_tokens[2] = state_tokens[3] = row;
1757
1758 idx = _mesa_add_state_reference(Program->Base.Parameters,
1759 state_tokens);
1760 if (param_var->param_binding_begin == ~0U)
1761 param_var->param_binding_begin = idx;
1762 param_var->param_binding_length++;
1763 Program->Base.NumParameters++;
1764 }
1765 }
1766 else {
1767 idx = _mesa_add_state_reference(Program->Base.Parameters,
1768 state_tokens);
1769 if (param_var->param_binding_begin == ~0U)
1770 param_var->param_binding_begin = idx;
1771 param_var->param_binding_length++;
1772 Program->Base.NumParameters++;
1773 }
1774 break;
1775
1776 case PARAM_PROGRAM_ELEMENT:
1777 if (parse_program_single_item (ctx, inst, Program, state_tokens))
1778 return 1;
1779 idx = _mesa_add_state_reference (Program->Base.Parameters, state_tokens);
1780 if (param_var->param_binding_begin == ~0U)
1781 param_var->param_binding_begin = idx;
1782 param_var->param_binding_length++;
1783 Program->Base.NumParameters++;
1784
1785 /* Check if there is more: 0 -> we're done, else its an integer */
1786 if (**inst) {
1787 GLuint out_of_range, new_idx;
1788 GLuint start_idx = state_tokens[2] + 1;
1789 GLuint end_idx = parse_integer (inst, Program);
1790
1791 out_of_range = 0;
1792 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1793 if (((state_tokens[1] == STATE_ENV)
1794 && (end_idx >= ctx->Const.FragmentProgram.MaxEnvParams))
1795 || ((state_tokens[1] == STATE_LOCAL)
1796 && (end_idx >=
1797 ctx->Const.FragmentProgram.MaxLocalParams)))
1798 out_of_range = 1;
1799 }
1800 else {
1801 if (((state_tokens[1] == STATE_ENV)
1802 && (end_idx >= ctx->Const.VertexProgram.MaxEnvParams))
1803 || ((state_tokens[1] == STATE_LOCAL)
1804 && (end_idx >=
1805 ctx->Const.VertexProgram.MaxLocalParams)))
1806 out_of_range = 1;
1807 }
1808 if (out_of_range) {
1809 program_error(ctx, Program->Position,
1810 "Invalid Program Parameter"); /*end_idx*/
1811 return 1;
1812 }
1813
1814 for (new_idx = start_idx; new_idx <= end_idx; new_idx++) {
1815 state_tokens[2] = new_idx;
1816 idx = _mesa_add_state_reference(Program->Base.Parameters,
1817 state_tokens);
1818 param_var->param_binding_length++;
1819 Program->Base.NumParameters++;
1820 }
1821 }
1822 else {
1823 (*inst)++;
1824 }
1825 break;
1826
1827 case PARAM_CONSTANT:
1828 /* parsing something like {1.0, 2.0, 3.0, 4.0} */
1829 parse_constant (inst, const_values, Program, use);
1830 idx = _mesa_add_named_constant(Program->Base.Parameters,
1831 (char *) param_var->name,
1832 const_values, 4);
1833 if (param_var->param_binding_begin == ~0U)
1834 param_var->param_binding_begin = idx;
1835 param_var->param_binding_type = PROGRAM_CONSTANT;
1836 param_var->param_binding_length++;
1837 Program->Base.NumParameters++;
1838 break;
1839
1840 default:
1841 program_error(ctx, Program->Position,
1842 "Unexpected token (in parse_param_elements())");
1843 return 1;
1844 }
1845
1846 /* Make sure we haven't blown past our parameter limits */
1847 if (((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1848 (Program->Base.NumParameters >=
1849 ctx->Const.VertexProgram.MaxLocalParams))
1850 || ((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1851 && (Program->Base.NumParameters >=
1852 ctx->Const.FragmentProgram.MaxLocalParams))) {
1853 program_error(ctx, Program->Position, "Too many parameter variables");
1854 return 1;
1855 }
1856
1857 return err;
1858 }
1859
1860
1861 /**
1862 * This picks out PARAM program parameter bindings.
1863 *
1864 * XXX: This needs to be stressed & tested
1865 *
1866 * \return 0 on sucess, 1 on error
1867 */
1868 static GLuint
1869 parse_param (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1870 struct arb_program *Program)
1871 {
1872 GLuint found, err;
1873 GLint specified_length;
1874 struct var_cache *param_var;
1875
1876 err = 0;
1877 param_var = parse_string (inst, vc_head, Program, &found);
1878 Program->Position = parse_position (inst);
1879
1880 if (found) {
1881 char *error_msg = (char *)
1882 _mesa_malloc (_mesa_strlen ((char *) param_var->name) + 40);
1883 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
1884 param_var->name);
1885 program_error (ctx, Program->Position, error_msg);
1886 _mesa_free (error_msg);
1887 return 1;
1888 }
1889
1890 specified_length = parse_integer (inst, Program);
1891
1892 if (specified_length < 0) {
1893 program_error(ctx, Program->Position, "Negative parameter array length");
1894 return 1;
1895 }
1896
1897 param_var->type = vt_param;
1898 param_var->param_binding_length = 0;
1899
1900 /* Right now, everything is shoved into the main state register file.
1901 *
1902 * In the future, it would be nice to leave things ENV/LOCAL params
1903 * in their respective register files, if possible
1904 */
1905 param_var->param_binding_type = PROGRAM_STATE_VAR;
1906
1907 /* Remember to:
1908 * * - add each guy to the parameter list
1909 * * - increment the param_var->param_binding_len
1910 * * - store the param_var->param_binding_begin for the first one
1911 * * - compare the actual len to the specified len at the end
1912 */
1913 while (**inst != PARAM_NULL) {
1914 if (parse_param_elements (ctx, inst, param_var, Program, GL_FALSE))
1915 return 1;
1916 }
1917
1918 /* Test array length here! */
1919 if (specified_length) {
1920 if (specified_length != (int)param_var->param_binding_length) {
1921 program_error(ctx, Program->Position,
1922 "Declared parameter array length does not match parameter list");
1923 }
1924 }
1925
1926 (*inst)++;
1927
1928 return 0;
1929 }
1930
1931 /**
1932 *
1933 */
1934 static GLuint
1935 parse_param_use (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1936 struct arb_program *Program, struct var_cache **new_var)
1937 {
1938 struct var_cache *param_var;
1939
1940 /* First, insert a dummy entry into the var_cache */
1941 var_cache_create (&param_var);
1942 param_var->name = (const GLubyte *) " ";
1943 param_var->type = vt_param;
1944
1945 param_var->param_binding_length = 0;
1946 /* Don't fill in binding_begin; We use the default value of -1
1947 * to tell if its already initialized, elsewhere.
1948 *
1949 * param_var->param_binding_begin = 0;
1950 */
1951 param_var->param_binding_type = PROGRAM_STATE_VAR;
1952
1953 var_cache_append (vc_head, param_var);
1954
1955 /* Then fill it with juicy parameter goodness */
1956 if (parse_param_elements (ctx, inst, param_var, Program, GL_TRUE))
1957 return 1;
1958
1959 *new_var = param_var;
1960
1961 return 0;
1962 }
1963
1964
1965 /**
1966 * This handles the declaration of TEMP variables
1967 *
1968 * \return 0 on sucess, 1 on error
1969 */
1970 static GLuint
1971 parse_temp (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1972 struct arb_program *Program)
1973 {
1974 GLuint found;
1975 struct var_cache *temp_var;
1976
1977 while (**inst != 0) {
1978 temp_var = parse_string (inst, vc_head, Program, &found);
1979 Program->Position = parse_position (inst);
1980 if (found) {
1981 char *error_msg = (char *)
1982 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
1983 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
1984 temp_var->name);
1985 program_error(ctx, Program->Position, error_msg);
1986 _mesa_free (error_msg);
1987 return 1;
1988 }
1989
1990 temp_var->type = vt_temp;
1991
1992 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1993 (Program->Base.NumTemporaries >=
1994 ctx->Const.FragmentProgram.MaxTemps))
1995 || ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
1996 && (Program->Base.NumTemporaries >=
1997 ctx->Const.VertexProgram.MaxTemps))) {
1998 program_error(ctx, Program->Position,
1999 "Too many TEMP variables declared");
2000 return 1;
2001 }
2002
2003 temp_var->temp_binding = Program->Base.NumTemporaries;
2004 Program->Base.NumTemporaries++;
2005 }
2006 (*inst)++;
2007
2008 return 0;
2009 }
2010
2011 /**
2012 * This handles variables of the OUTPUT variety
2013 *
2014 * \return 0 on sucess, 1 on error
2015 */
2016 static GLuint
2017 parse_output (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2018 struct arb_program *Program)
2019 {
2020 GLuint found;
2021 struct var_cache *output_var;
2022 GLuint err;
2023
2024 output_var = parse_string (inst, vc_head, Program, &found);
2025 Program->Position = parse_position (inst);
2026 if (found) {
2027 char *error_msg = (char *)
2028 _mesa_malloc (_mesa_strlen ((char *) output_var->name) + 40);
2029 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
2030 output_var->name);
2031 program_error (ctx, Program->Position, error_msg);
2032 _mesa_free (error_msg);
2033 return 1;
2034 }
2035
2036 output_var->type = vt_output;
2037
2038 err = parse_result_binding(ctx, inst, &output_var->output_binding, Program);
2039 return err;
2040 }
2041
2042 /**
2043 * This handles variables of the ALIAS kind
2044 *
2045 * \return 0 on sucess, 1 on error
2046 */
2047 static GLuint
2048 parse_alias (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2049 struct arb_program *Program)
2050 {
2051 GLuint found;
2052 struct var_cache *temp_var;
2053
2054 temp_var = parse_string (inst, vc_head, Program, &found);
2055 Program->Position = parse_position (inst);
2056
2057 if (found) {
2058 char *error_msg = (char *)
2059 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
2060 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
2061 temp_var->name);
2062 program_error(ctx, Program->Position, error_msg);
2063 _mesa_free (error_msg);
2064 return 1;
2065 }
2066
2067 temp_var->type = vt_alias;
2068 temp_var->alias_binding = parse_string (inst, vc_head, Program, &found);
2069 Program->Position = parse_position (inst);
2070
2071 if (!found)
2072 {
2073 char *error_msg = (char *)
2074 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
2075 _mesa_sprintf (error_msg, "Alias value %s is not defined",
2076 temp_var->alias_binding->name);
2077 program_error (ctx, Program->Position, error_msg);
2078 _mesa_free (error_msg);
2079 return 1;
2080 }
2081
2082 return 0;
2083 }
2084
2085 /**
2086 * This handles variables of the ADDRESS kind
2087 *
2088 * \return 0 on sucess, 1 on error
2089 */
2090 static GLuint
2091 parse_address (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2092 struct arb_program *Program)
2093 {
2094 GLuint found;
2095 struct var_cache *temp_var;
2096
2097 while (**inst != 0) {
2098 temp_var = parse_string (inst, vc_head, Program, &found);
2099 Program->Position = parse_position (inst);
2100 if (found) {
2101 char *error_msg = (char *)
2102 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
2103 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
2104 temp_var->name);
2105 program_error (ctx, Program->Position, error_msg);
2106 _mesa_free (error_msg);
2107 return 1;
2108 }
2109
2110 temp_var->type = vt_address;
2111
2112 if (Program->Base.NumAddressRegs >=
2113 ctx->Const.VertexProgram.MaxAddressRegs) {
2114 const char *msg = "Too many ADDRESS variables declared";
2115 program_error(ctx, Program->Position, msg);
2116 return 1;
2117 }
2118
2119 temp_var->address_binding = Program->Base.NumAddressRegs;
2120 Program->Base.NumAddressRegs++;
2121 }
2122 (*inst)++;
2123
2124 return 0;
2125 }
2126
2127 /**
2128 * Parse a program declaration
2129 *
2130 * \return 0 on sucess, 1 on error
2131 */
2132 static GLint
2133 parse_declaration (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2134 struct arb_program *Program)
2135 {
2136 GLint err = 0;
2137
2138 switch (*(*inst)++) {
2139 case ADDRESS:
2140 err = parse_address (ctx, inst, vc_head, Program);
2141 break;
2142
2143 case ALIAS:
2144 err = parse_alias (ctx, inst, vc_head, Program);
2145 break;
2146
2147 case ATTRIB:
2148 err = parse_attrib (ctx, inst, vc_head, Program);
2149 break;
2150
2151 case OUTPUT:
2152 err = parse_output (ctx, inst, vc_head, Program);
2153 break;
2154
2155 case PARAM:
2156 err = parse_param (ctx, inst, vc_head, Program);
2157 break;
2158
2159 case TEMP:
2160 err = parse_temp (ctx, inst, vc_head, Program);
2161 break;
2162 }
2163
2164 return err;
2165 }
2166
2167 /**
2168 * Handle the parsing out of a masked destination register, either for a
2169 * vertex or fragment program.
2170 *
2171 * If we are a vertex program, make sure we don't write to
2172 * result.position if we have specified that the program is
2173 * position invariant
2174 *
2175 * \param File - The register file we write to
2176 * \param Index - The register index we write to
2177 * \param WriteMask - The mask controlling which components we write (1->write)
2178 *
2179 * \return 0 on sucess, 1 on error
2180 */
2181 static GLuint
2182 parse_masked_dst_reg (GLcontext * ctx, const GLubyte ** inst,
2183 struct var_cache **vc_head, struct arb_program *Program,
2184 enum register_file *File, GLuint *Index, GLint *WriteMask)
2185 {
2186 GLuint tmp, result;
2187 struct var_cache *dst;
2188
2189 /* We either have a result register specified, or a
2190 * variable that may or may not be writable
2191 */
2192 switch (*(*inst)++) {
2193 case REGISTER_RESULT:
2194 if (parse_result_binding(ctx, inst, Index, Program))
2195 return 1;
2196 *File = PROGRAM_OUTPUT;
2197 break;
2198
2199 case REGISTER_ESTABLISHED_NAME:
2200 dst = parse_string (inst, vc_head, Program, &result);
2201 Program->Position = parse_position (inst);
2202
2203 /* If the name has never been added to our symbol table, we're hosed */
2204 if (!result) {
2205 program_error(ctx, Program->Position, "0: Undefined variable");
2206 return 1;
2207 }
2208
2209 switch (dst->type) {
2210 case vt_output:
2211 *File = PROGRAM_OUTPUT;
2212 *Index = dst->output_binding;
2213 break;
2214
2215 case vt_temp:
2216 *File = PROGRAM_TEMPORARY;
2217 *Index = dst->temp_binding;
2218 break;
2219
2220 /* If the var type is not vt_output or vt_temp, no go */
2221 default:
2222 program_error(ctx, Program->Position,
2223 "Destination register is read only");
2224 return 1;
2225 }
2226 break;
2227
2228 default:
2229 program_error(ctx, Program->Position,
2230 "Unexpected opcode in parse_masked_dst_reg()");
2231 return 1;
2232 }
2233
2234
2235 /* Position invariance test */
2236 /* This test is done now in syntax portion - when position invariance OPTION
2237 is specified, "result.position" rule is disabled so there is no way
2238 to write the position
2239 */
2240 /*if ((Program->HintPositionInvariant) && (*File == PROGRAM_OUTPUT) &&
2241 (*Index == 0)) {
2242 program_error(ctx, Program->Position,
2243 "Vertex program specified position invariance and wrote vertex position");
2244 }*/
2245
2246 /* And then the mask.
2247 * w,a -> bit 0
2248 * z,b -> bit 1
2249 * y,g -> bit 2
2250 * x,r -> bit 3
2251 *
2252 * ==> Need to reverse the order of bits for this!
2253 */
2254 tmp = (GLint) *(*inst)++;
2255 *WriteMask = (((tmp>>3) & 0x1) |
2256 ((tmp>>1) & 0x2) |
2257 ((tmp<<1) & 0x4) |
2258 ((tmp<<3) & 0x8));
2259
2260 return 0;
2261 }
2262
2263
2264 /**
2265 * Handle the parsing of a address register
2266 *
2267 * \param Index - The register index we write to
2268 *
2269 * \return 0 on sucess, 1 on error
2270 */
2271 static GLuint
2272 parse_address_reg (GLcontext * ctx, const GLubyte ** inst,
2273 struct var_cache **vc_head,
2274 struct arb_program *Program, GLint * Index)
2275 {
2276 struct var_cache *dst;
2277 GLuint result;
2278
2279 *Index = 0; /* XXX */
2280
2281 dst = parse_string (inst, vc_head, Program, &result);
2282 Program->Position = parse_position (inst);
2283
2284 /* If the name has never been added to our symbol table, we're hosed */
2285 if (!result) {
2286 program_error(ctx, Program->Position, "Undefined variable");
2287 return 1;
2288 }
2289
2290 if (dst->type != vt_address) {
2291 program_error(ctx, Program->Position, "Variable is not of type ADDRESS");
2292 return 1;
2293 }
2294
2295 return 0;
2296 }
2297
2298 #if 0 /* unused */
2299 /**
2300 * Handle the parsing out of a masked address register
2301 *
2302 * \param Index - The register index we write to
2303 * \param WriteMask - The mask controlling which components we write (1->write)
2304 *
2305 * \return 0 on sucess, 1 on error
2306 */
2307 static GLuint
2308 parse_masked_address_reg (GLcontext * ctx, const GLubyte ** inst,
2309 struct var_cache **vc_head,
2310 struct arb_program *Program, GLint * Index,
2311 GLboolean * WriteMask)
2312 {
2313 if (parse_address_reg (ctx, inst, vc_head, Program, Index))
2314 return 1;
2315
2316 /* This should be 0x8 */
2317 (*inst)++;
2318
2319 /* Writemask of .x is implied */
2320 WriteMask[0] = 1;
2321 WriteMask[1] = WriteMask[2] = WriteMask[3] = 0;
2322
2323 return 0;
2324 }
2325 #endif
2326
2327 /**
2328 * Parse out a swizzle mask.
2329 *
2330 * Basically convert COMPONENT_X/Y/Z/W to SWIZZLE_X/Y/Z/W
2331 *
2332 * The len parameter allows us to grab 4 components for a vector
2333 * swizzle, or just 1 component for a scalar src register selection
2334 */
2335 static void
2336 parse_swizzle_mask(const GLubyte ** inst, GLubyte *swizzle, GLint len)
2337 {
2338 GLint i;
2339
2340 for (i = 0; i < 4; i++)
2341 swizzle[i] = i;
2342
2343 for (i = 0; i < len; i++) {
2344 switch (*(*inst)++) {
2345 case COMPONENT_X:
2346 swizzle[i] = SWIZZLE_X;
2347 break;
2348 case COMPONENT_Y:
2349 swizzle[i] = SWIZZLE_Y;
2350 break;
2351 case COMPONENT_Z:
2352 swizzle[i] = SWIZZLE_Z;
2353 break;
2354 case COMPONENT_W:
2355 swizzle[i] = SWIZZLE_W;
2356 break;
2357 default:
2358 _mesa_problem(NULL, "bad component in parse_swizzle_mask()");
2359 return;
2360 }
2361 }
2362 }
2363
2364
2365 /**
2366 * Parse an extended swizzle mask which is a sequence of
2367 * four x/y/z/w/0/1 tokens.
2368 * \return swizzle four swizzle values
2369 * \return negateMask four element bitfield
2370 */
2371 static void
2372 parse_extended_swizzle_mask(const GLubyte **inst, GLubyte swizzle[4],
2373 GLubyte *negateMask)
2374 {
2375 GLint i;
2376
2377 *negateMask = 0x0;
2378 for (i = 0; i < 4; i++) {
2379 GLubyte swz;
2380 if (parse_sign(inst) == -1)
2381 *negateMask |= (1 << i);
2382
2383 swz = *(*inst)++;
2384
2385 switch (swz) {
2386 case COMPONENT_0:
2387 swizzle[i] = SWIZZLE_ZERO;
2388 break;
2389 case COMPONENT_1:
2390 swizzle[i] = SWIZZLE_ONE;
2391 break;
2392 case COMPONENT_X:
2393 swizzle[i] = SWIZZLE_X;
2394 break;
2395 case COMPONENT_Y:
2396 swizzle[i] = SWIZZLE_Y;
2397 break;
2398 case COMPONENT_Z:
2399 swizzle[i] = SWIZZLE_Z;
2400 break;
2401 case COMPONENT_W:
2402 swizzle[i] = SWIZZLE_W;
2403 break;
2404 default:
2405 _mesa_problem(NULL, "bad case in parse_extended_swizzle_mask()");
2406 return;
2407 }
2408 }
2409 }
2410
2411
2412 static GLuint
2413 parse_src_reg (GLcontext * ctx, const GLubyte ** inst,
2414 struct var_cache **vc_head,
2415 struct arb_program *Program,
2416 enum register_file * File, GLint * Index,
2417 GLboolean *IsRelOffset )
2418 {
2419 struct var_cache *src;
2420 GLuint binding, is_generic, found;
2421 GLint offset;
2422
2423 *IsRelOffset = 0;
2424
2425 /* And the binding for the src */
2426 switch (*(*inst)++) {
2427 case REGISTER_ATTRIB:
2428 if (parse_attrib_binding
2429 (ctx, inst, Program, &binding, &is_generic))
2430 return 1;
2431 *File = PROGRAM_INPUT;
2432 *Index = binding;
2433
2434 /* We need to insert a dummy variable into the var_cache so we can
2435 * catch generic vertex attrib aliasing errors
2436 */
2437 var_cache_create(&src);
2438 src->type = vt_attrib;
2439 src->name = (const GLubyte *) "Dummy Attrib Variable";
2440 src->attrib_binding = binding;
2441 src->attrib_is_generic = is_generic;
2442 var_cache_append(vc_head, src);
2443 if (generic_attrib_check(*vc_head)) {
2444 program_error(ctx, Program->Position,
2445 "Cannot use both a generic vertex attribute "
2446 "and a specific attribute of the same type");
2447 return 1;
2448 }
2449 break;
2450
2451 case REGISTER_PARAM:
2452 switch (**inst) {
2453 case PARAM_ARRAY_ELEMENT:
2454 (*inst)++;
2455 src = parse_string (inst, vc_head, Program, &found);
2456 Program->Position = parse_position (inst);
2457
2458 if (!found) {
2459 program_error(ctx, Program->Position,
2460 "2: Undefined variable"); /* src->name */
2461 return 1;
2462 }
2463
2464 *File = (enum register_file) src->param_binding_type;
2465
2466 switch (*(*inst)++) {
2467 case ARRAY_INDEX_ABSOLUTE:
2468 offset = parse_integer (inst, Program);
2469
2470 if ((offset < 0)
2471 || (offset >= (int)src->param_binding_length)) {
2472 program_error(ctx, Program->Position,
2473 "Index out of range");
2474 /* offset, src->name */
2475 return 1;
2476 }
2477
2478 *Index = src->param_binding_begin + offset;
2479 break;
2480
2481 case ARRAY_INDEX_RELATIVE:
2482 {
2483 GLint addr_reg_idx, rel_off;
2484
2485 /* First, grab the address regiseter */
2486 if (parse_address_reg (ctx, inst, vc_head, Program, &addr_reg_idx))
2487 return 1;
2488
2489 /* And the .x */
2490 ((*inst)++);
2491 ((*inst)++);
2492 ((*inst)++);
2493 ((*inst)++);
2494
2495 /* Then the relative offset */
2496 if (parse_relative_offset(ctx, inst, Program, &rel_off)) return 1;
2497
2498 /* And store it properly */
2499 *Index = src->param_binding_begin + rel_off;
2500 *IsRelOffset = 1;
2501 }
2502 break;
2503 }
2504 break;
2505
2506 default:
2507 if (parse_param_use (ctx, inst, vc_head, Program, &src))
2508 return 1;
2509
2510 *File = (enum register_file) src->param_binding_type;
2511 *Index = src->param_binding_begin;
2512 break;
2513 }
2514 break;
2515
2516 case REGISTER_ESTABLISHED_NAME:
2517 src = parse_string (inst, vc_head, Program, &found);
2518 Program->Position = parse_position (inst);
2519
2520 /* If the name has never been added to our symbol table, we're hosed */
2521 if (!found) {
2522 program_error(ctx, Program->Position,
2523 "3: Undefined variable"); /* src->name */
2524 return 1;
2525 }
2526
2527 switch (src->type) {
2528 case vt_attrib:
2529 *File = PROGRAM_INPUT;
2530 *Index = src->attrib_binding;
2531 break;
2532
2533 /* XXX: We have to handle offsets someplace in here! -- or are those above? */
2534 case vt_param:
2535 *File = (enum register_file) src->param_binding_type;
2536 *Index = src->param_binding_begin;
2537 break;
2538
2539 case vt_temp:
2540 *File = PROGRAM_TEMPORARY;
2541 *Index = src->temp_binding;
2542 break;
2543
2544 /* If the var type is vt_output no go */
2545 default:
2546 program_error(ctx, Program->Position,
2547 "destination register is read only");
2548 /* bad src->name */
2549 return 1;
2550 }
2551 break;
2552
2553 default:
2554 program_error(ctx, Program->Position,
2555 "Unknown token in parse_src_reg");
2556 return 1;
2557 }
2558
2559 return 0;
2560 }
2561
2562 /**
2563 * Parse fragment program vector source register.
2564 */
2565 static GLuint
2566 parse_fp_vector_src_reg(GLcontext * ctx, const GLubyte ** inst,
2567 struct var_cache **vc_head,
2568 struct arb_program *program,
2569 struct prog_src_register *reg)
2570 {
2571 enum register_file file;
2572 GLint index;
2573 GLboolean negate;
2574 GLubyte swizzle[4];
2575 GLboolean isRelOffset;
2576
2577 /* Grab the sign */
2578 negate = (parse_sign (inst) == -1) ? 0xf : 0x0;
2579
2580 /* And the src reg */
2581 if (parse_src_reg(ctx, inst, vc_head, program, &file, &index, &isRelOffset))
2582 return 1;
2583
2584 /* finally, the swizzle */
2585 parse_swizzle_mask(inst, swizzle, 4);
2586
2587 reg->File = file;
2588 reg->Index = index;
2589 reg->NegateBase = negate;
2590 reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2591 return 0;
2592 }
2593
2594
2595 /**
2596 * Parse fragment program destination register.
2597 * \return 1 if error, 0 if no error.
2598 */
2599 static GLuint
2600 parse_fp_dst_reg(GLcontext * ctx, const GLubyte ** inst,
2601 struct var_cache **vc_head, struct arb_program *Program,
2602 struct prog_dst_register *reg )
2603 {
2604 GLint mask;
2605 GLuint idx;
2606 enum register_file file;
2607
2608 if (parse_masked_dst_reg (ctx, inst, vc_head, Program, &file, &idx, &mask))
2609 return 1;
2610
2611 reg->File = file;
2612 reg->Index = idx;
2613 reg->WriteMask = mask;
2614 return 0;
2615 }
2616
2617
2618 /**
2619 * Parse fragment program scalar src register.
2620 * \return 1 if error, 0 if no error.
2621 */
2622 static GLuint
2623 parse_fp_scalar_src_reg (GLcontext * ctx, const GLubyte ** inst,
2624 struct var_cache **vc_head,
2625 struct arb_program *Program,
2626 struct prog_src_register *reg )
2627 {
2628 enum register_file File;
2629 GLint Index;
2630 GLubyte Negate;
2631 GLubyte Swizzle[4];
2632 GLboolean IsRelOffset;
2633
2634 /* Grab the sign */
2635 Negate = (parse_sign (inst) == -1) ? 0x1 : 0x0;
2636
2637 /* And the src reg */
2638 if (parse_src_reg (ctx, inst, vc_head, Program, &File, &Index, &IsRelOffset))
2639 return 1;
2640
2641 /* finally, the swizzle */
2642 parse_swizzle_mask(inst, Swizzle, 1);
2643
2644 reg->File = File;
2645 reg->Index = Index;
2646 reg->NegateBase = Negate;
2647 reg->Swizzle = (Swizzle[0] << 0);
2648
2649 return 0;
2650 }
2651
2652
2653 /**
2654 * This is a big mother that handles getting opcodes into the instruction
2655 * and handling the src & dst registers for fragment program instructions
2656 * \return 1 if error, 0 if no error
2657 */
2658 static GLuint
2659 parse_fp_instruction (GLcontext * ctx, const GLubyte ** inst,
2660 struct var_cache **vc_head, struct arb_program *Program,
2661 struct prog_instruction *fp)
2662 {
2663 GLint a;
2664 GLuint texcoord;
2665 GLubyte instClass, type, code;
2666 GLboolean rel;
2667 GLuint shadow_tex = 0;
2668
2669 _mesa_init_instructions(fp, 1);
2670
2671 /* Record the position in the program string for debugging */
2672 fp->StringPos = Program->Position;
2673
2674 /* OP_ALU_INST or OP_TEX_INST */
2675 instClass = *(*inst)++;
2676
2677 /* OP_ALU_{VECTOR, SCALAR, BINSC, BIN, TRI, SWZ},
2678 * OP_TEX_{SAMPLE, KIL}
2679 */
2680 type = *(*inst)++;
2681
2682 /* The actual opcode name */
2683 code = *(*inst)++;
2684
2685 /* Increment the correct count */
2686 switch (instClass) {
2687 case OP_ALU_INST:
2688 Program->NumAluInstructions++;
2689 break;
2690 case OP_TEX_INST:
2691 Program->NumTexInstructions++;
2692 break;
2693 }
2694
2695 switch (type) {
2696 case OP_ALU_VECTOR:
2697 switch (code) {
2698 case OP_ABS_SAT:
2699 fp->SaturateMode = SATURATE_ZERO_ONE;
2700 case OP_ABS:
2701 fp->Opcode = OPCODE_ABS;
2702 break;
2703
2704 case OP_FLR_SAT:
2705 fp->SaturateMode = SATURATE_ZERO_ONE;
2706 case OP_FLR:
2707 fp->Opcode = OPCODE_FLR;
2708 break;
2709
2710 case OP_FRC_SAT:
2711 fp->SaturateMode = SATURATE_ZERO_ONE;
2712 case OP_FRC:
2713 fp->Opcode = OPCODE_FRC;
2714 break;
2715
2716 case OP_LIT_SAT:
2717 fp->SaturateMode = SATURATE_ZERO_ONE;
2718 case OP_LIT:
2719 fp->Opcode = OPCODE_LIT;
2720 break;
2721
2722 case OP_MOV_SAT:
2723 fp->SaturateMode = SATURATE_ZERO_ONE;
2724 case OP_MOV:
2725 fp->Opcode = OPCODE_MOV;
2726 break;
2727 }
2728
2729 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2730 return 1;
2731
2732 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2733 return 1;
2734 break;
2735
2736 case OP_ALU_SCALAR:
2737 switch (code) {
2738 case OP_COS_SAT:
2739 fp->SaturateMode = SATURATE_ZERO_ONE;
2740 case OP_COS:
2741 fp->Opcode = OPCODE_COS;
2742 break;
2743
2744 case OP_EX2_SAT:
2745 fp->SaturateMode = SATURATE_ZERO_ONE;
2746 case OP_EX2:
2747 fp->Opcode = OPCODE_EX2;
2748 break;
2749
2750 case OP_LG2_SAT:
2751 fp->SaturateMode = SATURATE_ZERO_ONE;
2752 case OP_LG2:
2753 fp->Opcode = OPCODE_LG2;
2754 break;
2755
2756 case OP_RCP_SAT:
2757 fp->SaturateMode = SATURATE_ZERO_ONE;
2758 case OP_RCP:
2759 fp->Opcode = OPCODE_RCP;
2760 break;
2761
2762 case OP_RSQ_SAT:
2763 fp->SaturateMode = SATURATE_ZERO_ONE;
2764 case OP_RSQ:
2765 fp->Opcode = OPCODE_RSQ;
2766 break;
2767
2768 case OP_SIN_SAT:
2769 fp->SaturateMode = SATURATE_ZERO_ONE;
2770 case OP_SIN:
2771 fp->Opcode = OPCODE_SIN;
2772 break;
2773
2774 case OP_SCS_SAT:
2775 fp->SaturateMode = SATURATE_ZERO_ONE;
2776 case OP_SCS:
2777
2778 fp->Opcode = OPCODE_SCS;
2779 break;
2780 }
2781
2782 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2783 return 1;
2784
2785 if (parse_fp_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2786 return 1;
2787 break;
2788
2789 case OP_ALU_BINSC:
2790 switch (code) {
2791 case OP_POW_SAT:
2792 fp->SaturateMode = SATURATE_ZERO_ONE;
2793 case OP_POW:
2794 fp->Opcode = OPCODE_POW;
2795 break;
2796 }
2797
2798 if (parse_fp_dst_reg(ctx, inst, vc_head, Program, &fp->DstReg))
2799 return 1;
2800
2801 for (a = 0; a < 2; a++) {
2802 if (parse_fp_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2803 return 1;
2804 }
2805 break;
2806
2807
2808 case OP_ALU_BIN:
2809 switch (code) {
2810 case OP_ADD_SAT:
2811 fp->SaturateMode = SATURATE_ZERO_ONE;
2812 case OP_ADD:
2813 fp->Opcode = OPCODE_ADD;
2814 break;
2815
2816 case OP_DP3_SAT:
2817 fp->SaturateMode = SATURATE_ZERO_ONE;
2818 case OP_DP3:
2819 fp->Opcode = OPCODE_DP3;
2820 break;
2821
2822 case OP_DP4_SAT:
2823 fp->SaturateMode = SATURATE_ZERO_ONE;
2824 case OP_DP4:
2825 fp->Opcode = OPCODE_DP4;
2826 break;
2827
2828 case OP_DPH_SAT:
2829 fp->SaturateMode = SATURATE_ZERO_ONE;
2830 case OP_DPH:
2831 fp->Opcode = OPCODE_DPH;
2832 break;
2833
2834 case OP_DST_SAT:
2835 fp->SaturateMode = SATURATE_ZERO_ONE;
2836 case OP_DST:
2837 fp->Opcode = OPCODE_DST;
2838 break;
2839
2840 case OP_MAX_SAT:
2841 fp->SaturateMode = SATURATE_ZERO_ONE;
2842 case OP_MAX:
2843 fp->Opcode = OPCODE_MAX;
2844 break;
2845
2846 case OP_MIN_SAT:
2847 fp->SaturateMode = SATURATE_ZERO_ONE;
2848 case OP_MIN:
2849 fp->Opcode = OPCODE_MIN;
2850 break;
2851
2852 case OP_MUL_SAT:
2853 fp->SaturateMode = SATURATE_ZERO_ONE;
2854 case OP_MUL:
2855 fp->Opcode = OPCODE_MUL;
2856 break;
2857
2858 case OP_SGE_SAT:
2859 fp->SaturateMode = SATURATE_ZERO_ONE;
2860 case OP_SGE:
2861 fp->Opcode = OPCODE_SGE;
2862 break;
2863
2864 case OP_SLT_SAT:
2865 fp->SaturateMode = SATURATE_ZERO_ONE;
2866 case OP_SLT:
2867 fp->Opcode = OPCODE_SLT;
2868 break;
2869
2870 case OP_SUB_SAT:
2871 fp->SaturateMode = SATURATE_ZERO_ONE;
2872 case OP_SUB:
2873 fp->Opcode = OPCODE_SUB;
2874 break;
2875
2876 case OP_XPD_SAT:
2877 fp->SaturateMode = SATURATE_ZERO_ONE;
2878 case OP_XPD:
2879 fp->Opcode = OPCODE_XPD;
2880 break;
2881 }
2882
2883 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2884 return 1;
2885 for (a = 0; a < 2; a++) {
2886 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2887 return 1;
2888 }
2889 break;
2890
2891 case OP_ALU_TRI:
2892 switch (code) {
2893 case OP_CMP_SAT:
2894 fp->SaturateMode = SATURATE_ZERO_ONE;
2895 case OP_CMP:
2896 fp->Opcode = OPCODE_CMP;
2897 break;
2898
2899 case OP_LRP_SAT:
2900 fp->SaturateMode = SATURATE_ZERO_ONE;
2901 case OP_LRP:
2902 fp->Opcode = OPCODE_LRP;
2903 break;
2904
2905 case OP_MAD_SAT:
2906 fp->SaturateMode = SATURATE_ZERO_ONE;
2907 case OP_MAD:
2908 fp->Opcode = OPCODE_MAD;
2909 break;
2910 }
2911
2912 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2913 return 1;
2914
2915 for (a = 0; a < 3; a++) {
2916 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2917 return 1;
2918 }
2919 break;
2920
2921 case OP_ALU_SWZ:
2922 switch (code) {
2923 case OP_SWZ_SAT:
2924 fp->SaturateMode = SATURATE_ZERO_ONE;
2925 case OP_SWZ:
2926 fp->Opcode = OPCODE_SWZ;
2927 break;
2928 }
2929 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2930 return 1;
2931
2932 {
2933 GLubyte swizzle[4];
2934 GLubyte negateMask;
2935 enum register_file file;
2936 GLint index;
2937
2938 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &rel))
2939 return 1;
2940 parse_extended_swizzle_mask(inst, swizzle, &negateMask);
2941 fp->SrcReg[0].File = file;
2942 fp->SrcReg[0].Index = index;
2943 fp->SrcReg[0].NegateBase = negateMask;
2944 fp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
2945 swizzle[1],
2946 swizzle[2],
2947 swizzle[3]);
2948 }
2949 break;
2950
2951 case OP_TEX_SAMPLE:
2952 switch (code) {
2953 case OP_TEX_SAT:
2954 fp->SaturateMode = SATURATE_ZERO_ONE;
2955 case OP_TEX:
2956 fp->Opcode = OPCODE_TEX;
2957 break;
2958
2959 case OP_TXP_SAT:
2960 fp->SaturateMode = SATURATE_ZERO_ONE;
2961 case OP_TXP:
2962 fp->Opcode = OPCODE_TXP;
2963 break;
2964
2965 case OP_TXB_SAT:
2966 fp->SaturateMode = SATURATE_ZERO_ONE;
2967 case OP_TXB:
2968 fp->Opcode = OPCODE_TXB;
2969 break;
2970 }
2971
2972 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2973 return 1;
2974
2975 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2976 return 1;
2977
2978 /* texImageUnit */
2979 if (parse_texcoord_num (ctx, inst, Program, &texcoord))
2980 return 1;
2981 fp->TexSrcUnit = texcoord;
2982
2983 /* texTarget */
2984 switch (*(*inst)++) {
2985 case TEXTARGET_SHADOW1D:
2986 shadow_tex = 1 << texcoord;
2987 /* FALLTHROUGH */
2988 case TEXTARGET_1D:
2989 fp->TexSrcTarget = TEXTURE_1D_INDEX;
2990 break;
2991 case TEXTARGET_SHADOW2D:
2992 shadow_tex = 1 << texcoord;
2993 /* FALLTHROUGH */
2994 case TEXTARGET_2D:
2995 fp->TexSrcTarget = TEXTURE_2D_INDEX;
2996 break;
2997 case TEXTARGET_3D:
2998 fp->TexSrcTarget = TEXTURE_3D_INDEX;
2999 break;
3000 case TEXTARGET_SHADOWRECT:
3001 shadow_tex = 1 << texcoord;
3002 /* FALLTHROUGH */
3003 case TEXTARGET_RECT:
3004 fp->TexSrcTarget = TEXTURE_RECT_INDEX;
3005 break;
3006 case TEXTARGET_CUBE:
3007 fp->TexSrcTarget = TEXTURE_CUBE_INDEX;
3008 break;
3009 case TEXTARGET_SHADOW1D_ARRAY:
3010 shadow_tex = 1 << texcoord;
3011 /* FALLTHROUGH */
3012 case TEXTARGET_1D_ARRAY:
3013 fp->TexSrcTarget = TEXTURE_1D_ARRAY_INDEX;
3014 break;
3015 case TEXTARGET_SHADOW2D_ARRAY:
3016 shadow_tex = 1 << texcoord;
3017 /* FALLTHROUGH */
3018 case TEXTARGET_2D_ARRAY:
3019 fp->TexSrcTarget = TEXTURE_2D_ARRAY_INDEX;
3020 break;
3021 }
3022
3023 /* Don't test the first time a particular sampler is seen. Each time
3024 * after that, make sure the shadow state is the same.
3025 */
3026 if ((_mesa_bitcount(Program->TexturesUsed[texcoord]) > 0)
3027 && ((Program->ShadowSamplers & (1 << texcoord)) != shadow_tex)) {
3028 program_error(ctx, Program->Position,
3029 "texture image unit used for shadow sampling and non-shadow sampling");
3030 return 1;
3031 }
3032
3033 Program->TexturesUsed[texcoord] |= (1 << fp->TexSrcTarget);
3034 /* Check that both "2D" and "CUBE" (for example) aren't both used */
3035 if (_mesa_bitcount(Program->TexturesUsed[texcoord]) > 1) {
3036 program_error(ctx, Program->Position,
3037 "multiple targets used on one texture image unit");
3038 return 1;
3039 }
3040
3041
3042 Program->ShadowSamplers |= shadow_tex;
3043 break;
3044
3045 case OP_TEX_KIL:
3046 Program->UsesKill = 1;
3047 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
3048 return 1;
3049 fp->Opcode = OPCODE_KIL;
3050 break;
3051 default:
3052 _mesa_problem(ctx, "bad type 0x%x in parse_fp_instruction()", type);
3053 return 1;
3054 }
3055
3056 return 0;
3057 }
3058
3059 static GLuint
3060 parse_vp_dst_reg(GLcontext * ctx, const GLubyte ** inst,
3061 struct var_cache **vc_head, struct arb_program *Program,
3062 struct prog_dst_register *reg )
3063 {
3064 GLint mask;
3065 GLuint idx;
3066 enum register_file file;
3067
3068 if (parse_masked_dst_reg(ctx, inst, vc_head, Program, &file, &idx, &mask))
3069 return 1;
3070
3071 reg->File = file;
3072 reg->Index = idx;
3073 reg->WriteMask = mask;
3074 return 0;
3075 }
3076
3077 /**
3078 * Handle the parsing out of a masked address register
3079 *
3080 * \param Index - The register index we write to
3081 * \param WriteMask - The mask controlling which components we write (1->write)
3082 *
3083 * \return 0 on sucess, 1 on error
3084 */
3085 static GLuint
3086 parse_vp_address_reg (GLcontext * ctx, const GLubyte ** inst,
3087 struct var_cache **vc_head,
3088 struct arb_program *Program,
3089 struct prog_dst_register *reg)
3090 {
3091 GLint idx;
3092
3093 if (parse_address_reg (ctx, inst, vc_head, Program, &idx))
3094 return 1;
3095
3096 /* This should be 0x8 */
3097 (*inst)++;
3098
3099 reg->File = PROGRAM_ADDRESS;
3100 reg->Index = idx;
3101
3102 /* Writemask of .x is implied */
3103 reg->WriteMask = 0x1;
3104 return 0;
3105 }
3106
3107 /**
3108 * Parse vertex program vector source register.
3109 */
3110 static GLuint
3111 parse_vp_vector_src_reg(GLcontext * ctx, const GLubyte ** inst,
3112 struct var_cache **vc_head,
3113 struct arb_program *program,
3114 struct prog_src_register *reg )
3115 {
3116 enum register_file file;
3117 GLint index;
3118 GLubyte negateMask;
3119 GLubyte swizzle[4];
3120 GLboolean isRelOffset;
3121
3122 /* Grab the sign */
3123 negateMask = (parse_sign (inst) == -1) ? 0xf : 0x0;
3124
3125 /* And the src reg */
3126 if (parse_src_reg (ctx, inst, vc_head, program, &file, &index, &isRelOffset))
3127 return 1;
3128
3129 /* finally, the swizzle */
3130 parse_swizzle_mask(inst, swizzle, 4);
3131
3132 reg->File = file;
3133 reg->Index = index;
3134 reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1],
3135 swizzle[2], swizzle[3]);
3136 reg->NegateBase = negateMask;
3137 reg->RelAddr = isRelOffset;
3138 return 0;
3139 }
3140
3141
3142 static GLuint
3143 parse_vp_scalar_src_reg (GLcontext * ctx, const GLubyte ** inst,
3144 struct var_cache **vc_head,
3145 struct arb_program *Program,
3146 struct prog_src_register *reg )
3147 {
3148 enum register_file File;
3149 GLint Index;
3150 GLubyte Negate;
3151 GLubyte Swizzle[4];
3152 GLboolean IsRelOffset;
3153
3154 /* Grab the sign */
3155 Negate = (parse_sign (inst) == -1) ? 0x1 : 0x0;
3156
3157 /* And the src reg */
3158 if (parse_src_reg (ctx, inst, vc_head, Program, &File, &Index, &IsRelOffset))
3159 return 1;
3160
3161 /* finally, the swizzle */
3162 parse_swizzle_mask(inst, Swizzle, 1);
3163
3164 reg->File = File;
3165 reg->Index = Index;
3166 reg->Swizzle = (Swizzle[0] << 0);
3167 reg->NegateBase = Negate;
3168 reg->RelAddr = IsRelOffset;
3169 return 0;
3170 }
3171
3172
3173 /**
3174 * This is a big mother that handles getting opcodes into the instruction
3175 * and handling the src & dst registers for vertex program instructions
3176 */
3177 static GLuint
3178 parse_vp_instruction (GLcontext * ctx, const GLubyte ** inst,
3179 struct var_cache **vc_head, struct arb_program *Program,
3180 struct prog_instruction *vp)
3181 {
3182 GLint a;
3183 GLubyte type, code;
3184
3185 /* OP_ALU_{ARL, VECTOR, SCALAR, BINSC, BIN, TRI, SWZ} */
3186 type = *(*inst)++;
3187
3188 /* The actual opcode name */
3189 code = *(*inst)++;
3190
3191 _mesa_init_instructions(vp, 1);
3192 /* Record the position in the program string for debugging */
3193 vp->StringPos = Program->Position;
3194
3195 switch (type) {
3196 /* XXX: */
3197 case OP_ALU_ARL:
3198 vp->Opcode = OPCODE_ARL;
3199
3200 /* Remember to set SrcReg.RelAddr; */
3201
3202 /* Get the masked address register [dst] */
3203 if (parse_vp_address_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3204 return 1;
3205
3206 vp->DstReg.File = PROGRAM_ADDRESS;
3207
3208 /* Get a scalar src register */
3209 if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3210 return 1;
3211
3212 break;
3213
3214 case OP_ALU_VECTOR:
3215 switch (code) {
3216 case OP_ABS:
3217 vp->Opcode = OPCODE_ABS;
3218 break;
3219 case OP_FLR:
3220 vp->Opcode = OPCODE_FLR;
3221 break;
3222 case OP_FRC:
3223 vp->Opcode = OPCODE_FRC;
3224 break;
3225 case OP_LIT:
3226 vp->Opcode = OPCODE_LIT;
3227 break;
3228 case OP_MOV:
3229 vp->Opcode = OPCODE_MOV;
3230 break;
3231 }
3232
3233 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3234 return 1;
3235
3236 if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3237 return 1;
3238 break;
3239
3240 case OP_ALU_SCALAR:
3241 switch (code) {
3242 case OP_EX2:
3243 vp->Opcode = OPCODE_EX2;
3244 break;
3245 case OP_EXP:
3246 vp->Opcode = OPCODE_EXP;
3247 break;
3248 case OP_LG2:
3249 vp->Opcode = OPCODE_LG2;
3250 break;
3251 case OP_LOG:
3252 vp->Opcode = OPCODE_LOG;
3253 break;
3254 case OP_RCP:
3255 vp->Opcode = OPCODE_RCP;
3256 break;
3257 case OP_RSQ:
3258 vp->Opcode = OPCODE_RSQ;
3259 break;
3260 }
3261 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3262 return 1;
3263
3264 if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3265 return 1;
3266 break;
3267
3268 case OP_ALU_BINSC:
3269 switch (code) {
3270 case OP_POW:
3271 vp->Opcode = OPCODE_POW;
3272 break;
3273 }
3274 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3275 return 1;
3276
3277 for (a = 0; a < 2; a++) {
3278 if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3279 return 1;
3280 }
3281 break;
3282
3283 case OP_ALU_BIN:
3284 switch (code) {
3285 case OP_ADD:
3286 vp->Opcode = OPCODE_ADD;
3287 break;
3288 case OP_DP3:
3289 vp->Opcode = OPCODE_DP3;
3290 break;
3291 case OP_DP4:
3292 vp->Opcode = OPCODE_DP4;
3293 break;
3294 case OP_DPH:
3295 vp->Opcode = OPCODE_DPH;
3296 break;
3297 case OP_DST:
3298 vp->Opcode = OPCODE_DST;
3299 break;
3300 case OP_MAX:
3301 vp->Opcode = OPCODE_MAX;
3302 break;
3303 case OP_MIN:
3304 vp->Opcode = OPCODE_MIN;
3305 break;
3306 case OP_MUL:
3307 vp->Opcode = OPCODE_MUL;
3308 break;
3309 case OP_SGE:
3310 vp->Opcode = OPCODE_SGE;
3311 break;
3312 case OP_SLT:
3313 vp->Opcode = OPCODE_SLT;
3314 break;
3315 case OP_SUB:
3316 vp->Opcode = OPCODE_SUB;
3317 break;
3318 case OP_XPD:
3319 vp->Opcode = OPCODE_XPD;
3320 break;
3321 }
3322 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3323 return 1;
3324
3325 for (a = 0; a < 2; a++) {
3326 if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3327 return 1;
3328 }
3329 break;
3330
3331 case OP_ALU_TRI:
3332 switch (code) {
3333 case OP_MAD:
3334 vp->Opcode = OPCODE_MAD;
3335 break;
3336 }
3337
3338 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3339 return 1;
3340
3341 for (a = 0; a < 3; a++) {
3342 if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3343 return 1;
3344 }
3345 break;
3346
3347 case OP_ALU_SWZ:
3348 switch (code) {
3349 case OP_SWZ:
3350 vp->Opcode = OPCODE_SWZ;
3351 break;
3352 }
3353 {
3354 GLubyte swizzle[4];
3355 GLubyte negateMask;
3356 GLboolean relAddr;
3357 enum register_file file;
3358 GLint index;
3359
3360 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3361 return 1;
3362
3363 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &relAddr))
3364 return 1;
3365 parse_extended_swizzle_mask (inst, swizzle, &negateMask);
3366 vp->SrcReg[0].File = file;
3367 vp->SrcReg[0].Index = index;
3368 vp->SrcReg[0].NegateBase = negateMask;
3369 vp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
3370 swizzle[1],
3371 swizzle[2],
3372 swizzle[3]);
3373 vp->SrcReg[0].RelAddr = relAddr;
3374 }
3375 break;
3376 }
3377 return 0;
3378 }
3379
3380 #if DEBUG_PARSING
3381
3382 static GLvoid
3383 debug_variables (GLcontext * ctx, struct var_cache *vc_head,
3384 struct arb_program *Program)
3385 {
3386 struct var_cache *vc;
3387 GLint a, b;
3388
3389 fprintf (stderr, "debug_variables, vc_head: %p\n", (void*) vc_head);
3390
3391 /* First of all, print out the contents of the var_cache */
3392 vc = vc_head;
3393 while (vc) {
3394 fprintf (stderr, "[%p]\n", (void*) vc);
3395 switch (vc->type) {
3396 case vt_none:
3397 fprintf (stderr, "UNDEFINED %s\n", vc->name);
3398 break;
3399 case vt_attrib:
3400 fprintf (stderr, "ATTRIB %s\n", vc->name);
3401 fprintf (stderr, " binding: 0x%x\n", vc->attrib_binding);
3402 break;
3403 case vt_param:
3404 fprintf (stderr, "PARAM %s begin: %d len: %d\n", vc->name,
3405 vc->param_binding_begin, vc->param_binding_length);
3406 b = vc->param_binding_begin;
3407 for (a = 0; a < vc->param_binding_length; a++) {
3408 fprintf (stderr, "%s\n",
3409 Program->Base.Parameters->Parameters[a + b].Name);
3410 if (Program->Base.Parameters->Parameters[a + b].Type == PROGRAM_STATE_VAR) {
3411 const char *s;
3412 s = _mesa_program_state_string(Program->Base.Parameters->Parameters
3413 [a + b].StateIndexes);
3414 fprintf(stderr, "%s\n", s);
3415 _mesa_free((char *) s);
3416 }
3417 else
3418 fprintf (stderr, "%f %f %f %f\n",
3419 Program->Base.Parameters->ParameterValues[a + b][0],
3420 Program->Base.Parameters->ParameterValues[a + b][1],
3421 Program->Base.Parameters->ParameterValues[a + b][2],
3422 Program->Base.Parameters->ParameterValues[a + b][3]);
3423 }
3424 break;
3425 case vt_temp:
3426 fprintf (stderr, "TEMP %s\n", vc->name);
3427 fprintf (stderr, " binding: 0x%x\n", vc->temp_binding);
3428 break;
3429 case vt_output:
3430 fprintf (stderr, "OUTPUT %s\n", vc->name);
3431 fprintf (stderr, " binding: 0x%x\n", vc->output_binding);
3432 break;
3433 case vt_alias:
3434 fprintf (stderr, "ALIAS %s\n", vc->name);
3435 fprintf (stderr, " binding: 0x%p (%s)\n",
3436 (void*) vc->alias_binding, vc->alias_binding->name);
3437 break;
3438 default:
3439 /* nothing */
3440 ;
3441 }
3442 vc = vc->next;
3443 }
3444 }
3445
3446 #endif /* DEBUG_PARSING */
3447
3448
3449 /**
3450 * The main loop for parsing a fragment or vertex program
3451 *
3452 * \return 1 on error, 0 on success
3453 */
3454 static GLint
3455 parse_instructions(GLcontext * ctx, const GLubyte * inst,
3456 struct var_cache **vc_head, struct arb_program *Program)
3457 {
3458 const GLuint maxInst = (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
3459 ? ctx->Const.FragmentProgram.MaxInstructions
3460 : ctx->Const.VertexProgram.MaxInstructions;
3461 GLint err = 0;
3462
3463 ASSERT(MAX_INSTRUCTIONS >= maxInst);
3464
3465 Program->MajorVersion = (GLuint) * inst++;
3466 Program->MinorVersion = (GLuint) * inst++;
3467
3468 while (*inst != END) {
3469 switch (*inst++) {
3470
3471 case OPTION:
3472 switch (*inst++) {
3473 case ARB_PRECISION_HINT_FASTEST:
3474 Program->PrecisionOption = GL_FASTEST;
3475 break;
3476
3477 case ARB_PRECISION_HINT_NICEST:
3478 Program->PrecisionOption = GL_NICEST;
3479 break;
3480
3481 case ARB_FOG_EXP:
3482 Program->FogOption = GL_EXP;
3483 break;
3484
3485 case ARB_FOG_EXP2:
3486 Program->FogOption = GL_EXP2;
3487 break;
3488
3489 case ARB_FOG_LINEAR:
3490 Program->FogOption = GL_LINEAR;
3491 break;
3492
3493 case ARB_POSITION_INVARIANT:
3494 if (Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
3495 Program->HintPositionInvariant = GL_TRUE;
3496 break;
3497
3498 case ARB_FRAGMENT_PROGRAM_SHADOW:
3499 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3500 /* TODO ARB_fragment_program_shadow code */
3501 }
3502 break;
3503
3504 case ARB_DRAW_BUFFERS:
3505 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3506 /* do nothing for now */
3507 }
3508 break;
3509
3510 case MESA_TEXTURE_ARRAY:
3511 /* do nothing for now */
3512 break;
3513 }
3514 break;
3515
3516 case INSTRUCTION:
3517 /* check length */
3518 if (Program->Base.NumInstructions + 1 >= maxInst) {
3519 program_error(ctx, Program->Position,
3520 "Max instruction count exceeded");
3521 return 1;
3522 }
3523 Program->Position = parse_position (&inst);
3524 /* parse the current instruction */
3525 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3526 err = parse_fp_instruction (ctx, &inst, vc_head, Program,
3527 &Program->Base.Instructions[Program->Base.NumInstructions]);
3528 }
3529 else {
3530 err = parse_vp_instruction (ctx, &inst, vc_head, Program,
3531 &Program->Base.Instructions[Program->Base.NumInstructions]);
3532 }
3533
3534 /* increment instuction count */
3535 Program->Base.NumInstructions++;
3536 break;
3537
3538 case DECLARATION:
3539 err = parse_declaration (ctx, &inst, vc_head, Program);
3540 break;
3541
3542 default:
3543 break;
3544 }
3545
3546 if (err)
3547 break;
3548 }
3549
3550 /* Finally, tag on an OPCODE_END instruction */
3551 {
3552 const GLuint numInst = Program->Base.NumInstructions;
3553 _mesa_init_instructions(Program->Base.Instructions + numInst, 1);
3554 Program->Base.Instructions[numInst].Opcode = OPCODE_END;
3555 /* YYY Wrong Position in program, whatever, at least not random -> crash
3556 Program->Position = parse_position (&inst);
3557 */
3558 Program->Base.Instructions[numInst].StringPos = Program->Position;
3559 }
3560 Program->Base.NumInstructions++;
3561
3562 /*
3563 * Initialize native counts to logical counts. The device driver may
3564 * change them if program is translated into a hardware program.
3565 */
3566 Program->Base.NumNativeInstructions = Program->Base.NumInstructions;
3567 Program->Base.NumNativeTemporaries = Program->Base.NumTemporaries;
3568 Program->Base.NumNativeParameters = Program->Base.NumParameters;
3569 Program->Base.NumNativeAttributes = Program->Base.NumAttributes;
3570 Program->Base.NumNativeAddressRegs = Program->Base.NumAddressRegs;
3571
3572 return err;
3573 }
3574
3575
3576 /* XXX temporary */
3577 LONGSTRING static char core_grammar_text[] =
3578 #include "shader/grammar/grammar_syn.h"
3579 ;
3580
3581
3582 /**
3583 * Set a grammar parameter.
3584 * \param name the grammar parameter
3585 * \param value the new parameter value
3586 * \return 0 if OK, 1 if error
3587 */
3588 static int
3589 set_reg8 (GLcontext *ctx, grammar id, const char *name, GLubyte value)
3590 {
3591 char error_msg[300];
3592 GLint error_pos;
3593
3594 if (grammar_set_reg8 (id, (const byte *) name, value))
3595 return 0;
3596
3597 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3598 _mesa_set_program_error (ctx, error_pos, error_msg);
3599 _mesa_error (ctx, GL_INVALID_OPERATION, "Grammar Register Error");
3600 return 1;
3601 }
3602
3603
3604 /**
3605 * Enable support for the given language option in the parser.
3606 * \return 1 if OK, 0 if error
3607 */
3608 static int
3609 enable_ext(GLcontext *ctx, grammar id, const char *name)
3610 {
3611 return !set_reg8(ctx, id, name, 1);
3612 }
3613
3614
3615 /**
3616 * Enable parser extensions based on which OpenGL extensions are supported
3617 * by this rendering context.
3618 *
3619 * \return GL_TRUE if OK, GL_FALSE if error.
3620 */
3621 static GLboolean
3622 enable_parser_extensions(GLcontext *ctx, grammar id)
3623 {
3624 #if 0
3625 /* These are not supported at this time */
3626 if ((ctx->Extensions.ARB_vertex_blend ||
3627 ctx->Extensions.EXT_vertex_weighting)
3628 && !enable_ext(ctx, id, "vertex_blend"))
3629 return GL_FALSE;
3630 if (ctx->Extensions.ARB_matrix_palette
3631 && !enable_ext(ctx, id, "matrix_palette"))
3632 return GL_FALSE;
3633 #endif
3634 if (ctx->Extensions.ARB_fragment_program_shadow
3635 && !enable_ext(ctx, id, "fragment_program_shadow"))
3636 return GL_FALSE;
3637 if (ctx->Extensions.EXT_point_parameters
3638 && !enable_ext(ctx, id, "point_parameters"))
3639 return GL_FALSE;
3640 if (ctx->Extensions.EXT_secondary_color
3641 && !enable_ext(ctx, id, "secondary_color"))
3642 return GL_FALSE;
3643 if (ctx->Extensions.EXT_fog_coord
3644 && !enable_ext(ctx, id, "fog_coord"))
3645 return GL_FALSE;
3646 if (ctx->Extensions.NV_texture_rectangle
3647 && !enable_ext(ctx, id, "texture_rectangle"))
3648 return GL_FALSE;
3649 if (ctx->Extensions.ARB_draw_buffers
3650 && !enable_ext(ctx, id, "draw_buffers"))
3651 return GL_FALSE;
3652 if (ctx->Extensions.MESA_texture_array
3653 && !enable_ext(ctx, id, "texture_array"))
3654 return GL_FALSE;
3655 #if 1
3656 /* hack for Warcraft (see bug 8060) */
3657 enable_ext(ctx, id, "vertex_blend");
3658 #endif
3659
3660 return GL_TRUE;
3661 }
3662
3663
3664 /**
3665 * This kicks everything off.
3666 *
3667 * \param ctx - The GL Context
3668 * \param str - The program string
3669 * \param len - The program string length
3670 * \param program - The arb_program struct to return all the parsed info in
3671 * \return GL_TRUE on sucess, GL_FALSE on error
3672 */
3673 static GLboolean
3674 _mesa_parse_arb_program(GLcontext *ctx, GLenum target,
3675 const GLubyte *str, GLsizei len,
3676 struct arb_program *program)
3677 {
3678 GLint a, err, error_pos;
3679 char error_msg[300];
3680 GLuint parsed_len;
3681 struct var_cache *vc_head;
3682 grammar arbprogram_syn_id;
3683 GLubyte *parsed, *inst;
3684 GLubyte *strz = NULL;
3685 static int arbprogram_syn_is_ok = 0; /* XXX temporary */
3686
3687 /* set the program target before parsing */
3688 program->Base.Target = target;
3689
3690 /* Reset error state */
3691 _mesa_set_program_error(ctx, -1, NULL);
3692
3693 /* check if arb_grammar_text (arbprogram.syn) is syntactically correct */
3694 if (!arbprogram_syn_is_ok) {
3695 /* One-time initialization of parsing system */
3696 grammar grammar_syn_id;
3697 GLuint parsed_len;
3698
3699 grammar_syn_id = grammar_load_from_text ((byte *) core_grammar_text);
3700 if (grammar_syn_id == 0) {
3701 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3702 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3703 _mesa_set_program_error (ctx, error_pos, error_msg);
3704 _mesa_error (ctx, GL_INVALID_OPERATION,
3705 "glProgramStringARB(Error loading grammar rule set)");
3706 return GL_FALSE;
3707 }
3708
3709 err = !grammar_check(grammar_syn_id, (byte *) arb_grammar_text,
3710 &parsed, &parsed_len);
3711
3712 /* 'parsed' is unused here */
3713 _mesa_free (parsed);
3714 parsed = NULL;
3715
3716 /* NOTE: we can't destroy grammar_syn_id right here because
3717 * grammar_destroy() can reset the last error
3718 */
3719 if (err) {
3720 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3721 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3722 _mesa_set_program_error (ctx, error_pos, error_msg);
3723 _mesa_error (ctx, GL_INVALID_OPERATION,
3724 "glProgramString(Error loading grammar rule set");
3725 grammar_destroy (grammar_syn_id);
3726 return GL_FALSE;
3727 }
3728
3729 grammar_destroy (grammar_syn_id);
3730
3731 arbprogram_syn_is_ok = 1;
3732 }
3733
3734 /* create the grammar object */
3735 arbprogram_syn_id = grammar_load_from_text ((byte *) arb_grammar_text);
3736 if (arbprogram_syn_id == 0) {
3737 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3738 grammar_get_last_error ((GLubyte *) error_msg, 300, &error_pos);
3739 _mesa_set_program_error (ctx, error_pos, error_msg);
3740 _mesa_error (ctx, GL_INVALID_OPERATION,
3741 "glProgramString(Error loading grammer rule set)");
3742 return GL_FALSE;
3743 }
3744
3745 /* Set program_target register value */
3746 if (set_reg8 (ctx, arbprogram_syn_id, "program_target",
3747 program->Base.Target == GL_FRAGMENT_PROGRAM_ARB ? 0x10 : 0x20)) {
3748 grammar_destroy (arbprogram_syn_id);
3749 return GL_FALSE;
3750 }
3751
3752 if (!enable_parser_extensions(ctx, arbprogram_syn_id)) {
3753 grammar_destroy(arbprogram_syn_id);
3754 return GL_FALSE;
3755 }
3756
3757 /* check for NULL character occurences */
3758 {
3759 GLint i;
3760 for (i = 0; i < len; i++) {
3761 if (str[i] == '\0') {
3762 program_error(ctx, i, "illegal character");
3763 grammar_destroy (arbprogram_syn_id);
3764 return GL_FALSE;
3765 }
3766 }
3767 }
3768
3769 /* copy the program string to a null-terminated string */
3770 strz = (GLubyte *) _mesa_malloc (len + 1);
3771 if (!strz) {
3772 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB");
3773 grammar_destroy (arbprogram_syn_id);
3774 return GL_FALSE;
3775 }
3776 _mesa_memcpy (strz, str, len);
3777 strz[len] = '\0';
3778
3779 /* do a fast check on program string - initial production buffer is 4K */
3780 err = !grammar_fast_check(arbprogram_syn_id, strz,
3781 &parsed, &parsed_len, 0x1000);
3782
3783 /* Syntax parse error */
3784 if (err) {
3785 grammar_get_last_error((GLubyte *) error_msg, 300, &error_pos);
3786 program_error(ctx, error_pos, error_msg);
3787
3788 #if DEBUG_PARSING
3789 /* useful for debugging */
3790 do {
3791 int line, col;
3792 char *s;
3793 fprintf(stderr, "program: %s\n", (char *) strz);
3794 fprintf(stderr, "Error Pos: %d\n", ctx->program.ErrorPos);
3795 s = (char *) _mesa_find_line_column(strz, strz+ctx->program.ErrorPos,
3796 &line, &col);
3797 fprintf(stderr, "line %d col %d: %s\n", line, col, s);
3798 } while (0)
3799 #endif
3800
3801 _mesa_free(strz);
3802 _mesa_free(parsed);
3803
3804 grammar_destroy (arbprogram_syn_id);
3805 return GL_FALSE;
3806 }
3807
3808 grammar_destroy (arbprogram_syn_id);
3809
3810 /*
3811 * Program string is syntactically correct at this point
3812 * Parse the tokenized version of the program now, generating
3813 * vertex/fragment program instructions.
3814 */
3815
3816 /* Initialize the arb_program struct */
3817 program->Base.String = strz;
3818 program->Base.Instructions = _mesa_alloc_instructions(MAX_INSTRUCTIONS);
3819 program->Base.NumInstructions =
3820 program->Base.NumTemporaries =
3821 program->Base.NumParameters =
3822 program->Base.NumAttributes = program->Base.NumAddressRegs = 0;
3823 program->Base.Parameters = _mesa_new_parameter_list ();
3824 program->Base.InputsRead = 0x0;
3825 program->Base.OutputsWritten = 0x0;
3826 program->Position = 0;
3827 program->MajorVersion = program->MinorVersion = 0;
3828 program->PrecisionOption = GL_DONT_CARE;
3829 program->FogOption = GL_NONE;
3830 program->HintPositionInvariant = GL_FALSE;
3831 for (a = 0; a < MAX_TEXTURE_IMAGE_UNITS; a++)
3832 program->TexturesUsed[a] = 0x0;
3833 program->ShadowSamplers = 0x0;
3834 program->NumAluInstructions =
3835 program->NumTexInstructions =
3836 program->NumTexIndirections = 0;
3837 program->UsesKill = 0;
3838
3839 vc_head = NULL;
3840 err = GL_FALSE;
3841
3842 /* Start examining the tokens in the array */
3843 inst = parsed;
3844
3845 /* Check the grammer rev */
3846 if (*inst++ != REVISION) {
3847 program_error (ctx, 0, "Grammar version mismatch");
3848 err = GL_TRUE;
3849 }
3850 else {
3851 /* ignore program target */
3852 inst++;
3853 err = parse_instructions(ctx, inst, &vc_head, program);
3854 }
3855
3856 /*debug_variables(ctx, vc_head, program); */
3857
3858 /* We're done with the parsed binary array */
3859 var_cache_destroy (&vc_head);
3860
3861 _mesa_free (parsed);
3862
3863 /* Reallocate the instruction array from size [MAX_INSTRUCTIONS]
3864 * to size [ap.Base.NumInstructions].
3865 */
3866 program->Base.Instructions
3867 = _mesa_realloc_instructions(program->Base.Instructions,
3868 MAX_INSTRUCTIONS,
3869 program->Base.NumInstructions);
3870
3871 return !err;
3872 }
3873
3874
3875
3876 void
3877 _mesa_parse_arb_fragment_program(GLcontext* ctx, GLenum target,
3878 const GLvoid *str, GLsizei len,
3879 struct gl_fragment_program *program)
3880 {
3881 struct arb_program ap;
3882 GLuint i;
3883
3884 ASSERT(target == GL_FRAGMENT_PROGRAM_ARB);
3885 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3886 /* Error in the program. Just return. */
3887 return;
3888 }
3889
3890 /* Copy the relevant contents of the arb_program struct into the
3891 * fragment_program struct.
3892 */
3893 program->Base.String = ap.Base.String;
3894 program->Base.NumInstructions = ap.Base.NumInstructions;
3895 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3896 program->Base.NumParameters = ap.Base.NumParameters;
3897 program->Base.NumAttributes = ap.Base.NumAttributes;
3898 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3899 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3900 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3901 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3902 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3903 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3904 program->Base.NumAluInstructions = ap.Base.NumAluInstructions;
3905 program->Base.NumTexInstructions = ap.Base.NumTexInstructions;
3906 program->Base.NumTexIndirections = ap.Base.NumTexIndirections;
3907 program->Base.NumNativeAluInstructions = ap.Base.NumAluInstructions;
3908 program->Base.NumNativeTexInstructions = ap.Base.NumTexInstructions;
3909 program->Base.NumNativeTexIndirections = ap.Base.NumTexIndirections;
3910 program->Base.InputsRead = ap.Base.InputsRead;
3911 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3912 for (i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++)
3913 program->Base.TexturesUsed[i] = ap.TexturesUsed[i];
3914 program->Base.ShadowSamplers = ap.ShadowSamplers;
3915 program->FogOption = ap.FogOption;
3916 program->UsesKill = ap.UsesKill;
3917
3918 if (program->Base.Instructions)
3919 _mesa_free(program->Base.Instructions);
3920 program->Base.Instructions = ap.Base.Instructions;
3921
3922 if (program->Base.Parameters)
3923 _mesa_free_parameter_list(program->Base.Parameters);
3924 program->Base.Parameters = ap.Base.Parameters;
3925
3926 #if DEBUG_FP
3927 _mesa_printf("____________Fragment program %u ________\n", program->Base.ID);
3928 _mesa_print_program(&program->Base);
3929 #endif
3930 }
3931
3932
3933
3934 /**
3935 * Parse the vertex program string. If success, update the given
3936 * vertex_program object with the new program. Else, leave the vertex_program
3937 * object unchanged.
3938 */
3939 void
3940 _mesa_parse_arb_vertex_program(GLcontext *ctx, GLenum target,
3941 const GLvoid *str, GLsizei len,
3942 struct gl_vertex_program *program)
3943 {
3944 struct arb_program ap;
3945
3946 ASSERT(target == GL_VERTEX_PROGRAM_ARB);
3947
3948 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3949 /* Error in the program. Just return. */
3950 return;
3951 }
3952
3953 /* Copy the relevant contents of the arb_program struct into the
3954 * vertex_program struct.
3955 */
3956 program->Base.String = ap.Base.String;
3957 program->Base.NumInstructions = ap.Base.NumInstructions;
3958 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3959 program->Base.NumParameters = ap.Base.NumParameters;
3960 program->Base.NumAttributes = ap.Base.NumAttributes;
3961 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3962 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3963 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3964 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3965 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3966 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3967 program->Base.InputsRead = ap.Base.InputsRead;
3968 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3969 program->IsPositionInvariant = ap.HintPositionInvariant;
3970
3971 if (program->Base.Instructions)
3972 _mesa_free(program->Base.Instructions);
3973 program->Base.Instructions = ap.Base.Instructions;
3974
3975 if (program->Base.Parameters)
3976 _mesa_free_parameter_list(program->Base.Parameters);
3977 program->Base.Parameters = ap.Base.Parameters;
3978
3979 #if DEBUG_VP
3980 _mesa_printf("____________Vertex program %u __________\n", program->Base.Id);
3981 _mesa_print_program(&program->Base);
3982 #endif
3983 }