mesa: regenerated files
[mesa.git] / src / mesa / shader / arbprogparse.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #define DEBUG_PARSING 0
26
27 /**
28 * \file arbprogparse.c
29 * ARB_*_program parser core
30 * \author Karl Rasche
31 */
32
33 #include "main/glheader.h"
34 #include "main/imports.h"
35 #include "shader/grammar/grammar_mesa.h"
36 #include "arbprogparse.h"
37 #include "program.h"
38 #include "prog_parameter.h"
39 #include "prog_statevars.h"
40 #include "context.h"
41 #include "macros.h"
42 #include "mtypes.h"
43 #include "prog_instruction.h"
44
45
46 /* For ARB programs, use the NV instruction limits */
47 #define MAX_INSTRUCTIONS MAX2(MAX_NV_FRAGMENT_PROGRAM_INSTRUCTIONS, \
48 MAX_NV_VERTEX_PROGRAM_INSTRUCTIONS)
49
50
51 /**
52 * This is basically a union of the vertex_program and fragment_program
53 * structs that we can use to parse the program into
54 *
55 * XXX we can probably get rid of this entirely someday.
56 */
57 struct arb_program
58 {
59 struct gl_program Base;
60
61 GLuint Position; /* Just used for error reporting while parsing */
62 GLuint MajorVersion;
63 GLuint MinorVersion;
64
65 /* ARB_vertex_progmra options */
66 GLboolean HintPositionInvariant;
67
68 /* ARB_fragment_progmra options */
69 GLenum PrecisionOption; /* GL_DONT_CARE, GL_NICEST or GL_FASTEST */
70 GLenum FogOption; /* GL_NONE, GL_LINEAR, GL_EXP or GL_EXP2 */
71
72 /* ARB_fragment_program specifics */
73 GLbitfield TexturesUsed[MAX_TEXTURE_IMAGE_UNITS];
74 GLbitfield ShadowSamplers;
75 GLuint NumAluInstructions;
76 GLuint NumTexInstructions;
77 GLuint NumTexIndirections;
78
79 GLboolean UsesKill;
80 };
81
82
83
84 /* TODO:
85 * Fragment Program Stuff:
86 * -----------------------------------------------------
87 *
88 * - things from Michal's email
89 * + overflow on atoi
90 * + not-overflowing floats (don't use parse_integer..)
91 * + can remove range checking in arbparse.c
92 *
93 * - check all limits of number of various variables
94 * + parameters
95 *
96 * - test! test! test!
97 *
98 * Vertex Program Stuff:
99 * -----------------------------------------------------
100 * - Optimize param array usage and count limits correctly, see spec,
101 * section 2.14.3.7
102 * + Record if an array is reference absolutly or relatively (or both)
103 * + For absolute arrays, store a bitmap of accesses
104 * + For single parameters, store an access flag
105 * + After parsing, make a parameter cleanup and merging pass, where
106 * relative arrays are layed out first, followed by abs arrays, and
107 * finally single state.
108 * + Remap offsets for param src and dst registers
109 * + Now we can properly count parameter usage
110 *
111 * - Multiple state binding errors in param arrays (see spec, just before
112 * section 2.14.3.3)
113 * - grep for XXX
114 *
115 * Mesa Stuff
116 * -----------------------------------------------------
117 * - User clipping planes vs. PositionInvariant
118 * - Is it sufficient to just multiply by the mvp to transform in the
119 * PositionInvariant case? Or do we need something more involved?
120 *
121 * - vp_src swizzle is GLubyte, fp_src swizzle is GLuint
122 * - fetch state listed in program_parameters list
123 * + WTF should this go???
124 * + currently in nvvertexec.c and s_nvfragprog.c
125 *
126 * - allow for multiple address registers (and fetch address regs properly)
127 *
128 * Cosmetic Stuff
129 * -----------------------------------------------------
130 * - remove any leftover unused grammer.c stuff (dict_ ?)
131 * - fix grammer.c error handling so its not static
132 * - #ifdef around stuff pertaining to extentions
133 *
134 * Outstanding Questions:
135 * -----------------------------------------------------
136 * - ARB_matrix_palette / ARB_vertex_blend -- not supported
137 * what gets hacked off because of this:
138 * + VERTEX_ATTRIB_MATRIXINDEX
139 * + VERTEX_ATTRIB_WEIGHT
140 * + MATRIX_MODELVIEW
141 * + MATRIX_PALETTE
142 *
143 * - When can we fetch env/local params from their own register files, and
144 * when to we have to fetch them into the main state register file?
145 * (think arrays)
146 *
147 * Grammar Changes:
148 * -----------------------------------------------------
149 */
150
151 /* Changes since moving the file to shader directory
152
153 2004-III-4 ------------------------------------------------------------
154 - added #include "grammar_mesa.h"
155 - removed grammar specific code part (it resides now in grammar.c)
156 - added GL_ARB_fragment_program_shadow tokens
157 - modified #include "arbparse_syn.h"
158 - major changes inside _mesa_parse_arb_program()
159 - check the program string for '\0' characters
160 - copy the program string to a one-byte-longer location to have
161 it null-terminated
162 - position invariance test (not writing to result.position) moved
163 to syntax part
164 */
165
166 typedef GLubyte *production;
167
168
169 /**
170 * This is the text describing the rules to parse the grammar
171 */
172 LONGSTRING static char arb_grammar_text[] =
173 #include "arbprogram_syn.h"
174 ;
175
176 /**
177 * These should match up with the values defined in arbprogram.syn
178 */
179
180 /*
181 Changes:
182 - changed and merged V_* and F_* opcode values to OP_*.
183 - added GL_ARB_fragment_program_shadow specific tokens (michal)
184 */
185 #define REVISION 0x0a
186
187 /* program type */
188 #define FRAGMENT_PROGRAM 0x01
189 #define VERTEX_PROGRAM 0x02
190
191 /* program section */
192 #define OPTION 0x01
193 #define INSTRUCTION 0x02
194 #define DECLARATION 0x03
195 #define END 0x04
196
197 /* GL_ARB_fragment_program option */
198 #define ARB_PRECISION_HINT_FASTEST 0x00
199 #define ARB_PRECISION_HINT_NICEST 0x01
200 #define ARB_FOG_EXP 0x02
201 #define ARB_FOG_EXP2 0x03
202 #define ARB_FOG_LINEAR 0x04
203
204 /* GL_ARB_vertex_program option */
205 #define ARB_POSITION_INVARIANT 0x05
206
207 /* GL_ARB_fragment_program_shadow option */
208 #define ARB_FRAGMENT_PROGRAM_SHADOW 0x06
209
210 /* GL_ARB_draw_buffers option */
211 #define ARB_DRAW_BUFFERS 0x07
212
213 /* GL_MESA_texture_array option */
214 #define MESA_TEXTURE_ARRAY 0x08
215
216 /* GL_ARB_fragment_program instruction class */
217 #define OP_ALU_INST 0x00
218 #define OP_TEX_INST 0x01
219
220 /* GL_ARB_vertex_program instruction class */
221 /* OP_ALU_INST */
222
223 /* GL_ARB_fragment_program instruction type */
224 #define OP_ALU_VECTOR 0x00
225 #define OP_ALU_SCALAR 0x01
226 #define OP_ALU_BINSC 0x02
227 #define OP_ALU_BIN 0x03
228 #define OP_ALU_TRI 0x04
229 #define OP_ALU_SWZ 0x05
230 #define OP_TEX_SAMPLE 0x06
231 #define OP_TEX_KIL 0x07
232
233 /* GL_ARB_vertex_program instruction type */
234 #define OP_ALU_ARL 0x08
235 /* OP_ALU_VECTOR */
236 /* OP_ALU_SCALAR */
237 /* OP_ALU_BINSC */
238 /* OP_ALU_BIN */
239 /* OP_ALU_TRI */
240 /* OP_ALU_SWZ */
241
242 /* GL_ARB_fragment_program instruction code */
243 #define OP_ABS 0x00
244 #define OP_ABS_SAT 0x1B
245 #define OP_FLR 0x09
246 #define OP_FLR_SAT 0x26
247 #define OP_FRC 0x0A
248 #define OP_FRC_SAT 0x27
249 #define OP_LIT 0x0C
250 #define OP_LIT_SAT 0x2A
251 #define OP_MOV 0x11
252 #define OP_MOV_SAT 0x30
253 #define OP_COS 0x1F
254 #define OP_COS_SAT 0x20
255 #define OP_EX2 0x07
256 #define OP_EX2_SAT 0x25
257 #define OP_LG2 0x0B
258 #define OP_LG2_SAT 0x29
259 #define OP_RCP 0x14
260 #define OP_RCP_SAT 0x33
261 #define OP_RSQ 0x15
262 #define OP_RSQ_SAT 0x34
263 #define OP_SIN 0x38
264 #define OP_SIN_SAT 0x39
265 #define OP_SCS 0x35
266 #define OP_SCS_SAT 0x36
267 #define OP_POW 0x13
268 #define OP_POW_SAT 0x32
269 #define OP_ADD 0x01
270 #define OP_ADD_SAT 0x1C
271 #define OP_DP3 0x03
272 #define OP_DP3_SAT 0x21
273 #define OP_DP4 0x04
274 #define OP_DP4_SAT 0x22
275 #define OP_DPH 0x05
276 #define OP_DPH_SAT 0x23
277 #define OP_DST 0x06
278 #define OP_DST_SAT 0x24
279 #define OP_MAX 0x0F
280 #define OP_MAX_SAT 0x2E
281 #define OP_MIN 0x10
282 #define OP_MIN_SAT 0x2F
283 #define OP_MUL 0x12
284 #define OP_MUL_SAT 0x31
285 #define OP_SGE 0x16
286 #define OP_SGE_SAT 0x37
287 #define OP_SLT 0x17
288 #define OP_SLT_SAT 0x3A
289 #define OP_SUB 0x18
290 #define OP_SUB_SAT 0x3B
291 #define OP_XPD 0x1A
292 #define OP_XPD_SAT 0x43
293 #define OP_CMP 0x1D
294 #define OP_CMP_SAT 0x1E
295 #define OP_LRP 0x2B
296 #define OP_LRP_SAT 0x2C
297 #define OP_MAD 0x0E
298 #define OP_MAD_SAT 0x2D
299 #define OP_SWZ 0x19
300 #define OP_SWZ_SAT 0x3C
301 #define OP_TEX 0x3D
302 #define OP_TEX_SAT 0x3E
303 #define OP_TXB 0x3F
304 #define OP_TXB_SAT 0x40
305 #define OP_TXP 0x41
306 #define OP_TXP_SAT 0x42
307 #define OP_KIL 0x28
308
309 /* GL_ARB_vertex_program instruction code */
310 #define OP_ARL 0x02
311 /* OP_ABS */
312 /* OP_FLR */
313 /* OP_FRC */
314 /* OP_LIT */
315 /* OP_MOV */
316 /* OP_EX2 */
317 #define OP_EXP 0x08
318 /* OP_LG2 */
319 #define OP_LOG 0x0D
320 /* OP_RCP */
321 /* OP_RSQ */
322 /* OP_POW */
323 /* OP_ADD */
324 /* OP_DP3 */
325 /* OP_DP4 */
326 /* OP_DPH */
327 /* OP_DST */
328 /* OP_MAX */
329 /* OP_MIN */
330 /* OP_MUL */
331 /* OP_SGE */
332 /* OP_SLT */
333 /* OP_SUB */
334 /* OP_XPD */
335 /* OP_MAD */
336 /* OP_SWZ */
337
338 /* fragment attribute binding */
339 #define FRAGMENT_ATTRIB_COLOR 0x01
340 #define FRAGMENT_ATTRIB_TEXCOORD 0x02
341 #define FRAGMENT_ATTRIB_FOGCOORD 0x03
342 #define FRAGMENT_ATTRIB_POSITION 0x04
343
344 /* vertex attribute binding */
345 #define VERTEX_ATTRIB_POSITION 0x01
346 #define VERTEX_ATTRIB_WEIGHT 0x02
347 #define VERTEX_ATTRIB_NORMAL 0x03
348 #define VERTEX_ATTRIB_COLOR 0x04
349 #define VERTEX_ATTRIB_FOGCOORD 0x05
350 #define VERTEX_ATTRIB_TEXCOORD 0x06
351 #define VERTEX_ATTRIB_MATRIXINDEX 0x07
352 #define VERTEX_ATTRIB_GENERIC 0x08
353
354 /* fragment result binding */
355 #define FRAGMENT_RESULT_COLOR 0x01
356 #define FRAGMENT_RESULT_DEPTH 0x02
357
358 /* vertex result binding */
359 #define VERTEX_RESULT_POSITION 0x01
360 #define VERTEX_RESULT_COLOR 0x02
361 #define VERTEX_RESULT_FOGCOORD 0x03
362 #define VERTEX_RESULT_POINTSIZE 0x04
363 #define VERTEX_RESULT_TEXCOORD 0x05
364
365 /* texture target */
366 #define TEXTARGET_1D 0x01
367 #define TEXTARGET_2D 0x02
368 #define TEXTARGET_3D 0x03
369 #define TEXTARGET_RECT 0x04
370 #define TEXTARGET_CUBE 0x05
371 /* GL_ARB_fragment_program_shadow */
372 #define TEXTARGET_SHADOW1D 0x06
373 #define TEXTARGET_SHADOW2D 0x07
374 #define TEXTARGET_SHADOWRECT 0x08
375 /* GL_MESA_texture_array */
376 #define TEXTARGET_1D_ARRAY 0x09
377 #define TEXTARGET_2D_ARRAY 0x0a
378 #define TEXTARGET_SHADOW1D_ARRAY 0x0b
379 #define TEXTARGET_SHADOW2D_ARRAY 0x0c
380
381 /* face type */
382 #define FACE_FRONT 0x00
383 #define FACE_BACK 0x01
384
385 /* color type */
386 #define COLOR_PRIMARY 0x00
387 #define COLOR_SECONDARY 0x01
388
389 /* component */
390 #define COMPONENT_X 0x00
391 #define COMPONENT_Y 0x01
392 #define COMPONENT_Z 0x02
393 #define COMPONENT_W 0x03
394 #define COMPONENT_0 0x04
395 #define COMPONENT_1 0x05
396
397 /* array index type */
398 #define ARRAY_INDEX_ABSOLUTE 0x00
399 #define ARRAY_INDEX_RELATIVE 0x01
400
401 /* matrix name */
402 #define MATRIX_MODELVIEW 0x01
403 #define MATRIX_PROJECTION 0x02
404 #define MATRIX_MVP 0x03
405 #define MATRIX_TEXTURE 0x04
406 #define MATRIX_PALETTE 0x05
407 #define MATRIX_PROGRAM 0x06
408
409 /* matrix modifier */
410 #define MATRIX_MODIFIER_IDENTITY 0x00
411 #define MATRIX_MODIFIER_INVERSE 0x01
412 #define MATRIX_MODIFIER_TRANSPOSE 0x02
413 #define MATRIX_MODIFIER_INVTRANS 0x03
414
415 /* constant type */
416 #define CONSTANT_SCALAR 0x01
417 #define CONSTANT_VECTOR 0x02
418
419 /* program param type */
420 #define PROGRAM_PARAM_ENV 0x01
421 #define PROGRAM_PARAM_LOCAL 0x02
422
423 /* register type */
424 #define REGISTER_ATTRIB 0x01
425 #define REGISTER_PARAM 0x02
426 #define REGISTER_RESULT 0x03
427 #define REGISTER_ESTABLISHED_NAME 0x04
428
429 /* param binding */
430 #define PARAM_NULL 0x00
431 #define PARAM_ARRAY_ELEMENT 0x01
432 #define PARAM_STATE_ELEMENT 0x02
433 #define PARAM_PROGRAM_ELEMENT 0x03
434 #define PARAM_PROGRAM_ELEMENTS 0x04
435 #define PARAM_CONSTANT 0x05
436
437 /* param state property */
438 #define STATE_MATERIAL_PARSER 0x01
439 #define STATE_LIGHT_PARSER 0x02
440 #define STATE_LIGHT_MODEL 0x03
441 #define STATE_LIGHT_PROD 0x04
442 #define STATE_FOG 0x05
443 #define STATE_MATRIX_ROWS 0x06
444 /* GL_ARB_fragment_program */
445 #define STATE_TEX_ENV 0x07
446 #define STATE_DEPTH 0x08
447 /* GL_ARB_vertex_program */
448 #define STATE_TEX_GEN 0x09
449 #define STATE_CLIP_PLANE 0x0A
450 #define STATE_POINT 0x0B
451
452 /* state material property */
453 #define MATERIAL_AMBIENT 0x01
454 #define MATERIAL_DIFFUSE 0x02
455 #define MATERIAL_SPECULAR 0x03
456 #define MATERIAL_EMISSION 0x04
457 #define MATERIAL_SHININESS 0x05
458
459 /* state light property */
460 #define LIGHT_AMBIENT 0x01
461 #define LIGHT_DIFFUSE 0x02
462 #define LIGHT_SPECULAR 0x03
463 #define LIGHT_POSITION 0x04
464 #define LIGHT_ATTENUATION 0x05
465 #define LIGHT_HALF 0x06
466 #define LIGHT_SPOT_DIRECTION 0x07
467
468 /* state light model property */
469 #define LIGHT_MODEL_AMBIENT 0x01
470 #define LIGHT_MODEL_SCENECOLOR 0x02
471
472 /* state light product property */
473 #define LIGHT_PROD_AMBIENT 0x01
474 #define LIGHT_PROD_DIFFUSE 0x02
475 #define LIGHT_PROD_SPECULAR 0x03
476
477 /* state texture environment property */
478 #define TEX_ENV_COLOR 0x01
479
480 /* state texture generation coord property */
481 #define TEX_GEN_EYE 0x01
482 #define TEX_GEN_OBJECT 0x02
483
484 /* state fog property */
485 #define FOG_COLOR 0x01
486 #define FOG_PARAMS 0x02
487
488 /* state depth property */
489 #define DEPTH_RANGE 0x01
490
491 /* state point parameters property */
492 #define POINT_SIZE 0x01
493 #define POINT_ATTENUATION 0x02
494
495 /* declaration */
496 #define ATTRIB 0x01
497 #define PARAM 0x02
498 #define TEMP 0x03
499 #define OUTPUT 0x04
500 #define ALIAS 0x05
501 /* GL_ARB_vertex_program */
502 #define ADDRESS 0x06
503
504 /*-----------------------------------------------------------------------
505 * From here on down is the semantic checking portion
506 *
507 */
508
509 /**
510 * Variable Table Handling functions
511 */
512 typedef enum
513 {
514 vt_none,
515 vt_address,
516 vt_attrib,
517 vt_param,
518 vt_temp,
519 vt_output,
520 vt_alias
521 } var_type;
522
523
524 /**
525 * Setting an explicit field for each of the binding properties is a bit
526 * wasteful of space, but it should be much more clear when reading later on..
527 */
528 struct var_cache
529 {
530 const GLubyte *name; /* don't free() - no need */
531 var_type type;
532 GLuint address_binding; /* The index of the address register we should
533 * be using */
534 GLuint attrib_binding; /* For type vt_attrib, see nvfragprog.h for values */
535 GLuint attrib_is_generic; /* If the attrib was specified through a generic
536 * vertex attrib */
537 GLuint temp_binding; /* The index of the temp register we are to use */
538 GLuint output_binding; /* Output/result register number */
539 struct var_cache *alias_binding; /* For type vt_alias, points to the var_cache entry
540 * that this is aliased to */
541 GLuint param_binding_type; /* {PROGRAM_STATE_VAR, PROGRAM_LOCAL_PARAM,
542 * PROGRAM_ENV_PARAM} */
543 GLuint param_binding_begin; /* This is the offset into the program_parameter_list where
544 * the tokens representing our bound state (or constants)
545 * start */
546 GLuint param_binding_length; /* This is how many entries in the the program_parameter_list
547 * we take up with our state tokens or constants. Note that
548 * this is _not_ the same as the number of param registers
549 * we eventually use */
550 struct var_cache *next;
551 };
552
553 static GLvoid
554 var_cache_create (struct var_cache **va)
555 {
556 *va = (struct var_cache *) _mesa_malloc (sizeof (struct var_cache));
557 if (*va) {
558 (**va).name = NULL;
559 (**va).type = vt_none;
560 (**va).attrib_binding = ~0;
561 (**va).attrib_is_generic = 0;
562 (**va).temp_binding = ~0;
563 (**va).output_binding = ~0;
564 (**va).param_binding_type = ~0;
565 (**va).param_binding_begin = ~0;
566 (**va).param_binding_length = ~0;
567 (**va).alias_binding = NULL;
568 (**va).next = NULL;
569 }
570 }
571
572 static GLvoid
573 var_cache_destroy (struct var_cache **va)
574 {
575 if (*va) {
576 var_cache_destroy (&(**va).next);
577 _mesa_free (*va);
578 *va = NULL;
579 }
580 }
581
582 static GLvoid
583 var_cache_append (struct var_cache **va, struct var_cache *nv)
584 {
585 if (*va)
586 var_cache_append (&(**va).next, nv);
587 else
588 *va = nv;
589 }
590
591 static struct var_cache *
592 var_cache_find (struct var_cache *va, const GLubyte * name)
593 {
594 /*struct var_cache *first = va;*/
595
596 while (va) {
597 if (!_mesa_strcmp ( (const char*) name, (const char*) va->name)) {
598 if (va->type == vt_alias)
599 return va->alias_binding;
600 return va;
601 }
602
603 va = va->next;
604 }
605
606 return NULL;
607 }
608
609
610
611 /**
612 * Called when an error is detected while parsing/compiling a program.
613 * Sets the ctx->Program.ErrorString field to descript and records a
614 * GL_INVALID_OPERATION error.
615 * \param position position of error in program string
616 * \param descrip verbose error description
617 */
618 static void
619 program_error(GLcontext *ctx, GLint position, const char *descrip)
620 {
621 if (descrip) {
622 const char *prefix = "glProgramString(", *suffix = ")";
623 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
624 _mesa_strlen(prefix) +
625 _mesa_strlen(suffix) + 1);
626 if (str) {
627 _mesa_sprintf(str, "%s%s%s", prefix, descrip, suffix);
628 _mesa_error(ctx, GL_INVALID_OPERATION, str);
629 _mesa_free(str);
630 }
631 }
632 _mesa_set_program_error(ctx, position, descrip);
633 }
634
635
636 /**
637 * As above, but with an extra string parameter for more info.
638 */
639 static void
640 program_error2(GLcontext *ctx, GLint position, const char *descrip,
641 const char *var)
642 {
643 if (descrip) {
644 const char *prefix = "glProgramString(", *suffix = ")";
645 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
646 _mesa_strlen(": ") +
647 _mesa_strlen(var) +
648 _mesa_strlen(prefix) +
649 _mesa_strlen(suffix) + 1);
650 if (str) {
651 _mesa_sprintf(str, "%s%s: %s%s", prefix, descrip, var, suffix);
652 _mesa_error(ctx, GL_INVALID_OPERATION, str);
653 _mesa_free(str);
654 }
655 }
656 {
657 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
658 _mesa_strlen(": ") +
659 _mesa_strlen(var) + 1);
660 if (str) {
661 _mesa_sprintf(str, "%s: %s", descrip, var);
662 }
663 _mesa_set_program_error(ctx, position, str);
664 if (str) {
665 _mesa_free(str);
666 }
667 }
668 }
669
670
671
672 /**
673 * constructs an integer from 4 GLubytes in LE format
674 */
675 static GLuint
676 parse_position (const GLubyte ** inst)
677 {
678 GLuint value;
679
680 value = (GLuint) (*(*inst)++);
681 value += (GLuint) (*(*inst)++) * 0x100;
682 value += (GLuint) (*(*inst)++) * 0x10000;
683 value += (GLuint) (*(*inst)++) * 0x1000000;
684
685 return value;
686 }
687
688 /**
689 * This will, given a string, lookup the string as a variable name in the
690 * var cache. If the name is found, the var cache node corresponding to the
691 * var name is returned. If it is not found, a new entry is allocated
692 *
693 * \param I Points into the binary array where the string identifier begins
694 * \param found 1 if the string was found in the var_cache, 0 if it was allocated
695 * \return The location on the var_cache corresponding the the string starting at I
696 */
697 static struct var_cache *
698 parse_string (const GLubyte ** inst, struct var_cache **vc_head,
699 struct arb_program *Program, GLuint * found)
700 {
701 const GLubyte *i = *inst;
702 struct var_cache *va = NULL;
703 (void) Program;
704
705 *inst += _mesa_strlen ((char *) i) + 1;
706
707 va = var_cache_find (*vc_head, i);
708
709 if (va) {
710 *found = 1;
711 return va;
712 }
713
714 *found = 0;
715 var_cache_create (&va);
716 va->name = (const GLubyte *) i;
717
718 var_cache_append (vc_head, va);
719
720 return va;
721 }
722
723 static char *
724 parse_string_without_adding (const GLubyte ** inst, struct arb_program *Program)
725 {
726 const GLubyte *i = *inst;
727 (void) Program;
728
729 *inst += _mesa_strlen ((char *) i) + 1;
730
731 return (char *) i;
732 }
733
734 /**
735 * \return -1 if we parse '-', return 1 otherwise
736 */
737 static GLint
738 parse_sign (const GLubyte ** inst)
739 {
740 /*return *(*inst)++ != '+'; */
741
742 if (**inst == '-') {
743 (*inst)++;
744 return -1;
745 }
746 else if (**inst == '+') {
747 (*inst)++;
748 return 1;
749 }
750
751 return 1;
752 }
753
754 /**
755 * parses and returns signed integer
756 */
757 static GLint
758 parse_integer (const GLubyte ** inst, struct arb_program *Program)
759 {
760 GLint sign;
761 GLint value;
762
763 /* check if *inst points to '+' or '-'
764 * if yes, grab the sign and increment *inst
765 */
766 sign = parse_sign (inst);
767
768 /* now check if *inst points to 0
769 * if yes, increment the *inst and return the default value
770 */
771 if (**inst == 0) {
772 (*inst)++;
773 return 0;
774 }
775
776 /* parse the integer as you normally would do it */
777 value = _mesa_atoi (parse_string_without_adding (inst, Program));
778
779 /* now, after terminating 0 there is a position
780 * to parse it - parse_position()
781 */
782 Program->Position = parse_position (inst);
783
784 return value * sign;
785 }
786
787 /**
788 Accumulate this string of digits, and return them as
789 a large integer represented in floating point (for range).
790 If scale is not NULL, also accumulates a power-of-ten
791 integer scale factor that represents the number of digits
792 in the string.
793 */
794 static GLdouble
795 parse_float_string(const GLubyte ** inst, struct arb_program *Program, GLdouble *scale)
796 {
797 GLdouble value = 0.0;
798 GLdouble oscale = 1.0;
799
800 if (**inst == 0) { /* this string of digits is empty-- do nothing */
801 (*inst)++;
802 }
803 else { /* nonempty string-- parse out the digits */
804 while (**inst >= '0' && **inst <= '9') {
805 GLubyte digit = *((*inst)++);
806 value = value * 10.0 + (GLint) (digit - '0');
807 oscale *= 10.0;
808 }
809 assert(**inst == 0); /* integer string should end with 0 */
810 (*inst)++; /* skip over terminating 0 */
811 Program->Position = parse_position(inst); /* skip position (from integer) */
812 }
813 if (scale)
814 *scale = oscale;
815 return value;
816 }
817
818 /**
819 Parse an unsigned floating-point number from this stream of tokenized
820 characters. Example floating-point formats supported:
821 12.34
822 12
823 0.34
824 .34
825 12.34e-4
826 */
827 static GLfloat
828 parse_float (const GLubyte ** inst, struct arb_program *Program)
829 {
830 GLint exponent;
831 GLdouble whole, fraction, fracScale = 1.0;
832
833 whole = parse_float_string(inst, Program, 0);
834 fraction = parse_float_string(inst, Program, &fracScale);
835
836 /* Parse signed exponent */
837 exponent = parse_integer(inst, Program); /* This is the exponent */
838
839 /* Assemble parts of floating-point number: */
840 return (GLfloat) ((whole + fraction / fracScale) *
841 _mesa_pow(10.0, (GLfloat) exponent));
842 }
843
844
845 /**
846 */
847 static GLfloat
848 parse_signed_float (const GLubyte ** inst, struct arb_program *Program)
849 {
850 GLint sign = parse_sign (inst);
851 GLfloat value = parse_float (inst, Program);
852 return value * sign;
853 }
854
855 /**
856 * This picks out a constant value from the parsed array. The constant vector is r
857 * returned in the *values array, which should be of length 4.
858 *
859 * \param values - The 4 component vector with the constant value in it
860 */
861 static GLvoid
862 parse_constant (const GLubyte ** inst, GLfloat *values, struct arb_program *Program,
863 GLboolean use)
864 {
865 GLuint components, i;
866
867
868 switch (*(*inst)++) {
869 case CONSTANT_SCALAR:
870 if (use == GL_TRUE) {
871 values[0] =
872 values[1] =
873 values[2] = values[3] = parse_float (inst, Program);
874 }
875 else {
876 values[0] =
877 values[1] =
878 values[2] = values[3] = parse_signed_float (inst, Program);
879 }
880
881 break;
882 case CONSTANT_VECTOR:
883 values[0] = values[1] = values[2] = 0;
884 values[3] = 1;
885 components = *(*inst)++;
886 for (i = 0; i < components; i++) {
887 values[i] = parse_signed_float (inst, Program);
888 }
889 break;
890 }
891 }
892
893 /**
894 * \param offset The offset from the address register that we should
895 * address
896 *
897 * \return 0 on sucess, 1 on error
898 */
899 static GLuint
900 parse_relative_offset(GLcontext *ctx, const GLubyte **inst,
901 struct arb_program *Program, GLint *offset)
902 {
903 (void) ctx;
904 *offset = parse_integer(inst, Program);
905 return 0;
906 }
907
908 /**
909 * \param color 0 if color type is primary, 1 if color type is secondary
910 * \return 0 on sucess, 1 on error
911 */
912 static GLuint
913 parse_color_type (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
914 GLint * color)
915 {
916 (void) ctx; (void) Program;
917 *color = *(*inst)++ != COLOR_PRIMARY;
918 return 0;
919 }
920
921 /**
922 * Get an integer corresponding to a generic vertex attribute.
923 *
924 * \return 0 on sucess, 1 on error
925 */
926 static GLuint
927 parse_generic_attrib_num(GLcontext *ctx, const GLubyte ** inst,
928 struct arb_program *Program, GLuint *attrib)
929 {
930 GLint i = parse_integer(inst, Program);
931
932 if ((i < 0) || (i >= MAX_VERTEX_PROGRAM_ATTRIBS))
933 {
934 program_error(ctx, Program->Position,
935 "Invalid generic vertex attribute index");
936 return 1;
937 }
938
939 *attrib = (GLuint) i;
940
941 return 0;
942 }
943
944
945 /**
946 * \param color The index of the color buffer to write into
947 * \return 0 on sucess, 1 on error
948 */
949 static GLuint
950 parse_output_color_num (GLcontext * ctx, const GLubyte ** inst,
951 struct arb_program *Program, GLuint * color)
952 {
953 GLint i = parse_integer (inst, Program);
954
955 if ((i < 0) || (i >= (int)ctx->Const.MaxDrawBuffers)) {
956 program_error(ctx, Program->Position, "Invalid draw buffer index");
957 return 1;
958 }
959
960 *color = (GLuint) i;
961 return 0;
962 }
963
964
965 /**
966 * \param coord The texture unit index
967 * \return 0 on sucess, 1 on error
968 */
969 static GLuint
970 parse_texcoord_num (GLcontext * ctx, const GLubyte ** inst,
971 struct arb_program *Program, GLuint * coord)
972 {
973 GLint i = parse_integer (inst, Program);
974
975 if ((i < 0) || (i >= (int)ctx->Const.MaxTextureUnits)) {
976 program_error(ctx, Program->Position, "Invalid texture unit index");
977 return 1;
978 }
979
980 *coord = (GLuint) i;
981 return 0;
982 }
983
984 /**
985 * \param coord The weight index
986 * \return 0 on sucess, 1 on error
987 */
988 static GLuint
989 parse_weight_num (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
990 GLint * coord)
991 {
992 *coord = parse_integer (inst, Program);
993
994 if ((*coord < 0) || (*coord >= 1)) {
995 program_error(ctx, Program->Position, "Invalid weight index");
996 return 1;
997 }
998
999 return 0;
1000 }
1001
1002 /**
1003 * \param coord The clip plane index
1004 * \return 0 on sucess, 1 on error
1005 */
1006 static GLuint
1007 parse_clipplane_num (GLcontext * ctx, const GLubyte ** inst,
1008 struct arb_program *Program, GLint * coord)
1009 {
1010 *coord = parse_integer (inst, Program);
1011
1012 if ((*coord < 0) || (*coord >= (GLint) ctx->Const.MaxClipPlanes)) {
1013 program_error(ctx, Program->Position, "Invalid clip plane index");
1014 return 1;
1015 }
1016
1017 return 0;
1018 }
1019
1020
1021 /**
1022 * \return 0 on front face, 1 on back face
1023 */
1024 static GLuint
1025 parse_face_type (const GLubyte ** inst)
1026 {
1027 switch (*(*inst)++) {
1028 case FACE_FRONT:
1029 return 0;
1030
1031 case FACE_BACK:
1032 return 1;
1033 }
1034 return 0;
1035 }
1036
1037
1038 /**
1039 * Given a matrix and a modifier token on the binary array, return tokens
1040 * that _mesa_fetch_state() [program.c] can understand.
1041 *
1042 * \param matrix - the matrix we are talking about
1043 * \param matrix_idx - the index of the matrix we have (for texture & program matricies)
1044 * \param matrix_modifier - the matrix modifier (trans, inv, etc)
1045 * \return 0 on sucess, 1 on failure
1046 */
1047 static GLuint
1048 parse_matrix (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
1049 GLint * matrix, GLint * matrix_idx, GLint * matrix_modifier)
1050 {
1051 GLubyte mat = *(*inst)++;
1052
1053 *matrix_idx = 0;
1054
1055 switch (mat) {
1056 case MATRIX_MODELVIEW:
1057 *matrix = STATE_MODELVIEW_MATRIX;
1058 *matrix_idx = parse_integer (inst, Program);
1059 if (*matrix_idx > 0) {
1060 program_error(ctx, Program->Position,
1061 "ARB_vertex_blend not supported");
1062 return 1;
1063 }
1064 break;
1065
1066 case MATRIX_PROJECTION:
1067 *matrix = STATE_PROJECTION_MATRIX;
1068 break;
1069
1070 case MATRIX_MVP:
1071 *matrix = STATE_MVP_MATRIX;
1072 break;
1073
1074 case MATRIX_TEXTURE:
1075 *matrix = STATE_TEXTURE_MATRIX;
1076 *matrix_idx = parse_integer (inst, Program);
1077 if (*matrix_idx >= (GLint) ctx->Const.MaxTextureUnits) {
1078 program_error(ctx, Program->Position, "Invalid Texture Unit");
1079 /* bad *matrix_id */
1080 return 1;
1081 }
1082 break;
1083
1084 /* This is not currently supported (ARB_matrix_palette) */
1085 case MATRIX_PALETTE:
1086 *matrix_idx = parse_integer (inst, Program);
1087 program_error(ctx, Program->Position,
1088 "ARB_matrix_palette not supported");
1089 return 1;
1090 break;
1091
1092 case MATRIX_PROGRAM:
1093 *matrix = STATE_PROGRAM_MATRIX;
1094 *matrix_idx = parse_integer (inst, Program);
1095 if (*matrix_idx >= (GLint) ctx->Const.MaxProgramMatrices) {
1096 program_error(ctx, Program->Position, "Invalid Program Matrix");
1097 /* bad *matrix_idx */
1098 return 1;
1099 }
1100 break;
1101 }
1102
1103 switch (*(*inst)++) {
1104 case MATRIX_MODIFIER_IDENTITY:
1105 *matrix_modifier = 0;
1106 break;
1107 case MATRIX_MODIFIER_INVERSE:
1108 *matrix_modifier = STATE_MATRIX_INVERSE;
1109 break;
1110 case MATRIX_MODIFIER_TRANSPOSE:
1111 *matrix_modifier = STATE_MATRIX_TRANSPOSE;
1112 break;
1113 case MATRIX_MODIFIER_INVTRANS:
1114 *matrix_modifier = STATE_MATRIX_INVTRANS;
1115 break;
1116 }
1117
1118 return 0;
1119 }
1120
1121
1122 /**
1123 * This parses a state string (rather, the binary version of it) into
1124 * a 6-token sequence as described in _mesa_fetch_state() [program.c]
1125 *
1126 * \param inst - the start in the binary arry to start working from
1127 * \param state_tokens - the storage for the 6-token state description
1128 * \return - 0 on sucess, 1 on error
1129 */
1130 static GLuint
1131 parse_state_single_item (GLcontext * ctx, const GLubyte ** inst,
1132 struct arb_program *Program,
1133 gl_state_index state_tokens[STATE_LENGTH])
1134 {
1135 GLubyte token = *(*inst)++;
1136
1137 switch (token) {
1138 case STATE_MATERIAL_PARSER:
1139 state_tokens[0] = STATE_MATERIAL;
1140 state_tokens[1] = parse_face_type (inst);
1141 switch (*(*inst)++) {
1142 case MATERIAL_AMBIENT:
1143 state_tokens[2] = STATE_AMBIENT;
1144 break;
1145 case MATERIAL_DIFFUSE:
1146 state_tokens[2] = STATE_DIFFUSE;
1147 break;
1148 case MATERIAL_SPECULAR:
1149 state_tokens[2] = STATE_SPECULAR;
1150 break;
1151 case MATERIAL_EMISSION:
1152 state_tokens[2] = STATE_EMISSION;
1153 break;
1154 case MATERIAL_SHININESS:
1155 state_tokens[2] = STATE_SHININESS;
1156 break;
1157 }
1158 break;
1159
1160 case STATE_LIGHT_PARSER:
1161 state_tokens[0] = STATE_LIGHT;
1162 state_tokens[1] = parse_integer (inst, Program);
1163
1164 /* Check the value of state_tokens[1] against the # of lights */
1165 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1166 program_error(ctx, Program->Position, "Invalid Light Number");
1167 /* bad state_tokens[1] */
1168 return 1;
1169 }
1170
1171 switch (*(*inst)++) {
1172 case LIGHT_AMBIENT:
1173 state_tokens[2] = STATE_AMBIENT;
1174 break;
1175 case LIGHT_DIFFUSE:
1176 state_tokens[2] = STATE_DIFFUSE;
1177 break;
1178 case LIGHT_SPECULAR:
1179 state_tokens[2] = STATE_SPECULAR;
1180 break;
1181 case LIGHT_POSITION:
1182 state_tokens[2] = STATE_POSITION;
1183 break;
1184 case LIGHT_ATTENUATION:
1185 state_tokens[2] = STATE_ATTENUATION;
1186 break;
1187 case LIGHT_HALF:
1188 state_tokens[2] = STATE_HALF_VECTOR;
1189 break;
1190 case LIGHT_SPOT_DIRECTION:
1191 state_tokens[2] = STATE_SPOT_DIRECTION;
1192 break;
1193 }
1194 break;
1195
1196 case STATE_LIGHT_MODEL:
1197 switch (*(*inst)++) {
1198 case LIGHT_MODEL_AMBIENT:
1199 state_tokens[0] = STATE_LIGHTMODEL_AMBIENT;
1200 break;
1201 case LIGHT_MODEL_SCENECOLOR:
1202 state_tokens[0] = STATE_LIGHTMODEL_SCENECOLOR;
1203 state_tokens[1] = parse_face_type (inst);
1204 break;
1205 }
1206 break;
1207
1208 case STATE_LIGHT_PROD:
1209 state_tokens[0] = STATE_LIGHTPROD;
1210 state_tokens[1] = parse_integer (inst, Program);
1211
1212 /* Check the value of state_tokens[1] against the # of lights */
1213 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1214 program_error(ctx, Program->Position, "Invalid Light Number");
1215 /* bad state_tokens[1] */
1216 return 1;
1217 }
1218
1219 state_tokens[2] = parse_face_type (inst);
1220 switch (*(*inst)++) {
1221 case LIGHT_PROD_AMBIENT:
1222 state_tokens[3] = STATE_AMBIENT;
1223 break;
1224 case LIGHT_PROD_DIFFUSE:
1225 state_tokens[3] = STATE_DIFFUSE;
1226 break;
1227 case LIGHT_PROD_SPECULAR:
1228 state_tokens[3] = STATE_SPECULAR;
1229 break;
1230 }
1231 break;
1232
1233
1234 case STATE_FOG:
1235 switch (*(*inst)++) {
1236 case FOG_COLOR:
1237 state_tokens[0] = STATE_FOG_COLOR;
1238 break;
1239 case FOG_PARAMS:
1240 state_tokens[0] = STATE_FOG_PARAMS;
1241 break;
1242 }
1243 break;
1244
1245 case STATE_TEX_ENV:
1246 state_tokens[1] = parse_integer (inst, Program);
1247 switch (*(*inst)++) {
1248 case TEX_ENV_COLOR:
1249 state_tokens[0] = STATE_TEXENV_COLOR;
1250 break;
1251 }
1252 break;
1253
1254 case STATE_TEX_GEN:
1255 {
1256 GLuint type, coord;
1257
1258 state_tokens[0] = STATE_TEXGEN;
1259 /*state_tokens[1] = parse_integer (inst, Program);*/ /* Texture Unit */
1260
1261 if (parse_texcoord_num (ctx, inst, Program, &coord))
1262 return 1;
1263 state_tokens[1] = coord;
1264
1265 /* EYE or OBJECT */
1266 type = *(*inst)++;
1267
1268 /* 0 - s, 1 - t, 2 - r, 3 - q */
1269 coord = *(*inst)++;
1270
1271 if (type == TEX_GEN_EYE) {
1272 switch (coord) {
1273 case COMPONENT_X:
1274 state_tokens[2] = STATE_TEXGEN_EYE_S;
1275 break;
1276 case COMPONENT_Y:
1277 state_tokens[2] = STATE_TEXGEN_EYE_T;
1278 break;
1279 case COMPONENT_Z:
1280 state_tokens[2] = STATE_TEXGEN_EYE_R;
1281 break;
1282 case COMPONENT_W:
1283 state_tokens[2] = STATE_TEXGEN_EYE_Q;
1284 break;
1285 default:
1286 _mesa_problem(ctx, "bad texgen component in "
1287 "parse_state_single_item()");
1288 }
1289 }
1290 else {
1291 switch (coord) {
1292 case COMPONENT_X:
1293 state_tokens[2] = STATE_TEXGEN_OBJECT_S;
1294 break;
1295 case COMPONENT_Y:
1296 state_tokens[2] = STATE_TEXGEN_OBJECT_T;
1297 break;
1298 case COMPONENT_Z:
1299 state_tokens[2] = STATE_TEXGEN_OBJECT_R;
1300 break;
1301 case COMPONENT_W:
1302 state_tokens[2] = STATE_TEXGEN_OBJECT_Q;
1303 break;
1304 default:
1305 _mesa_problem(ctx, "bad texgen component in "
1306 "parse_state_single_item()");
1307 }
1308 }
1309 }
1310 break;
1311
1312 case STATE_DEPTH:
1313 switch (*(*inst)++) {
1314 case DEPTH_RANGE:
1315 state_tokens[0] = STATE_DEPTH_RANGE;
1316 break;
1317 }
1318 break;
1319
1320 case STATE_CLIP_PLANE:
1321 state_tokens[0] = STATE_CLIPPLANE;
1322 if (parse_clipplane_num (ctx, inst, Program,
1323 (GLint *) &state_tokens[1]))
1324 return 1;
1325 break;
1326
1327 case STATE_POINT:
1328 switch (*(*inst)++) {
1329 case POINT_SIZE:
1330 state_tokens[0] = STATE_POINT_SIZE;
1331 break;
1332
1333 case POINT_ATTENUATION:
1334 state_tokens[0] = STATE_POINT_ATTENUATION;
1335 break;
1336 }
1337 break;
1338
1339 /* XXX: I think this is the correct format for a matrix row */
1340 case STATE_MATRIX_ROWS:
1341 if (parse_matrix(ctx, inst, Program,
1342 (GLint *) &state_tokens[0],
1343 (GLint *) &state_tokens[1],
1344 (GLint *) &state_tokens[4]))
1345 return 1;
1346
1347 state_tokens[2] = parse_integer (inst, Program); /* The first row to grab */
1348
1349 if ((**inst) != 0) { /* Either the last row, 0 */
1350 state_tokens[3] = parse_integer (inst, Program);
1351 if (state_tokens[3] < state_tokens[2]) {
1352 program_error(ctx, Program->Position,
1353 "Second matrix index less than the first");
1354 /* state_tokens[4] vs. state_tokens[3] */
1355 return 1;
1356 }
1357 }
1358 else {
1359 state_tokens[3] = state_tokens[2];
1360 (*inst)++;
1361 }
1362 break;
1363 }
1364
1365 return 0;
1366 }
1367
1368 /**
1369 * This parses a state string (rather, the binary version of it) into
1370 * a 6-token similar for the state fetching code in program.c
1371 *
1372 * One might ask, why fetch these parameters into just like you fetch
1373 * state when they are already stored in other places?
1374 *
1375 * Because of array offsets -> We can stick env/local parameters in the
1376 * middle of a parameter array and then index someplace into the array
1377 * when we execute.
1378 *
1379 * One optimization might be to only do this for the cases where the
1380 * env/local parameters end up inside of an array, and leave the
1381 * single parameters (or arrays of pure env/local pareameters) in their
1382 * respective register files.
1383 *
1384 * For ENV parameters, the format is:
1385 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1386 * state_tokens[1] = STATE_ENV
1387 * state_tokens[2] = the parameter index
1388 *
1389 * for LOCAL parameters, the format is:
1390 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1391 * state_tokens[1] = STATE_LOCAL
1392 * state_tokens[2] = the parameter index
1393 *
1394 * \param inst - the start in the binary arry to start working from
1395 * \param state_tokens - the storage for the 6-token state description
1396 * \return - 0 on sucess, 1 on failure
1397 */
1398 static GLuint
1399 parse_program_single_item (GLcontext * ctx, const GLubyte ** inst,
1400 struct arb_program *Program,
1401 gl_state_index state_tokens[STATE_LENGTH])
1402 {
1403 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1404 state_tokens[0] = STATE_FRAGMENT_PROGRAM;
1405 else
1406 state_tokens[0] = STATE_VERTEX_PROGRAM;
1407
1408
1409 switch (*(*inst)++) {
1410 case PROGRAM_PARAM_ENV:
1411 state_tokens[1] = STATE_ENV;
1412 state_tokens[2] = parse_integer (inst, Program);
1413
1414 /* Check state_tokens[2] against the number of ENV parameters available */
1415 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1416 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxEnvParams))
1417 ||
1418 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1419 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxEnvParams))) {
1420 program_error(ctx, Program->Position,
1421 "Invalid Program Env Parameter");
1422 /* bad state_tokens[2] */
1423 return 1;
1424 }
1425
1426 break;
1427
1428 case PROGRAM_PARAM_LOCAL:
1429 state_tokens[1] = STATE_LOCAL;
1430 state_tokens[2] = parse_integer (inst, Program);
1431
1432 /* Check state_tokens[2] against the number of LOCAL parameters available */
1433 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1434 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxLocalParams))
1435 ||
1436 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1437 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxLocalParams))) {
1438 program_error(ctx, Program->Position,
1439 "Invalid Program Local Parameter");
1440 /* bad state_tokens[2] */
1441 return 1;
1442 }
1443 break;
1444 }
1445
1446 return 0;
1447 }
1448
1449 /**
1450 * For ARB_vertex_program, programs are not allowed to use both an explicit
1451 * vertex attribute and a generic vertex attribute corresponding to the same
1452 * state. See section 2.14.3.1 of the GL_ARB_vertex_program spec.
1453 *
1454 * This will walk our var_cache and make sure that nobody does anything fishy.
1455 *
1456 * \return 0 on sucess, 1 on error
1457 */
1458 static GLuint
1459 generic_attrib_check(struct var_cache *vc_head)
1460 {
1461 int a;
1462 struct var_cache *curr;
1463 GLboolean explicitAttrib[MAX_VERTEX_PROGRAM_ATTRIBS],
1464 genericAttrib[MAX_VERTEX_PROGRAM_ATTRIBS];
1465
1466 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1467 explicitAttrib[a] = GL_FALSE;
1468 genericAttrib[a] = GL_FALSE;
1469 }
1470
1471 curr = vc_head;
1472 while (curr) {
1473 if (curr->type == vt_attrib) {
1474 if (curr->attrib_is_generic)
1475 genericAttrib[ curr->attrib_binding ] = GL_TRUE;
1476 else
1477 explicitAttrib[ curr->attrib_binding ] = GL_TRUE;
1478 }
1479
1480 curr = curr->next;
1481 }
1482
1483 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1484 if ((explicitAttrib[a]) && (genericAttrib[a]))
1485 return 1;
1486 }
1487
1488 return 0;
1489 }
1490
1491 /**
1492 * This will handle the binding side of an ATTRIB var declaration
1493 *
1494 * \param inputReg returns the input register index, one of the
1495 * VERT_ATTRIB_* or FRAG_ATTRIB_* values.
1496 * \return returns 0 on success, 1 on error
1497 */
1498 static GLuint
1499 parse_attrib_binding(GLcontext * ctx, const GLubyte ** inst,
1500 struct arb_program *Program,
1501 GLuint *inputReg, GLuint *is_generic)
1502 {
1503 GLint err = 0;
1504
1505 *is_generic = 0;
1506
1507 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1508 switch (*(*inst)++) {
1509 case FRAGMENT_ATTRIB_COLOR:
1510 {
1511 GLint coord;
1512 err = parse_color_type (ctx, inst, Program, &coord);
1513 *inputReg = FRAG_ATTRIB_COL0 + coord;
1514 }
1515 break;
1516 case FRAGMENT_ATTRIB_TEXCOORD:
1517 {
1518 GLuint texcoord = 0;
1519 err = parse_texcoord_num (ctx, inst, Program, &texcoord);
1520 *inputReg = FRAG_ATTRIB_TEX0 + texcoord;
1521 }
1522 break;
1523 case FRAGMENT_ATTRIB_FOGCOORD:
1524 *inputReg = FRAG_ATTRIB_FOGC;
1525 break;
1526 case FRAGMENT_ATTRIB_POSITION:
1527 *inputReg = FRAG_ATTRIB_WPOS;
1528 break;
1529 default:
1530 err = 1;
1531 break;
1532 }
1533 }
1534 else {
1535 switch (*(*inst)++) {
1536 case VERTEX_ATTRIB_POSITION:
1537 *inputReg = VERT_ATTRIB_POS;
1538 break;
1539
1540 case VERTEX_ATTRIB_WEIGHT:
1541 {
1542 GLint weight;
1543 err = parse_weight_num (ctx, inst, Program, &weight);
1544 *inputReg = VERT_ATTRIB_WEIGHT;
1545 #if 1
1546 /* hack for Warcraft (see bug 8060) */
1547 _mesa_warning(ctx, "Application error: vertex program uses 'vertex.weight' but GL_ARB_vertex_blend not supported.");
1548 break;
1549 #else
1550 program_error(ctx, Program->Position,
1551 "ARB_vertex_blend not supported");
1552 return 1;
1553 #endif
1554 }
1555
1556 case VERTEX_ATTRIB_NORMAL:
1557 *inputReg = VERT_ATTRIB_NORMAL;
1558 break;
1559
1560 case VERTEX_ATTRIB_COLOR:
1561 {
1562 GLint color;
1563 err = parse_color_type (ctx, inst, Program, &color);
1564 if (color) {
1565 *inputReg = VERT_ATTRIB_COLOR1;
1566 }
1567 else {
1568 *inputReg = VERT_ATTRIB_COLOR0;
1569 }
1570 }
1571 break;
1572
1573 case VERTEX_ATTRIB_FOGCOORD:
1574 *inputReg = VERT_ATTRIB_FOG;
1575 break;
1576
1577 case VERTEX_ATTRIB_TEXCOORD:
1578 {
1579 GLuint unit = 0;
1580 err = parse_texcoord_num (ctx, inst, Program, &unit);
1581 *inputReg = VERT_ATTRIB_TEX0 + unit;
1582 }
1583 break;
1584
1585 case VERTEX_ATTRIB_MATRIXINDEX:
1586 /* Not supported at this time */
1587 {
1588 const char *msg = "ARB_palette_matrix not supported";
1589 parse_integer (inst, Program);
1590 program_error(ctx, Program->Position, msg);
1591 }
1592 return 1;
1593
1594 case VERTEX_ATTRIB_GENERIC:
1595 {
1596 GLuint attrib;
1597 err = parse_generic_attrib_num(ctx, inst, Program, &attrib);
1598 if (!err) {
1599 *is_generic = 1;
1600 /* Add VERT_ATTRIB_GENERIC0 here because ARB_vertex_program's
1601 * attributes do not alias the conventional vertex
1602 * attributes.
1603 */
1604 if (attrib > 0)
1605 *inputReg = attrib + VERT_ATTRIB_GENERIC0;
1606 else
1607 *inputReg = 0;
1608 }
1609 }
1610 break;
1611
1612 default:
1613 err = 1;
1614 break;
1615 }
1616 }
1617
1618 if (err) {
1619 program_error(ctx, Program->Position, "Bad attribute binding");
1620 }
1621
1622 return err;
1623 }
1624
1625
1626 /**
1627 * This translates between a binary token for an output variable type
1628 * and the mesa token for the same thing.
1629 *
1630 * \param inst The parsed tokens
1631 * \param outputReg Returned index/number of the output register,
1632 * one of the VERT_RESULT_* or FRAG_RESULT_* values.
1633 */
1634 static GLuint
1635 parse_result_binding(GLcontext *ctx, const GLubyte **inst,
1636 GLuint *outputReg, struct arb_program *Program)
1637 {
1638 const GLubyte token = *(*inst)++;
1639
1640 switch (token) {
1641 case FRAGMENT_RESULT_COLOR:
1642 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1643 GLuint out_color;
1644
1645 /* This gets result of the color buffer we're supposed to
1646 * draw into. This pertains to GL_ARB_draw_buffers.
1647 */
1648 parse_output_color_num(ctx, inst, Program, &out_color);
1649 ASSERT(out_color < MAX_DRAW_BUFFERS);
1650 *outputReg = FRAG_RESULT_COLR;
1651 }
1652 else {
1653 /* for vtx programs, this is VERTEX_RESULT_POSITION */
1654 *outputReg = VERT_RESULT_HPOS;
1655 }
1656 break;
1657
1658 case FRAGMENT_RESULT_DEPTH:
1659 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1660 /* for frag programs, this is FRAGMENT_RESULT_DEPTH */
1661 *outputReg = FRAG_RESULT_DEPR;
1662 }
1663 else {
1664 /* for vtx programs, this is VERTEX_RESULT_COLOR */
1665 GLint color_type;
1666 GLuint face_type = parse_face_type(inst);
1667 GLint err = parse_color_type(ctx, inst, Program, &color_type);
1668 if (err)
1669 return 1;
1670
1671 if (face_type) {
1672 /* back face */
1673 if (color_type) {
1674 *outputReg = VERT_RESULT_BFC1; /* secondary color */
1675 }
1676 else {
1677 *outputReg = VERT_RESULT_BFC0; /* primary color */
1678 }
1679 }
1680 else {
1681 /* front face */
1682 if (color_type) {
1683 *outputReg = VERT_RESULT_COL1; /* secondary color */
1684 }
1685 /* primary color */
1686 else {
1687 *outputReg = VERT_RESULT_COL0; /* primary color */
1688 }
1689 }
1690 }
1691 break;
1692
1693 case VERTEX_RESULT_FOGCOORD:
1694 *outputReg = VERT_RESULT_FOGC;
1695 break;
1696
1697 case VERTEX_RESULT_POINTSIZE:
1698 *outputReg = VERT_RESULT_PSIZ;
1699 break;
1700
1701 case VERTEX_RESULT_TEXCOORD:
1702 {
1703 GLuint unit;
1704 if (parse_texcoord_num (ctx, inst, Program, &unit))
1705 return 1;
1706 *outputReg = VERT_RESULT_TEX0 + unit;
1707 }
1708 break;
1709 }
1710
1711 Program->Base.OutputsWritten |= (1 << *outputReg);
1712
1713 return 0;
1714 }
1715
1716
1717 /**
1718 * This handles the declaration of ATTRIB variables
1719 *
1720 * XXX: Still needs
1721 * parse_vert_attrib_binding(), or something like that
1722 *
1723 * \return 0 on sucess, 1 on error
1724 */
1725 static GLint
1726 parse_attrib (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1727 struct arb_program *Program)
1728 {
1729 GLuint found;
1730 struct var_cache *attrib_var;
1731
1732 attrib_var = parse_string (inst, vc_head, Program, &found);
1733 Program->Position = parse_position (inst);
1734 if (found) {
1735 program_error2(ctx, Program->Position,
1736 "Duplicate variable declaration",
1737 (char *) attrib_var->name);
1738 return 1;
1739 }
1740
1741 attrib_var->type = vt_attrib;
1742
1743 if (parse_attrib_binding(ctx, inst, Program, &attrib_var->attrib_binding,
1744 &attrib_var->attrib_is_generic))
1745 return 1;
1746
1747 if (generic_attrib_check(*vc_head)) {
1748 program_error(ctx, Program->Position,
1749 "Cannot use both a generic vertex attribute "
1750 "and a specific attribute of the same type");
1751 return 1;
1752 }
1753
1754 Program->Base.NumAttributes++;
1755 return 0;
1756 }
1757
1758 /**
1759 * \param use -- TRUE if we're called when declaring implicit parameters,
1760 * FALSE if we're declaraing variables. This has to do with
1761 * if we get a signed or unsigned float for scalar constants
1762 */
1763 static GLuint
1764 parse_param_elements (GLcontext * ctx, const GLubyte ** inst,
1765 struct var_cache *param_var,
1766 struct arb_program *Program, GLboolean use)
1767 {
1768 GLint idx;
1769 GLuint err = 0;
1770 gl_state_index state_tokens[STATE_LENGTH] = {0, 0, 0, 0, 0};
1771 GLfloat const_values[4];
1772
1773 GLubyte token = *(*inst)++;
1774
1775 switch (token) {
1776 case PARAM_STATE_ELEMENT:
1777 if (parse_state_single_item (ctx, inst, Program, state_tokens))
1778 return 1;
1779
1780 /* If we adding STATE_MATRIX that has multiple rows, we need to
1781 * unroll it and call _mesa_add_state_reference() for each row
1782 */
1783 if ((state_tokens[0] == STATE_MODELVIEW_MATRIX ||
1784 state_tokens[0] == STATE_PROJECTION_MATRIX ||
1785 state_tokens[0] == STATE_MVP_MATRIX ||
1786 state_tokens[0] == STATE_TEXTURE_MATRIX ||
1787 state_tokens[0] == STATE_PROGRAM_MATRIX)
1788 && (state_tokens[2] != state_tokens[3])) {
1789 GLint row;
1790 const GLint first_row = state_tokens[2];
1791 const GLint last_row = state_tokens[3];
1792
1793 for (row = first_row; row <= last_row; row++) {
1794 state_tokens[2] = state_tokens[3] = row;
1795
1796 idx = _mesa_add_state_reference(Program->Base.Parameters,
1797 state_tokens);
1798 if (param_var->param_binding_begin == ~0U)
1799 param_var->param_binding_begin = idx;
1800 param_var->param_binding_length++;
1801 Program->Base.NumParameters++;
1802 }
1803 }
1804 else {
1805 idx = _mesa_add_state_reference(Program->Base.Parameters,
1806 state_tokens);
1807 if (param_var->param_binding_begin == ~0U)
1808 param_var->param_binding_begin = idx;
1809 param_var->param_binding_length++;
1810 Program->Base.NumParameters++;
1811 }
1812 break;
1813
1814 case PARAM_PROGRAM_ELEMENT:
1815 if (parse_program_single_item (ctx, inst, Program, state_tokens))
1816 return 1;
1817 idx = _mesa_add_state_reference (Program->Base.Parameters, state_tokens);
1818 if (param_var->param_binding_begin == ~0U)
1819 param_var->param_binding_begin = idx;
1820 param_var->param_binding_length++;
1821 Program->Base.NumParameters++;
1822
1823 /* Check if there is more: 0 -> we're done, else its an integer */
1824 if (**inst) {
1825 GLuint out_of_range, new_idx;
1826 GLuint start_idx = state_tokens[2] + 1;
1827 GLuint end_idx = parse_integer (inst, Program);
1828
1829 out_of_range = 0;
1830 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1831 if (((state_tokens[1] == STATE_ENV)
1832 && (end_idx >= ctx->Const.FragmentProgram.MaxEnvParams))
1833 || ((state_tokens[1] == STATE_LOCAL)
1834 && (end_idx >=
1835 ctx->Const.FragmentProgram.MaxLocalParams)))
1836 out_of_range = 1;
1837 }
1838 else {
1839 if (((state_tokens[1] == STATE_ENV)
1840 && (end_idx >= ctx->Const.VertexProgram.MaxEnvParams))
1841 || ((state_tokens[1] == STATE_LOCAL)
1842 && (end_idx >=
1843 ctx->Const.VertexProgram.MaxLocalParams)))
1844 out_of_range = 1;
1845 }
1846 if (out_of_range) {
1847 program_error(ctx, Program->Position,
1848 "Invalid Program Parameter"); /*end_idx*/
1849 return 1;
1850 }
1851
1852 for (new_idx = start_idx; new_idx <= end_idx; new_idx++) {
1853 state_tokens[2] = new_idx;
1854 idx = _mesa_add_state_reference(Program->Base.Parameters,
1855 state_tokens);
1856 param_var->param_binding_length++;
1857 Program->Base.NumParameters++;
1858 }
1859 }
1860 else {
1861 (*inst)++;
1862 }
1863 break;
1864
1865 case PARAM_CONSTANT:
1866 /* parsing something like {1.0, 2.0, 3.0, 4.0} */
1867 parse_constant (inst, const_values, Program, use);
1868 idx = _mesa_add_named_constant(Program->Base.Parameters,
1869 (char *) param_var->name,
1870 const_values, 4);
1871 if (param_var->param_binding_begin == ~0U)
1872 param_var->param_binding_begin = idx;
1873 param_var->param_binding_type = PROGRAM_CONSTANT;
1874 param_var->param_binding_length++;
1875 Program->Base.NumParameters++;
1876 break;
1877
1878 default:
1879 program_error(ctx, Program->Position,
1880 "Unexpected token (in parse_param_elements())");
1881 return 1;
1882 }
1883
1884 /* Make sure we haven't blown past our parameter limits */
1885 if (((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1886 (Program->Base.NumParameters >=
1887 ctx->Const.VertexProgram.MaxLocalParams))
1888 || ((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1889 && (Program->Base.NumParameters >=
1890 ctx->Const.FragmentProgram.MaxLocalParams))) {
1891 program_error(ctx, Program->Position, "Too many parameter variables");
1892 return 1;
1893 }
1894
1895 return err;
1896 }
1897
1898
1899 /**
1900 * This picks out PARAM program parameter bindings.
1901 *
1902 * XXX: This needs to be stressed & tested
1903 *
1904 * \return 0 on sucess, 1 on error
1905 */
1906 static GLuint
1907 parse_param (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1908 struct arb_program *Program)
1909 {
1910 GLuint found, err;
1911 GLint specified_length;
1912 struct var_cache *param_var;
1913
1914 err = 0;
1915 param_var = parse_string (inst, vc_head, Program, &found);
1916 Program->Position = parse_position (inst);
1917
1918 if (found) {
1919 program_error2(ctx, Program->Position,
1920 "Duplicate variable declaration",
1921 (char *) param_var->name);
1922 return 1;
1923 }
1924
1925 specified_length = parse_integer (inst, Program);
1926
1927 if (specified_length < 0) {
1928 program_error(ctx, Program->Position, "Negative parameter array length");
1929 return 1;
1930 }
1931
1932 param_var->type = vt_param;
1933 param_var->param_binding_length = 0;
1934
1935 /* Right now, everything is shoved into the main state register file.
1936 *
1937 * In the future, it would be nice to leave things ENV/LOCAL params
1938 * in their respective register files, if possible
1939 */
1940 param_var->param_binding_type = PROGRAM_STATE_VAR;
1941
1942 /* Remember to:
1943 * * - add each guy to the parameter list
1944 * * - increment the param_var->param_binding_len
1945 * * - store the param_var->param_binding_begin for the first one
1946 * * - compare the actual len to the specified len at the end
1947 */
1948 while (**inst != PARAM_NULL) {
1949 if (parse_param_elements (ctx, inst, param_var, Program, GL_FALSE))
1950 return 1;
1951 }
1952
1953 /* Test array length here! */
1954 if (specified_length) {
1955 if (specified_length != (int)param_var->param_binding_length) {
1956 program_error(ctx, Program->Position,
1957 "Declared parameter array length does not match parameter list");
1958 }
1959 }
1960
1961 (*inst)++;
1962
1963 return 0;
1964 }
1965
1966 /**
1967 *
1968 */
1969 static GLuint
1970 parse_param_use (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1971 struct arb_program *Program, struct var_cache **new_var)
1972 {
1973 struct var_cache *param_var;
1974
1975 /* First, insert a dummy entry into the var_cache */
1976 var_cache_create (&param_var);
1977 param_var->name = (const GLubyte *) " ";
1978 param_var->type = vt_param;
1979
1980 param_var->param_binding_length = 0;
1981 /* Don't fill in binding_begin; We use the default value of -1
1982 * to tell if its already initialized, elsewhere.
1983 *
1984 * param_var->param_binding_begin = 0;
1985 */
1986 param_var->param_binding_type = PROGRAM_STATE_VAR;
1987
1988 var_cache_append (vc_head, param_var);
1989
1990 /* Then fill it with juicy parameter goodness */
1991 if (parse_param_elements (ctx, inst, param_var, Program, GL_TRUE))
1992 return 1;
1993
1994 *new_var = param_var;
1995
1996 return 0;
1997 }
1998
1999
2000 /**
2001 * This handles the declaration of TEMP variables
2002 *
2003 * \return 0 on sucess, 1 on error
2004 */
2005 static GLuint
2006 parse_temp (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2007 struct arb_program *Program)
2008 {
2009 GLuint found;
2010 struct var_cache *temp_var;
2011
2012 while (**inst != 0) {
2013 temp_var = parse_string (inst, vc_head, Program, &found);
2014 Program->Position = parse_position (inst);
2015 if (found) {
2016 program_error2(ctx, Program->Position,
2017 "Duplicate variable declaration",
2018 (char *) temp_var->name);
2019 return 1;
2020 }
2021
2022 temp_var->type = vt_temp;
2023
2024 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
2025 (Program->Base.NumTemporaries >=
2026 ctx->Const.FragmentProgram.MaxTemps))
2027 || ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
2028 && (Program->Base.NumTemporaries >=
2029 ctx->Const.VertexProgram.MaxTemps))) {
2030 program_error(ctx, Program->Position,
2031 "Too many TEMP variables declared");
2032 return 1;
2033 }
2034
2035 temp_var->temp_binding = Program->Base.NumTemporaries;
2036 Program->Base.NumTemporaries++;
2037 }
2038 (*inst)++;
2039
2040 return 0;
2041 }
2042
2043 /**
2044 * This handles variables of the OUTPUT variety
2045 *
2046 * \return 0 on sucess, 1 on error
2047 */
2048 static GLuint
2049 parse_output (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2050 struct arb_program *Program)
2051 {
2052 GLuint found;
2053 struct var_cache *output_var;
2054 GLuint err;
2055
2056 output_var = parse_string (inst, vc_head, Program, &found);
2057 Program->Position = parse_position (inst);
2058 if (found) {
2059 program_error2(ctx, Program->Position,
2060 "Duplicate variable declaration",
2061 (char *) output_var->name);
2062 return 1;
2063 }
2064
2065 output_var->type = vt_output;
2066
2067 err = parse_result_binding(ctx, inst, &output_var->output_binding, Program);
2068 return err;
2069 }
2070
2071 /**
2072 * This handles variables of the ALIAS kind
2073 *
2074 * \return 0 on sucess, 1 on error
2075 */
2076 static GLuint
2077 parse_alias (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2078 struct arb_program *Program)
2079 {
2080 GLuint found;
2081 struct var_cache *temp_var;
2082
2083 temp_var = parse_string (inst, vc_head, Program, &found);
2084 Program->Position = parse_position (inst);
2085
2086 if (found) {
2087 program_error2(ctx, Program->Position,
2088 "Duplicate variable declaration",
2089 (char *) temp_var->name);
2090 return 1;
2091 }
2092
2093 temp_var->type = vt_alias;
2094 temp_var->alias_binding = parse_string (inst, vc_head, Program, &found);
2095 Program->Position = parse_position (inst);
2096
2097 if (!found)
2098 {
2099 program_error2(ctx, Program->Position,
2100 "Undefined alias value",
2101 (char *) temp_var->alias_binding->name);
2102 return 1;
2103 }
2104
2105 return 0;
2106 }
2107
2108 /**
2109 * This handles variables of the ADDRESS kind
2110 *
2111 * \return 0 on sucess, 1 on error
2112 */
2113 static GLuint
2114 parse_address (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2115 struct arb_program *Program)
2116 {
2117 GLuint found;
2118 struct var_cache *temp_var;
2119
2120 while (**inst != 0) {
2121 temp_var = parse_string (inst, vc_head, Program, &found);
2122 Program->Position = parse_position (inst);
2123 if (found) {
2124 program_error2(ctx, Program->Position,
2125 "Duplicate variable declaration",
2126 (char *) temp_var->name);
2127 return 1;
2128 }
2129
2130 temp_var->type = vt_address;
2131
2132 if (Program->Base.NumAddressRegs >=
2133 ctx->Const.VertexProgram.MaxAddressRegs) {
2134 const char *msg = "Too many ADDRESS variables declared";
2135 program_error(ctx, Program->Position, msg);
2136 return 1;
2137 }
2138
2139 temp_var->address_binding = Program->Base.NumAddressRegs;
2140 Program->Base.NumAddressRegs++;
2141 }
2142 (*inst)++;
2143
2144 return 0;
2145 }
2146
2147 /**
2148 * Parse a program declaration
2149 *
2150 * \return 0 on sucess, 1 on error
2151 */
2152 static GLint
2153 parse_declaration (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2154 struct arb_program *Program)
2155 {
2156 GLint err = 0;
2157
2158 switch (*(*inst)++) {
2159 case ADDRESS:
2160 err = parse_address (ctx, inst, vc_head, Program);
2161 break;
2162
2163 case ALIAS:
2164 err = parse_alias (ctx, inst, vc_head, Program);
2165 break;
2166
2167 case ATTRIB:
2168 err = parse_attrib (ctx, inst, vc_head, Program);
2169 break;
2170
2171 case OUTPUT:
2172 err = parse_output (ctx, inst, vc_head, Program);
2173 break;
2174
2175 case PARAM:
2176 err = parse_param (ctx, inst, vc_head, Program);
2177 break;
2178
2179 case TEMP:
2180 err = parse_temp (ctx, inst, vc_head, Program);
2181 break;
2182 }
2183
2184 return err;
2185 }
2186
2187 /**
2188 * Handle the parsing out of a masked destination register, either for a
2189 * vertex or fragment program.
2190 *
2191 * If we are a vertex program, make sure we don't write to
2192 * result.position if we have specified that the program is
2193 * position invariant
2194 *
2195 * \param File - The register file we write to
2196 * \param Index - The register index we write to
2197 * \param WriteMask - The mask controlling which components we write (1->write)
2198 *
2199 * \return 0 on sucess, 1 on error
2200 */
2201 static GLuint
2202 parse_masked_dst_reg (GLcontext * ctx, const GLubyte ** inst,
2203 struct var_cache **vc_head, struct arb_program *Program,
2204 enum register_file *File, GLuint *Index, GLint *WriteMask)
2205 {
2206 GLuint tmp, result;
2207 struct var_cache *dst;
2208
2209 /* We either have a result register specified, or a
2210 * variable that may or may not be writable
2211 */
2212 switch (*(*inst)++) {
2213 case REGISTER_RESULT:
2214 if (parse_result_binding(ctx, inst, Index, Program))
2215 return 1;
2216 *File = PROGRAM_OUTPUT;
2217 break;
2218
2219 case REGISTER_ESTABLISHED_NAME:
2220 dst = parse_string (inst, vc_head, Program, &result);
2221 Program->Position = parse_position (inst);
2222
2223 /* If the name has never been added to our symbol table, we're hosed */
2224 if (!result) {
2225 program_error(ctx, Program->Position, "0: Undefined variable");
2226 return 1;
2227 }
2228
2229 switch (dst->type) {
2230 case vt_output:
2231 *File = PROGRAM_OUTPUT;
2232 *Index = dst->output_binding;
2233 break;
2234
2235 case vt_temp:
2236 *File = PROGRAM_TEMPORARY;
2237 *Index = dst->temp_binding;
2238 break;
2239
2240 /* If the var type is not vt_output or vt_temp, no go */
2241 default:
2242 program_error(ctx, Program->Position,
2243 "Destination register is read only");
2244 return 1;
2245 }
2246 break;
2247
2248 default:
2249 program_error(ctx, Program->Position,
2250 "Unexpected opcode in parse_masked_dst_reg()");
2251 return 1;
2252 }
2253
2254
2255 /* Position invariance test */
2256 /* This test is done now in syntax portion - when position invariance OPTION
2257 is specified, "result.position" rule is disabled so there is no way
2258 to write the position
2259 */
2260 /*if ((Program->HintPositionInvariant) && (*File == PROGRAM_OUTPUT) &&
2261 (*Index == 0)) {
2262 program_error(ctx, Program->Position,
2263 "Vertex program specified position invariance and wrote vertex position");
2264 }*/
2265
2266 /* And then the mask.
2267 * w,a -> bit 0
2268 * z,b -> bit 1
2269 * y,g -> bit 2
2270 * x,r -> bit 3
2271 *
2272 * ==> Need to reverse the order of bits for this!
2273 */
2274 tmp = (GLint) *(*inst)++;
2275 *WriteMask = (((tmp>>3) & 0x1) |
2276 ((tmp>>1) & 0x2) |
2277 ((tmp<<1) & 0x4) |
2278 ((tmp<<3) & 0x8));
2279
2280 return 0;
2281 }
2282
2283
2284 /**
2285 * Handle the parsing of a address register
2286 *
2287 * \param Index - The register index we write to
2288 *
2289 * \return 0 on sucess, 1 on error
2290 */
2291 static GLuint
2292 parse_address_reg (GLcontext * ctx, const GLubyte ** inst,
2293 struct var_cache **vc_head,
2294 struct arb_program *Program, GLint * Index)
2295 {
2296 struct var_cache *dst;
2297 GLuint result;
2298
2299 *Index = 0; /* XXX */
2300
2301 dst = parse_string (inst, vc_head, Program, &result);
2302 Program->Position = parse_position (inst);
2303
2304 /* If the name has never been added to our symbol table, we're hosed */
2305 if (!result) {
2306 program_error(ctx, Program->Position, "Undefined variable");
2307 return 1;
2308 }
2309
2310 if (dst->type != vt_address) {
2311 program_error(ctx, Program->Position, "Variable is not of type ADDRESS");
2312 return 1;
2313 }
2314
2315 return 0;
2316 }
2317
2318 #if 0 /* unused */
2319 /**
2320 * Handle the parsing out of a masked address register
2321 *
2322 * \param Index - The register index we write to
2323 * \param WriteMask - The mask controlling which components we write (1->write)
2324 *
2325 * \return 0 on sucess, 1 on error
2326 */
2327 static GLuint
2328 parse_masked_address_reg (GLcontext * ctx, const GLubyte ** inst,
2329 struct var_cache **vc_head,
2330 struct arb_program *Program, GLint * Index,
2331 GLboolean * WriteMask)
2332 {
2333 if (parse_address_reg (ctx, inst, vc_head, Program, Index))
2334 return 1;
2335
2336 /* This should be 0x8 */
2337 (*inst)++;
2338
2339 /* Writemask of .x is implied */
2340 WriteMask[0] = 1;
2341 WriteMask[1] = WriteMask[2] = WriteMask[3] = 0;
2342
2343 return 0;
2344 }
2345 #endif
2346
2347 /**
2348 * Parse out a swizzle mask.
2349 *
2350 * Basically convert COMPONENT_X/Y/Z/W to SWIZZLE_X/Y/Z/W
2351 *
2352 * The len parameter allows us to grab 4 components for a vector
2353 * swizzle, or just 1 component for a scalar src register selection
2354 */
2355 static void
2356 parse_swizzle_mask(const GLubyte ** inst, GLubyte *swizzle, GLint len)
2357 {
2358 GLint i;
2359
2360 for (i = 0; i < 4; i++)
2361 swizzle[i] = i;
2362
2363 for (i = 0; i < len; i++) {
2364 switch (*(*inst)++) {
2365 case COMPONENT_X:
2366 swizzle[i] = SWIZZLE_X;
2367 break;
2368 case COMPONENT_Y:
2369 swizzle[i] = SWIZZLE_Y;
2370 break;
2371 case COMPONENT_Z:
2372 swizzle[i] = SWIZZLE_Z;
2373 break;
2374 case COMPONENT_W:
2375 swizzle[i] = SWIZZLE_W;
2376 break;
2377 default:
2378 _mesa_problem(NULL, "bad component in parse_swizzle_mask()");
2379 return;
2380 }
2381 }
2382 }
2383
2384
2385 /**
2386 * Parse an extended swizzle mask which is a sequence of
2387 * four x/y/z/w/0/1 tokens.
2388 * \return swizzle four swizzle values
2389 * \return negateMask four element bitfield
2390 */
2391 static void
2392 parse_extended_swizzle_mask(const GLubyte **inst, GLubyte swizzle[4],
2393 GLubyte *negateMask)
2394 {
2395 GLint i;
2396
2397 *negateMask = 0x0;
2398 for (i = 0; i < 4; i++) {
2399 GLubyte swz;
2400 if (parse_sign(inst) == -1)
2401 *negateMask |= (1 << i);
2402
2403 swz = *(*inst)++;
2404
2405 switch (swz) {
2406 case COMPONENT_0:
2407 swizzle[i] = SWIZZLE_ZERO;
2408 break;
2409 case COMPONENT_1:
2410 swizzle[i] = SWIZZLE_ONE;
2411 break;
2412 case COMPONENT_X:
2413 swizzle[i] = SWIZZLE_X;
2414 break;
2415 case COMPONENT_Y:
2416 swizzle[i] = SWIZZLE_Y;
2417 break;
2418 case COMPONENT_Z:
2419 swizzle[i] = SWIZZLE_Z;
2420 break;
2421 case COMPONENT_W:
2422 swizzle[i] = SWIZZLE_W;
2423 break;
2424 default:
2425 _mesa_problem(NULL, "bad case in parse_extended_swizzle_mask()");
2426 return;
2427 }
2428 }
2429 }
2430
2431
2432 static GLuint
2433 parse_src_reg (GLcontext * ctx, const GLubyte ** inst,
2434 struct var_cache **vc_head,
2435 struct arb_program *Program,
2436 enum register_file * File, GLint * Index,
2437 GLboolean *IsRelOffset )
2438 {
2439 struct var_cache *src;
2440 GLuint binding, is_generic, found;
2441 GLint offset;
2442
2443 *IsRelOffset = 0;
2444
2445 /* And the binding for the src */
2446 switch (*(*inst)++) {
2447 case REGISTER_ATTRIB:
2448 if (parse_attrib_binding
2449 (ctx, inst, Program, &binding, &is_generic))
2450 return 1;
2451 *File = PROGRAM_INPUT;
2452 *Index = binding;
2453
2454 /* We need to insert a dummy variable into the var_cache so we can
2455 * catch generic vertex attrib aliasing errors
2456 */
2457 var_cache_create(&src);
2458 src->type = vt_attrib;
2459 src->name = (const GLubyte *) "Dummy Attrib Variable";
2460 src->attrib_binding = binding;
2461 src->attrib_is_generic = is_generic;
2462 var_cache_append(vc_head, src);
2463 if (generic_attrib_check(*vc_head)) {
2464 program_error(ctx, Program->Position,
2465 "Cannot use both a generic vertex attribute "
2466 "and a specific attribute of the same type");
2467 return 1;
2468 }
2469 break;
2470
2471 case REGISTER_PARAM:
2472 switch (**inst) {
2473 case PARAM_ARRAY_ELEMENT:
2474 (*inst)++;
2475 src = parse_string (inst, vc_head, Program, &found);
2476 Program->Position = parse_position (inst);
2477
2478 if (!found) {
2479 program_error2(ctx, Program->Position,
2480 "Undefined variable",
2481 (char *) src->name);
2482 return 1;
2483 }
2484
2485 *File = (enum register_file) src->param_binding_type;
2486
2487 switch (*(*inst)++) {
2488 case ARRAY_INDEX_ABSOLUTE:
2489 offset = parse_integer (inst, Program);
2490
2491 if ((offset < 0)
2492 || (offset >= (int)src->param_binding_length)) {
2493 program_error(ctx, Program->Position,
2494 "Index out of range");
2495 /* offset, src->name */
2496 return 1;
2497 }
2498
2499 *Index = src->param_binding_begin + offset;
2500 break;
2501
2502 case ARRAY_INDEX_RELATIVE:
2503 {
2504 GLint addr_reg_idx, rel_off;
2505
2506 /* First, grab the address regiseter */
2507 if (parse_address_reg (ctx, inst, vc_head, Program, &addr_reg_idx))
2508 return 1;
2509
2510 /* And the .x */
2511 ((*inst)++);
2512 ((*inst)++);
2513 ((*inst)++);
2514 ((*inst)++);
2515
2516 /* Then the relative offset */
2517 if (parse_relative_offset(ctx, inst, Program, &rel_off)) return 1;
2518
2519 /* And store it properly */
2520 *Index = src->param_binding_begin + rel_off;
2521 *IsRelOffset = 1;
2522 }
2523 break;
2524 }
2525 break;
2526
2527 default:
2528 if (parse_param_use (ctx, inst, vc_head, Program, &src))
2529 return 1;
2530
2531 *File = (enum register_file) src->param_binding_type;
2532 *Index = src->param_binding_begin;
2533 break;
2534 }
2535 break;
2536
2537 case REGISTER_ESTABLISHED_NAME:
2538 src = parse_string (inst, vc_head, Program, &found);
2539 Program->Position = parse_position (inst);
2540
2541 /* If the name has never been added to our symbol table, we're hosed */
2542 if (!found) {
2543 program_error(ctx, Program->Position,
2544 "3: Undefined variable"); /* src->name */
2545 return 1;
2546 }
2547
2548 switch (src->type) {
2549 case vt_attrib:
2550 *File = PROGRAM_INPUT;
2551 *Index = src->attrib_binding;
2552 break;
2553
2554 /* XXX: We have to handle offsets someplace in here! -- or are those above? */
2555 case vt_param:
2556 *File = (enum register_file) src->param_binding_type;
2557 *Index = src->param_binding_begin;
2558 break;
2559
2560 case vt_temp:
2561 *File = PROGRAM_TEMPORARY;
2562 *Index = src->temp_binding;
2563 break;
2564
2565 /* If the var type is vt_output no go */
2566 default:
2567 program_error(ctx, Program->Position,
2568 "destination register is read only");
2569 /* bad src->name */
2570 return 1;
2571 }
2572 break;
2573
2574 default:
2575 program_error(ctx, Program->Position,
2576 "Unknown token in parse_src_reg");
2577 return 1;
2578 }
2579
2580 /* Add attributes to InputsRead only if they are used the program.
2581 * This avoids the handling of unused ATTRIB declarations in the drivers. */
2582 if (*File == PROGRAM_INPUT)
2583 Program->Base.InputsRead |= (1 << *Index);
2584
2585 return 0;
2586 }
2587
2588
2589 /**
2590 * Parse vertex/fragment program vector source register.
2591 */
2592 static GLuint
2593 parse_vector_src_reg(GLcontext *ctx, const GLubyte **inst,
2594 struct var_cache **vc_head,
2595 struct arb_program *program,
2596 struct prog_src_register *reg)
2597 {
2598 enum register_file file;
2599 GLint index;
2600 GLubyte negateMask;
2601 GLubyte swizzle[4];
2602 GLboolean isRelOffset;
2603
2604 /* Grab the sign */
2605 negateMask = (parse_sign (inst) == -1) ? NEGATE_XYZW : NEGATE_NONE;
2606
2607 /* And the src reg */
2608 if (parse_src_reg(ctx, inst, vc_head, program, &file, &index, &isRelOffset))
2609 return 1;
2610
2611 /* finally, the swizzle */
2612 parse_swizzle_mask(inst, swizzle, 4);
2613
2614 reg->File = file;
2615 reg->Index = index;
2616 reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2617 reg->NegateBase = negateMask;
2618 reg->RelAddr = isRelOffset;
2619 return 0;
2620 }
2621
2622
2623 /**
2624 * Parse vertex/fragment program scalar source register.
2625 */
2626 static GLuint
2627 parse_scalar_src_reg(GLcontext *ctx, const GLubyte **inst,
2628 struct var_cache **vc_head,
2629 struct arb_program *program,
2630 struct prog_src_register *reg)
2631 {
2632 enum register_file file;
2633 GLint index;
2634 GLubyte negateMask;
2635 GLubyte swizzle[4];
2636 GLboolean isRelOffset;
2637
2638 /* Grab the sign */
2639 negateMask = (parse_sign (inst) == -1) ? NEGATE_XYZW : NEGATE_NONE;
2640
2641 /* And the src reg */
2642 if (parse_src_reg(ctx, inst, vc_head, program, &file, &index, &isRelOffset))
2643 return 1;
2644
2645 /* finally, the swizzle */
2646 parse_swizzle_mask(inst, swizzle, 1);
2647
2648 reg->File = file;
2649 reg->Index = index;
2650 reg->Swizzle = (swizzle[0] << 0);
2651 reg->NegateBase = negateMask;
2652 reg->RelAddr = isRelOffset;
2653 return 0;
2654 }
2655
2656
2657 /**
2658 * Parse vertex/fragment program destination register.
2659 * \return 1 if error, 0 if no error.
2660 */
2661 static GLuint
2662 parse_dst_reg(GLcontext * ctx, const GLubyte ** inst,
2663 struct var_cache **vc_head, struct arb_program *program,
2664 struct prog_dst_register *reg )
2665 {
2666 GLint mask;
2667 GLuint idx;
2668 enum register_file file;
2669
2670 if (parse_masked_dst_reg (ctx, inst, vc_head, program, &file, &idx, &mask))
2671 return 1;
2672
2673 reg->File = file;
2674 reg->Index = idx;
2675 reg->WriteMask = mask;
2676 return 0;
2677 }
2678
2679
2680 /**
2681 * This is a big mother that handles getting opcodes into the instruction
2682 * and handling the src & dst registers for fragment program instructions
2683 * \return 1 if error, 0 if no error
2684 */
2685 static GLuint
2686 parse_fp_instruction (GLcontext * ctx, const GLubyte ** inst,
2687 struct var_cache **vc_head, struct arb_program *Program,
2688 struct prog_instruction *fp)
2689 {
2690 GLint a;
2691 GLuint texcoord;
2692 GLubyte instClass, type, code;
2693 GLboolean rel;
2694 GLuint shadow_tex = 0;
2695
2696 _mesa_init_instructions(fp, 1);
2697
2698 /* Record the position in the program string for debugging */
2699 fp->StringPos = Program->Position;
2700
2701 /* OP_ALU_INST or OP_TEX_INST */
2702 instClass = *(*inst)++;
2703
2704 /* OP_ALU_{VECTOR, SCALAR, BINSC, BIN, TRI, SWZ},
2705 * OP_TEX_{SAMPLE, KIL}
2706 */
2707 type = *(*inst)++;
2708
2709 /* The actual opcode name */
2710 code = *(*inst)++;
2711
2712 /* Increment the correct count */
2713 switch (instClass) {
2714 case OP_ALU_INST:
2715 Program->NumAluInstructions++;
2716 break;
2717 case OP_TEX_INST:
2718 Program->NumTexInstructions++;
2719 break;
2720 }
2721
2722 switch (type) {
2723 case OP_ALU_VECTOR:
2724 switch (code) {
2725 case OP_ABS_SAT:
2726 fp->SaturateMode = SATURATE_ZERO_ONE;
2727 case OP_ABS:
2728 fp->Opcode = OPCODE_ABS;
2729 break;
2730
2731 case OP_FLR_SAT:
2732 fp->SaturateMode = SATURATE_ZERO_ONE;
2733 case OP_FLR:
2734 fp->Opcode = OPCODE_FLR;
2735 break;
2736
2737 case OP_FRC_SAT:
2738 fp->SaturateMode = SATURATE_ZERO_ONE;
2739 case OP_FRC:
2740 fp->Opcode = OPCODE_FRC;
2741 break;
2742
2743 case OP_LIT_SAT:
2744 fp->SaturateMode = SATURATE_ZERO_ONE;
2745 case OP_LIT:
2746 fp->Opcode = OPCODE_LIT;
2747 break;
2748
2749 case OP_MOV_SAT:
2750 fp->SaturateMode = SATURATE_ZERO_ONE;
2751 case OP_MOV:
2752 fp->Opcode = OPCODE_MOV;
2753 break;
2754 }
2755
2756 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2757 return 1;
2758
2759 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2760 return 1;
2761 break;
2762
2763 case OP_ALU_SCALAR:
2764 switch (code) {
2765 case OP_COS_SAT:
2766 fp->SaturateMode = SATURATE_ZERO_ONE;
2767 case OP_COS:
2768 fp->Opcode = OPCODE_COS;
2769 break;
2770
2771 case OP_EX2_SAT:
2772 fp->SaturateMode = SATURATE_ZERO_ONE;
2773 case OP_EX2:
2774 fp->Opcode = OPCODE_EX2;
2775 break;
2776
2777 case OP_LG2_SAT:
2778 fp->SaturateMode = SATURATE_ZERO_ONE;
2779 case OP_LG2:
2780 fp->Opcode = OPCODE_LG2;
2781 break;
2782
2783 case OP_RCP_SAT:
2784 fp->SaturateMode = SATURATE_ZERO_ONE;
2785 case OP_RCP:
2786 fp->Opcode = OPCODE_RCP;
2787 break;
2788
2789 case OP_RSQ_SAT:
2790 fp->SaturateMode = SATURATE_ZERO_ONE;
2791 case OP_RSQ:
2792 fp->Opcode = OPCODE_RSQ;
2793 break;
2794
2795 case OP_SIN_SAT:
2796 fp->SaturateMode = SATURATE_ZERO_ONE;
2797 case OP_SIN:
2798 fp->Opcode = OPCODE_SIN;
2799 break;
2800
2801 case OP_SCS_SAT:
2802 fp->SaturateMode = SATURATE_ZERO_ONE;
2803 case OP_SCS:
2804
2805 fp->Opcode = OPCODE_SCS;
2806 break;
2807 }
2808
2809 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2810 return 1;
2811
2812 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2813 return 1;
2814 break;
2815
2816 case OP_ALU_BINSC:
2817 switch (code) {
2818 case OP_POW_SAT:
2819 fp->SaturateMode = SATURATE_ZERO_ONE;
2820 case OP_POW:
2821 fp->Opcode = OPCODE_POW;
2822 break;
2823 }
2824
2825 if (parse_dst_reg(ctx, inst, vc_head, Program, &fp->DstReg))
2826 return 1;
2827
2828 for (a = 0; a < 2; a++) {
2829 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2830 return 1;
2831 }
2832 break;
2833
2834
2835 case OP_ALU_BIN:
2836 switch (code) {
2837 case OP_ADD_SAT:
2838 fp->SaturateMode = SATURATE_ZERO_ONE;
2839 case OP_ADD:
2840 fp->Opcode = OPCODE_ADD;
2841 break;
2842
2843 case OP_DP3_SAT:
2844 fp->SaturateMode = SATURATE_ZERO_ONE;
2845 case OP_DP3:
2846 fp->Opcode = OPCODE_DP3;
2847 break;
2848
2849 case OP_DP4_SAT:
2850 fp->SaturateMode = SATURATE_ZERO_ONE;
2851 case OP_DP4:
2852 fp->Opcode = OPCODE_DP4;
2853 break;
2854
2855 case OP_DPH_SAT:
2856 fp->SaturateMode = SATURATE_ZERO_ONE;
2857 case OP_DPH:
2858 fp->Opcode = OPCODE_DPH;
2859 break;
2860
2861 case OP_DST_SAT:
2862 fp->SaturateMode = SATURATE_ZERO_ONE;
2863 case OP_DST:
2864 fp->Opcode = OPCODE_DST;
2865 break;
2866
2867 case OP_MAX_SAT:
2868 fp->SaturateMode = SATURATE_ZERO_ONE;
2869 case OP_MAX:
2870 fp->Opcode = OPCODE_MAX;
2871 break;
2872
2873 case OP_MIN_SAT:
2874 fp->SaturateMode = SATURATE_ZERO_ONE;
2875 case OP_MIN:
2876 fp->Opcode = OPCODE_MIN;
2877 break;
2878
2879 case OP_MUL_SAT:
2880 fp->SaturateMode = SATURATE_ZERO_ONE;
2881 case OP_MUL:
2882 fp->Opcode = OPCODE_MUL;
2883 break;
2884
2885 case OP_SGE_SAT:
2886 fp->SaturateMode = SATURATE_ZERO_ONE;
2887 case OP_SGE:
2888 fp->Opcode = OPCODE_SGE;
2889 break;
2890
2891 case OP_SLT_SAT:
2892 fp->SaturateMode = SATURATE_ZERO_ONE;
2893 case OP_SLT:
2894 fp->Opcode = OPCODE_SLT;
2895 break;
2896
2897 case OP_SUB_SAT:
2898 fp->SaturateMode = SATURATE_ZERO_ONE;
2899 case OP_SUB:
2900 fp->Opcode = OPCODE_SUB;
2901 break;
2902
2903 case OP_XPD_SAT:
2904 fp->SaturateMode = SATURATE_ZERO_ONE;
2905 case OP_XPD:
2906 fp->Opcode = OPCODE_XPD;
2907 break;
2908 }
2909
2910 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2911 return 1;
2912 for (a = 0; a < 2; a++) {
2913 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2914 return 1;
2915 }
2916 break;
2917
2918 case OP_ALU_TRI:
2919 switch (code) {
2920 case OP_CMP_SAT:
2921 fp->SaturateMode = SATURATE_ZERO_ONE;
2922 case OP_CMP:
2923 fp->Opcode = OPCODE_CMP;
2924 break;
2925
2926 case OP_LRP_SAT:
2927 fp->SaturateMode = SATURATE_ZERO_ONE;
2928 case OP_LRP:
2929 fp->Opcode = OPCODE_LRP;
2930 break;
2931
2932 case OP_MAD_SAT:
2933 fp->SaturateMode = SATURATE_ZERO_ONE;
2934 case OP_MAD:
2935 fp->Opcode = OPCODE_MAD;
2936 break;
2937 }
2938
2939 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2940 return 1;
2941
2942 for (a = 0; a < 3; a++) {
2943 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2944 return 1;
2945 }
2946 break;
2947
2948 case OP_ALU_SWZ:
2949 switch (code) {
2950 case OP_SWZ_SAT:
2951 fp->SaturateMode = SATURATE_ZERO_ONE;
2952 case OP_SWZ:
2953 fp->Opcode = OPCODE_SWZ;
2954 break;
2955 }
2956 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2957 return 1;
2958
2959 {
2960 GLubyte swizzle[4];
2961 GLubyte negateMask;
2962 enum register_file file;
2963 GLint index;
2964
2965 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &rel))
2966 return 1;
2967 parse_extended_swizzle_mask(inst, swizzle, &negateMask);
2968 fp->SrcReg[0].File = file;
2969 fp->SrcReg[0].Index = index;
2970 fp->SrcReg[0].NegateBase = negateMask;
2971 fp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
2972 swizzle[1],
2973 swizzle[2],
2974 swizzle[3]);
2975 }
2976 break;
2977
2978 case OP_TEX_SAMPLE:
2979 switch (code) {
2980 case OP_TEX_SAT:
2981 fp->SaturateMode = SATURATE_ZERO_ONE;
2982 case OP_TEX:
2983 fp->Opcode = OPCODE_TEX;
2984 break;
2985
2986 case OP_TXP_SAT:
2987 fp->SaturateMode = SATURATE_ZERO_ONE;
2988 case OP_TXP:
2989 fp->Opcode = OPCODE_TXP;
2990 break;
2991
2992 case OP_TXB_SAT:
2993 fp->SaturateMode = SATURATE_ZERO_ONE;
2994 case OP_TXB:
2995 fp->Opcode = OPCODE_TXB;
2996 break;
2997 }
2998
2999 if (parse_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
3000 return 1;
3001
3002 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
3003 return 1;
3004
3005 /* texImageUnit */
3006 if (parse_texcoord_num (ctx, inst, Program, &texcoord))
3007 return 1;
3008 fp->TexSrcUnit = texcoord;
3009
3010 /* texTarget */
3011 switch (*(*inst)++) {
3012 case TEXTARGET_SHADOW1D:
3013 shadow_tex = 1 << texcoord;
3014 /* FALLTHROUGH */
3015 case TEXTARGET_1D:
3016 fp->TexSrcTarget = TEXTURE_1D_INDEX;
3017 break;
3018 case TEXTARGET_SHADOW2D:
3019 shadow_tex = 1 << texcoord;
3020 /* FALLTHROUGH */
3021 case TEXTARGET_2D:
3022 fp->TexSrcTarget = TEXTURE_2D_INDEX;
3023 break;
3024 case TEXTARGET_3D:
3025 fp->TexSrcTarget = TEXTURE_3D_INDEX;
3026 break;
3027 case TEXTARGET_SHADOWRECT:
3028 shadow_tex = 1 << texcoord;
3029 /* FALLTHROUGH */
3030 case TEXTARGET_RECT:
3031 fp->TexSrcTarget = TEXTURE_RECT_INDEX;
3032 break;
3033 case TEXTARGET_CUBE:
3034 fp->TexSrcTarget = TEXTURE_CUBE_INDEX;
3035 break;
3036 case TEXTARGET_SHADOW1D_ARRAY:
3037 shadow_tex = 1 << texcoord;
3038 /* FALLTHROUGH */
3039 case TEXTARGET_1D_ARRAY:
3040 fp->TexSrcTarget = TEXTURE_1D_ARRAY_INDEX;
3041 break;
3042 case TEXTARGET_SHADOW2D_ARRAY:
3043 shadow_tex = 1 << texcoord;
3044 /* FALLTHROUGH */
3045 case TEXTARGET_2D_ARRAY:
3046 fp->TexSrcTarget = TEXTURE_2D_ARRAY_INDEX;
3047 break;
3048 }
3049
3050 /* Don't test the first time a particular sampler is seen. Each time
3051 * after that, make sure the shadow state is the same.
3052 */
3053 if ((_mesa_bitcount(Program->TexturesUsed[texcoord]) > 0)
3054 && ((Program->ShadowSamplers & (1 << texcoord)) != shadow_tex)) {
3055 program_error(ctx, Program->Position,
3056 "texture image unit used for shadow sampling and non-shadow sampling");
3057 return 1;
3058 }
3059
3060 Program->TexturesUsed[texcoord] |= (1 << fp->TexSrcTarget);
3061 /* Check that both "2D" and "CUBE" (for example) aren't both used */
3062 if (_mesa_bitcount(Program->TexturesUsed[texcoord]) > 1) {
3063 program_error(ctx, Program->Position,
3064 "multiple targets used on one texture image unit");
3065 return 1;
3066 }
3067
3068
3069 Program->ShadowSamplers |= shadow_tex;
3070 break;
3071
3072 case OP_TEX_KIL:
3073 Program->UsesKill = 1;
3074 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
3075 return 1;
3076 fp->Opcode = OPCODE_KIL;
3077 break;
3078 default:
3079 _mesa_problem(ctx, "bad type 0x%x in parse_fp_instruction()", type);
3080 return 1;
3081 }
3082
3083 return 0;
3084 }
3085
3086
3087 /**
3088 * Handle the parsing out of a masked address register
3089 *
3090 * \param Index - The register index we write to
3091 * \param WriteMask - The mask controlling which components we write (1->write)
3092 *
3093 * \return 0 on sucess, 1 on error
3094 */
3095 static GLuint
3096 parse_vp_address_reg (GLcontext * ctx, const GLubyte ** inst,
3097 struct var_cache **vc_head,
3098 struct arb_program *Program,
3099 struct prog_dst_register *reg)
3100 {
3101 GLint idx;
3102
3103 if (parse_address_reg (ctx, inst, vc_head, Program, &idx))
3104 return 1;
3105
3106 /* This should be 0x8 */
3107 (*inst)++;
3108
3109 reg->File = PROGRAM_ADDRESS;
3110 reg->Index = idx;
3111
3112 /* Writemask of .x is implied */
3113 reg->WriteMask = 0x1;
3114 return 0;
3115 }
3116
3117
3118 /**
3119 * This is a big mother that handles getting opcodes into the instruction
3120 * and handling the src & dst registers for vertex program instructions
3121 */
3122 static GLuint
3123 parse_vp_instruction (GLcontext * ctx, const GLubyte ** inst,
3124 struct var_cache **vc_head, struct arb_program *Program,
3125 struct prog_instruction *vp)
3126 {
3127 GLint a;
3128 GLubyte type, code;
3129
3130 /* OP_ALU_{ARL, VECTOR, SCALAR, BINSC, BIN, TRI, SWZ} */
3131 type = *(*inst)++;
3132
3133 /* The actual opcode name */
3134 code = *(*inst)++;
3135
3136 _mesa_init_instructions(vp, 1);
3137 /* Record the position in the program string for debugging */
3138 vp->StringPos = Program->Position;
3139
3140 switch (type) {
3141 /* XXX: */
3142 case OP_ALU_ARL:
3143 vp->Opcode = OPCODE_ARL;
3144
3145 /* Remember to set SrcReg.RelAddr; */
3146
3147 /* Get the masked address register [dst] */
3148 if (parse_vp_address_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3149 return 1;
3150
3151 vp->DstReg.File = PROGRAM_ADDRESS;
3152
3153 /* Get a scalar src register */
3154 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3155 return 1;
3156
3157 break;
3158
3159 case OP_ALU_VECTOR:
3160 switch (code) {
3161 case OP_ABS:
3162 vp->Opcode = OPCODE_ABS;
3163 break;
3164 case OP_FLR:
3165 vp->Opcode = OPCODE_FLR;
3166 break;
3167 case OP_FRC:
3168 vp->Opcode = OPCODE_FRC;
3169 break;
3170 case OP_LIT:
3171 vp->Opcode = OPCODE_LIT;
3172 break;
3173 case OP_MOV:
3174 vp->Opcode = OPCODE_MOV;
3175 break;
3176 }
3177
3178 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3179 return 1;
3180
3181 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3182 return 1;
3183 break;
3184
3185 case OP_ALU_SCALAR:
3186 switch (code) {
3187 case OP_EX2:
3188 vp->Opcode = OPCODE_EX2;
3189 break;
3190 case OP_EXP:
3191 vp->Opcode = OPCODE_EXP;
3192 break;
3193 case OP_LG2:
3194 vp->Opcode = OPCODE_LG2;
3195 break;
3196 case OP_LOG:
3197 vp->Opcode = OPCODE_LOG;
3198 break;
3199 case OP_RCP:
3200 vp->Opcode = OPCODE_RCP;
3201 break;
3202 case OP_RSQ:
3203 vp->Opcode = OPCODE_RSQ;
3204 break;
3205 }
3206 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3207 return 1;
3208
3209 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3210 return 1;
3211 break;
3212
3213 case OP_ALU_BINSC:
3214 switch (code) {
3215 case OP_POW:
3216 vp->Opcode = OPCODE_POW;
3217 break;
3218 }
3219 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3220 return 1;
3221
3222 for (a = 0; a < 2; a++) {
3223 if (parse_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3224 return 1;
3225 }
3226 break;
3227
3228 case OP_ALU_BIN:
3229 switch (code) {
3230 case OP_ADD:
3231 vp->Opcode = OPCODE_ADD;
3232 break;
3233 case OP_DP3:
3234 vp->Opcode = OPCODE_DP3;
3235 break;
3236 case OP_DP4:
3237 vp->Opcode = OPCODE_DP4;
3238 break;
3239 case OP_DPH:
3240 vp->Opcode = OPCODE_DPH;
3241 break;
3242 case OP_DST:
3243 vp->Opcode = OPCODE_DST;
3244 break;
3245 case OP_MAX:
3246 vp->Opcode = OPCODE_MAX;
3247 break;
3248 case OP_MIN:
3249 vp->Opcode = OPCODE_MIN;
3250 break;
3251 case OP_MUL:
3252 vp->Opcode = OPCODE_MUL;
3253 break;
3254 case OP_SGE:
3255 vp->Opcode = OPCODE_SGE;
3256 break;
3257 case OP_SLT:
3258 vp->Opcode = OPCODE_SLT;
3259 break;
3260 case OP_SUB:
3261 vp->Opcode = OPCODE_SUB;
3262 break;
3263 case OP_XPD:
3264 vp->Opcode = OPCODE_XPD;
3265 break;
3266 }
3267 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3268 return 1;
3269
3270 for (a = 0; a < 2; a++) {
3271 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3272 return 1;
3273 }
3274 break;
3275
3276 case OP_ALU_TRI:
3277 switch (code) {
3278 case OP_MAD:
3279 vp->Opcode = OPCODE_MAD;
3280 break;
3281 }
3282
3283 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3284 return 1;
3285
3286 for (a = 0; a < 3; a++) {
3287 if (parse_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3288 return 1;
3289 }
3290 break;
3291
3292 case OP_ALU_SWZ:
3293 switch (code) {
3294 case OP_SWZ:
3295 vp->Opcode = OPCODE_SWZ;
3296 break;
3297 }
3298 {
3299 GLubyte swizzle[4];
3300 GLubyte negateMask;
3301 GLboolean relAddr;
3302 enum register_file file;
3303 GLint index;
3304
3305 if (parse_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3306 return 1;
3307
3308 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &relAddr))
3309 return 1;
3310 parse_extended_swizzle_mask (inst, swizzle, &negateMask);
3311 vp->SrcReg[0].File = file;
3312 vp->SrcReg[0].Index = index;
3313 vp->SrcReg[0].NegateBase = negateMask;
3314 vp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
3315 swizzle[1],
3316 swizzle[2],
3317 swizzle[3]);
3318 vp->SrcReg[0].RelAddr = relAddr;
3319 }
3320 break;
3321 }
3322 return 0;
3323 }
3324
3325 #if DEBUG_PARSING
3326
3327 static GLvoid
3328 debug_variables (GLcontext * ctx, struct var_cache *vc_head,
3329 struct arb_program *Program)
3330 {
3331 struct var_cache *vc;
3332 GLint a, b;
3333
3334 fprintf (stderr, "debug_variables, vc_head: %p\n", (void*) vc_head);
3335
3336 /* First of all, print out the contents of the var_cache */
3337 vc = vc_head;
3338 while (vc) {
3339 fprintf (stderr, "[%p]\n", (void*) vc);
3340 switch (vc->type) {
3341 case vt_none:
3342 fprintf (stderr, "UNDEFINED %s\n", vc->name);
3343 break;
3344 case vt_attrib:
3345 fprintf (stderr, "ATTRIB %s\n", vc->name);
3346 fprintf (stderr, " binding: 0x%x\n", vc->attrib_binding);
3347 break;
3348 case vt_param:
3349 fprintf (stderr, "PARAM %s begin: %d len: %d\n", vc->name,
3350 vc->param_binding_begin, vc->param_binding_length);
3351 b = vc->param_binding_begin;
3352 for (a = 0; a < vc->param_binding_length; a++) {
3353 fprintf (stderr, "%s\n",
3354 Program->Base.Parameters->Parameters[a + b].Name);
3355 if (Program->Base.Parameters->Parameters[a + b].Type == PROGRAM_STATE_VAR) {
3356 const char *s;
3357 s = _mesa_program_state_string(Program->Base.Parameters->Parameters
3358 [a + b].StateIndexes);
3359 fprintf(stderr, "%s\n", s);
3360 _mesa_free((char *) s);
3361 }
3362 else
3363 fprintf (stderr, "%f %f %f %f\n",
3364 Program->Base.Parameters->ParameterValues[a + b][0],
3365 Program->Base.Parameters->ParameterValues[a + b][1],
3366 Program->Base.Parameters->ParameterValues[a + b][2],
3367 Program->Base.Parameters->ParameterValues[a + b][3]);
3368 }
3369 break;
3370 case vt_temp:
3371 fprintf (stderr, "TEMP %s\n", vc->name);
3372 fprintf (stderr, " binding: 0x%x\n", vc->temp_binding);
3373 break;
3374 case vt_output:
3375 fprintf (stderr, "OUTPUT %s\n", vc->name);
3376 fprintf (stderr, " binding: 0x%x\n", vc->output_binding);
3377 break;
3378 case vt_alias:
3379 fprintf (stderr, "ALIAS %s\n", vc->name);
3380 fprintf (stderr, " binding: 0x%p (%s)\n",
3381 (void*) vc->alias_binding, vc->alias_binding->name);
3382 break;
3383 default:
3384 /* nothing */
3385 ;
3386 }
3387 vc = vc->next;
3388 }
3389 }
3390
3391 #endif /* DEBUG_PARSING */
3392
3393
3394 /**
3395 * The main loop for parsing a fragment or vertex program
3396 *
3397 * \return 1 on error, 0 on success
3398 */
3399 static GLint
3400 parse_instructions(GLcontext * ctx, const GLubyte * inst,
3401 struct var_cache **vc_head, struct arb_program *Program)
3402 {
3403 const GLuint maxInst = (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
3404 ? ctx->Const.FragmentProgram.MaxInstructions
3405 : ctx->Const.VertexProgram.MaxInstructions;
3406 GLint err = 0;
3407
3408 ASSERT(MAX_INSTRUCTIONS >= maxInst);
3409
3410 Program->MajorVersion = (GLuint) * inst++;
3411 Program->MinorVersion = (GLuint) * inst++;
3412
3413 while (*inst != END) {
3414 switch (*inst++) {
3415
3416 case OPTION:
3417 switch (*inst++) {
3418 case ARB_PRECISION_HINT_FASTEST:
3419 Program->PrecisionOption = GL_FASTEST;
3420 break;
3421
3422 case ARB_PRECISION_HINT_NICEST:
3423 Program->PrecisionOption = GL_NICEST;
3424 break;
3425
3426 case ARB_FOG_EXP:
3427 Program->FogOption = GL_EXP;
3428 break;
3429
3430 case ARB_FOG_EXP2:
3431 Program->FogOption = GL_EXP2;
3432 break;
3433
3434 case ARB_FOG_LINEAR:
3435 Program->FogOption = GL_LINEAR;
3436 break;
3437
3438 case ARB_POSITION_INVARIANT:
3439 if (Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
3440 Program->HintPositionInvariant = GL_TRUE;
3441 break;
3442
3443 case ARB_FRAGMENT_PROGRAM_SHADOW:
3444 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3445 /* TODO ARB_fragment_program_shadow code */
3446 }
3447 break;
3448
3449 case ARB_DRAW_BUFFERS:
3450 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3451 /* do nothing for now */
3452 }
3453 break;
3454
3455 case MESA_TEXTURE_ARRAY:
3456 /* do nothing for now */
3457 break;
3458 }
3459 break;
3460
3461 case INSTRUCTION:
3462 /* check length */
3463 if (Program->Base.NumInstructions + 1 >= maxInst) {
3464 program_error(ctx, Program->Position,
3465 "Max instruction count exceeded");
3466 return 1;
3467 }
3468 Program->Position = parse_position (&inst);
3469 /* parse the current instruction */
3470 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3471 err = parse_fp_instruction (ctx, &inst, vc_head, Program,
3472 &Program->Base.Instructions[Program->Base.NumInstructions]);
3473 }
3474 else {
3475 err = parse_vp_instruction (ctx, &inst, vc_head, Program,
3476 &Program->Base.Instructions[Program->Base.NumInstructions]);
3477 }
3478
3479 /* increment instuction count */
3480 Program->Base.NumInstructions++;
3481 break;
3482
3483 case DECLARATION:
3484 err = parse_declaration (ctx, &inst, vc_head, Program);
3485 break;
3486
3487 default:
3488 break;
3489 }
3490
3491 if (err)
3492 break;
3493 }
3494
3495 /* Finally, tag on an OPCODE_END instruction */
3496 {
3497 const GLuint numInst = Program->Base.NumInstructions;
3498 _mesa_init_instructions(Program->Base.Instructions + numInst, 1);
3499 Program->Base.Instructions[numInst].Opcode = OPCODE_END;
3500 /* YYY Wrong Position in program, whatever, at least not random -> crash
3501 Program->Position = parse_position (&inst);
3502 */
3503 Program->Base.Instructions[numInst].StringPos = Program->Position;
3504 }
3505 Program->Base.NumInstructions++;
3506
3507 /*
3508 * Initialize native counts to logical counts. The device driver may
3509 * change them if program is translated into a hardware program.
3510 */
3511 Program->Base.NumNativeInstructions = Program->Base.NumInstructions;
3512 Program->Base.NumNativeTemporaries = Program->Base.NumTemporaries;
3513 Program->Base.NumNativeParameters = Program->Base.NumParameters;
3514 Program->Base.NumNativeAttributes = Program->Base.NumAttributes;
3515 Program->Base.NumNativeAddressRegs = Program->Base.NumAddressRegs;
3516
3517 return err;
3518 }
3519
3520
3521 /* XXX temporary */
3522 LONGSTRING static char core_grammar_text[] =
3523 #include "shader/grammar/grammar_syn.h"
3524 ;
3525
3526
3527 /**
3528 * Set a grammar parameter.
3529 * \param name the grammar parameter
3530 * \param value the new parameter value
3531 * \return 0 if OK, 1 if error
3532 */
3533 static int
3534 set_reg8 (GLcontext *ctx, grammar id, const char *name, GLubyte value)
3535 {
3536 char error_msg[300];
3537 GLint error_pos;
3538
3539 if (grammar_set_reg8 (id, (const byte *) name, value))
3540 return 0;
3541
3542 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3543 _mesa_set_program_error (ctx, error_pos, error_msg);
3544 _mesa_error (ctx, GL_INVALID_OPERATION, "Grammar Register Error");
3545 return 1;
3546 }
3547
3548
3549 /**
3550 * Enable support for the given language option in the parser.
3551 * \return 1 if OK, 0 if error
3552 */
3553 static int
3554 enable_ext(GLcontext *ctx, grammar id, const char *name)
3555 {
3556 return !set_reg8(ctx, id, name, 1);
3557 }
3558
3559
3560 /**
3561 * Enable parser extensions based on which OpenGL extensions are supported
3562 * by this rendering context.
3563 *
3564 * \return GL_TRUE if OK, GL_FALSE if error.
3565 */
3566 static GLboolean
3567 enable_parser_extensions(GLcontext *ctx, grammar id)
3568 {
3569 #if 0
3570 /* These are not supported at this time */
3571 if ((ctx->Extensions.ARB_vertex_blend ||
3572 ctx->Extensions.EXT_vertex_weighting)
3573 && !enable_ext(ctx, id, "vertex_blend"))
3574 return GL_FALSE;
3575 if (ctx->Extensions.ARB_matrix_palette
3576 && !enable_ext(ctx, id, "matrix_palette"))
3577 return GL_FALSE;
3578 #endif
3579 if (ctx->Extensions.ARB_fragment_program_shadow
3580 && !enable_ext(ctx, id, "fragment_program_shadow"))
3581 return GL_FALSE;
3582 if (ctx->Extensions.EXT_point_parameters
3583 && !enable_ext(ctx, id, "point_parameters"))
3584 return GL_FALSE;
3585 if (ctx->Extensions.EXT_secondary_color
3586 && !enable_ext(ctx, id, "secondary_color"))
3587 return GL_FALSE;
3588 if (ctx->Extensions.EXT_fog_coord
3589 && !enable_ext(ctx, id, "fog_coord"))
3590 return GL_FALSE;
3591 if (ctx->Extensions.NV_texture_rectangle
3592 && !enable_ext(ctx, id, "texture_rectangle"))
3593 return GL_FALSE;
3594 if (ctx->Extensions.ARB_draw_buffers
3595 && !enable_ext(ctx, id, "draw_buffers"))
3596 return GL_FALSE;
3597 if (ctx->Extensions.MESA_texture_array
3598 && !enable_ext(ctx, id, "texture_array"))
3599 return GL_FALSE;
3600 #if 1
3601 /* hack for Warcraft (see bug 8060) */
3602 enable_ext(ctx, id, "vertex_blend");
3603 #endif
3604
3605 return GL_TRUE;
3606 }
3607
3608
3609 /**
3610 * This kicks everything off.
3611 *
3612 * \param ctx - The GL Context
3613 * \param str - The program string
3614 * \param len - The program string length
3615 * \param program - The arb_program struct to return all the parsed info in
3616 * \return GL_TRUE on sucess, GL_FALSE on error
3617 */
3618 static GLboolean
3619 _mesa_parse_arb_program(GLcontext *ctx, GLenum target,
3620 const GLubyte *str, GLsizei len,
3621 struct arb_program *program)
3622 {
3623 GLint a, err, error_pos;
3624 char error_msg[300];
3625 GLuint parsed_len;
3626 struct var_cache *vc_head;
3627 grammar arbprogram_syn_id;
3628 GLubyte *parsed, *inst;
3629 GLubyte *strz = NULL;
3630 static int arbprogram_syn_is_ok = 0; /* XXX temporary */
3631
3632 /* set the program target before parsing */
3633 program->Base.Target = target;
3634
3635 /* Reset error state */
3636 _mesa_set_program_error(ctx, -1, NULL);
3637
3638 /* check if arb_grammar_text (arbprogram.syn) is syntactically correct */
3639 if (!arbprogram_syn_is_ok) {
3640 /* One-time initialization of parsing system */
3641 grammar grammar_syn_id;
3642 GLuint parsed_len;
3643
3644 grammar_syn_id = grammar_load_from_text ((byte *) core_grammar_text);
3645 if (grammar_syn_id == 0) {
3646 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3647 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3648 _mesa_set_program_error (ctx, error_pos, error_msg);
3649 _mesa_error (ctx, GL_INVALID_OPERATION,
3650 "glProgramStringARB(Error loading grammar rule set)");
3651 return GL_FALSE;
3652 }
3653
3654 err = !grammar_check(grammar_syn_id, (byte *) arb_grammar_text,
3655 &parsed, &parsed_len);
3656
3657 /* 'parsed' is unused here */
3658 _mesa_free (parsed);
3659 parsed = NULL;
3660
3661 /* NOTE: we can't destroy grammar_syn_id right here because
3662 * grammar_destroy() can reset the last error
3663 */
3664 if (err) {
3665 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3666 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3667 _mesa_set_program_error (ctx, error_pos, error_msg);
3668 _mesa_error (ctx, GL_INVALID_OPERATION,
3669 "glProgramString(Error loading grammar rule set");
3670 grammar_destroy (grammar_syn_id);
3671 return GL_FALSE;
3672 }
3673
3674 grammar_destroy (grammar_syn_id);
3675
3676 arbprogram_syn_is_ok = 1;
3677 }
3678
3679 /* create the grammar object */
3680 arbprogram_syn_id = grammar_load_from_text ((byte *) arb_grammar_text);
3681 if (arbprogram_syn_id == 0) {
3682 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3683 grammar_get_last_error ((GLubyte *) error_msg, 300, &error_pos);
3684 _mesa_set_program_error (ctx, error_pos, error_msg);
3685 _mesa_error (ctx, GL_INVALID_OPERATION,
3686 "glProgramString(Error loading grammer rule set)");
3687 return GL_FALSE;
3688 }
3689
3690 /* Set program_target register value */
3691 if (set_reg8 (ctx, arbprogram_syn_id, "program_target",
3692 program->Base.Target == GL_FRAGMENT_PROGRAM_ARB ? 0x10 : 0x20)) {
3693 grammar_destroy (arbprogram_syn_id);
3694 return GL_FALSE;
3695 }
3696
3697 if (!enable_parser_extensions(ctx, arbprogram_syn_id)) {
3698 grammar_destroy(arbprogram_syn_id);
3699 return GL_FALSE;
3700 }
3701
3702 /* check for NULL character occurences */
3703 {
3704 GLint i;
3705 for (i = 0; i < len; i++) {
3706 if (str[i] == '\0') {
3707 program_error(ctx, i, "illegal character");
3708 grammar_destroy (arbprogram_syn_id);
3709 return GL_FALSE;
3710 }
3711 }
3712 }
3713
3714 /* copy the program string to a null-terminated string */
3715 strz = (GLubyte *) _mesa_malloc (len + 1);
3716 if (!strz) {
3717 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB");
3718 grammar_destroy (arbprogram_syn_id);
3719 return GL_FALSE;
3720 }
3721 _mesa_memcpy (strz, str, len);
3722 strz[len] = '\0';
3723
3724 /* do a fast check on program string - initial production buffer is 4K */
3725 err = !grammar_fast_check(arbprogram_syn_id, strz,
3726 &parsed, &parsed_len, 0x1000);
3727
3728 /* Syntax parse error */
3729 if (err) {
3730 grammar_get_last_error((GLubyte *) error_msg, 300, &error_pos);
3731 program_error(ctx, error_pos, error_msg);
3732
3733 #if DEBUG_PARSING
3734 /* useful for debugging */
3735 do {
3736 int line, col;
3737 char *s;
3738 fprintf(stderr, "program: %s\n", (char *) strz);
3739 fprintf(stderr, "Error Pos: %d\n", ctx->Program.ErrorPos);
3740 s = (char *) _mesa_find_line_column(strz, strz+ctx->Program.ErrorPos,
3741 &line, &col);
3742 fprintf(stderr, "line %d col %d: %s\n", line, col, s);
3743 } while (0);
3744 #endif
3745
3746 _mesa_free(strz);
3747 _mesa_free(parsed);
3748
3749 grammar_destroy (arbprogram_syn_id);
3750 return GL_FALSE;
3751 }
3752
3753 grammar_destroy (arbprogram_syn_id);
3754
3755 /*
3756 * Program string is syntactically correct at this point
3757 * Parse the tokenized version of the program now, generating
3758 * vertex/fragment program instructions.
3759 */
3760
3761 /* Initialize the arb_program struct */
3762 program->Base.String = strz;
3763 program->Base.Instructions = _mesa_alloc_instructions(MAX_INSTRUCTIONS);
3764 program->Base.NumInstructions =
3765 program->Base.NumTemporaries =
3766 program->Base.NumParameters =
3767 program->Base.NumAttributes = program->Base.NumAddressRegs = 0;
3768 program->Base.Parameters = _mesa_new_parameter_list ();
3769 program->Base.InputsRead = 0x0;
3770 program->Base.OutputsWritten = 0x0;
3771 program->Position = 0;
3772 program->MajorVersion = program->MinorVersion = 0;
3773 program->PrecisionOption = GL_DONT_CARE;
3774 program->FogOption = GL_NONE;
3775 program->HintPositionInvariant = GL_FALSE;
3776 for (a = 0; a < MAX_TEXTURE_IMAGE_UNITS; a++)
3777 program->TexturesUsed[a] = 0x0;
3778 program->ShadowSamplers = 0x0;
3779 program->NumAluInstructions =
3780 program->NumTexInstructions =
3781 program->NumTexIndirections = 0;
3782 program->UsesKill = 0;
3783
3784 vc_head = NULL;
3785 err = GL_FALSE;
3786
3787 /* Start examining the tokens in the array */
3788 inst = parsed;
3789
3790 /* Check the grammer rev */
3791 if (*inst++ != REVISION) {
3792 program_error (ctx, 0, "Grammar version mismatch");
3793 err = GL_TRUE;
3794 }
3795 else {
3796 /* ignore program target */
3797 inst++;
3798 err = parse_instructions(ctx, inst, &vc_head, program);
3799 }
3800
3801 /*debug_variables(ctx, vc_head, program); */
3802
3803 /* We're done with the parsed binary array */
3804 var_cache_destroy (&vc_head);
3805
3806 _mesa_free (parsed);
3807
3808 /* Reallocate the instruction array from size [MAX_INSTRUCTIONS]
3809 * to size [ap.Base.NumInstructions].
3810 */
3811 program->Base.Instructions
3812 = _mesa_realloc_instructions(program->Base.Instructions,
3813 MAX_INSTRUCTIONS,
3814 program->Base.NumInstructions);
3815
3816 return !err;
3817 }
3818
3819
3820
3821 void
3822 _mesa_parse_arb_fragment_program(GLcontext* ctx, GLenum target,
3823 const GLvoid *str, GLsizei len,
3824 struct gl_fragment_program *program)
3825 {
3826 struct arb_program ap;
3827 GLuint i;
3828
3829 ASSERT(target == GL_FRAGMENT_PROGRAM_ARB);
3830 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3831 /* Error in the program. Just return. */
3832 return;
3833 }
3834
3835 /* Copy the relevant contents of the arb_program struct into the
3836 * fragment_program struct.
3837 */
3838 program->Base.String = ap.Base.String;
3839 program->Base.NumInstructions = ap.Base.NumInstructions;
3840 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3841 program->Base.NumParameters = ap.Base.NumParameters;
3842 program->Base.NumAttributes = ap.Base.NumAttributes;
3843 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3844 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3845 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3846 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3847 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3848 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3849 program->Base.NumAluInstructions = ap.Base.NumAluInstructions;
3850 program->Base.NumTexInstructions = ap.Base.NumTexInstructions;
3851 program->Base.NumTexIndirections = ap.Base.NumTexIndirections;
3852 program->Base.NumNativeAluInstructions = ap.Base.NumAluInstructions;
3853 program->Base.NumNativeTexInstructions = ap.Base.NumTexInstructions;
3854 program->Base.NumNativeTexIndirections = ap.Base.NumTexIndirections;
3855 program->Base.InputsRead = ap.Base.InputsRead;
3856 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3857 for (i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++) {
3858 program->Base.TexturesUsed[i] = ap.TexturesUsed[i];
3859 if (ap.TexturesUsed[i])
3860 program->Base.SamplersUsed |= (1 << i);
3861 }
3862 program->Base.ShadowSamplers = ap.ShadowSamplers;
3863 program->FogOption = ap.FogOption;
3864 program->UsesKill = ap.UsesKill;
3865
3866 if (program->Base.Instructions)
3867 _mesa_free(program->Base.Instructions);
3868 program->Base.Instructions = ap.Base.Instructions;
3869
3870 if (program->Base.Parameters)
3871 _mesa_free_parameter_list(program->Base.Parameters);
3872 program->Base.Parameters = ap.Base.Parameters;
3873
3874 #if DEBUG_FP
3875 _mesa_printf("____________Fragment program %u ________\n", program->Base.Id);
3876 _mesa_print_program(&program->Base);
3877 #endif
3878 }
3879
3880
3881
3882 /**
3883 * Parse the vertex program string. If success, update the given
3884 * vertex_program object with the new program. Else, leave the vertex_program
3885 * object unchanged.
3886 */
3887 void
3888 _mesa_parse_arb_vertex_program(GLcontext *ctx, GLenum target,
3889 const GLvoid *str, GLsizei len,
3890 struct gl_vertex_program *program)
3891 {
3892 struct arb_program ap;
3893
3894 ASSERT(target == GL_VERTEX_PROGRAM_ARB);
3895
3896 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3897 _mesa_error(ctx, GL_INVALID_OPERATION, "glProgramString(bad program)");
3898 return;
3899 }
3900
3901 /* Copy the relevant contents of the arb_program struct into the
3902 * vertex_program struct.
3903 */
3904 program->Base.String = ap.Base.String;
3905 program->Base.NumInstructions = ap.Base.NumInstructions;
3906 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3907 program->Base.NumParameters = ap.Base.NumParameters;
3908 program->Base.NumAttributes = ap.Base.NumAttributes;
3909 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3910 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3911 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3912 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3913 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3914 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3915 program->Base.InputsRead = ap.Base.InputsRead;
3916 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3917 program->IsPositionInvariant = ap.HintPositionInvariant;
3918
3919 if (program->Base.Instructions)
3920 _mesa_free(program->Base.Instructions);
3921 program->Base.Instructions = ap.Base.Instructions;
3922
3923 if (program->Base.Parameters)
3924 _mesa_free_parameter_list(program->Base.Parameters);
3925 program->Base.Parameters = ap.Base.Parameters;
3926
3927 #if DEBUG_VP
3928 _mesa_printf("____________Vertex program %u __________\n", program->Base.Id);
3929 _mesa_print_program(&program->Base);
3930 #endif
3931 }