Merge branch 'i915-unification' of git+ssh://people.freedesktop.org/~anholt/mesa...
[mesa.git] / src / mesa / shader / arbprogparse.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #define DEBUG_PARSING 0
26
27 /**
28 * \file arbprogparse.c
29 * ARB_*_program parser core
30 * \author Karl Rasche
31 */
32
33 #include "glheader.h"
34 #include "imports.h"
35 #include "arbprogparse.h"
36 #include "grammar_mesa.h"
37 #include "program.h"
38 #include "prog_parameter.h"
39 #include "prog_statevars.h"
40 #include "context.h"
41 #include "macros.h"
42 #include "mtypes.h"
43 #include "prog_instruction.h"
44
45
46 /* For ARB programs, use the NV instruction limits */
47 #define MAX_INSTRUCTIONS MAX2(MAX_NV_FRAGMENT_PROGRAM_INSTRUCTIONS, \
48 MAX_NV_VERTEX_PROGRAM_INSTRUCTIONS)
49
50
51 /**
52 * This is basically a union of the vertex_program and fragment_program
53 * structs that we can use to parse the program into
54 *
55 * XXX we can probably get rid of this entirely someday.
56 */
57 struct arb_program
58 {
59 struct gl_program Base;
60
61 GLuint Position; /* Just used for error reporting while parsing */
62 GLuint MajorVersion;
63 GLuint MinorVersion;
64
65 /* ARB_vertex_progmra options */
66 GLboolean HintPositionInvariant;
67
68 /* ARB_fragment_progmra options */
69 GLenum PrecisionOption; /* GL_DONT_CARE, GL_NICEST or GL_FASTEST */
70 GLenum FogOption; /* GL_NONE, GL_LINEAR, GL_EXP or GL_EXP2 */
71
72 /* ARB_fragment_program specifics */
73 GLbitfield TexturesUsed[MAX_TEXTURE_IMAGE_UNITS];
74 GLbitfield ShadowSamplers;
75 GLuint NumAluInstructions;
76 GLuint NumTexInstructions;
77 GLuint NumTexIndirections;
78
79 GLboolean UsesKill;
80 };
81
82
83
84 /* TODO:
85 * Fragment Program Stuff:
86 * -----------------------------------------------------
87 *
88 * - things from Michal's email
89 * + overflow on atoi
90 * + not-overflowing floats (don't use parse_integer..)
91 * + can remove range checking in arbparse.c
92 *
93 * - check all limits of number of various variables
94 * + parameters
95 *
96 * - test! test! test!
97 *
98 * Vertex Program Stuff:
99 * -----------------------------------------------------
100 * - Optimize param array usage and count limits correctly, see spec,
101 * section 2.14.3.7
102 * + Record if an array is reference absolutly or relatively (or both)
103 * + For absolute arrays, store a bitmap of accesses
104 * + For single parameters, store an access flag
105 * + After parsing, make a parameter cleanup and merging pass, where
106 * relative arrays are layed out first, followed by abs arrays, and
107 * finally single state.
108 * + Remap offsets for param src and dst registers
109 * + Now we can properly count parameter usage
110 *
111 * - Multiple state binding errors in param arrays (see spec, just before
112 * section 2.14.3.3)
113 * - grep for XXX
114 *
115 * Mesa Stuff
116 * -----------------------------------------------------
117 * - User clipping planes vs. PositionInvariant
118 * - Is it sufficient to just multiply by the mvp to transform in the
119 * PositionInvariant case? Or do we need something more involved?
120 *
121 * - vp_src swizzle is GLubyte, fp_src swizzle is GLuint
122 * - fetch state listed in program_parameters list
123 * + WTF should this go???
124 * + currently in nvvertexec.c and s_nvfragprog.c
125 *
126 * - allow for multiple address registers (and fetch address regs properly)
127 *
128 * Cosmetic Stuff
129 * -----------------------------------------------------
130 * - remove any leftover unused grammer.c stuff (dict_ ?)
131 * - fix grammer.c error handling so its not static
132 * - #ifdef around stuff pertaining to extentions
133 *
134 * Outstanding Questions:
135 * -----------------------------------------------------
136 * - ARB_matrix_palette / ARB_vertex_blend -- not supported
137 * what gets hacked off because of this:
138 * + VERTEX_ATTRIB_MATRIXINDEX
139 * + VERTEX_ATTRIB_WEIGHT
140 * + MATRIX_MODELVIEW
141 * + MATRIX_PALETTE
142 *
143 * - When can we fetch env/local params from their own register files, and
144 * when to we have to fetch them into the main state register file?
145 * (think arrays)
146 *
147 * Grammar Changes:
148 * -----------------------------------------------------
149 */
150
151 /* Changes since moving the file to shader directory
152
153 2004-III-4 ------------------------------------------------------------
154 - added #include "grammar_mesa.h"
155 - removed grammar specific code part (it resides now in grammar.c)
156 - added GL_ARB_fragment_program_shadow tokens
157 - modified #include "arbparse_syn.h"
158 - major changes inside _mesa_parse_arb_program()
159 - check the program string for '\0' characters
160 - copy the program string to a one-byte-longer location to have
161 it null-terminated
162 - position invariance test (not writing to result.position) moved
163 to syntax part
164 */
165
166 typedef GLubyte *production;
167
168
169 /**
170 * This is the text describing the rules to parse the grammar
171 */
172 LONGSTRING static char arb_grammar_text[] =
173 #include "arbprogram_syn.h"
174 ;
175
176 /**
177 * These should match up with the values defined in arbprogram.syn
178 */
179
180 /*
181 Changes:
182 - changed and merged V_* and F_* opcode values to OP_*.
183 - added GL_ARB_fragment_program_shadow specific tokens (michal)
184 */
185 #define REVISION 0x0a
186
187 /* program type */
188 #define FRAGMENT_PROGRAM 0x01
189 #define VERTEX_PROGRAM 0x02
190
191 /* program section */
192 #define OPTION 0x01
193 #define INSTRUCTION 0x02
194 #define DECLARATION 0x03
195 #define END 0x04
196
197 /* GL_ARB_fragment_program option */
198 #define ARB_PRECISION_HINT_FASTEST 0x00
199 #define ARB_PRECISION_HINT_NICEST 0x01
200 #define ARB_FOG_EXP 0x02
201 #define ARB_FOG_EXP2 0x03
202 #define ARB_FOG_LINEAR 0x04
203
204 /* GL_ARB_vertex_program option */
205 #define ARB_POSITION_INVARIANT 0x05
206
207 /* GL_ARB_fragment_program_shadow option */
208 #define ARB_FRAGMENT_PROGRAM_SHADOW 0x06
209
210 /* GL_ARB_draw_buffers option */
211 #define ARB_DRAW_BUFFERS 0x07
212
213 /* GL_MESA_texture_array option */
214 #define MESA_TEXTURE_ARRAY 0x08
215
216 /* GL_ARB_fragment_program instruction class */
217 #define OP_ALU_INST 0x00
218 #define OP_TEX_INST 0x01
219
220 /* GL_ARB_vertex_program instruction class */
221 /* OP_ALU_INST */
222
223 /* GL_ARB_fragment_program instruction type */
224 #define OP_ALU_VECTOR 0x00
225 #define OP_ALU_SCALAR 0x01
226 #define OP_ALU_BINSC 0x02
227 #define OP_ALU_BIN 0x03
228 #define OP_ALU_TRI 0x04
229 #define OP_ALU_SWZ 0x05
230 #define OP_TEX_SAMPLE 0x06
231 #define OP_TEX_KIL 0x07
232
233 /* GL_ARB_vertex_program instruction type */
234 #define OP_ALU_ARL 0x08
235 /* OP_ALU_VECTOR */
236 /* OP_ALU_SCALAR */
237 /* OP_ALU_BINSC */
238 /* OP_ALU_BIN */
239 /* OP_ALU_TRI */
240 /* OP_ALU_SWZ */
241
242 /* GL_ARB_fragment_program instruction code */
243 #define OP_ABS 0x00
244 #define OP_ABS_SAT 0x1B
245 #define OP_FLR 0x09
246 #define OP_FLR_SAT 0x26
247 #define OP_FRC 0x0A
248 #define OP_FRC_SAT 0x27
249 #define OP_LIT 0x0C
250 #define OP_LIT_SAT 0x2A
251 #define OP_MOV 0x11
252 #define OP_MOV_SAT 0x30
253 #define OP_COS 0x1F
254 #define OP_COS_SAT 0x20
255 #define OP_EX2 0x07
256 #define OP_EX2_SAT 0x25
257 #define OP_LG2 0x0B
258 #define OP_LG2_SAT 0x29
259 #define OP_RCP 0x14
260 #define OP_RCP_SAT 0x33
261 #define OP_RSQ 0x15
262 #define OP_RSQ_SAT 0x34
263 #define OP_SIN 0x38
264 #define OP_SIN_SAT 0x39
265 #define OP_SCS 0x35
266 #define OP_SCS_SAT 0x36
267 #define OP_POW 0x13
268 #define OP_POW_SAT 0x32
269 #define OP_ADD 0x01
270 #define OP_ADD_SAT 0x1C
271 #define OP_DP3 0x03
272 #define OP_DP3_SAT 0x21
273 #define OP_DP4 0x04
274 #define OP_DP4_SAT 0x22
275 #define OP_DPH 0x05
276 #define OP_DPH_SAT 0x23
277 #define OP_DST 0x06
278 #define OP_DST_SAT 0x24
279 #define OP_MAX 0x0F
280 #define OP_MAX_SAT 0x2E
281 #define OP_MIN 0x10
282 #define OP_MIN_SAT 0x2F
283 #define OP_MUL 0x12
284 #define OP_MUL_SAT 0x31
285 #define OP_SGE 0x16
286 #define OP_SGE_SAT 0x37
287 #define OP_SLT 0x17
288 #define OP_SLT_SAT 0x3A
289 #define OP_SUB 0x18
290 #define OP_SUB_SAT 0x3B
291 #define OP_XPD 0x1A
292 #define OP_XPD_SAT 0x43
293 #define OP_CMP 0x1D
294 #define OP_CMP_SAT 0x1E
295 #define OP_LRP 0x2B
296 #define OP_LRP_SAT 0x2C
297 #define OP_MAD 0x0E
298 #define OP_MAD_SAT 0x2D
299 #define OP_SWZ 0x19
300 #define OP_SWZ_SAT 0x3C
301 #define OP_TEX 0x3D
302 #define OP_TEX_SAT 0x3E
303 #define OP_TXB 0x3F
304 #define OP_TXB_SAT 0x40
305 #define OP_TXP 0x41
306 #define OP_TXP_SAT 0x42
307 #define OP_KIL 0x28
308
309 /* GL_ARB_vertex_program instruction code */
310 #define OP_ARL 0x02
311 /* OP_ABS */
312 /* OP_FLR */
313 /* OP_FRC */
314 /* OP_LIT */
315 /* OP_MOV */
316 /* OP_EX2 */
317 #define OP_EXP 0x08
318 /* OP_LG2 */
319 #define OP_LOG 0x0D
320 /* OP_RCP */
321 /* OP_RSQ */
322 /* OP_POW */
323 /* OP_ADD */
324 /* OP_DP3 */
325 /* OP_DP4 */
326 /* OP_DPH */
327 /* OP_DST */
328 /* OP_MAX */
329 /* OP_MIN */
330 /* OP_MUL */
331 /* OP_SGE */
332 /* OP_SLT */
333 /* OP_SUB */
334 /* OP_XPD */
335 /* OP_MAD */
336 /* OP_SWZ */
337
338 /* fragment attribute binding */
339 #define FRAGMENT_ATTRIB_COLOR 0x01
340 #define FRAGMENT_ATTRIB_TEXCOORD 0x02
341 #define FRAGMENT_ATTRIB_FOGCOORD 0x03
342 #define FRAGMENT_ATTRIB_POSITION 0x04
343
344 /* vertex attribute binding */
345 #define VERTEX_ATTRIB_POSITION 0x01
346 #define VERTEX_ATTRIB_WEIGHT 0x02
347 #define VERTEX_ATTRIB_NORMAL 0x03
348 #define VERTEX_ATTRIB_COLOR 0x04
349 #define VERTEX_ATTRIB_FOGCOORD 0x05
350 #define VERTEX_ATTRIB_TEXCOORD 0x06
351 #define VERTEX_ATTRIB_MATRIXINDEX 0x07
352 #define VERTEX_ATTRIB_GENERIC 0x08
353
354 /* fragment result binding */
355 #define FRAGMENT_RESULT_COLOR 0x01
356 #define FRAGMENT_RESULT_DEPTH 0x02
357
358 /* vertex result binding */
359 #define VERTEX_RESULT_POSITION 0x01
360 #define VERTEX_RESULT_COLOR 0x02
361 #define VERTEX_RESULT_FOGCOORD 0x03
362 #define VERTEX_RESULT_POINTSIZE 0x04
363 #define VERTEX_RESULT_TEXCOORD 0x05
364
365 /* texture target */
366 #define TEXTARGET_1D 0x01
367 #define TEXTARGET_2D 0x02
368 #define TEXTARGET_3D 0x03
369 #define TEXTARGET_RECT 0x04
370 #define TEXTARGET_CUBE 0x05
371 /* GL_ARB_fragment_program_shadow */
372 #define TEXTARGET_SHADOW1D 0x06
373 #define TEXTARGET_SHADOW2D 0x07
374 #define TEXTARGET_SHADOWRECT 0x08
375 /* GL_MESA_texture_array */
376 #define TEXTARGET_1D_ARRAY 0x09
377 #define TEXTARGET_2D_ARRAY 0x0a
378 #define TEXTARGET_SHADOW1D_ARRAY 0x0b
379 #define TEXTARGET_SHADOW2D_ARRAY 0x0c
380
381 /* face type */
382 #define FACE_FRONT 0x00
383 #define FACE_BACK 0x01
384
385 /* color type */
386 #define COLOR_PRIMARY 0x00
387 #define COLOR_SECONDARY 0x01
388
389 /* component */
390 #define COMPONENT_X 0x00
391 #define COMPONENT_Y 0x01
392 #define COMPONENT_Z 0x02
393 #define COMPONENT_W 0x03
394 #define COMPONENT_0 0x04
395 #define COMPONENT_1 0x05
396
397 /* array index type */
398 #define ARRAY_INDEX_ABSOLUTE 0x00
399 #define ARRAY_INDEX_RELATIVE 0x01
400
401 /* matrix name */
402 #define MATRIX_MODELVIEW 0x01
403 #define MATRIX_PROJECTION 0x02
404 #define MATRIX_MVP 0x03
405 #define MATRIX_TEXTURE 0x04
406 #define MATRIX_PALETTE 0x05
407 #define MATRIX_PROGRAM 0x06
408
409 /* matrix modifier */
410 #define MATRIX_MODIFIER_IDENTITY 0x00
411 #define MATRIX_MODIFIER_INVERSE 0x01
412 #define MATRIX_MODIFIER_TRANSPOSE 0x02
413 #define MATRIX_MODIFIER_INVTRANS 0x03
414
415 /* constant type */
416 #define CONSTANT_SCALAR 0x01
417 #define CONSTANT_VECTOR 0x02
418
419 /* program param type */
420 #define PROGRAM_PARAM_ENV 0x01
421 #define PROGRAM_PARAM_LOCAL 0x02
422
423 /* register type */
424 #define REGISTER_ATTRIB 0x01
425 #define REGISTER_PARAM 0x02
426 #define REGISTER_RESULT 0x03
427 #define REGISTER_ESTABLISHED_NAME 0x04
428
429 /* param binding */
430 #define PARAM_NULL 0x00
431 #define PARAM_ARRAY_ELEMENT 0x01
432 #define PARAM_STATE_ELEMENT 0x02
433 #define PARAM_PROGRAM_ELEMENT 0x03
434 #define PARAM_PROGRAM_ELEMENTS 0x04
435 #define PARAM_CONSTANT 0x05
436
437 /* param state property */
438 #define STATE_MATERIAL_PARSER 0x01
439 #define STATE_LIGHT_PARSER 0x02
440 #define STATE_LIGHT_MODEL 0x03
441 #define STATE_LIGHT_PROD 0x04
442 #define STATE_FOG 0x05
443 #define STATE_MATRIX_ROWS 0x06
444 /* GL_ARB_fragment_program */
445 #define STATE_TEX_ENV 0x07
446 #define STATE_DEPTH 0x08
447 /* GL_ARB_vertex_program */
448 #define STATE_TEX_GEN 0x09
449 #define STATE_CLIP_PLANE 0x0A
450 #define STATE_POINT 0x0B
451
452 /* state material property */
453 #define MATERIAL_AMBIENT 0x01
454 #define MATERIAL_DIFFUSE 0x02
455 #define MATERIAL_SPECULAR 0x03
456 #define MATERIAL_EMISSION 0x04
457 #define MATERIAL_SHININESS 0x05
458
459 /* state light property */
460 #define LIGHT_AMBIENT 0x01
461 #define LIGHT_DIFFUSE 0x02
462 #define LIGHT_SPECULAR 0x03
463 #define LIGHT_POSITION 0x04
464 #define LIGHT_ATTENUATION 0x05
465 #define LIGHT_HALF 0x06
466 #define LIGHT_SPOT_DIRECTION 0x07
467
468 /* state light model property */
469 #define LIGHT_MODEL_AMBIENT 0x01
470 #define LIGHT_MODEL_SCENECOLOR 0x02
471
472 /* state light product property */
473 #define LIGHT_PROD_AMBIENT 0x01
474 #define LIGHT_PROD_DIFFUSE 0x02
475 #define LIGHT_PROD_SPECULAR 0x03
476
477 /* state texture environment property */
478 #define TEX_ENV_COLOR 0x01
479
480 /* state texture generation coord property */
481 #define TEX_GEN_EYE 0x01
482 #define TEX_GEN_OBJECT 0x02
483
484 /* state fog property */
485 #define FOG_COLOR 0x01
486 #define FOG_PARAMS 0x02
487
488 /* state depth property */
489 #define DEPTH_RANGE 0x01
490
491 /* state point parameters property */
492 #define POINT_SIZE 0x01
493 #define POINT_ATTENUATION 0x02
494
495 /* declaration */
496 #define ATTRIB 0x01
497 #define PARAM 0x02
498 #define TEMP 0x03
499 #define OUTPUT 0x04
500 #define ALIAS 0x05
501 /* GL_ARB_vertex_program */
502 #define ADDRESS 0x06
503
504 /*-----------------------------------------------------------------------
505 * From here on down is the semantic checking portion
506 *
507 */
508
509 /**
510 * Variable Table Handling functions
511 */
512 typedef enum
513 {
514 vt_none,
515 vt_address,
516 vt_attrib,
517 vt_param,
518 vt_temp,
519 vt_output,
520 vt_alias
521 } var_type;
522
523
524 /**
525 * Setting an explicit field for each of the binding properties is a bit
526 * wasteful of space, but it should be much more clear when reading later on..
527 */
528 struct var_cache
529 {
530 const GLubyte *name; /* don't free() - no need */
531 var_type type;
532 GLuint address_binding; /* The index of the address register we should
533 * be using */
534 GLuint attrib_binding; /* For type vt_attrib, see nvfragprog.h for values */
535 GLuint attrib_is_generic; /* If the attrib was specified through a generic
536 * vertex attrib */
537 GLuint temp_binding; /* The index of the temp register we are to use */
538 GLuint output_binding; /* Output/result register number */
539 struct var_cache *alias_binding; /* For type vt_alias, points to the var_cache entry
540 * that this is aliased to */
541 GLuint param_binding_type; /* {PROGRAM_STATE_VAR, PROGRAM_LOCAL_PARAM,
542 * PROGRAM_ENV_PARAM} */
543 GLuint param_binding_begin; /* This is the offset into the program_parameter_list where
544 * the tokens representing our bound state (or constants)
545 * start */
546 GLuint param_binding_length; /* This is how many entries in the the program_parameter_list
547 * we take up with our state tokens or constants. Note that
548 * this is _not_ the same as the number of param registers
549 * we eventually use */
550 struct var_cache *next;
551 };
552
553 static GLvoid
554 var_cache_create (struct var_cache **va)
555 {
556 *va = (struct var_cache *) _mesa_malloc (sizeof (struct var_cache));
557 if (*va) {
558 (**va).name = NULL;
559 (**va).type = vt_none;
560 (**va).attrib_binding = ~0;
561 (**va).attrib_is_generic = 0;
562 (**va).temp_binding = ~0;
563 (**va).output_binding = ~0;
564 (**va).param_binding_type = ~0;
565 (**va).param_binding_begin = ~0;
566 (**va).param_binding_length = ~0;
567 (**va).alias_binding = NULL;
568 (**va).next = NULL;
569 }
570 }
571
572 static GLvoid
573 var_cache_destroy (struct var_cache **va)
574 {
575 if (*va) {
576 var_cache_destroy (&(**va).next);
577 _mesa_free (*va);
578 *va = NULL;
579 }
580 }
581
582 static GLvoid
583 var_cache_append (struct var_cache **va, struct var_cache *nv)
584 {
585 if (*va)
586 var_cache_append (&(**va).next, nv);
587 else
588 *va = nv;
589 }
590
591 static struct var_cache *
592 var_cache_find (struct var_cache *va, const GLubyte * name)
593 {
594 /*struct var_cache *first = va;*/
595
596 while (va) {
597 if (!_mesa_strcmp ( (const char*) name, (const char*) va->name)) {
598 if (va->type == vt_alias)
599 return va->alias_binding;
600 return va;
601 }
602
603 va = va->next;
604 }
605
606 return NULL;
607 }
608
609
610
611 /**
612 * Called when an error is detected while parsing/compiling a program.
613 * Sets the ctx->Program.ErrorString field to descript and records a
614 * GL_INVALID_OPERATION error.
615 * \param position position of error in program string
616 * \param descrip verbose error description
617 */
618 static void
619 program_error(GLcontext *ctx, GLint position, const char *descrip)
620 {
621 if (descrip) {
622 const char *prefix = "glProgramString(", *suffix = ")";
623 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
624 _mesa_strlen(prefix) +
625 _mesa_strlen(suffix) + 1);
626 if (str) {
627 _mesa_sprintf(str, "%s%s%s", prefix, descrip, suffix);
628 _mesa_error(ctx, GL_INVALID_OPERATION, str);
629 _mesa_free(str);
630 }
631 }
632 _mesa_set_program_error(ctx, position, descrip);
633 }
634
635
636
637 /**
638 * constructs an integer from 4 GLubytes in LE format
639 */
640 static GLuint
641 parse_position (const GLubyte ** inst)
642 {
643 GLuint value;
644
645 value = (GLuint) (*(*inst)++);
646 value += (GLuint) (*(*inst)++) * 0x100;
647 value += (GLuint) (*(*inst)++) * 0x10000;
648 value += (GLuint) (*(*inst)++) * 0x1000000;
649
650 return value;
651 }
652
653 /**
654 * This will, given a string, lookup the string as a variable name in the
655 * var cache. If the name is found, the var cache node corresponding to the
656 * var name is returned. If it is not found, a new entry is allocated
657 *
658 * \param I Points into the binary array where the string identifier begins
659 * \param found 1 if the string was found in the var_cache, 0 if it was allocated
660 * \return The location on the var_cache corresponding the the string starting at I
661 */
662 static struct var_cache *
663 parse_string (const GLubyte ** inst, struct var_cache **vc_head,
664 struct arb_program *Program, GLuint * found)
665 {
666 const GLubyte *i = *inst;
667 struct var_cache *va = NULL;
668 (void) Program;
669
670 *inst += _mesa_strlen ((char *) i) + 1;
671
672 va = var_cache_find (*vc_head, i);
673
674 if (va) {
675 *found = 1;
676 return va;
677 }
678
679 *found = 0;
680 var_cache_create (&va);
681 va->name = (const GLubyte *) i;
682
683 var_cache_append (vc_head, va);
684
685 return va;
686 }
687
688 static char *
689 parse_string_without_adding (const GLubyte ** inst, struct arb_program *Program)
690 {
691 const GLubyte *i = *inst;
692 (void) Program;
693
694 *inst += _mesa_strlen ((char *) i) + 1;
695
696 return (char *) i;
697 }
698
699 /**
700 * \return -1 if we parse '-', return 1 otherwise
701 */
702 static GLint
703 parse_sign (const GLubyte ** inst)
704 {
705 /*return *(*inst)++ != '+'; */
706
707 if (**inst == '-') {
708 (*inst)++;
709 return -1;
710 }
711 else if (**inst == '+') {
712 (*inst)++;
713 return 1;
714 }
715
716 return 1;
717 }
718
719 /**
720 * parses and returns signed integer
721 */
722 static GLint
723 parse_integer (const GLubyte ** inst, struct arb_program *Program)
724 {
725 GLint sign;
726 GLint value;
727
728 /* check if *inst points to '+' or '-'
729 * if yes, grab the sign and increment *inst
730 */
731 sign = parse_sign (inst);
732
733 /* now check if *inst points to 0
734 * if yes, increment the *inst and return the default value
735 */
736 if (**inst == 0) {
737 (*inst)++;
738 return 0;
739 }
740
741 /* parse the integer as you normally would do it */
742 value = _mesa_atoi (parse_string_without_adding (inst, Program));
743
744 /* now, after terminating 0 there is a position
745 * to parse it - parse_position()
746 */
747 Program->Position = parse_position (inst);
748
749 return value * sign;
750 }
751
752 /**
753 Accumulate this string of digits, and return them as
754 a large integer represented in floating point (for range).
755 If scale is not NULL, also accumulates a power-of-ten
756 integer scale factor that represents the number of digits
757 in the string.
758 */
759 static GLdouble
760 parse_float_string(const GLubyte ** inst, struct arb_program *Program, GLdouble *scale)
761 {
762 GLdouble value = 0.0;
763 GLdouble oscale = 1.0;
764
765 if (**inst == 0) { /* this string of digits is empty-- do nothing */
766 (*inst)++;
767 }
768 else { /* nonempty string-- parse out the digits */
769 while (**inst >= '0' && **inst <= '9') {
770 GLubyte digit = *((*inst)++);
771 value = value * 10.0 + (GLint) (digit - '0');
772 oscale *= 10.0;
773 }
774 assert(**inst == 0); /* integer string should end with 0 */
775 (*inst)++; /* skip over terminating 0 */
776 Program->Position = parse_position(inst); /* skip position (from integer) */
777 }
778 if (scale)
779 *scale = oscale;
780 return value;
781 }
782
783 /**
784 Parse an unsigned floating-point number from this stream of tokenized
785 characters. Example floating-point formats supported:
786 12.34
787 12
788 0.34
789 .34
790 12.34e-4
791 */
792 static GLfloat
793 parse_float (const GLubyte ** inst, struct arb_program *Program)
794 {
795 GLint exponent;
796 GLdouble whole, fraction, fracScale = 1.0;
797
798 whole = parse_float_string(inst, Program, 0);
799 fraction = parse_float_string(inst, Program, &fracScale);
800
801 /* Parse signed exponent */
802 exponent = parse_integer(inst, Program); /* This is the exponent */
803
804 /* Assemble parts of floating-point number: */
805 return (GLfloat) ((whole + fraction / fracScale) *
806 _mesa_pow(10.0, (GLfloat) exponent));
807 }
808
809
810 /**
811 */
812 static GLfloat
813 parse_signed_float (const GLubyte ** inst, struct arb_program *Program)
814 {
815 GLint sign = parse_sign (inst);
816 GLfloat value = parse_float (inst, Program);
817 return value * sign;
818 }
819
820 /**
821 * This picks out a constant value from the parsed array. The constant vector is r
822 * returned in the *values array, which should be of length 4.
823 *
824 * \param values - The 4 component vector with the constant value in it
825 */
826 static GLvoid
827 parse_constant (const GLubyte ** inst, GLfloat *values, struct arb_program *Program,
828 GLboolean use)
829 {
830 GLuint components, i;
831
832
833 switch (*(*inst)++) {
834 case CONSTANT_SCALAR:
835 if (use == GL_TRUE) {
836 values[0] =
837 values[1] =
838 values[2] = values[3] = parse_float (inst, Program);
839 }
840 else {
841 values[0] =
842 values[1] =
843 values[2] = values[3] = parse_signed_float (inst, Program);
844 }
845
846 break;
847 case CONSTANT_VECTOR:
848 values[0] = values[1] = values[2] = 0;
849 values[3] = 1;
850 components = *(*inst)++;
851 for (i = 0; i < components; i++) {
852 values[i] = parse_signed_float (inst, Program);
853 }
854 break;
855 }
856 }
857
858 /**
859 * \param offset The offset from the address register that we should
860 * address
861 *
862 * \return 0 on sucess, 1 on error
863 */
864 static GLuint
865 parse_relative_offset(GLcontext *ctx, const GLubyte **inst,
866 struct arb_program *Program, GLint *offset)
867 {
868 (void) ctx;
869 *offset = parse_integer(inst, Program);
870 return 0;
871 }
872
873 /**
874 * \param color 0 if color type is primary, 1 if color type is secondary
875 * \return 0 on sucess, 1 on error
876 */
877 static GLuint
878 parse_color_type (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
879 GLint * color)
880 {
881 (void) ctx; (void) Program;
882 *color = *(*inst)++ != COLOR_PRIMARY;
883 return 0;
884 }
885
886 /**
887 * Get an integer corresponding to a generic vertex attribute.
888 *
889 * \return 0 on sucess, 1 on error
890 */
891 static GLuint
892 parse_generic_attrib_num(GLcontext *ctx, const GLubyte ** inst,
893 struct arb_program *Program, GLuint *attrib)
894 {
895 GLint i = parse_integer(inst, Program);
896
897 if ((i < 0) || (i >= MAX_VERTEX_PROGRAM_ATTRIBS))
898 {
899 program_error(ctx, Program->Position,
900 "Invalid generic vertex attribute index");
901 return 1;
902 }
903
904 *attrib = (GLuint) i;
905
906 return 0;
907 }
908
909
910 /**
911 * \param color The index of the color buffer to write into
912 * \return 0 on sucess, 1 on error
913 */
914 static GLuint
915 parse_output_color_num (GLcontext * ctx, const GLubyte ** inst,
916 struct arb_program *Program, GLuint * color)
917 {
918 GLint i = parse_integer (inst, Program);
919
920 if ((i < 0) || (i >= (int)ctx->Const.MaxDrawBuffers)) {
921 program_error(ctx, Program->Position, "Invalid draw buffer index");
922 return 1;
923 }
924
925 *color = (GLuint) i;
926 return 0;
927 }
928
929
930 /**
931 * \param coord The texture unit index
932 * \return 0 on sucess, 1 on error
933 */
934 static GLuint
935 parse_texcoord_num (GLcontext * ctx, const GLubyte ** inst,
936 struct arb_program *Program, GLuint * coord)
937 {
938 GLint i = parse_integer (inst, Program);
939
940 if ((i < 0) || (i >= (int)ctx->Const.MaxTextureUnits)) {
941 program_error(ctx, Program->Position, "Invalid texture unit index");
942 return 1;
943 }
944
945 *coord = (GLuint) i;
946 return 0;
947 }
948
949 /**
950 * \param coord The weight index
951 * \return 0 on sucess, 1 on error
952 */
953 static GLuint
954 parse_weight_num (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
955 GLint * coord)
956 {
957 *coord = parse_integer (inst, Program);
958
959 if ((*coord < 0) || (*coord >= 1)) {
960 program_error(ctx, Program->Position, "Invalid weight index");
961 return 1;
962 }
963
964 return 0;
965 }
966
967 /**
968 * \param coord The clip plane index
969 * \return 0 on sucess, 1 on error
970 */
971 static GLuint
972 parse_clipplane_num (GLcontext * ctx, const GLubyte ** inst,
973 struct arb_program *Program, GLint * coord)
974 {
975 *coord = parse_integer (inst, Program);
976
977 if ((*coord < 0) || (*coord >= (GLint) ctx->Const.MaxClipPlanes)) {
978 program_error(ctx, Program->Position, "Invalid clip plane index");
979 return 1;
980 }
981
982 return 0;
983 }
984
985
986 /**
987 * \return 0 on front face, 1 on back face
988 */
989 static GLuint
990 parse_face_type (const GLubyte ** inst)
991 {
992 switch (*(*inst)++) {
993 case FACE_FRONT:
994 return 0;
995
996 case FACE_BACK:
997 return 1;
998 }
999 return 0;
1000 }
1001
1002
1003 /**
1004 * Given a matrix and a modifier token on the binary array, return tokens
1005 * that _mesa_fetch_state() [program.c] can understand.
1006 *
1007 * \param matrix - the matrix we are talking about
1008 * \param matrix_idx - the index of the matrix we have (for texture & program matricies)
1009 * \param matrix_modifier - the matrix modifier (trans, inv, etc)
1010 * \return 0 on sucess, 1 on failure
1011 */
1012 static GLuint
1013 parse_matrix (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
1014 GLint * matrix, GLint * matrix_idx, GLint * matrix_modifier)
1015 {
1016 GLubyte mat = *(*inst)++;
1017
1018 *matrix_idx = 0;
1019
1020 switch (mat) {
1021 case MATRIX_MODELVIEW:
1022 *matrix = STATE_MODELVIEW_MATRIX;
1023 *matrix_idx = parse_integer (inst, Program);
1024 if (*matrix_idx > 0) {
1025 program_error(ctx, Program->Position,
1026 "ARB_vertex_blend not supported");
1027 return 1;
1028 }
1029 break;
1030
1031 case MATRIX_PROJECTION:
1032 *matrix = STATE_PROJECTION_MATRIX;
1033 break;
1034
1035 case MATRIX_MVP:
1036 *matrix = STATE_MVP_MATRIX;
1037 break;
1038
1039 case MATRIX_TEXTURE:
1040 *matrix = STATE_TEXTURE_MATRIX;
1041 *matrix_idx = parse_integer (inst, Program);
1042 if (*matrix_idx >= (GLint) ctx->Const.MaxTextureUnits) {
1043 program_error(ctx, Program->Position, "Invalid Texture Unit");
1044 /* bad *matrix_id */
1045 return 1;
1046 }
1047 break;
1048
1049 /* This is not currently supported (ARB_matrix_palette) */
1050 case MATRIX_PALETTE:
1051 *matrix_idx = parse_integer (inst, Program);
1052 program_error(ctx, Program->Position,
1053 "ARB_matrix_palette not supported");
1054 return 1;
1055 break;
1056
1057 case MATRIX_PROGRAM:
1058 *matrix = STATE_PROGRAM_MATRIX;
1059 *matrix_idx = parse_integer (inst, Program);
1060 if (*matrix_idx >= (GLint) ctx->Const.MaxProgramMatrices) {
1061 program_error(ctx, Program->Position, "Invalid Program Matrix");
1062 /* bad *matrix_idx */
1063 return 1;
1064 }
1065 break;
1066 }
1067
1068 switch (*(*inst)++) {
1069 case MATRIX_MODIFIER_IDENTITY:
1070 *matrix_modifier = 0;
1071 break;
1072 case MATRIX_MODIFIER_INVERSE:
1073 *matrix_modifier = STATE_MATRIX_INVERSE;
1074 break;
1075 case MATRIX_MODIFIER_TRANSPOSE:
1076 *matrix_modifier = STATE_MATRIX_TRANSPOSE;
1077 break;
1078 case MATRIX_MODIFIER_INVTRANS:
1079 *matrix_modifier = STATE_MATRIX_INVTRANS;
1080 break;
1081 }
1082
1083 return 0;
1084 }
1085
1086
1087 /**
1088 * This parses a state string (rather, the binary version of it) into
1089 * a 6-token sequence as described in _mesa_fetch_state() [program.c]
1090 *
1091 * \param inst - the start in the binary arry to start working from
1092 * \param state_tokens - the storage for the 6-token state description
1093 * \return - 0 on sucess, 1 on error
1094 */
1095 static GLuint
1096 parse_state_single_item (GLcontext * ctx, const GLubyte ** inst,
1097 struct arb_program *Program,
1098 gl_state_index state_tokens[STATE_LENGTH])
1099 {
1100 switch (*(*inst)++) {
1101 case STATE_MATERIAL_PARSER:
1102 state_tokens[0] = STATE_MATERIAL;
1103 state_tokens[1] = parse_face_type (inst);
1104 switch (*(*inst)++) {
1105 case MATERIAL_AMBIENT:
1106 state_tokens[2] = STATE_AMBIENT;
1107 break;
1108 case MATERIAL_DIFFUSE:
1109 state_tokens[2] = STATE_DIFFUSE;
1110 break;
1111 case MATERIAL_SPECULAR:
1112 state_tokens[2] = STATE_SPECULAR;
1113 break;
1114 case MATERIAL_EMISSION:
1115 state_tokens[2] = STATE_EMISSION;
1116 break;
1117 case MATERIAL_SHININESS:
1118 state_tokens[2] = STATE_SHININESS;
1119 break;
1120 }
1121 break;
1122
1123 case STATE_LIGHT_PARSER:
1124 state_tokens[0] = STATE_LIGHT;
1125 state_tokens[1] = parse_integer (inst, Program);
1126
1127 /* Check the value of state_tokens[1] against the # of lights */
1128 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1129 program_error(ctx, Program->Position, "Invalid Light Number");
1130 /* bad state_tokens[1] */
1131 return 1;
1132 }
1133
1134 switch (*(*inst)++) {
1135 case LIGHT_AMBIENT:
1136 state_tokens[2] = STATE_AMBIENT;
1137 break;
1138 case LIGHT_DIFFUSE:
1139 state_tokens[2] = STATE_DIFFUSE;
1140 break;
1141 case LIGHT_SPECULAR:
1142 state_tokens[2] = STATE_SPECULAR;
1143 break;
1144 case LIGHT_POSITION:
1145 state_tokens[2] = STATE_POSITION;
1146 break;
1147 case LIGHT_ATTENUATION:
1148 state_tokens[2] = STATE_ATTENUATION;
1149 break;
1150 case LIGHT_HALF:
1151 state_tokens[2] = STATE_HALF_VECTOR;
1152 break;
1153 case LIGHT_SPOT_DIRECTION:
1154 state_tokens[2] = STATE_SPOT_DIRECTION;
1155 break;
1156 }
1157 break;
1158
1159 case STATE_LIGHT_MODEL:
1160 switch (*(*inst)++) {
1161 case LIGHT_MODEL_AMBIENT:
1162 state_tokens[0] = STATE_LIGHTMODEL_AMBIENT;
1163 break;
1164 case LIGHT_MODEL_SCENECOLOR:
1165 state_tokens[0] = STATE_LIGHTMODEL_SCENECOLOR;
1166 state_tokens[1] = parse_face_type (inst);
1167 break;
1168 }
1169 break;
1170
1171 case STATE_LIGHT_PROD:
1172 state_tokens[0] = STATE_LIGHTPROD;
1173 state_tokens[1] = parse_integer (inst, Program);
1174
1175 /* Check the value of state_tokens[1] against the # of lights */
1176 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1177 program_error(ctx, Program->Position, "Invalid Light Number");
1178 /* bad state_tokens[1] */
1179 return 1;
1180 }
1181
1182 state_tokens[2] = parse_face_type (inst);
1183 switch (*(*inst)++) {
1184 case LIGHT_PROD_AMBIENT:
1185 state_tokens[3] = STATE_AMBIENT;
1186 break;
1187 case LIGHT_PROD_DIFFUSE:
1188 state_tokens[3] = STATE_DIFFUSE;
1189 break;
1190 case LIGHT_PROD_SPECULAR:
1191 state_tokens[3] = STATE_SPECULAR;
1192 break;
1193 }
1194 break;
1195
1196
1197 case STATE_FOG:
1198 switch (*(*inst)++) {
1199 case FOG_COLOR:
1200 state_tokens[0] = STATE_FOG_COLOR;
1201 break;
1202 case FOG_PARAMS:
1203 state_tokens[0] = STATE_FOG_PARAMS;
1204 break;
1205 }
1206 break;
1207
1208 case STATE_TEX_ENV:
1209 state_tokens[1] = parse_integer (inst, Program);
1210 switch (*(*inst)++) {
1211 case TEX_ENV_COLOR:
1212 state_tokens[0] = STATE_TEXENV_COLOR;
1213 break;
1214 }
1215 break;
1216
1217 case STATE_TEX_GEN:
1218 {
1219 GLuint type, coord;
1220
1221 state_tokens[0] = STATE_TEXGEN;
1222 /*state_tokens[1] = parse_integer (inst, Program);*/ /* Texture Unit */
1223
1224 if (parse_texcoord_num (ctx, inst, Program, &coord))
1225 return 1;
1226 state_tokens[1] = coord;
1227
1228 /* EYE or OBJECT */
1229 type = *(*inst++);
1230
1231 /* 0 - s, 1 - t, 2 - r, 3 - q */
1232 coord = *(*inst++);
1233
1234 if (type == TEX_GEN_EYE) {
1235 switch (coord) {
1236 case COMPONENT_X:
1237 state_tokens[2] = STATE_TEXGEN_EYE_S;
1238 break;
1239 case COMPONENT_Y:
1240 state_tokens[2] = STATE_TEXGEN_EYE_T;
1241 break;
1242 case COMPONENT_Z:
1243 state_tokens[2] = STATE_TEXGEN_EYE_R;
1244 break;
1245 case COMPONENT_W:
1246 state_tokens[2] = STATE_TEXGEN_EYE_Q;
1247 break;
1248 }
1249 }
1250 else {
1251 switch (coord) {
1252 case COMPONENT_X:
1253 state_tokens[2] = STATE_TEXGEN_OBJECT_S;
1254 break;
1255 case COMPONENT_Y:
1256 state_tokens[2] = STATE_TEXGEN_OBJECT_T;
1257 break;
1258 case COMPONENT_Z:
1259 state_tokens[2] = STATE_TEXGEN_OBJECT_R;
1260 break;
1261 case COMPONENT_W:
1262 state_tokens[2] = STATE_TEXGEN_OBJECT_Q;
1263 break;
1264 }
1265 }
1266 }
1267 break;
1268
1269 case STATE_DEPTH:
1270 switch (*(*inst)++) {
1271 case DEPTH_RANGE:
1272 state_tokens[0] = STATE_DEPTH_RANGE;
1273 break;
1274 }
1275 break;
1276
1277 case STATE_CLIP_PLANE:
1278 state_tokens[0] = STATE_CLIPPLANE;
1279 state_tokens[1] = parse_integer (inst, Program);
1280 if (parse_clipplane_num (ctx, inst, Program,
1281 (GLint *) &state_tokens[1]))
1282 return 1;
1283 break;
1284
1285 case STATE_POINT:
1286 switch (*(*inst++)) {
1287 case POINT_SIZE:
1288 state_tokens[0] = STATE_POINT_SIZE;
1289 break;
1290
1291 case POINT_ATTENUATION:
1292 state_tokens[0] = STATE_POINT_ATTENUATION;
1293 break;
1294 }
1295 break;
1296
1297 /* XXX: I think this is the correct format for a matrix row */
1298 case STATE_MATRIX_ROWS:
1299 if (parse_matrix(ctx, inst, Program,
1300 (GLint *) &state_tokens[0],
1301 (GLint *) &state_tokens[1],
1302 (GLint *) &state_tokens[4]))
1303 return 1;
1304
1305 state_tokens[2] = parse_integer (inst, Program); /* The first row to grab */
1306
1307 if ((**inst) != 0) { /* Either the last row, 0 */
1308 state_tokens[3] = parse_integer (inst, Program);
1309 if (state_tokens[3] < state_tokens[2]) {
1310 program_error(ctx, Program->Position,
1311 "Second matrix index less than the first");
1312 /* state_tokens[4] vs. state_tokens[3] */
1313 return 1;
1314 }
1315 }
1316 else {
1317 state_tokens[3] = state_tokens[2];
1318 (*inst)++;
1319 }
1320 break;
1321 }
1322
1323 return 0;
1324 }
1325
1326 /**
1327 * This parses a state string (rather, the binary version of it) into
1328 * a 6-token similar for the state fetching code in program.c
1329 *
1330 * One might ask, why fetch these parameters into just like you fetch
1331 * state when they are already stored in other places?
1332 *
1333 * Because of array offsets -> We can stick env/local parameters in the
1334 * middle of a parameter array and then index someplace into the array
1335 * when we execute.
1336 *
1337 * One optimization might be to only do this for the cases where the
1338 * env/local parameters end up inside of an array, and leave the
1339 * single parameters (or arrays of pure env/local pareameters) in their
1340 * respective register files.
1341 *
1342 * For ENV parameters, the format is:
1343 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1344 * state_tokens[1] = STATE_ENV
1345 * state_tokens[2] = the parameter index
1346 *
1347 * for LOCAL parameters, the format is:
1348 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1349 * state_tokens[1] = STATE_LOCAL
1350 * state_tokens[2] = the parameter index
1351 *
1352 * \param inst - the start in the binary arry to start working from
1353 * \param state_tokens - the storage for the 6-token state description
1354 * \return - 0 on sucess, 1 on failure
1355 */
1356 static GLuint
1357 parse_program_single_item (GLcontext * ctx, const GLubyte ** inst,
1358 struct arb_program *Program,
1359 gl_state_index state_tokens[STATE_LENGTH])
1360 {
1361 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1362 state_tokens[0] = STATE_FRAGMENT_PROGRAM;
1363 else
1364 state_tokens[0] = STATE_VERTEX_PROGRAM;
1365
1366
1367 switch (*(*inst)++) {
1368 case PROGRAM_PARAM_ENV:
1369 state_tokens[1] = STATE_ENV;
1370 state_tokens[2] = parse_integer (inst, Program);
1371
1372 /* Check state_tokens[2] against the number of ENV parameters available */
1373 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1374 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxEnvParams))
1375 ||
1376 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1377 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxEnvParams))) {
1378 program_error(ctx, Program->Position,
1379 "Invalid Program Env Parameter");
1380 /* bad state_tokens[2] */
1381 return 1;
1382 }
1383
1384 break;
1385
1386 case PROGRAM_PARAM_LOCAL:
1387 state_tokens[1] = STATE_LOCAL;
1388 state_tokens[2] = parse_integer (inst, Program);
1389
1390 /* Check state_tokens[2] against the number of LOCAL parameters available */
1391 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1392 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxLocalParams))
1393 ||
1394 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1395 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxLocalParams))) {
1396 program_error(ctx, Program->Position,
1397 "Invalid Program Local Parameter");
1398 /* bad state_tokens[2] */
1399 return 1;
1400 }
1401 break;
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * For ARB_vertex_program, programs are not allowed to use both an explicit
1409 * vertex attribute and a generic vertex attribute corresponding to the same
1410 * state. See section 2.14.3.1 of the GL_ARB_vertex_program spec.
1411 *
1412 * This will walk our var_cache and make sure that nobody does anything fishy.
1413 *
1414 * \return 0 on sucess, 1 on error
1415 */
1416 static GLuint
1417 generic_attrib_check(struct var_cache *vc_head)
1418 {
1419 int a;
1420 struct var_cache *curr;
1421 GLboolean explicitAttrib[MAX_VERTEX_PROGRAM_ATTRIBS],
1422 genericAttrib[MAX_VERTEX_PROGRAM_ATTRIBS];
1423
1424 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1425 explicitAttrib[a] = GL_FALSE;
1426 genericAttrib[a] = GL_FALSE;
1427 }
1428
1429 curr = vc_head;
1430 while (curr) {
1431 if (curr->type == vt_attrib) {
1432 if (curr->attrib_is_generic)
1433 genericAttrib[ curr->attrib_binding ] = GL_TRUE;
1434 else
1435 explicitAttrib[ curr->attrib_binding ] = GL_TRUE;
1436 }
1437
1438 curr = curr->next;
1439 }
1440
1441 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1442 if ((explicitAttrib[a]) && (genericAttrib[a]))
1443 return 1;
1444 }
1445
1446 return 0;
1447 }
1448
1449 /**
1450 * This will handle the binding side of an ATTRIB var declaration
1451 *
1452 * \param inputReg returns the input register index, one of the
1453 * VERT_ATTRIB_* or FRAG_ATTRIB_* values.
1454 * \return returns 0 on success, 1 on error
1455 */
1456 static GLuint
1457 parse_attrib_binding(GLcontext * ctx, const GLubyte ** inst,
1458 struct arb_program *Program,
1459 GLuint *inputReg, GLuint *is_generic)
1460 {
1461 GLint err = 0;
1462
1463 *is_generic = 0;
1464
1465 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1466 switch (*(*inst)++) {
1467 case FRAGMENT_ATTRIB_COLOR:
1468 {
1469 GLint coord;
1470 err = parse_color_type (ctx, inst, Program, &coord);
1471 *inputReg = FRAG_ATTRIB_COL0 + coord;
1472 }
1473 break;
1474 case FRAGMENT_ATTRIB_TEXCOORD:
1475 {
1476 GLuint texcoord = 0;
1477 err = parse_texcoord_num (ctx, inst, Program, &texcoord);
1478 *inputReg = FRAG_ATTRIB_TEX0 + texcoord;
1479 }
1480 break;
1481 case FRAGMENT_ATTRIB_FOGCOORD:
1482 *inputReg = FRAG_ATTRIB_FOGC;
1483 break;
1484 case FRAGMENT_ATTRIB_POSITION:
1485 *inputReg = FRAG_ATTRIB_WPOS;
1486 break;
1487 default:
1488 err = 1;
1489 break;
1490 }
1491 }
1492 else {
1493 switch (*(*inst)++) {
1494 case VERTEX_ATTRIB_POSITION:
1495 *inputReg = VERT_ATTRIB_POS;
1496 break;
1497
1498 case VERTEX_ATTRIB_WEIGHT:
1499 {
1500 GLint weight;
1501 err = parse_weight_num (ctx, inst, Program, &weight);
1502 *inputReg = VERT_ATTRIB_WEIGHT;
1503 #if 1
1504 /* hack for Warcraft (see bug 8060) */
1505 _mesa_warning(ctx, "Application error: vertex program uses 'vertex.weight' but GL_ARB_vertex_blend not supported.");
1506 break;
1507 #else
1508 program_error(ctx, Program->Position,
1509 "ARB_vertex_blend not supported");
1510 return 1;
1511 #endif
1512 }
1513
1514 case VERTEX_ATTRIB_NORMAL:
1515 *inputReg = VERT_ATTRIB_NORMAL;
1516 break;
1517
1518 case VERTEX_ATTRIB_COLOR:
1519 {
1520 GLint color;
1521 err = parse_color_type (ctx, inst, Program, &color);
1522 if (color) {
1523 *inputReg = VERT_ATTRIB_COLOR1;
1524 }
1525 else {
1526 *inputReg = VERT_ATTRIB_COLOR0;
1527 }
1528 }
1529 break;
1530
1531 case VERTEX_ATTRIB_FOGCOORD:
1532 *inputReg = VERT_ATTRIB_FOG;
1533 break;
1534
1535 case VERTEX_ATTRIB_TEXCOORD:
1536 {
1537 GLuint unit = 0;
1538 err = parse_texcoord_num (ctx, inst, Program, &unit);
1539 *inputReg = VERT_ATTRIB_TEX0 + unit;
1540 }
1541 break;
1542
1543 case VERTEX_ATTRIB_MATRIXINDEX:
1544 /* Not supported at this time */
1545 {
1546 const char *msg = "ARB_palette_matrix not supported";
1547 parse_integer (inst, Program);
1548 program_error(ctx, Program->Position, msg);
1549 }
1550 return 1;
1551
1552 case VERTEX_ATTRIB_GENERIC:
1553 {
1554 GLuint attrib;
1555 err = parse_generic_attrib_num(ctx, inst, Program, &attrib);
1556 if (!err) {
1557 *is_generic = 1;
1558 /* Add VERT_ATTRIB_GENERIC0 here because ARB_vertex_program's
1559 * attributes do not alias the conventional vertex
1560 * attributes.
1561 */
1562 if (attrib > 0)
1563 *inputReg = attrib + VERT_ATTRIB_GENERIC0;
1564 else
1565 *inputReg = 0;
1566 }
1567 }
1568 break;
1569
1570 default:
1571 err = 1;
1572 break;
1573 }
1574 }
1575
1576 if (err) {
1577 program_error(ctx, Program->Position, "Bad attribute binding");
1578 }
1579
1580 Program->Base.InputsRead |= (1 << *inputReg);
1581
1582 return err;
1583 }
1584
1585
1586 /**
1587 * This translates between a binary token for an output variable type
1588 * and the mesa token for the same thing.
1589 *
1590 * \param inst The parsed tokens
1591 * \param outputReg Returned index/number of the output register,
1592 * one of the VERT_RESULT_* or FRAG_RESULT_* values.
1593 */
1594 static GLuint
1595 parse_result_binding(GLcontext *ctx, const GLubyte **inst,
1596 GLuint *outputReg, struct arb_program *Program)
1597 {
1598 const GLubyte token = *(*inst)++;
1599
1600 switch (token) {
1601 case FRAGMENT_RESULT_COLOR:
1602 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1603 GLuint out_color;
1604
1605 /* This gets result of the color buffer we're supposed to
1606 * draw into. This pertains to GL_ARB_draw_buffers.
1607 */
1608 parse_output_color_num(ctx, inst, Program, &out_color);
1609 ASSERT(out_color < MAX_DRAW_BUFFERS);
1610 *outputReg = FRAG_RESULT_COLR;
1611 }
1612 else {
1613 /* for vtx programs, this is VERTEX_RESULT_POSITION */
1614 *outputReg = VERT_RESULT_HPOS;
1615 }
1616 break;
1617
1618 case FRAGMENT_RESULT_DEPTH:
1619 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1620 /* for frag programs, this is FRAGMENT_RESULT_DEPTH */
1621 *outputReg = FRAG_RESULT_DEPR;
1622 }
1623 else {
1624 /* for vtx programs, this is VERTEX_RESULT_COLOR */
1625 GLint color_type;
1626 GLuint face_type = parse_face_type(inst);
1627 GLint err = parse_color_type(ctx, inst, Program, &color_type);
1628 if (err)
1629 return 1;
1630
1631 if (face_type) {
1632 /* back face */
1633 if (color_type) {
1634 *outputReg = VERT_RESULT_BFC1; /* secondary color */
1635 }
1636 else {
1637 *outputReg = VERT_RESULT_BFC0; /* primary color */
1638 }
1639 }
1640 else {
1641 /* front face */
1642 if (color_type) {
1643 *outputReg = VERT_RESULT_COL1; /* secondary color */
1644 }
1645 /* primary color */
1646 else {
1647 *outputReg = VERT_RESULT_COL0; /* primary color */
1648 }
1649 }
1650 }
1651 break;
1652
1653 case VERTEX_RESULT_FOGCOORD:
1654 *outputReg = VERT_RESULT_FOGC;
1655 break;
1656
1657 case VERTEX_RESULT_POINTSIZE:
1658 *outputReg = VERT_RESULT_PSIZ;
1659 break;
1660
1661 case VERTEX_RESULT_TEXCOORD:
1662 {
1663 GLuint unit;
1664 if (parse_texcoord_num (ctx, inst, Program, &unit))
1665 return 1;
1666 *outputReg = VERT_RESULT_TEX0 + unit;
1667 }
1668 break;
1669 }
1670
1671 Program->Base.OutputsWritten |= (1 << *outputReg);
1672
1673 return 0;
1674 }
1675
1676
1677 /**
1678 * This handles the declaration of ATTRIB variables
1679 *
1680 * XXX: Still needs
1681 * parse_vert_attrib_binding(), or something like that
1682 *
1683 * \return 0 on sucess, 1 on error
1684 */
1685 static GLint
1686 parse_attrib (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1687 struct arb_program *Program)
1688 {
1689 GLuint found;
1690 char *error_msg;
1691 struct var_cache *attrib_var;
1692
1693 attrib_var = parse_string (inst, vc_head, Program, &found);
1694 Program->Position = parse_position (inst);
1695 if (found) {
1696 error_msg = (char *)
1697 _mesa_malloc (_mesa_strlen ((char *) attrib_var->name) + 40);
1698 _mesa_sprintf (error_msg, "Duplicate Varible Declaration: %s",
1699 attrib_var->name);
1700 program_error(ctx, Program->Position, error_msg);
1701 _mesa_free (error_msg);
1702 return 1;
1703 }
1704
1705 attrib_var->type = vt_attrib;
1706
1707 if (parse_attrib_binding(ctx, inst, Program, &attrib_var->attrib_binding,
1708 &attrib_var->attrib_is_generic))
1709 return 1;
1710
1711 if (generic_attrib_check(*vc_head)) {
1712 program_error(ctx, Program->Position,
1713 "Cannot use both a generic vertex attribute "
1714 "and a specific attribute of the same type");
1715 return 1;
1716 }
1717
1718 Program->Base.NumAttributes++;
1719 return 0;
1720 }
1721
1722 /**
1723 * \param use -- TRUE if we're called when declaring implicit parameters,
1724 * FALSE if we're declaraing variables. This has to do with
1725 * if we get a signed or unsigned float for scalar constants
1726 */
1727 static GLuint
1728 parse_param_elements (GLcontext * ctx, const GLubyte ** inst,
1729 struct var_cache *param_var,
1730 struct arb_program *Program, GLboolean use)
1731 {
1732 GLint idx;
1733 GLuint err = 0;
1734 gl_state_index state_tokens[STATE_LENGTH];
1735 GLfloat const_values[4];
1736
1737 switch (*(*inst)++) {
1738 case PARAM_STATE_ELEMENT:
1739 if (parse_state_single_item (ctx, inst, Program, state_tokens))
1740 return 1;
1741
1742 /* If we adding STATE_MATRIX that has multiple rows, we need to
1743 * unroll it and call _mesa_add_state_reference() for each row
1744 */
1745 if ((state_tokens[0] == STATE_MODELVIEW_MATRIX ||
1746 state_tokens[0] == STATE_PROJECTION_MATRIX ||
1747 state_tokens[0] == STATE_MVP_MATRIX ||
1748 state_tokens[0] == STATE_TEXTURE_MATRIX ||
1749 state_tokens[0] == STATE_PROGRAM_MATRIX)
1750 && (state_tokens[2] != state_tokens[3])) {
1751 GLint row;
1752 const GLint first_row = state_tokens[2];
1753 const GLint last_row = state_tokens[3];
1754
1755 for (row = first_row; row <= last_row; row++) {
1756 state_tokens[2] = state_tokens[3] = row;
1757
1758 idx = _mesa_add_state_reference(Program->Base.Parameters,
1759 state_tokens);
1760 if (param_var->param_binding_begin == ~0U)
1761 param_var->param_binding_begin = idx;
1762 param_var->param_binding_length++;
1763 Program->Base.NumParameters++;
1764 }
1765 }
1766 else {
1767 idx = _mesa_add_state_reference(Program->Base.Parameters,
1768 state_tokens);
1769 if (param_var->param_binding_begin == ~0U)
1770 param_var->param_binding_begin = idx;
1771 param_var->param_binding_length++;
1772 Program->Base.NumParameters++;
1773 }
1774 break;
1775
1776 case PARAM_PROGRAM_ELEMENT:
1777 if (parse_program_single_item (ctx, inst, Program, state_tokens))
1778 return 1;
1779 idx = _mesa_add_state_reference (Program->Base.Parameters, state_tokens);
1780 if (param_var->param_binding_begin == ~0U)
1781 param_var->param_binding_begin = idx;
1782 param_var->param_binding_length++;
1783 Program->Base.NumParameters++;
1784
1785 /* Check if there is more: 0 -> we're done, else its an integer */
1786 if (**inst) {
1787 GLuint out_of_range, new_idx;
1788 GLuint start_idx = state_tokens[2] + 1;
1789 GLuint end_idx = parse_integer (inst, Program);
1790
1791 out_of_range = 0;
1792 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1793 if (((state_tokens[1] == STATE_ENV)
1794 && (end_idx >= ctx->Const.FragmentProgram.MaxEnvParams))
1795 || ((state_tokens[1] == STATE_LOCAL)
1796 && (end_idx >=
1797 ctx->Const.FragmentProgram.MaxLocalParams)))
1798 out_of_range = 1;
1799 }
1800 else {
1801 if (((state_tokens[1] == STATE_ENV)
1802 && (end_idx >= ctx->Const.VertexProgram.MaxEnvParams))
1803 || ((state_tokens[1] == STATE_LOCAL)
1804 && (end_idx >=
1805 ctx->Const.VertexProgram.MaxLocalParams)))
1806 out_of_range = 1;
1807 }
1808 if (out_of_range) {
1809 program_error(ctx, Program->Position,
1810 "Invalid Program Parameter"); /*end_idx*/
1811 return 1;
1812 }
1813
1814 for (new_idx = start_idx; new_idx <= end_idx; new_idx++) {
1815 state_tokens[2] = new_idx;
1816 idx = _mesa_add_state_reference(Program->Base.Parameters,
1817 state_tokens);
1818 param_var->param_binding_length++;
1819 Program->Base.NumParameters++;
1820 }
1821 }
1822 else {
1823 (*inst)++;
1824 }
1825 break;
1826
1827 case PARAM_CONSTANT:
1828 parse_constant (inst, const_values, Program, use);
1829 idx = _mesa_add_named_constant(Program->Base.Parameters,
1830 (char *) param_var->name,
1831 const_values, 4);
1832 if (param_var->param_binding_begin == ~0U)
1833 param_var->param_binding_begin = idx;
1834 param_var->param_binding_length++;
1835 Program->Base.NumParameters++;
1836 break;
1837
1838 default:
1839 program_error(ctx, Program->Position,
1840 "Unexpected token (in parse_param_elements())");
1841 return 1;
1842 }
1843
1844 /* Make sure we haven't blown past our parameter limits */
1845 if (((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1846 (Program->Base.NumParameters >=
1847 ctx->Const.VertexProgram.MaxLocalParams))
1848 || ((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1849 && (Program->Base.NumParameters >=
1850 ctx->Const.FragmentProgram.MaxLocalParams))) {
1851 program_error(ctx, Program->Position, "Too many parameter variables");
1852 return 1;
1853 }
1854
1855 return err;
1856 }
1857
1858
1859 /**
1860 * This picks out PARAM program parameter bindings.
1861 *
1862 * XXX: This needs to be stressed & tested
1863 *
1864 * \return 0 on sucess, 1 on error
1865 */
1866 static GLuint
1867 parse_param (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1868 struct arb_program *Program)
1869 {
1870 GLuint found, err;
1871 GLint specified_length;
1872 struct var_cache *param_var;
1873
1874 err = 0;
1875 param_var = parse_string (inst, vc_head, Program, &found);
1876 Program->Position = parse_position (inst);
1877
1878 if (found) {
1879 char *error_msg = (char *)
1880 _mesa_malloc (_mesa_strlen ((char *) param_var->name) + 40);
1881 _mesa_sprintf (error_msg, "Duplicate Varible Declaration: %s",
1882 param_var->name);
1883 program_error (ctx, Program->Position, error_msg);
1884 _mesa_free (error_msg);
1885 return 1;
1886 }
1887
1888 specified_length = parse_integer (inst, Program);
1889
1890 if (specified_length < 0) {
1891 program_error(ctx, Program->Position, "Negative parameter array length");
1892 return 1;
1893 }
1894
1895 param_var->type = vt_param;
1896 param_var->param_binding_length = 0;
1897
1898 /* Right now, everything is shoved into the main state register file.
1899 *
1900 * In the future, it would be nice to leave things ENV/LOCAL params
1901 * in their respective register files, if possible
1902 */
1903 param_var->param_binding_type = PROGRAM_STATE_VAR;
1904
1905 /* Remember to:
1906 * * - add each guy to the parameter list
1907 * * - increment the param_var->param_binding_len
1908 * * - store the param_var->param_binding_begin for the first one
1909 * * - compare the actual len to the specified len at the end
1910 */
1911 while (**inst != PARAM_NULL) {
1912 if (parse_param_elements (ctx, inst, param_var, Program, GL_FALSE))
1913 return 1;
1914 }
1915
1916 /* Test array length here! */
1917 if (specified_length) {
1918 if (specified_length != (int)param_var->param_binding_length) {
1919 program_error(ctx, Program->Position,
1920 "Declared parameter array length does not match parameter list");
1921 }
1922 }
1923
1924 (*inst)++;
1925
1926 return 0;
1927 }
1928
1929 /**
1930 *
1931 */
1932 static GLuint
1933 parse_param_use (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1934 struct arb_program *Program, struct var_cache **new_var)
1935 {
1936 struct var_cache *param_var;
1937
1938 /* First, insert a dummy entry into the var_cache */
1939 var_cache_create (&param_var);
1940 param_var->name = (const GLubyte *) " ";
1941 param_var->type = vt_param;
1942
1943 param_var->param_binding_length = 0;
1944 /* Don't fill in binding_begin; We use the default value of -1
1945 * to tell if its already initialized, elsewhere.
1946 *
1947 * param_var->param_binding_begin = 0;
1948 */
1949 param_var->param_binding_type = PROGRAM_STATE_VAR;
1950
1951 var_cache_append (vc_head, param_var);
1952
1953 /* Then fill it with juicy parameter goodness */
1954 if (parse_param_elements (ctx, inst, param_var, Program, GL_TRUE))
1955 return 1;
1956
1957 *new_var = param_var;
1958
1959 return 0;
1960 }
1961
1962
1963 /**
1964 * This handles the declaration of TEMP variables
1965 *
1966 * \return 0 on sucess, 1 on error
1967 */
1968 static GLuint
1969 parse_temp (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1970 struct arb_program *Program)
1971 {
1972 GLuint found;
1973 struct var_cache *temp_var;
1974
1975 while (**inst != 0) {
1976 temp_var = parse_string (inst, vc_head, Program, &found);
1977 Program->Position = parse_position (inst);
1978 if (found) {
1979 char *error_msg = (char *)
1980 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
1981 _mesa_sprintf (error_msg, "Duplicate Varible Declaration: %s",
1982 temp_var->name);
1983 program_error(ctx, Program->Position, error_msg);
1984 _mesa_free (error_msg);
1985 return 1;
1986 }
1987
1988 temp_var->type = vt_temp;
1989
1990 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1991 (Program->Base.NumTemporaries >=
1992 ctx->Const.FragmentProgram.MaxTemps))
1993 || ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
1994 && (Program->Base.NumTemporaries >=
1995 ctx->Const.VertexProgram.MaxTemps))) {
1996 program_error(ctx, Program->Position,
1997 "Too many TEMP variables declared");
1998 return 1;
1999 }
2000
2001 temp_var->temp_binding = Program->Base.NumTemporaries;
2002 Program->Base.NumTemporaries++;
2003 }
2004 (*inst)++;
2005
2006 return 0;
2007 }
2008
2009 /**
2010 * This handles variables of the OUTPUT variety
2011 *
2012 * \return 0 on sucess, 1 on error
2013 */
2014 static GLuint
2015 parse_output (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2016 struct arb_program *Program)
2017 {
2018 GLuint found;
2019 struct var_cache *output_var;
2020 GLuint err;
2021
2022 output_var = parse_string (inst, vc_head, Program, &found);
2023 Program->Position = parse_position (inst);
2024 if (found) {
2025 char *error_msg = (char *)
2026 _mesa_malloc (_mesa_strlen ((char *) output_var->name) + 40);
2027 _mesa_sprintf (error_msg, "Duplicate Varible Declaration: %s",
2028 output_var->name);
2029 program_error (ctx, Program->Position, error_msg);
2030 _mesa_free (error_msg);
2031 return 1;
2032 }
2033
2034 output_var->type = vt_output;
2035
2036 err = parse_result_binding(ctx, inst, &output_var->output_binding, Program);
2037 return err;
2038 }
2039
2040 /**
2041 * This handles variables of the ALIAS kind
2042 *
2043 * \return 0 on sucess, 1 on error
2044 */
2045 static GLuint
2046 parse_alias (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2047 struct arb_program *Program)
2048 {
2049 GLuint found;
2050 struct var_cache *temp_var;
2051
2052 temp_var = parse_string (inst, vc_head, Program, &found);
2053 Program->Position = parse_position (inst);
2054
2055 if (found) {
2056 char *error_msg = (char *)
2057 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
2058 _mesa_sprintf (error_msg, "Duplicate Varible Declaration: %s",
2059 temp_var->name);
2060 program_error(ctx, Program->Position, error_msg);
2061 _mesa_free (error_msg);
2062 return 1;
2063 }
2064
2065 temp_var->type = vt_alias;
2066 temp_var->alias_binding = parse_string (inst, vc_head, Program, &found);
2067 Program->Position = parse_position (inst);
2068
2069 if (!found)
2070 {
2071 char *error_msg = (char *)
2072 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
2073 _mesa_sprintf (error_msg, "Alias value %s is not defined",
2074 temp_var->alias_binding->name);
2075 program_error (ctx, Program->Position, error_msg);
2076 _mesa_free (error_msg);
2077 return 1;
2078 }
2079
2080 return 0;
2081 }
2082
2083 /**
2084 * This handles variables of the ADDRESS kind
2085 *
2086 * \return 0 on sucess, 1 on error
2087 */
2088 static GLuint
2089 parse_address (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2090 struct arb_program *Program)
2091 {
2092 GLuint found;
2093 struct var_cache *temp_var;
2094
2095 while (**inst != 0) {
2096 temp_var = parse_string (inst, vc_head, Program, &found);
2097 Program->Position = parse_position (inst);
2098 if (found) {
2099 char *error_msg = (char *)
2100 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
2101 _mesa_sprintf (error_msg, "Duplicate Varible Declaration: %s",
2102 temp_var->name);
2103 program_error (ctx, Program->Position, error_msg);
2104 _mesa_free (error_msg);
2105 return 1;
2106 }
2107
2108 temp_var->type = vt_address;
2109
2110 if (Program->Base.NumAddressRegs >=
2111 ctx->Const.VertexProgram.MaxAddressRegs) {
2112 const char *msg = "Too many ADDRESS variables declared";
2113 program_error(ctx, Program->Position, msg);
2114 return 1;
2115 }
2116
2117 temp_var->address_binding = Program->Base.NumAddressRegs;
2118 Program->Base.NumAddressRegs++;
2119 }
2120 (*inst)++;
2121
2122 return 0;
2123 }
2124
2125 /**
2126 * Parse a program declaration
2127 *
2128 * \return 0 on sucess, 1 on error
2129 */
2130 static GLint
2131 parse_declaration (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2132 struct arb_program *Program)
2133 {
2134 GLint err = 0;
2135
2136 switch (*(*inst)++) {
2137 case ADDRESS:
2138 err = parse_address (ctx, inst, vc_head, Program);
2139 break;
2140
2141 case ALIAS:
2142 err = parse_alias (ctx, inst, vc_head, Program);
2143 break;
2144
2145 case ATTRIB:
2146 err = parse_attrib (ctx, inst, vc_head, Program);
2147 break;
2148
2149 case OUTPUT:
2150 err = parse_output (ctx, inst, vc_head, Program);
2151 break;
2152
2153 case PARAM:
2154 err = parse_param (ctx, inst, vc_head, Program);
2155 break;
2156
2157 case TEMP:
2158 err = parse_temp (ctx, inst, vc_head, Program);
2159 break;
2160 }
2161
2162 return err;
2163 }
2164
2165 /**
2166 * Handle the parsing out of a masked destination register, either for a
2167 * vertex or fragment program.
2168 *
2169 * If we are a vertex program, make sure we don't write to
2170 * result.position if we have specified that the program is
2171 * position invariant
2172 *
2173 * \param File - The register file we write to
2174 * \param Index - The register index we write to
2175 * \param WriteMask - The mask controlling which components we write (1->write)
2176 *
2177 * \return 0 on sucess, 1 on error
2178 */
2179 static GLuint
2180 parse_masked_dst_reg (GLcontext * ctx, const GLubyte ** inst,
2181 struct var_cache **vc_head, struct arb_program *Program,
2182 enum register_file *File, GLuint *Index, GLint *WriteMask)
2183 {
2184 GLuint tmp, result;
2185 struct var_cache *dst;
2186
2187 /* We either have a result register specified, or a
2188 * variable that may or may not be writable
2189 */
2190 switch (*(*inst)++) {
2191 case REGISTER_RESULT:
2192 if (parse_result_binding(ctx, inst, Index, Program))
2193 return 1;
2194 *File = PROGRAM_OUTPUT;
2195 break;
2196
2197 case REGISTER_ESTABLISHED_NAME:
2198 dst = parse_string (inst, vc_head, Program, &result);
2199 Program->Position = parse_position (inst);
2200
2201 /* If the name has never been added to our symbol table, we're hosed */
2202 if (!result) {
2203 program_error(ctx, Program->Position, "0: Undefined variable");
2204 return 1;
2205 }
2206
2207 switch (dst->type) {
2208 case vt_output:
2209 *File = PROGRAM_OUTPUT;
2210 *Index = dst->output_binding;
2211 break;
2212
2213 case vt_temp:
2214 *File = PROGRAM_TEMPORARY;
2215 *Index = dst->temp_binding;
2216 break;
2217
2218 /* If the var type is not vt_output or vt_temp, no go */
2219 default:
2220 program_error(ctx, Program->Position,
2221 "Destination register is read only");
2222 return 1;
2223 }
2224 break;
2225
2226 default:
2227 program_error(ctx, Program->Position,
2228 "Unexpected opcode in parse_masked_dst_reg()");
2229 return 1;
2230 }
2231
2232
2233 /* Position invariance test */
2234 /* This test is done now in syntax portion - when position invariance OPTION
2235 is specified, "result.position" rule is disabled so there is no way
2236 to write the position
2237 */
2238 /*if ((Program->HintPositionInvariant) && (*File == PROGRAM_OUTPUT) &&
2239 (*Index == 0)) {
2240 program_error(ctx, Program->Position,
2241 "Vertex program specified position invariance and wrote vertex position");
2242 }*/
2243
2244 /* And then the mask.
2245 * w,a -> bit 0
2246 * z,b -> bit 1
2247 * y,g -> bit 2
2248 * x,r -> bit 3
2249 *
2250 * ==> Need to reverse the order of bits for this!
2251 */
2252 tmp = (GLint) *(*inst)++;
2253 *WriteMask = (((tmp>>3) & 0x1) |
2254 ((tmp>>1) & 0x2) |
2255 ((tmp<<1) & 0x4) |
2256 ((tmp<<3) & 0x8));
2257
2258 return 0;
2259 }
2260
2261
2262 /**
2263 * Handle the parsing of a address register
2264 *
2265 * \param Index - The register index we write to
2266 *
2267 * \return 0 on sucess, 1 on error
2268 */
2269 static GLuint
2270 parse_address_reg (GLcontext * ctx, const GLubyte ** inst,
2271 struct var_cache **vc_head,
2272 struct arb_program *Program, GLint * Index)
2273 {
2274 struct var_cache *dst;
2275 GLuint result;
2276
2277 *Index = 0; /* XXX */
2278
2279 dst = parse_string (inst, vc_head, Program, &result);
2280 Program->Position = parse_position (inst);
2281
2282 /* If the name has never been added to our symbol table, we're hosed */
2283 if (!result) {
2284 program_error(ctx, Program->Position, "Undefined variable");
2285 return 1;
2286 }
2287
2288 if (dst->type != vt_address) {
2289 program_error(ctx, Program->Position, "Variable is not of type ADDRESS");
2290 return 1;
2291 }
2292
2293 return 0;
2294 }
2295
2296 #if 0 /* unused */
2297 /**
2298 * Handle the parsing out of a masked address register
2299 *
2300 * \param Index - The register index we write to
2301 * \param WriteMask - The mask controlling which components we write (1->write)
2302 *
2303 * \return 0 on sucess, 1 on error
2304 */
2305 static GLuint
2306 parse_masked_address_reg (GLcontext * ctx, const GLubyte ** inst,
2307 struct var_cache **vc_head,
2308 struct arb_program *Program, GLint * Index,
2309 GLboolean * WriteMask)
2310 {
2311 if (parse_address_reg (ctx, inst, vc_head, Program, Index))
2312 return 1;
2313
2314 /* This should be 0x8 */
2315 (*inst)++;
2316
2317 /* Writemask of .x is implied */
2318 WriteMask[0] = 1;
2319 WriteMask[1] = WriteMask[2] = WriteMask[3] = 0;
2320
2321 return 0;
2322 }
2323 #endif
2324
2325 /**
2326 * Parse out a swizzle mask.
2327 *
2328 * Basically convert COMPONENT_X/Y/Z/W to SWIZZLE_X/Y/Z/W
2329 *
2330 * The len parameter allows us to grab 4 components for a vector
2331 * swizzle, or just 1 component for a scalar src register selection
2332 */
2333 static void
2334 parse_swizzle_mask(const GLubyte ** inst, GLubyte *swizzle, GLint len)
2335 {
2336 GLint i;
2337
2338 for (i = 0; i < 4; i++)
2339 swizzle[i] = i;
2340
2341 for (i = 0; i < len; i++) {
2342 switch (*(*inst)++) {
2343 case COMPONENT_X:
2344 swizzle[i] = SWIZZLE_X;
2345 break;
2346 case COMPONENT_Y:
2347 swizzle[i] = SWIZZLE_Y;
2348 break;
2349 case COMPONENT_Z:
2350 swizzle[i] = SWIZZLE_Z;
2351 break;
2352 case COMPONENT_W:
2353 swizzle[i] = SWIZZLE_W;
2354 break;
2355 default:
2356 _mesa_problem(NULL, "bad component in parse_swizzle_mask()");
2357 return;
2358 }
2359 }
2360 }
2361
2362
2363 /**
2364 * Parse an extended swizzle mask which is a sequence of
2365 * four x/y/z/w/0/1 tokens.
2366 * \return swizzle four swizzle values
2367 * \return negateMask four element bitfield
2368 */
2369 static void
2370 parse_extended_swizzle_mask(const GLubyte **inst, GLubyte swizzle[4],
2371 GLubyte *negateMask)
2372 {
2373 GLint i;
2374
2375 *negateMask = 0x0;
2376 for (i = 0; i < 4; i++) {
2377 GLubyte swz;
2378 if (parse_sign(inst) == -1)
2379 *negateMask |= (1 << i);
2380
2381 swz = *(*inst)++;
2382
2383 switch (swz) {
2384 case COMPONENT_0:
2385 swizzle[i] = SWIZZLE_ZERO;
2386 break;
2387 case COMPONENT_1:
2388 swizzle[i] = SWIZZLE_ONE;
2389 break;
2390 case COMPONENT_X:
2391 swizzle[i] = SWIZZLE_X;
2392 break;
2393 case COMPONENT_Y:
2394 swizzle[i] = SWIZZLE_Y;
2395 break;
2396 case COMPONENT_Z:
2397 swizzle[i] = SWIZZLE_Z;
2398 break;
2399 case COMPONENT_W:
2400 swizzle[i] = SWIZZLE_W;
2401 break;
2402 default:
2403 _mesa_problem(NULL, "bad case in parse_extended_swizzle_mask()");
2404 return;
2405 }
2406 }
2407 }
2408
2409
2410 static GLuint
2411 parse_src_reg (GLcontext * ctx, const GLubyte ** inst,
2412 struct var_cache **vc_head,
2413 struct arb_program *Program,
2414 enum register_file * File, GLint * Index,
2415 GLboolean *IsRelOffset )
2416 {
2417 struct var_cache *src;
2418 GLuint binding, is_generic, found;
2419 GLint offset;
2420
2421 *IsRelOffset = 0;
2422
2423 /* And the binding for the src */
2424 switch (*(*inst)++) {
2425 case REGISTER_ATTRIB:
2426 if (parse_attrib_binding
2427 (ctx, inst, Program, &binding, &is_generic))
2428 return 1;
2429 *File = PROGRAM_INPUT;
2430 *Index = binding;
2431
2432 /* We need to insert a dummy variable into the var_cache so we can
2433 * catch generic vertex attrib aliasing errors
2434 */
2435 var_cache_create(&src);
2436 src->type = vt_attrib;
2437 src->name = (const GLubyte *) "Dummy Attrib Variable";
2438 src->attrib_binding = binding;
2439 src->attrib_is_generic = is_generic;
2440 var_cache_append(vc_head, src);
2441 if (generic_attrib_check(*vc_head)) {
2442 program_error(ctx, Program->Position,
2443 "Cannot use both a generic vertex attribute "
2444 "and a specific attribute of the same type");
2445 return 1;
2446 }
2447 break;
2448
2449 case REGISTER_PARAM:
2450 switch (**inst) {
2451 case PARAM_ARRAY_ELEMENT:
2452 (*inst)++;
2453 src = parse_string (inst, vc_head, Program, &found);
2454 Program->Position = parse_position (inst);
2455
2456 if (!found) {
2457 program_error(ctx, Program->Position,
2458 "2: Undefined variable"); /* src->name */
2459 return 1;
2460 }
2461
2462 *File = (enum register_file) src->param_binding_type;
2463
2464 switch (*(*inst)++) {
2465 case ARRAY_INDEX_ABSOLUTE:
2466 offset = parse_integer (inst, Program);
2467
2468 if ((offset < 0)
2469 || (offset >= (int)src->param_binding_length)) {
2470 program_error(ctx, Program->Position,
2471 "Index out of range");
2472 /* offset, src->name */
2473 return 1;
2474 }
2475
2476 *Index = src->param_binding_begin + offset;
2477 break;
2478
2479 case ARRAY_INDEX_RELATIVE:
2480 {
2481 GLint addr_reg_idx, rel_off;
2482
2483 /* First, grab the address regiseter */
2484 if (parse_address_reg (ctx, inst, vc_head, Program, &addr_reg_idx))
2485 return 1;
2486
2487 /* And the .x */
2488 ((*inst)++);
2489 ((*inst)++);
2490 ((*inst)++);
2491 ((*inst)++);
2492
2493 /* Then the relative offset */
2494 if (parse_relative_offset(ctx, inst, Program, &rel_off)) return 1;
2495
2496 /* And store it properly */
2497 *Index = src->param_binding_begin + rel_off;
2498 *IsRelOffset = 1;
2499 }
2500 break;
2501 }
2502 break;
2503
2504 default:
2505 if (parse_param_use (ctx, inst, vc_head, Program, &src))
2506 return 1;
2507
2508 *File = (enum register_file) src->param_binding_type;
2509 *Index = src->param_binding_begin;
2510 break;
2511 }
2512 break;
2513
2514 case REGISTER_ESTABLISHED_NAME:
2515 src = parse_string (inst, vc_head, Program, &found);
2516 Program->Position = parse_position (inst);
2517
2518 /* If the name has never been added to our symbol table, we're hosed */
2519 if (!found) {
2520 program_error(ctx, Program->Position,
2521 "3: Undefined variable"); /* src->name */
2522 return 1;
2523 }
2524
2525 switch (src->type) {
2526 case vt_attrib:
2527 *File = PROGRAM_INPUT;
2528 *Index = src->attrib_binding;
2529 break;
2530
2531 /* XXX: We have to handle offsets someplace in here! -- or are those above? */
2532 case vt_param:
2533 *File = (enum register_file) src->param_binding_type;
2534 *Index = src->param_binding_begin;
2535 break;
2536
2537 case vt_temp:
2538 *File = PROGRAM_TEMPORARY;
2539 *Index = src->temp_binding;
2540 break;
2541
2542 /* If the var type is vt_output no go */
2543 default:
2544 program_error(ctx, Program->Position,
2545 "destination register is read only");
2546 /* bad src->name */
2547 return 1;
2548 }
2549 break;
2550
2551 default:
2552 program_error(ctx, Program->Position,
2553 "Unknown token in parse_src_reg");
2554 return 1;
2555 }
2556
2557 return 0;
2558 }
2559
2560 /**
2561 * Parse fragment program vector source register.
2562 */
2563 static GLuint
2564 parse_fp_vector_src_reg(GLcontext * ctx, const GLubyte ** inst,
2565 struct var_cache **vc_head,
2566 struct arb_program *program,
2567 struct prog_src_register *reg)
2568 {
2569 enum register_file file;
2570 GLint index;
2571 GLboolean negate;
2572 GLubyte swizzle[4];
2573 GLboolean isRelOffset;
2574
2575 /* Grab the sign */
2576 negate = (parse_sign (inst) == -1) ? 0xf : 0x0;
2577
2578 /* And the src reg */
2579 if (parse_src_reg(ctx, inst, vc_head, program, &file, &index, &isRelOffset))
2580 return 1;
2581
2582 /* finally, the swizzle */
2583 parse_swizzle_mask(inst, swizzle, 4);
2584
2585 reg->File = file;
2586 reg->Index = index;
2587 reg->NegateBase = negate;
2588 reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2589 return 0;
2590 }
2591
2592
2593 /**
2594 * Parse fragment program destination register.
2595 * \return 1 if error, 0 if no error.
2596 */
2597 static GLuint
2598 parse_fp_dst_reg(GLcontext * ctx, const GLubyte ** inst,
2599 struct var_cache **vc_head, struct arb_program *Program,
2600 struct prog_dst_register *reg )
2601 {
2602 GLint mask;
2603 GLuint idx;
2604 enum register_file file;
2605
2606 if (parse_masked_dst_reg (ctx, inst, vc_head, Program, &file, &idx, &mask))
2607 return 1;
2608
2609 reg->File = file;
2610 reg->Index = idx;
2611 reg->WriteMask = mask;
2612 return 0;
2613 }
2614
2615
2616 /**
2617 * Parse fragment program scalar src register.
2618 * \return 1 if error, 0 if no error.
2619 */
2620 static GLuint
2621 parse_fp_scalar_src_reg (GLcontext * ctx, const GLubyte ** inst,
2622 struct var_cache **vc_head,
2623 struct arb_program *Program,
2624 struct prog_src_register *reg )
2625 {
2626 enum register_file File;
2627 GLint Index;
2628 GLubyte Negate;
2629 GLubyte Swizzle[4];
2630 GLboolean IsRelOffset;
2631
2632 /* Grab the sign */
2633 Negate = (parse_sign (inst) == -1) ? 0x1 : 0x0;
2634
2635 /* And the src reg */
2636 if (parse_src_reg (ctx, inst, vc_head, Program, &File, &Index, &IsRelOffset))
2637 return 1;
2638
2639 /* finally, the swizzle */
2640 parse_swizzle_mask(inst, Swizzle, 1);
2641
2642 reg->File = File;
2643 reg->Index = Index;
2644 reg->NegateBase = Negate;
2645 reg->Swizzle = (Swizzle[0] << 0);
2646
2647 return 0;
2648 }
2649
2650
2651 /**
2652 * This is a big mother that handles getting opcodes into the instruction
2653 * and handling the src & dst registers for fragment program instructions
2654 * \return 1 if error, 0 if no error
2655 */
2656 static GLuint
2657 parse_fp_instruction (GLcontext * ctx, const GLubyte ** inst,
2658 struct var_cache **vc_head, struct arb_program *Program,
2659 struct prog_instruction *fp)
2660 {
2661 GLint a;
2662 GLuint texcoord;
2663 GLubyte instClass, type, code;
2664 GLboolean rel;
2665 GLuint shadow_tex = 0;
2666
2667 _mesa_init_instructions(fp, 1);
2668
2669 /* Record the position in the program string for debugging */
2670 fp->StringPos = Program->Position;
2671
2672 /* OP_ALU_INST or OP_TEX_INST */
2673 instClass = *(*inst)++;
2674
2675 /* OP_ALU_{VECTOR, SCALAR, BINSC, BIN, TRI, SWZ},
2676 * OP_TEX_{SAMPLE, KIL}
2677 */
2678 type = *(*inst)++;
2679
2680 /* The actual opcode name */
2681 code = *(*inst)++;
2682
2683 /* Increment the correct count */
2684 switch (instClass) {
2685 case OP_ALU_INST:
2686 Program->NumAluInstructions++;
2687 break;
2688 case OP_TEX_INST:
2689 Program->NumTexInstructions++;
2690 break;
2691 }
2692
2693 switch (type) {
2694 case OP_ALU_VECTOR:
2695 switch (code) {
2696 case OP_ABS_SAT:
2697 fp->SaturateMode = SATURATE_ZERO_ONE;
2698 case OP_ABS:
2699 fp->Opcode = OPCODE_ABS;
2700 break;
2701
2702 case OP_FLR_SAT:
2703 fp->SaturateMode = SATURATE_ZERO_ONE;
2704 case OP_FLR:
2705 fp->Opcode = OPCODE_FLR;
2706 break;
2707
2708 case OP_FRC_SAT:
2709 fp->SaturateMode = SATURATE_ZERO_ONE;
2710 case OP_FRC:
2711 fp->Opcode = OPCODE_FRC;
2712 break;
2713
2714 case OP_LIT_SAT:
2715 fp->SaturateMode = SATURATE_ZERO_ONE;
2716 case OP_LIT:
2717 fp->Opcode = OPCODE_LIT;
2718 break;
2719
2720 case OP_MOV_SAT:
2721 fp->SaturateMode = SATURATE_ZERO_ONE;
2722 case OP_MOV:
2723 fp->Opcode = OPCODE_MOV;
2724 break;
2725 }
2726
2727 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2728 return 1;
2729
2730 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2731 return 1;
2732 break;
2733
2734 case OP_ALU_SCALAR:
2735 switch (code) {
2736 case OP_COS_SAT:
2737 fp->SaturateMode = SATURATE_ZERO_ONE;
2738 case OP_COS:
2739 fp->Opcode = OPCODE_COS;
2740 break;
2741
2742 case OP_EX2_SAT:
2743 fp->SaturateMode = SATURATE_ZERO_ONE;
2744 case OP_EX2:
2745 fp->Opcode = OPCODE_EX2;
2746 break;
2747
2748 case OP_LG2_SAT:
2749 fp->SaturateMode = SATURATE_ZERO_ONE;
2750 case OP_LG2:
2751 fp->Opcode = OPCODE_LG2;
2752 break;
2753
2754 case OP_RCP_SAT:
2755 fp->SaturateMode = SATURATE_ZERO_ONE;
2756 case OP_RCP:
2757 fp->Opcode = OPCODE_RCP;
2758 break;
2759
2760 case OP_RSQ_SAT:
2761 fp->SaturateMode = SATURATE_ZERO_ONE;
2762 case OP_RSQ:
2763 fp->Opcode = OPCODE_RSQ;
2764 break;
2765
2766 case OP_SIN_SAT:
2767 fp->SaturateMode = SATURATE_ZERO_ONE;
2768 case OP_SIN:
2769 fp->Opcode = OPCODE_SIN;
2770 break;
2771
2772 case OP_SCS_SAT:
2773 fp->SaturateMode = SATURATE_ZERO_ONE;
2774 case OP_SCS:
2775
2776 fp->Opcode = OPCODE_SCS;
2777 break;
2778 }
2779
2780 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2781 return 1;
2782
2783 if (parse_fp_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2784 return 1;
2785 break;
2786
2787 case OP_ALU_BINSC:
2788 switch (code) {
2789 case OP_POW_SAT:
2790 fp->SaturateMode = SATURATE_ZERO_ONE;
2791 case OP_POW:
2792 fp->Opcode = OPCODE_POW;
2793 break;
2794 }
2795
2796 if (parse_fp_dst_reg(ctx, inst, vc_head, Program, &fp->DstReg))
2797 return 1;
2798
2799 for (a = 0; a < 2; a++) {
2800 if (parse_fp_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2801 return 1;
2802 }
2803 break;
2804
2805
2806 case OP_ALU_BIN:
2807 switch (code) {
2808 case OP_ADD_SAT:
2809 fp->SaturateMode = SATURATE_ZERO_ONE;
2810 case OP_ADD:
2811 fp->Opcode = OPCODE_ADD;
2812 break;
2813
2814 case OP_DP3_SAT:
2815 fp->SaturateMode = SATURATE_ZERO_ONE;
2816 case OP_DP3:
2817 fp->Opcode = OPCODE_DP3;
2818 break;
2819
2820 case OP_DP4_SAT:
2821 fp->SaturateMode = SATURATE_ZERO_ONE;
2822 case OP_DP4:
2823 fp->Opcode = OPCODE_DP4;
2824 break;
2825
2826 case OP_DPH_SAT:
2827 fp->SaturateMode = SATURATE_ZERO_ONE;
2828 case OP_DPH:
2829 fp->Opcode = OPCODE_DPH;
2830 break;
2831
2832 case OP_DST_SAT:
2833 fp->SaturateMode = SATURATE_ZERO_ONE;
2834 case OP_DST:
2835 fp->Opcode = OPCODE_DST;
2836 break;
2837
2838 case OP_MAX_SAT:
2839 fp->SaturateMode = SATURATE_ZERO_ONE;
2840 case OP_MAX:
2841 fp->Opcode = OPCODE_MAX;
2842 break;
2843
2844 case OP_MIN_SAT:
2845 fp->SaturateMode = SATURATE_ZERO_ONE;
2846 case OP_MIN:
2847 fp->Opcode = OPCODE_MIN;
2848 break;
2849
2850 case OP_MUL_SAT:
2851 fp->SaturateMode = SATURATE_ZERO_ONE;
2852 case OP_MUL:
2853 fp->Opcode = OPCODE_MUL;
2854 break;
2855
2856 case OP_SGE_SAT:
2857 fp->SaturateMode = SATURATE_ZERO_ONE;
2858 case OP_SGE:
2859 fp->Opcode = OPCODE_SGE;
2860 break;
2861
2862 case OP_SLT_SAT:
2863 fp->SaturateMode = SATURATE_ZERO_ONE;
2864 case OP_SLT:
2865 fp->Opcode = OPCODE_SLT;
2866 break;
2867
2868 case OP_SUB_SAT:
2869 fp->SaturateMode = SATURATE_ZERO_ONE;
2870 case OP_SUB:
2871 fp->Opcode = OPCODE_SUB;
2872 break;
2873
2874 case OP_XPD_SAT:
2875 fp->SaturateMode = SATURATE_ZERO_ONE;
2876 case OP_XPD:
2877 fp->Opcode = OPCODE_XPD;
2878 break;
2879 }
2880
2881 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2882 return 1;
2883 for (a = 0; a < 2; a++) {
2884 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2885 return 1;
2886 }
2887 break;
2888
2889 case OP_ALU_TRI:
2890 switch (code) {
2891 case OP_CMP_SAT:
2892 fp->SaturateMode = SATURATE_ZERO_ONE;
2893 case OP_CMP:
2894 fp->Opcode = OPCODE_CMP;
2895 break;
2896
2897 case OP_LRP_SAT:
2898 fp->SaturateMode = SATURATE_ZERO_ONE;
2899 case OP_LRP:
2900 fp->Opcode = OPCODE_LRP;
2901 break;
2902
2903 case OP_MAD_SAT:
2904 fp->SaturateMode = SATURATE_ZERO_ONE;
2905 case OP_MAD:
2906 fp->Opcode = OPCODE_MAD;
2907 break;
2908 }
2909
2910 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2911 return 1;
2912
2913 for (a = 0; a < 3; a++) {
2914 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2915 return 1;
2916 }
2917 break;
2918
2919 case OP_ALU_SWZ:
2920 switch (code) {
2921 case OP_SWZ_SAT:
2922 fp->SaturateMode = SATURATE_ZERO_ONE;
2923 case OP_SWZ:
2924 fp->Opcode = OPCODE_SWZ;
2925 break;
2926 }
2927 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2928 return 1;
2929
2930 {
2931 GLubyte swizzle[4];
2932 GLubyte negateMask;
2933 enum register_file file;
2934 GLint index;
2935
2936 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &rel))
2937 return 1;
2938 parse_extended_swizzle_mask(inst, swizzle, &negateMask);
2939 fp->SrcReg[0].File = file;
2940 fp->SrcReg[0].Index = index;
2941 fp->SrcReg[0].NegateBase = negateMask;
2942 fp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
2943 swizzle[1],
2944 swizzle[2],
2945 swizzle[3]);
2946 }
2947 break;
2948
2949 case OP_TEX_SAMPLE:
2950 switch (code) {
2951 case OP_TEX_SAT:
2952 fp->SaturateMode = SATURATE_ZERO_ONE;
2953 case OP_TEX:
2954 fp->Opcode = OPCODE_TEX;
2955 break;
2956
2957 case OP_TXP_SAT:
2958 fp->SaturateMode = SATURATE_ZERO_ONE;
2959 case OP_TXP:
2960 fp->Opcode = OPCODE_TXP;
2961 break;
2962
2963 case OP_TXB_SAT:
2964 fp->SaturateMode = SATURATE_ZERO_ONE;
2965 case OP_TXB:
2966 fp->Opcode = OPCODE_TXB;
2967 break;
2968 }
2969
2970 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2971 return 1;
2972
2973 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2974 return 1;
2975
2976 /* texImageUnit */
2977 if (parse_texcoord_num (ctx, inst, Program, &texcoord))
2978 return 1;
2979 fp->TexSrcUnit = texcoord;
2980
2981 /* texTarget */
2982 switch (*(*inst)++) {
2983 case TEXTARGET_SHADOW1D:
2984 shadow_tex = 1 << texcoord;
2985 /* FALLTHROUGH */
2986 case TEXTARGET_1D:
2987 fp->TexSrcTarget = TEXTURE_1D_INDEX;
2988 break;
2989 case TEXTARGET_SHADOW2D:
2990 shadow_tex = 1 << texcoord;
2991 /* FALLTHROUGH */
2992 case TEXTARGET_2D:
2993 fp->TexSrcTarget = TEXTURE_2D_INDEX;
2994 break;
2995 case TEXTARGET_3D:
2996 fp->TexSrcTarget = TEXTURE_3D_INDEX;
2997 break;
2998 case TEXTARGET_SHADOWRECT:
2999 shadow_tex = 1 << texcoord;
3000 /* FALLTHROUGH */
3001 case TEXTARGET_RECT:
3002 fp->TexSrcTarget = TEXTURE_RECT_INDEX;
3003 break;
3004 case TEXTARGET_CUBE:
3005 fp->TexSrcTarget = TEXTURE_CUBE_INDEX;
3006 break;
3007 case TEXTARGET_SHADOW1D_ARRAY:
3008 shadow_tex = 1 << texcoord;
3009 /* FALLTHROUGH */
3010 case TEXTARGET_1D_ARRAY:
3011 fp->TexSrcTarget = TEXTURE_1D_ARRAY_INDEX;
3012 break;
3013 case TEXTARGET_SHADOW2D_ARRAY:
3014 shadow_tex = 1 << texcoord;
3015 /* FALLTHROUGH */
3016 case TEXTARGET_2D_ARRAY:
3017 fp->TexSrcTarget = TEXTURE_2D_ARRAY_INDEX;
3018 break;
3019 }
3020
3021 /* Don't test the first time a particular sampler is seen. Each time
3022 * after that, make sure the shadow state is the same.
3023 */
3024 if ((_mesa_bitcount(Program->TexturesUsed[texcoord]) > 0)
3025 && ((Program->ShadowSamplers & (1 << texcoord)) != shadow_tex)) {
3026 program_error(ctx, Program->Position,
3027 "texture image unit used for shadow sampling and non-shadow sampling");
3028 return 1;
3029 }
3030
3031 Program->TexturesUsed[texcoord] |= (1 << fp->TexSrcTarget);
3032 /* Check that both "2D" and "CUBE" (for example) aren't both used */
3033 if (_mesa_bitcount(Program->TexturesUsed[texcoord]) > 1) {
3034 program_error(ctx, Program->Position,
3035 "multiple targets used on one texture image unit");
3036 return 1;
3037 }
3038
3039
3040 Program->ShadowSamplers |= shadow_tex;
3041 break;
3042
3043 case OP_TEX_KIL:
3044 Program->UsesKill = 1;
3045 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
3046 return 1;
3047 fp->Opcode = OPCODE_KIL;
3048 break;
3049 default:
3050 _mesa_problem(ctx, "bad type 0x%x in parse_fp_instruction()", type);
3051 return 1;
3052 }
3053
3054 return 0;
3055 }
3056
3057 static GLuint
3058 parse_vp_dst_reg(GLcontext * ctx, const GLubyte ** inst,
3059 struct var_cache **vc_head, struct arb_program *Program,
3060 struct prog_dst_register *reg )
3061 {
3062 GLint mask;
3063 GLuint idx;
3064 enum register_file file;
3065
3066 if (parse_masked_dst_reg(ctx, inst, vc_head, Program, &file, &idx, &mask))
3067 return 1;
3068
3069 reg->File = file;
3070 reg->Index = idx;
3071 reg->WriteMask = mask;
3072 return 0;
3073 }
3074
3075 /**
3076 * Handle the parsing out of a masked address register
3077 *
3078 * \param Index - The register index we write to
3079 * \param WriteMask - The mask controlling which components we write (1->write)
3080 *
3081 * \return 0 on sucess, 1 on error
3082 */
3083 static GLuint
3084 parse_vp_address_reg (GLcontext * ctx, const GLubyte ** inst,
3085 struct var_cache **vc_head,
3086 struct arb_program *Program,
3087 struct prog_dst_register *reg)
3088 {
3089 GLint idx;
3090
3091 if (parse_address_reg (ctx, inst, vc_head, Program, &idx))
3092 return 1;
3093
3094 /* This should be 0x8 */
3095 (*inst)++;
3096
3097 reg->File = PROGRAM_ADDRESS;
3098 reg->Index = idx;
3099
3100 /* Writemask of .x is implied */
3101 reg->WriteMask = 0x1;
3102 return 0;
3103 }
3104
3105 /**
3106 * Parse vertex program vector source register.
3107 */
3108 static GLuint
3109 parse_vp_vector_src_reg(GLcontext * ctx, const GLubyte ** inst,
3110 struct var_cache **vc_head,
3111 struct arb_program *program,
3112 struct prog_src_register *reg )
3113 {
3114 enum register_file file;
3115 GLint index;
3116 GLubyte negateMask;
3117 GLubyte swizzle[4];
3118 GLboolean isRelOffset;
3119
3120 /* Grab the sign */
3121 negateMask = (parse_sign (inst) == -1) ? 0xf : 0x0;
3122
3123 /* And the src reg */
3124 if (parse_src_reg (ctx, inst, vc_head, program, &file, &index, &isRelOffset))
3125 return 1;
3126
3127 /* finally, the swizzle */
3128 parse_swizzle_mask(inst, swizzle, 4);
3129
3130 reg->File = file;
3131 reg->Index = index;
3132 reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1],
3133 swizzle[2], swizzle[3]);
3134 reg->NegateBase = negateMask;
3135 reg->RelAddr = isRelOffset;
3136 return 0;
3137 }
3138
3139
3140 static GLuint
3141 parse_vp_scalar_src_reg (GLcontext * ctx, const GLubyte ** inst,
3142 struct var_cache **vc_head,
3143 struct arb_program *Program,
3144 struct prog_src_register *reg )
3145 {
3146 enum register_file File;
3147 GLint Index;
3148 GLubyte Negate;
3149 GLubyte Swizzle[4];
3150 GLboolean IsRelOffset;
3151
3152 /* Grab the sign */
3153 Negate = (parse_sign (inst) == -1) ? 0x1 : 0x0;
3154
3155 /* And the src reg */
3156 if (parse_src_reg (ctx, inst, vc_head, Program, &File, &Index, &IsRelOffset))
3157 return 1;
3158
3159 /* finally, the swizzle */
3160 parse_swizzle_mask(inst, Swizzle, 1);
3161
3162 reg->File = File;
3163 reg->Index = Index;
3164 reg->Swizzle = (Swizzle[0] << 0);
3165 reg->NegateBase = Negate;
3166 reg->RelAddr = IsRelOffset;
3167 return 0;
3168 }
3169
3170
3171 /**
3172 * This is a big mother that handles getting opcodes into the instruction
3173 * and handling the src & dst registers for vertex program instructions
3174 */
3175 static GLuint
3176 parse_vp_instruction (GLcontext * ctx, const GLubyte ** inst,
3177 struct var_cache **vc_head, struct arb_program *Program,
3178 struct prog_instruction *vp)
3179 {
3180 GLint a;
3181 GLubyte type, code;
3182
3183 /* OP_ALU_{ARL, VECTOR, SCALAR, BINSC, BIN, TRI, SWZ} */
3184 type = *(*inst)++;
3185
3186 /* The actual opcode name */
3187 code = *(*inst)++;
3188
3189 _mesa_init_instructions(vp, 1);
3190 /* Record the position in the program string for debugging */
3191 vp->StringPos = Program->Position;
3192
3193 switch (type) {
3194 /* XXX: */
3195 case OP_ALU_ARL:
3196 vp->Opcode = OPCODE_ARL;
3197
3198 /* Remember to set SrcReg.RelAddr; */
3199
3200 /* Get the masked address register [dst] */
3201 if (parse_vp_address_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3202 return 1;
3203
3204 vp->DstReg.File = PROGRAM_ADDRESS;
3205
3206 /* Get a scalar src register */
3207 if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3208 return 1;
3209
3210 break;
3211
3212 case OP_ALU_VECTOR:
3213 switch (code) {
3214 case OP_ABS:
3215 vp->Opcode = OPCODE_ABS;
3216 break;
3217 case OP_FLR:
3218 vp->Opcode = OPCODE_FLR;
3219 break;
3220 case OP_FRC:
3221 vp->Opcode = OPCODE_FRC;
3222 break;
3223 case OP_LIT:
3224 vp->Opcode = OPCODE_LIT;
3225 break;
3226 case OP_MOV:
3227 vp->Opcode = OPCODE_MOV;
3228 break;
3229 }
3230
3231 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3232 return 1;
3233
3234 if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3235 return 1;
3236 break;
3237
3238 case OP_ALU_SCALAR:
3239 switch (code) {
3240 case OP_EX2:
3241 vp->Opcode = OPCODE_EX2;
3242 break;
3243 case OP_EXP:
3244 vp->Opcode = OPCODE_EXP;
3245 break;
3246 case OP_LG2:
3247 vp->Opcode = OPCODE_LG2;
3248 break;
3249 case OP_LOG:
3250 vp->Opcode = OPCODE_LOG;
3251 break;
3252 case OP_RCP:
3253 vp->Opcode = OPCODE_RCP;
3254 break;
3255 case OP_RSQ:
3256 vp->Opcode = OPCODE_RSQ;
3257 break;
3258 }
3259 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3260 return 1;
3261
3262 if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3263 return 1;
3264 break;
3265
3266 case OP_ALU_BINSC:
3267 switch (code) {
3268 case OP_POW:
3269 vp->Opcode = OPCODE_POW;
3270 break;
3271 }
3272 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3273 return 1;
3274
3275 for (a = 0; a < 2; a++) {
3276 if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3277 return 1;
3278 }
3279 break;
3280
3281 case OP_ALU_BIN:
3282 switch (code) {
3283 case OP_ADD:
3284 vp->Opcode = OPCODE_ADD;
3285 break;
3286 case OP_DP3:
3287 vp->Opcode = OPCODE_DP3;
3288 break;
3289 case OP_DP4:
3290 vp->Opcode = OPCODE_DP4;
3291 break;
3292 case OP_DPH:
3293 vp->Opcode = OPCODE_DPH;
3294 break;
3295 case OP_DST:
3296 vp->Opcode = OPCODE_DST;
3297 break;
3298 case OP_MAX:
3299 vp->Opcode = OPCODE_MAX;
3300 break;
3301 case OP_MIN:
3302 vp->Opcode = OPCODE_MIN;
3303 break;
3304 case OP_MUL:
3305 vp->Opcode = OPCODE_MUL;
3306 break;
3307 case OP_SGE:
3308 vp->Opcode = OPCODE_SGE;
3309 break;
3310 case OP_SLT:
3311 vp->Opcode = OPCODE_SLT;
3312 break;
3313 case OP_SUB:
3314 vp->Opcode = OPCODE_SUB;
3315 break;
3316 case OP_XPD:
3317 vp->Opcode = OPCODE_XPD;
3318 break;
3319 }
3320 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3321 return 1;
3322
3323 for (a = 0; a < 2; a++) {
3324 if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3325 return 1;
3326 }
3327 break;
3328
3329 case OP_ALU_TRI:
3330 switch (code) {
3331 case OP_MAD:
3332 vp->Opcode = OPCODE_MAD;
3333 break;
3334 }
3335
3336 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3337 return 1;
3338
3339 for (a = 0; a < 3; a++) {
3340 if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3341 return 1;
3342 }
3343 break;
3344
3345 case OP_ALU_SWZ:
3346 switch (code) {
3347 case OP_SWZ:
3348 vp->Opcode = OPCODE_SWZ;
3349 break;
3350 }
3351 {
3352 GLubyte swizzle[4];
3353 GLubyte negateMask;
3354 GLboolean relAddr;
3355 enum register_file file;
3356 GLint index;
3357
3358 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3359 return 1;
3360
3361 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &relAddr))
3362 return 1;
3363 parse_extended_swizzle_mask (inst, swizzle, &negateMask);
3364 vp->SrcReg[0].File = file;
3365 vp->SrcReg[0].Index = index;
3366 vp->SrcReg[0].NegateBase = negateMask;
3367 vp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
3368 swizzle[1],
3369 swizzle[2],
3370 swizzle[3]);
3371 vp->SrcReg[0].RelAddr = relAddr;
3372 }
3373 break;
3374 }
3375 return 0;
3376 }
3377
3378 #if DEBUG_PARSING
3379
3380 static GLvoid
3381 debug_variables (GLcontext * ctx, struct var_cache *vc_head,
3382 struct arb_program *Program)
3383 {
3384 struct var_cache *vc;
3385 GLint a, b;
3386
3387 fprintf (stderr, "debug_variables, vc_head: %p\n", (void*) vc_head);
3388
3389 /* First of all, print out the contents of the var_cache */
3390 vc = vc_head;
3391 while (vc) {
3392 fprintf (stderr, "[%p]\n", (void*) vc);
3393 switch (vc->type) {
3394 case vt_none:
3395 fprintf (stderr, "UNDEFINED %s\n", vc->name);
3396 break;
3397 case vt_attrib:
3398 fprintf (stderr, "ATTRIB %s\n", vc->name);
3399 fprintf (stderr, " binding: 0x%x\n", vc->attrib_binding);
3400 break;
3401 case vt_param:
3402 fprintf (stderr, "PARAM %s begin: %d len: %d\n", vc->name,
3403 vc->param_binding_begin, vc->param_binding_length);
3404 b = vc->param_binding_begin;
3405 for (a = 0; a < vc->param_binding_length; a++) {
3406 fprintf (stderr, "%s\n",
3407 Program->Base.Parameters->Parameters[a + b].Name);
3408 if (Program->Base.Parameters->Parameters[a + b].Type == PROGRAM_STATE_VAR) {
3409 const char *s;
3410 s = _mesa_program_state_string(Program->Base.Parameters->Parameters
3411 [a + b].StateIndexes);
3412 fprintf(stderr, "%s\n", s);
3413 _mesa_free((char *) s);
3414 }
3415 else
3416 fprintf (stderr, "%f %f %f %f\n",
3417 Program->Base.Parameters->ParameterValues[a + b][0],
3418 Program->Base.Parameters->ParameterValues[a + b][1],
3419 Program->Base.Parameters->ParameterValues[a + b][2],
3420 Program->Base.Parameters->ParameterValues[a + b][3]);
3421 }
3422 break;
3423 case vt_temp:
3424 fprintf (stderr, "TEMP %s\n", vc->name);
3425 fprintf (stderr, " binding: 0x%x\n", vc->temp_binding);
3426 break;
3427 case vt_output:
3428 fprintf (stderr, "OUTPUT %s\n", vc->name);
3429 fprintf (stderr, " binding: 0x%x\n", vc->output_binding);
3430 break;
3431 case vt_alias:
3432 fprintf (stderr, "ALIAS %s\n", vc->name);
3433 fprintf (stderr, " binding: 0x%p (%s)\n",
3434 (void*) vc->alias_binding, vc->alias_binding->name);
3435 break;
3436 default:
3437 /* nothing */
3438 ;
3439 }
3440 vc = vc->next;
3441 }
3442 }
3443
3444 #endif /* DEBUG_PARSING */
3445
3446
3447 /**
3448 * The main loop for parsing a fragment or vertex program
3449 *
3450 * \return 1 on error, 0 on success
3451 */
3452 static GLint
3453 parse_instructions(GLcontext * ctx, const GLubyte * inst,
3454 struct var_cache **vc_head, struct arb_program *Program)
3455 {
3456 const GLuint maxInst = (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
3457 ? ctx->Const.FragmentProgram.MaxInstructions
3458 : ctx->Const.VertexProgram.MaxInstructions;
3459 GLint err = 0;
3460
3461 ASSERT(MAX_INSTRUCTIONS >= maxInst);
3462
3463 Program->MajorVersion = (GLuint) * inst++;
3464 Program->MinorVersion = (GLuint) * inst++;
3465
3466 while (*inst != END) {
3467 switch (*inst++) {
3468
3469 case OPTION:
3470 switch (*inst++) {
3471 case ARB_PRECISION_HINT_FASTEST:
3472 Program->PrecisionOption = GL_FASTEST;
3473 break;
3474
3475 case ARB_PRECISION_HINT_NICEST:
3476 Program->PrecisionOption = GL_NICEST;
3477 break;
3478
3479 case ARB_FOG_EXP:
3480 Program->FogOption = GL_EXP;
3481 break;
3482
3483 case ARB_FOG_EXP2:
3484 Program->FogOption = GL_EXP2;
3485 break;
3486
3487 case ARB_FOG_LINEAR:
3488 Program->FogOption = GL_LINEAR;
3489 break;
3490
3491 case ARB_POSITION_INVARIANT:
3492 if (Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
3493 Program->HintPositionInvariant = GL_TRUE;
3494 break;
3495
3496 case ARB_FRAGMENT_PROGRAM_SHADOW:
3497 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3498 /* TODO ARB_fragment_program_shadow code */
3499 }
3500 break;
3501
3502 case ARB_DRAW_BUFFERS:
3503 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3504 /* do nothing for now */
3505 }
3506 break;
3507
3508 case MESA_TEXTURE_ARRAY:
3509 /* do nothing for now */
3510 break;
3511 }
3512 break;
3513
3514 case INSTRUCTION:
3515 /* check length */
3516 if (Program->Base.NumInstructions + 1 >= maxInst) {
3517 program_error(ctx, Program->Position,
3518 "Max instruction count exceeded");
3519 return 1;
3520 }
3521 Program->Position = parse_position (&inst);
3522 /* parse the current instruction */
3523 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3524 err = parse_fp_instruction (ctx, &inst, vc_head, Program,
3525 &Program->Base.Instructions[Program->Base.NumInstructions]);
3526 }
3527 else {
3528 err = parse_vp_instruction (ctx, &inst, vc_head, Program,
3529 &Program->Base.Instructions[Program->Base.NumInstructions]);
3530 }
3531
3532 /* increment instuction count */
3533 Program->Base.NumInstructions++;
3534 break;
3535
3536 case DECLARATION:
3537 err = parse_declaration (ctx, &inst, vc_head, Program);
3538 break;
3539
3540 default:
3541 break;
3542 }
3543
3544 if (err)
3545 break;
3546 }
3547
3548 /* Finally, tag on an OPCODE_END instruction */
3549 {
3550 const GLuint numInst = Program->Base.NumInstructions;
3551 _mesa_init_instructions(Program->Base.Instructions + numInst, 1);
3552 Program->Base.Instructions[numInst].Opcode = OPCODE_END;
3553 /* YYY Wrong Position in program, whatever, at least not random -> crash
3554 Program->Position = parse_position (&inst);
3555 */
3556 Program->Base.Instructions[numInst].StringPos = Program->Position;
3557 }
3558 Program->Base.NumInstructions++;
3559
3560 /*
3561 * Initialize native counts to logical counts. The device driver may
3562 * change them if program is translated into a hardware program.
3563 */
3564 Program->Base.NumNativeInstructions = Program->Base.NumInstructions;
3565 Program->Base.NumNativeTemporaries = Program->Base.NumTemporaries;
3566 Program->Base.NumNativeParameters = Program->Base.NumParameters;
3567 Program->Base.NumNativeAttributes = Program->Base.NumAttributes;
3568 Program->Base.NumNativeAddressRegs = Program->Base.NumAddressRegs;
3569
3570 return err;
3571 }
3572
3573
3574 /* XXX temporary */
3575 LONGSTRING static char core_grammar_text[] =
3576 #include "grammar_syn.h"
3577 ;
3578
3579
3580 /**
3581 * Set a grammar parameter.
3582 * \param name the grammar parameter
3583 * \param value the new parameter value
3584 * \return 0 if OK, 1 if error
3585 */
3586 static int
3587 set_reg8 (GLcontext *ctx, grammar id, const char *name, GLubyte value)
3588 {
3589 char error_msg[300];
3590 GLint error_pos;
3591
3592 if (grammar_set_reg8 (id, (const byte *) name, value))
3593 return 0;
3594
3595 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3596 _mesa_set_program_error (ctx, error_pos, error_msg);
3597 _mesa_error (ctx, GL_INVALID_OPERATION, "Grammar Register Error");
3598 return 1;
3599 }
3600
3601
3602 /**
3603 * Enable support for the given language option in the parser.
3604 * \return 1 if OK, 0 if error
3605 */
3606 static int
3607 enable_ext(GLcontext *ctx, grammar id, const char *name)
3608 {
3609 return !set_reg8(ctx, id, name, 1);
3610 }
3611
3612
3613 /**
3614 * Enable parser extensions based on which OpenGL extensions are supported
3615 * by this rendering context.
3616 *
3617 * \return GL_TRUE if OK, GL_FALSE if error.
3618 */
3619 static GLboolean
3620 enable_parser_extensions(GLcontext *ctx, grammar id)
3621 {
3622 #if 0
3623 /* These are not supported at this time */
3624 if ((ctx->Extensions.ARB_vertex_blend ||
3625 ctx->Extensions.EXT_vertex_weighting)
3626 && !enable_ext(ctx, id, "vertex_blend"))
3627 return GL_FALSE;
3628 if (ctx->Extensions.ARB_matrix_palette
3629 && !enable_ext(ctx, id, "matrix_palette"))
3630 return GL_FALSE;
3631 #endif
3632 if (ctx->Extensions.ARB_fragment_program_shadow
3633 && !enable_ext(ctx, id, "fragment_program_shadow"))
3634 return GL_FALSE;
3635 if (ctx->Extensions.EXT_point_parameters
3636 && !enable_ext(ctx, id, "point_parameters"))
3637 return GL_FALSE;
3638 if (ctx->Extensions.EXT_secondary_color
3639 && !enable_ext(ctx, id, "secondary_color"))
3640 return GL_FALSE;
3641 if (ctx->Extensions.EXT_fog_coord
3642 && !enable_ext(ctx, id, "fog_coord"))
3643 return GL_FALSE;
3644 if (ctx->Extensions.NV_texture_rectangle
3645 && !enable_ext(ctx, id, "texture_rectangle"))
3646 return GL_FALSE;
3647 if (ctx->Extensions.ARB_draw_buffers
3648 && !enable_ext(ctx, id, "draw_buffers"))
3649 return GL_FALSE;
3650 if (ctx->Extensions.MESA_texture_array
3651 && !enable_ext(ctx, id, "texture_array"))
3652 return GL_FALSE;
3653 #if 1
3654 /* hack for Warcraft (see bug 8060) */
3655 enable_ext(ctx, id, "vertex_blend");
3656 #endif
3657
3658 return GL_TRUE;
3659 }
3660
3661
3662 /**
3663 * This kicks everything off.
3664 *
3665 * \param ctx - The GL Context
3666 * \param str - The program string
3667 * \param len - The program string length
3668 * \param program - The arb_program struct to return all the parsed info in
3669 * \return GL_TRUE on sucess, GL_FALSE on error
3670 */
3671 static GLboolean
3672 _mesa_parse_arb_program(GLcontext *ctx, GLenum target,
3673 const GLubyte *str, GLsizei len,
3674 struct arb_program *program)
3675 {
3676 GLint a, err, error_pos;
3677 char error_msg[300];
3678 GLuint parsed_len;
3679 struct var_cache *vc_head;
3680 grammar arbprogram_syn_id;
3681 GLubyte *parsed, *inst;
3682 GLubyte *strz = NULL;
3683 static int arbprogram_syn_is_ok = 0; /* XXX temporary */
3684
3685 /* set the program target before parsing */
3686 program->Base.Target = target;
3687
3688 /* Reset error state */
3689 _mesa_set_program_error(ctx, -1, NULL);
3690
3691 /* check if arb_grammar_text (arbprogram.syn) is syntactically correct */
3692 if (!arbprogram_syn_is_ok) {
3693 /* One-time initialization of parsing system */
3694 grammar grammar_syn_id;
3695 GLuint parsed_len;
3696
3697 grammar_syn_id = grammar_load_from_text ((byte *) core_grammar_text);
3698 if (grammar_syn_id == 0) {
3699 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3700 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3701 _mesa_set_program_error (ctx, error_pos, error_msg);
3702 _mesa_error (ctx, GL_INVALID_OPERATION,
3703 "glProgramStringARB(Error loading grammar rule set)");
3704 return GL_FALSE;
3705 }
3706
3707 err = !grammar_check(grammar_syn_id, (byte *) arb_grammar_text,
3708 &parsed, &parsed_len);
3709
3710 /* 'parsed' is unused here */
3711 _mesa_free (parsed);
3712 parsed = NULL;
3713
3714 /* NOTE: we can't destroy grammar_syn_id right here because
3715 * grammar_destroy() can reset the last error
3716 */
3717 if (err) {
3718 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3719 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3720 _mesa_set_program_error (ctx, error_pos, error_msg);
3721 _mesa_error (ctx, GL_INVALID_OPERATION,
3722 "glProgramString(Error loading grammar rule set");
3723 grammar_destroy (grammar_syn_id);
3724 return GL_FALSE;
3725 }
3726
3727 grammar_destroy (grammar_syn_id);
3728
3729 arbprogram_syn_is_ok = 1;
3730 }
3731
3732 /* create the grammar object */
3733 arbprogram_syn_id = grammar_load_from_text ((byte *) arb_grammar_text);
3734 if (arbprogram_syn_id == 0) {
3735 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3736 grammar_get_last_error ((GLubyte *) error_msg, 300, &error_pos);
3737 _mesa_set_program_error (ctx, error_pos, error_msg);
3738 _mesa_error (ctx, GL_INVALID_OPERATION,
3739 "glProgramString(Error loading grammer rule set)");
3740 return GL_FALSE;
3741 }
3742
3743 /* Set program_target register value */
3744 if (set_reg8 (ctx, arbprogram_syn_id, "program_target",
3745 program->Base.Target == GL_FRAGMENT_PROGRAM_ARB ? 0x10 : 0x20)) {
3746 grammar_destroy (arbprogram_syn_id);
3747 return GL_FALSE;
3748 }
3749
3750 if (!enable_parser_extensions(ctx, arbprogram_syn_id)) {
3751 grammar_destroy(arbprogram_syn_id);
3752 return GL_FALSE;
3753 }
3754
3755 /* check for NULL character occurences */
3756 {
3757 GLint i;
3758 for (i = 0; i < len; i++) {
3759 if (str[i] == '\0') {
3760 program_error(ctx, i, "illegal character");
3761 grammar_destroy (arbprogram_syn_id);
3762 return GL_FALSE;
3763 }
3764 }
3765 }
3766
3767 /* copy the program string to a null-terminated string */
3768 strz = (GLubyte *) _mesa_malloc (len + 1);
3769 if (!strz) {
3770 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB");
3771 grammar_destroy (arbprogram_syn_id);
3772 return GL_FALSE;
3773 }
3774 _mesa_memcpy (strz, str, len);
3775 strz[len] = '\0';
3776
3777 /* do a fast check on program string - initial production buffer is 4K */
3778 err = !grammar_fast_check(arbprogram_syn_id, strz,
3779 &parsed, &parsed_len, 0x1000);
3780
3781 /* Syntax parse error */
3782 if (err) {
3783 grammar_get_last_error((GLubyte *) error_msg, 300, &error_pos);
3784 program_error(ctx, error_pos, error_msg);
3785
3786 #if DEBUG_PARSING
3787 /* useful for debugging */
3788 do {
3789 int line, col;
3790 char *s;
3791 fprintf(stderr, "program: %s\n", (char *) strz);
3792 fprintf(stderr, "Error Pos: %d\n", ctx->program.ErrorPos);
3793 s = (char *) _mesa_find_line_column(strz, strz+ctx->program.ErrorPos,
3794 &line, &col);
3795 fprintf(stderr, "line %d col %d: %s\n", line, col, s);
3796 } while (0)
3797 #endif
3798
3799 _mesa_free(strz);
3800 _mesa_free(parsed);
3801
3802 grammar_destroy (arbprogram_syn_id);
3803 return GL_FALSE;
3804 }
3805
3806 grammar_destroy (arbprogram_syn_id);
3807
3808 /*
3809 * Program string is syntactically correct at this point
3810 * Parse the tokenized version of the program now, generating
3811 * vertex/fragment program instructions.
3812 */
3813
3814 /* Initialize the arb_program struct */
3815 program->Base.String = strz;
3816 program->Base.Instructions = _mesa_alloc_instructions(MAX_INSTRUCTIONS);
3817 program->Base.NumInstructions =
3818 program->Base.NumTemporaries =
3819 program->Base.NumParameters =
3820 program->Base.NumAttributes = program->Base.NumAddressRegs = 0;
3821 program->Base.Parameters = _mesa_new_parameter_list ();
3822 program->Base.InputsRead = 0x0;
3823 program->Base.OutputsWritten = 0x0;
3824 program->Position = 0;
3825 program->MajorVersion = program->MinorVersion = 0;
3826 program->PrecisionOption = GL_DONT_CARE;
3827 program->FogOption = GL_NONE;
3828 program->HintPositionInvariant = GL_FALSE;
3829 for (a = 0; a < MAX_TEXTURE_IMAGE_UNITS; a++)
3830 program->TexturesUsed[a] = 0x0;
3831 program->ShadowSamplers = 0x0;
3832 program->NumAluInstructions =
3833 program->NumTexInstructions =
3834 program->NumTexIndirections = 0;
3835 program->UsesKill = 0;
3836
3837 vc_head = NULL;
3838 err = GL_FALSE;
3839
3840 /* Start examining the tokens in the array */
3841 inst = parsed;
3842
3843 /* Check the grammer rev */
3844 if (*inst++ != REVISION) {
3845 program_error (ctx, 0, "Grammar version mismatch");
3846 err = GL_TRUE;
3847 }
3848 else {
3849 /* ignore program target */
3850 inst++;
3851 err = parse_instructions(ctx, inst, &vc_head, program);
3852 }
3853
3854 /*debug_variables(ctx, vc_head, program); */
3855
3856 /* We're done with the parsed binary array */
3857 var_cache_destroy (&vc_head);
3858
3859 _mesa_free (parsed);
3860
3861 /* Reallocate the instruction array from size [MAX_INSTRUCTIONS]
3862 * to size [ap.Base.NumInstructions].
3863 */
3864 program->Base.Instructions
3865 = _mesa_realloc_instructions(program->Base.Instructions,
3866 MAX_INSTRUCTIONS,
3867 program->Base.NumInstructions);
3868
3869 return !err;
3870 }
3871
3872
3873
3874 void
3875 _mesa_parse_arb_fragment_program(GLcontext* ctx, GLenum target,
3876 const GLvoid *str, GLsizei len,
3877 struct gl_fragment_program *program)
3878 {
3879 struct arb_program ap;
3880 GLuint i;
3881
3882 ASSERT(target == GL_FRAGMENT_PROGRAM_ARB);
3883 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3884 /* Error in the program. Just return. */
3885 return;
3886 }
3887
3888 /* Copy the relevant contents of the arb_program struct into the
3889 * fragment_program struct.
3890 */
3891 program->Base.String = ap.Base.String;
3892 program->Base.NumInstructions = ap.Base.NumInstructions;
3893 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3894 program->Base.NumParameters = ap.Base.NumParameters;
3895 program->Base.NumAttributes = ap.Base.NumAttributes;
3896 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3897 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3898 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3899 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3900 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3901 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3902 program->Base.NumAluInstructions = ap.Base.NumAluInstructions;
3903 program->Base.NumTexInstructions = ap.Base.NumTexInstructions;
3904 program->Base.NumTexIndirections = ap.Base.NumTexIndirections;
3905 program->Base.NumNativeAluInstructions = ap.Base.NumAluInstructions;
3906 program->Base.NumNativeTexInstructions = ap.Base.NumTexInstructions;
3907 program->Base.NumNativeTexIndirections = ap.Base.NumTexIndirections;
3908 program->Base.InputsRead = ap.Base.InputsRead;
3909 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3910 for (i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++)
3911 program->Base.TexturesUsed[i] = ap.TexturesUsed[i];
3912 program->Base.ShadowSamplers = ap.ShadowSamplers;
3913 program->FogOption = ap.FogOption;
3914 program->UsesKill = ap.UsesKill;
3915
3916 if (program->Base.Instructions)
3917 _mesa_free(program->Base.Instructions);
3918 program->Base.Instructions = ap.Base.Instructions;
3919
3920 if (program->Base.Parameters)
3921 _mesa_free_parameter_list(program->Base.Parameters);
3922 program->Base.Parameters = ap.Base.Parameters;
3923
3924 #if DEBUG_FP
3925 _mesa_printf("____________Fragment program %u ________\n", program->Base.ID);
3926 _mesa_print_program(&program->Base);
3927 #endif
3928 }
3929
3930
3931
3932 /**
3933 * Parse the vertex program string. If success, update the given
3934 * vertex_program object with the new program. Else, leave the vertex_program
3935 * object unchanged.
3936 */
3937 void
3938 _mesa_parse_arb_vertex_program(GLcontext *ctx, GLenum target,
3939 const GLvoid *str, GLsizei len,
3940 struct gl_vertex_program *program)
3941 {
3942 struct arb_program ap;
3943
3944 ASSERT(target == GL_VERTEX_PROGRAM_ARB);
3945
3946 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3947 /* Error in the program. Just return. */
3948 return;
3949 }
3950
3951 /* Copy the relevant contents of the arb_program struct into the
3952 * vertex_program struct.
3953 */
3954 program->Base.String = ap.Base.String;
3955 program->Base.NumInstructions = ap.Base.NumInstructions;
3956 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3957 program->Base.NumParameters = ap.Base.NumParameters;
3958 program->Base.NumAttributes = ap.Base.NumAttributes;
3959 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3960 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3961 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3962 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3963 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3964 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3965 program->Base.InputsRead = ap.Base.InputsRead;
3966 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3967 program->IsPositionInvariant = ap.HintPositionInvariant;
3968
3969 if (program->Base.Instructions)
3970 _mesa_free(program->Base.Instructions);
3971 program->Base.Instructions = ap.Base.Instructions;
3972
3973 if (program->Base.Parameters)
3974 _mesa_free_parameter_list(program->Base.Parameters);
3975 program->Base.Parameters = ap.Base.Parameters;
3976
3977 #if DEBUG_VP
3978 _mesa_printf("____________Vertex program %u __________\n", program->Base.Id);
3979 _mesa_print_program(&program->Base);
3980 #endif
3981 }