mesa: when negating scalar src args, use NEGATE_XYZW, not NEGATE_X
[mesa.git] / src / mesa / shader / arbprogparse.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #define DEBUG_PARSING 0
26
27 /**
28 * \file arbprogparse.c
29 * ARB_*_program parser core
30 * \author Karl Rasche
31 */
32
33 #include "main/glheader.h"
34 #include "main/imports.h"
35 #include "shader/grammar/grammar_mesa.h"
36 #include "arbprogparse.h"
37 #include "program.h"
38 #include "prog_parameter.h"
39 #include "prog_statevars.h"
40 #include "context.h"
41 #include "macros.h"
42 #include "mtypes.h"
43 #include "prog_instruction.h"
44
45
46 /* For ARB programs, use the NV instruction limits */
47 #define MAX_INSTRUCTIONS MAX2(MAX_NV_FRAGMENT_PROGRAM_INSTRUCTIONS, \
48 MAX_NV_VERTEX_PROGRAM_INSTRUCTIONS)
49
50
51 /**
52 * This is basically a union of the vertex_program and fragment_program
53 * structs that we can use to parse the program into
54 *
55 * XXX we can probably get rid of this entirely someday.
56 */
57 struct arb_program
58 {
59 struct gl_program Base;
60
61 GLuint Position; /* Just used for error reporting while parsing */
62 GLuint MajorVersion;
63 GLuint MinorVersion;
64
65 /* ARB_vertex_progmra options */
66 GLboolean HintPositionInvariant;
67
68 /* ARB_fragment_progmra options */
69 GLenum PrecisionOption; /* GL_DONT_CARE, GL_NICEST or GL_FASTEST */
70 GLenum FogOption; /* GL_NONE, GL_LINEAR, GL_EXP or GL_EXP2 */
71
72 /* ARB_fragment_program specifics */
73 GLbitfield TexturesUsed[MAX_TEXTURE_IMAGE_UNITS];
74 GLbitfield ShadowSamplers;
75 GLuint NumAluInstructions;
76 GLuint NumTexInstructions;
77 GLuint NumTexIndirections;
78
79 GLboolean UsesKill;
80 };
81
82
83
84 /* TODO:
85 * Fragment Program Stuff:
86 * -----------------------------------------------------
87 *
88 * - things from Michal's email
89 * + overflow on atoi
90 * + not-overflowing floats (don't use parse_integer..)
91 * + can remove range checking in arbparse.c
92 *
93 * - check all limits of number of various variables
94 * + parameters
95 *
96 * - test! test! test!
97 *
98 * Vertex Program Stuff:
99 * -----------------------------------------------------
100 * - Optimize param array usage and count limits correctly, see spec,
101 * section 2.14.3.7
102 * + Record if an array is reference absolutly or relatively (or both)
103 * + For absolute arrays, store a bitmap of accesses
104 * + For single parameters, store an access flag
105 * + After parsing, make a parameter cleanup and merging pass, where
106 * relative arrays are layed out first, followed by abs arrays, and
107 * finally single state.
108 * + Remap offsets for param src and dst registers
109 * + Now we can properly count parameter usage
110 *
111 * - Multiple state binding errors in param arrays (see spec, just before
112 * section 2.14.3.3)
113 * - grep for XXX
114 *
115 * Mesa Stuff
116 * -----------------------------------------------------
117 * - User clipping planes vs. PositionInvariant
118 * - Is it sufficient to just multiply by the mvp to transform in the
119 * PositionInvariant case? Or do we need something more involved?
120 *
121 * - vp_src swizzle is GLubyte, fp_src swizzle is GLuint
122 * - fetch state listed in program_parameters list
123 * + WTF should this go???
124 * + currently in nvvertexec.c and s_nvfragprog.c
125 *
126 * - allow for multiple address registers (and fetch address regs properly)
127 *
128 * Cosmetic Stuff
129 * -----------------------------------------------------
130 * - remove any leftover unused grammer.c stuff (dict_ ?)
131 * - fix grammer.c error handling so its not static
132 * - #ifdef around stuff pertaining to extentions
133 *
134 * Outstanding Questions:
135 * -----------------------------------------------------
136 * - ARB_matrix_palette / ARB_vertex_blend -- not supported
137 * what gets hacked off because of this:
138 * + VERTEX_ATTRIB_MATRIXINDEX
139 * + VERTEX_ATTRIB_WEIGHT
140 * + MATRIX_MODELVIEW
141 * + MATRIX_PALETTE
142 *
143 * - When can we fetch env/local params from their own register files, and
144 * when to we have to fetch them into the main state register file?
145 * (think arrays)
146 *
147 * Grammar Changes:
148 * -----------------------------------------------------
149 */
150
151 /* Changes since moving the file to shader directory
152
153 2004-III-4 ------------------------------------------------------------
154 - added #include "grammar_mesa.h"
155 - removed grammar specific code part (it resides now in grammar.c)
156 - added GL_ARB_fragment_program_shadow tokens
157 - modified #include "arbparse_syn.h"
158 - major changes inside _mesa_parse_arb_program()
159 - check the program string for '\0' characters
160 - copy the program string to a one-byte-longer location to have
161 it null-terminated
162 - position invariance test (not writing to result.position) moved
163 to syntax part
164 */
165
166 typedef GLubyte *production;
167
168
169 /**
170 * This is the text describing the rules to parse the grammar
171 */
172 LONGSTRING static char arb_grammar_text[] =
173 #include "arbprogram_syn.h"
174 ;
175
176 /**
177 * These should match up with the values defined in arbprogram.syn
178 */
179
180 /*
181 Changes:
182 - changed and merged V_* and F_* opcode values to OP_*.
183 - added GL_ARB_fragment_program_shadow specific tokens (michal)
184 */
185 #define REVISION 0x0a
186
187 /* program type */
188 #define FRAGMENT_PROGRAM 0x01
189 #define VERTEX_PROGRAM 0x02
190
191 /* program section */
192 #define OPTION 0x01
193 #define INSTRUCTION 0x02
194 #define DECLARATION 0x03
195 #define END 0x04
196
197 /* GL_ARB_fragment_program option */
198 #define ARB_PRECISION_HINT_FASTEST 0x00
199 #define ARB_PRECISION_HINT_NICEST 0x01
200 #define ARB_FOG_EXP 0x02
201 #define ARB_FOG_EXP2 0x03
202 #define ARB_FOG_LINEAR 0x04
203
204 /* GL_ARB_vertex_program option */
205 #define ARB_POSITION_INVARIANT 0x05
206
207 /* GL_ARB_fragment_program_shadow option */
208 #define ARB_FRAGMENT_PROGRAM_SHADOW 0x06
209
210 /* GL_ARB_draw_buffers option */
211 #define ARB_DRAW_BUFFERS 0x07
212
213 /* GL_MESA_texture_array option */
214 #define MESA_TEXTURE_ARRAY 0x08
215
216 /* GL_ARB_fragment_program instruction class */
217 #define OP_ALU_INST 0x00
218 #define OP_TEX_INST 0x01
219
220 /* GL_ARB_vertex_program instruction class */
221 /* OP_ALU_INST */
222
223 /* GL_ARB_fragment_program instruction type */
224 #define OP_ALU_VECTOR 0x00
225 #define OP_ALU_SCALAR 0x01
226 #define OP_ALU_BINSC 0x02
227 #define OP_ALU_BIN 0x03
228 #define OP_ALU_TRI 0x04
229 #define OP_ALU_SWZ 0x05
230 #define OP_TEX_SAMPLE 0x06
231 #define OP_TEX_KIL 0x07
232
233 /* GL_ARB_vertex_program instruction type */
234 #define OP_ALU_ARL 0x08
235 /* OP_ALU_VECTOR */
236 /* OP_ALU_SCALAR */
237 /* OP_ALU_BINSC */
238 /* OP_ALU_BIN */
239 /* OP_ALU_TRI */
240 /* OP_ALU_SWZ */
241
242 /* GL_ARB_fragment_program instruction code */
243 #define OP_ABS 0x00
244 #define OP_ABS_SAT 0x1B
245 #define OP_FLR 0x09
246 #define OP_FLR_SAT 0x26
247 #define OP_FRC 0x0A
248 #define OP_FRC_SAT 0x27
249 #define OP_LIT 0x0C
250 #define OP_LIT_SAT 0x2A
251 #define OP_MOV 0x11
252 #define OP_MOV_SAT 0x30
253 #define OP_COS 0x1F
254 #define OP_COS_SAT 0x20
255 #define OP_EX2 0x07
256 #define OP_EX2_SAT 0x25
257 #define OP_LG2 0x0B
258 #define OP_LG2_SAT 0x29
259 #define OP_RCP 0x14
260 #define OP_RCP_SAT 0x33
261 #define OP_RSQ 0x15
262 #define OP_RSQ_SAT 0x34
263 #define OP_SIN 0x38
264 #define OP_SIN_SAT 0x39
265 #define OP_SCS 0x35
266 #define OP_SCS_SAT 0x36
267 #define OP_POW 0x13
268 #define OP_POW_SAT 0x32
269 #define OP_ADD 0x01
270 #define OP_ADD_SAT 0x1C
271 #define OP_DP3 0x03
272 #define OP_DP3_SAT 0x21
273 #define OP_DP4 0x04
274 #define OP_DP4_SAT 0x22
275 #define OP_DPH 0x05
276 #define OP_DPH_SAT 0x23
277 #define OP_DST 0x06
278 #define OP_DST_SAT 0x24
279 #define OP_MAX 0x0F
280 #define OP_MAX_SAT 0x2E
281 #define OP_MIN 0x10
282 #define OP_MIN_SAT 0x2F
283 #define OP_MUL 0x12
284 #define OP_MUL_SAT 0x31
285 #define OP_SGE 0x16
286 #define OP_SGE_SAT 0x37
287 #define OP_SLT 0x17
288 #define OP_SLT_SAT 0x3A
289 #define OP_SUB 0x18
290 #define OP_SUB_SAT 0x3B
291 #define OP_XPD 0x1A
292 #define OP_XPD_SAT 0x43
293 #define OP_CMP 0x1D
294 #define OP_CMP_SAT 0x1E
295 #define OP_LRP 0x2B
296 #define OP_LRP_SAT 0x2C
297 #define OP_MAD 0x0E
298 #define OP_MAD_SAT 0x2D
299 #define OP_SWZ 0x19
300 #define OP_SWZ_SAT 0x3C
301 #define OP_TEX 0x3D
302 #define OP_TEX_SAT 0x3E
303 #define OP_TXB 0x3F
304 #define OP_TXB_SAT 0x40
305 #define OP_TXP 0x41
306 #define OP_TXP_SAT 0x42
307 #define OP_KIL 0x28
308
309 /* GL_ARB_vertex_program instruction code */
310 #define OP_ARL 0x02
311 /* OP_ABS */
312 /* OP_FLR */
313 /* OP_FRC */
314 /* OP_LIT */
315 /* OP_MOV */
316 /* OP_EX2 */
317 #define OP_EXP 0x08
318 /* OP_LG2 */
319 #define OP_LOG 0x0D
320 /* OP_RCP */
321 /* OP_RSQ */
322 /* OP_POW */
323 /* OP_ADD */
324 /* OP_DP3 */
325 /* OP_DP4 */
326 /* OP_DPH */
327 /* OP_DST */
328 /* OP_MAX */
329 /* OP_MIN */
330 /* OP_MUL */
331 /* OP_SGE */
332 /* OP_SLT */
333 /* OP_SUB */
334 /* OP_XPD */
335 /* OP_MAD */
336 /* OP_SWZ */
337
338 /* fragment attribute binding */
339 #define FRAGMENT_ATTRIB_COLOR 0x01
340 #define FRAGMENT_ATTRIB_TEXCOORD 0x02
341 #define FRAGMENT_ATTRIB_FOGCOORD 0x03
342 #define FRAGMENT_ATTRIB_POSITION 0x04
343
344 /* vertex attribute binding */
345 #define VERTEX_ATTRIB_POSITION 0x01
346 #define VERTEX_ATTRIB_WEIGHT 0x02
347 #define VERTEX_ATTRIB_NORMAL 0x03
348 #define VERTEX_ATTRIB_COLOR 0x04
349 #define VERTEX_ATTRIB_FOGCOORD 0x05
350 #define VERTEX_ATTRIB_TEXCOORD 0x06
351 #define VERTEX_ATTRIB_MATRIXINDEX 0x07
352 #define VERTEX_ATTRIB_GENERIC 0x08
353
354 /* fragment result binding */
355 #define FRAGMENT_RESULT_COLOR 0x01
356 #define FRAGMENT_RESULT_DEPTH 0x02
357
358 /* vertex result binding */
359 #define VERTEX_RESULT_POSITION 0x01
360 #define VERTEX_RESULT_COLOR 0x02
361 #define VERTEX_RESULT_FOGCOORD 0x03
362 #define VERTEX_RESULT_POINTSIZE 0x04
363 #define VERTEX_RESULT_TEXCOORD 0x05
364
365 /* texture target */
366 #define TEXTARGET_1D 0x01
367 #define TEXTARGET_2D 0x02
368 #define TEXTARGET_3D 0x03
369 #define TEXTARGET_RECT 0x04
370 #define TEXTARGET_CUBE 0x05
371 /* GL_ARB_fragment_program_shadow */
372 #define TEXTARGET_SHADOW1D 0x06
373 #define TEXTARGET_SHADOW2D 0x07
374 #define TEXTARGET_SHADOWRECT 0x08
375 /* GL_MESA_texture_array */
376 #define TEXTARGET_1D_ARRAY 0x09
377 #define TEXTARGET_2D_ARRAY 0x0a
378 #define TEXTARGET_SHADOW1D_ARRAY 0x0b
379 #define TEXTARGET_SHADOW2D_ARRAY 0x0c
380
381 /* face type */
382 #define FACE_FRONT 0x00
383 #define FACE_BACK 0x01
384
385 /* color type */
386 #define COLOR_PRIMARY 0x00
387 #define COLOR_SECONDARY 0x01
388
389 /* component */
390 #define COMPONENT_X 0x00
391 #define COMPONENT_Y 0x01
392 #define COMPONENT_Z 0x02
393 #define COMPONENT_W 0x03
394 #define COMPONENT_0 0x04
395 #define COMPONENT_1 0x05
396
397 /* array index type */
398 #define ARRAY_INDEX_ABSOLUTE 0x00
399 #define ARRAY_INDEX_RELATIVE 0x01
400
401 /* matrix name */
402 #define MATRIX_MODELVIEW 0x01
403 #define MATRIX_PROJECTION 0x02
404 #define MATRIX_MVP 0x03
405 #define MATRIX_TEXTURE 0x04
406 #define MATRIX_PALETTE 0x05
407 #define MATRIX_PROGRAM 0x06
408
409 /* matrix modifier */
410 #define MATRIX_MODIFIER_IDENTITY 0x00
411 #define MATRIX_MODIFIER_INVERSE 0x01
412 #define MATRIX_MODIFIER_TRANSPOSE 0x02
413 #define MATRIX_MODIFIER_INVTRANS 0x03
414
415 /* constant type */
416 #define CONSTANT_SCALAR 0x01
417 #define CONSTANT_VECTOR 0x02
418
419 /* program param type */
420 #define PROGRAM_PARAM_ENV 0x01
421 #define PROGRAM_PARAM_LOCAL 0x02
422
423 /* register type */
424 #define REGISTER_ATTRIB 0x01
425 #define REGISTER_PARAM 0x02
426 #define REGISTER_RESULT 0x03
427 #define REGISTER_ESTABLISHED_NAME 0x04
428
429 /* param binding */
430 #define PARAM_NULL 0x00
431 #define PARAM_ARRAY_ELEMENT 0x01
432 #define PARAM_STATE_ELEMENT 0x02
433 #define PARAM_PROGRAM_ELEMENT 0x03
434 #define PARAM_PROGRAM_ELEMENTS 0x04
435 #define PARAM_CONSTANT 0x05
436
437 /* param state property */
438 #define STATE_MATERIAL_PARSER 0x01
439 #define STATE_LIGHT_PARSER 0x02
440 #define STATE_LIGHT_MODEL 0x03
441 #define STATE_LIGHT_PROD 0x04
442 #define STATE_FOG 0x05
443 #define STATE_MATRIX_ROWS 0x06
444 /* GL_ARB_fragment_program */
445 #define STATE_TEX_ENV 0x07
446 #define STATE_DEPTH 0x08
447 /* GL_ARB_vertex_program */
448 #define STATE_TEX_GEN 0x09
449 #define STATE_CLIP_PLANE 0x0A
450 #define STATE_POINT 0x0B
451
452 /* state material property */
453 #define MATERIAL_AMBIENT 0x01
454 #define MATERIAL_DIFFUSE 0x02
455 #define MATERIAL_SPECULAR 0x03
456 #define MATERIAL_EMISSION 0x04
457 #define MATERIAL_SHININESS 0x05
458
459 /* state light property */
460 #define LIGHT_AMBIENT 0x01
461 #define LIGHT_DIFFUSE 0x02
462 #define LIGHT_SPECULAR 0x03
463 #define LIGHT_POSITION 0x04
464 #define LIGHT_ATTENUATION 0x05
465 #define LIGHT_HALF 0x06
466 #define LIGHT_SPOT_DIRECTION 0x07
467
468 /* state light model property */
469 #define LIGHT_MODEL_AMBIENT 0x01
470 #define LIGHT_MODEL_SCENECOLOR 0x02
471
472 /* state light product property */
473 #define LIGHT_PROD_AMBIENT 0x01
474 #define LIGHT_PROD_DIFFUSE 0x02
475 #define LIGHT_PROD_SPECULAR 0x03
476
477 /* state texture environment property */
478 #define TEX_ENV_COLOR 0x01
479
480 /* state texture generation coord property */
481 #define TEX_GEN_EYE 0x01
482 #define TEX_GEN_OBJECT 0x02
483
484 /* state fog property */
485 #define FOG_COLOR 0x01
486 #define FOG_PARAMS 0x02
487
488 /* state depth property */
489 #define DEPTH_RANGE 0x01
490
491 /* state point parameters property */
492 #define POINT_SIZE 0x01
493 #define POINT_ATTENUATION 0x02
494
495 /* declaration */
496 #define ATTRIB 0x01
497 #define PARAM 0x02
498 #define TEMP 0x03
499 #define OUTPUT 0x04
500 #define ALIAS 0x05
501 /* GL_ARB_vertex_program */
502 #define ADDRESS 0x06
503
504 /*-----------------------------------------------------------------------
505 * From here on down is the semantic checking portion
506 *
507 */
508
509 /**
510 * Variable Table Handling functions
511 */
512 typedef enum
513 {
514 vt_none,
515 vt_address,
516 vt_attrib,
517 vt_param,
518 vt_temp,
519 vt_output,
520 vt_alias
521 } var_type;
522
523
524 /**
525 * Setting an explicit field for each of the binding properties is a bit
526 * wasteful of space, but it should be much more clear when reading later on..
527 */
528 struct var_cache
529 {
530 const GLubyte *name; /* don't free() - no need */
531 var_type type;
532 GLuint address_binding; /* The index of the address register we should
533 * be using */
534 GLuint attrib_binding; /* For type vt_attrib, see nvfragprog.h for values */
535 GLuint attrib_is_generic; /* If the attrib was specified through a generic
536 * vertex attrib */
537 GLuint temp_binding; /* The index of the temp register we are to use */
538 GLuint output_binding; /* Output/result register number */
539 struct var_cache *alias_binding; /* For type vt_alias, points to the var_cache entry
540 * that this is aliased to */
541 GLuint param_binding_type; /* {PROGRAM_STATE_VAR, PROGRAM_LOCAL_PARAM,
542 * PROGRAM_ENV_PARAM} */
543 GLuint param_binding_begin; /* This is the offset into the program_parameter_list where
544 * the tokens representing our bound state (or constants)
545 * start */
546 GLuint param_binding_length; /* This is how many entries in the the program_parameter_list
547 * we take up with our state tokens or constants. Note that
548 * this is _not_ the same as the number of param registers
549 * we eventually use */
550 struct var_cache *next;
551 };
552
553 static GLvoid
554 var_cache_create (struct var_cache **va)
555 {
556 *va = (struct var_cache *) _mesa_malloc (sizeof (struct var_cache));
557 if (*va) {
558 (**va).name = NULL;
559 (**va).type = vt_none;
560 (**va).attrib_binding = ~0;
561 (**va).attrib_is_generic = 0;
562 (**va).temp_binding = ~0;
563 (**va).output_binding = ~0;
564 (**va).param_binding_type = ~0;
565 (**va).param_binding_begin = ~0;
566 (**va).param_binding_length = ~0;
567 (**va).alias_binding = NULL;
568 (**va).next = NULL;
569 }
570 }
571
572 static GLvoid
573 var_cache_destroy (struct var_cache **va)
574 {
575 if (*va) {
576 var_cache_destroy (&(**va).next);
577 _mesa_free (*va);
578 *va = NULL;
579 }
580 }
581
582 static GLvoid
583 var_cache_append (struct var_cache **va, struct var_cache *nv)
584 {
585 if (*va)
586 var_cache_append (&(**va).next, nv);
587 else
588 *va = nv;
589 }
590
591 static struct var_cache *
592 var_cache_find (struct var_cache *va, const GLubyte * name)
593 {
594 /*struct var_cache *first = va;*/
595
596 while (va) {
597 if (!_mesa_strcmp ( (const char*) name, (const char*) va->name)) {
598 if (va->type == vt_alias)
599 return va->alias_binding;
600 return va;
601 }
602
603 va = va->next;
604 }
605
606 return NULL;
607 }
608
609
610
611 /**
612 * Called when an error is detected while parsing/compiling a program.
613 * Sets the ctx->Program.ErrorString field to descript and records a
614 * GL_INVALID_OPERATION error.
615 * \param position position of error in program string
616 * \param descrip verbose error description
617 */
618 static void
619 program_error(GLcontext *ctx, GLint position, const char *descrip)
620 {
621 if (descrip) {
622 const char *prefix = "glProgramString(", *suffix = ")";
623 char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) +
624 _mesa_strlen(prefix) +
625 _mesa_strlen(suffix) + 1);
626 if (str) {
627 _mesa_sprintf(str, "%s%s%s", prefix, descrip, suffix);
628 _mesa_error(ctx, GL_INVALID_OPERATION, str);
629 _mesa_free(str);
630 }
631 }
632 _mesa_set_program_error(ctx, position, descrip);
633 }
634
635
636
637 /**
638 * constructs an integer from 4 GLubytes in LE format
639 */
640 static GLuint
641 parse_position (const GLubyte ** inst)
642 {
643 GLuint value;
644
645 value = (GLuint) (*(*inst)++);
646 value += (GLuint) (*(*inst)++) * 0x100;
647 value += (GLuint) (*(*inst)++) * 0x10000;
648 value += (GLuint) (*(*inst)++) * 0x1000000;
649
650 return value;
651 }
652
653 /**
654 * This will, given a string, lookup the string as a variable name in the
655 * var cache. If the name is found, the var cache node corresponding to the
656 * var name is returned. If it is not found, a new entry is allocated
657 *
658 * \param I Points into the binary array where the string identifier begins
659 * \param found 1 if the string was found in the var_cache, 0 if it was allocated
660 * \return The location on the var_cache corresponding the the string starting at I
661 */
662 static struct var_cache *
663 parse_string (const GLubyte ** inst, struct var_cache **vc_head,
664 struct arb_program *Program, GLuint * found)
665 {
666 const GLubyte *i = *inst;
667 struct var_cache *va = NULL;
668 (void) Program;
669
670 *inst += _mesa_strlen ((char *) i) + 1;
671
672 va = var_cache_find (*vc_head, i);
673
674 if (va) {
675 *found = 1;
676 return va;
677 }
678
679 *found = 0;
680 var_cache_create (&va);
681 va->name = (const GLubyte *) i;
682
683 var_cache_append (vc_head, va);
684
685 return va;
686 }
687
688 static char *
689 parse_string_without_adding (const GLubyte ** inst, struct arb_program *Program)
690 {
691 const GLubyte *i = *inst;
692 (void) Program;
693
694 *inst += _mesa_strlen ((char *) i) + 1;
695
696 return (char *) i;
697 }
698
699 /**
700 * \return -1 if we parse '-', return 1 otherwise
701 */
702 static GLint
703 parse_sign (const GLubyte ** inst)
704 {
705 /*return *(*inst)++ != '+'; */
706
707 if (**inst == '-') {
708 (*inst)++;
709 return -1;
710 }
711 else if (**inst == '+') {
712 (*inst)++;
713 return 1;
714 }
715
716 return 1;
717 }
718
719 /**
720 * parses and returns signed integer
721 */
722 static GLint
723 parse_integer (const GLubyte ** inst, struct arb_program *Program)
724 {
725 GLint sign;
726 GLint value;
727
728 /* check if *inst points to '+' or '-'
729 * if yes, grab the sign and increment *inst
730 */
731 sign = parse_sign (inst);
732
733 /* now check if *inst points to 0
734 * if yes, increment the *inst and return the default value
735 */
736 if (**inst == 0) {
737 (*inst)++;
738 return 0;
739 }
740
741 /* parse the integer as you normally would do it */
742 value = _mesa_atoi (parse_string_without_adding (inst, Program));
743
744 /* now, after terminating 0 there is a position
745 * to parse it - parse_position()
746 */
747 Program->Position = parse_position (inst);
748
749 return value * sign;
750 }
751
752 /**
753 Accumulate this string of digits, and return them as
754 a large integer represented in floating point (for range).
755 If scale is not NULL, also accumulates a power-of-ten
756 integer scale factor that represents the number of digits
757 in the string.
758 */
759 static GLdouble
760 parse_float_string(const GLubyte ** inst, struct arb_program *Program, GLdouble *scale)
761 {
762 GLdouble value = 0.0;
763 GLdouble oscale = 1.0;
764
765 if (**inst == 0) { /* this string of digits is empty-- do nothing */
766 (*inst)++;
767 }
768 else { /* nonempty string-- parse out the digits */
769 while (**inst >= '0' && **inst <= '9') {
770 GLubyte digit = *((*inst)++);
771 value = value * 10.0 + (GLint) (digit - '0');
772 oscale *= 10.0;
773 }
774 assert(**inst == 0); /* integer string should end with 0 */
775 (*inst)++; /* skip over terminating 0 */
776 Program->Position = parse_position(inst); /* skip position (from integer) */
777 }
778 if (scale)
779 *scale = oscale;
780 return value;
781 }
782
783 /**
784 Parse an unsigned floating-point number from this stream of tokenized
785 characters. Example floating-point formats supported:
786 12.34
787 12
788 0.34
789 .34
790 12.34e-4
791 */
792 static GLfloat
793 parse_float (const GLubyte ** inst, struct arb_program *Program)
794 {
795 GLint exponent;
796 GLdouble whole, fraction, fracScale = 1.0;
797
798 whole = parse_float_string(inst, Program, 0);
799 fraction = parse_float_string(inst, Program, &fracScale);
800
801 /* Parse signed exponent */
802 exponent = parse_integer(inst, Program); /* This is the exponent */
803
804 /* Assemble parts of floating-point number: */
805 return (GLfloat) ((whole + fraction / fracScale) *
806 _mesa_pow(10.0, (GLfloat) exponent));
807 }
808
809
810 /**
811 */
812 static GLfloat
813 parse_signed_float (const GLubyte ** inst, struct arb_program *Program)
814 {
815 GLint sign = parse_sign (inst);
816 GLfloat value = parse_float (inst, Program);
817 return value * sign;
818 }
819
820 /**
821 * This picks out a constant value from the parsed array. The constant vector is r
822 * returned in the *values array, which should be of length 4.
823 *
824 * \param values - The 4 component vector with the constant value in it
825 */
826 static GLvoid
827 parse_constant (const GLubyte ** inst, GLfloat *values, struct arb_program *Program,
828 GLboolean use)
829 {
830 GLuint components, i;
831
832
833 switch (*(*inst)++) {
834 case CONSTANT_SCALAR:
835 if (use == GL_TRUE) {
836 values[0] =
837 values[1] =
838 values[2] = values[3] = parse_float (inst, Program);
839 }
840 else {
841 values[0] =
842 values[1] =
843 values[2] = values[3] = parse_signed_float (inst, Program);
844 }
845
846 break;
847 case CONSTANT_VECTOR:
848 values[0] = values[1] = values[2] = 0;
849 values[3] = 1;
850 components = *(*inst)++;
851 for (i = 0; i < components; i++) {
852 values[i] = parse_signed_float (inst, Program);
853 }
854 break;
855 }
856 }
857
858 /**
859 * \param offset The offset from the address register that we should
860 * address
861 *
862 * \return 0 on sucess, 1 on error
863 */
864 static GLuint
865 parse_relative_offset(GLcontext *ctx, const GLubyte **inst,
866 struct arb_program *Program, GLint *offset)
867 {
868 (void) ctx;
869 *offset = parse_integer(inst, Program);
870 return 0;
871 }
872
873 /**
874 * \param color 0 if color type is primary, 1 if color type is secondary
875 * \return 0 on sucess, 1 on error
876 */
877 static GLuint
878 parse_color_type (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
879 GLint * color)
880 {
881 (void) ctx; (void) Program;
882 *color = *(*inst)++ != COLOR_PRIMARY;
883 return 0;
884 }
885
886 /**
887 * Get an integer corresponding to a generic vertex attribute.
888 *
889 * \return 0 on sucess, 1 on error
890 */
891 static GLuint
892 parse_generic_attrib_num(GLcontext *ctx, const GLubyte ** inst,
893 struct arb_program *Program, GLuint *attrib)
894 {
895 GLint i = parse_integer(inst, Program);
896
897 if ((i < 0) || (i >= MAX_VERTEX_PROGRAM_ATTRIBS))
898 {
899 program_error(ctx, Program->Position,
900 "Invalid generic vertex attribute index");
901 return 1;
902 }
903
904 *attrib = (GLuint) i;
905
906 return 0;
907 }
908
909
910 /**
911 * \param color The index of the color buffer to write into
912 * \return 0 on sucess, 1 on error
913 */
914 static GLuint
915 parse_output_color_num (GLcontext * ctx, const GLubyte ** inst,
916 struct arb_program *Program, GLuint * color)
917 {
918 GLint i = parse_integer (inst, Program);
919
920 if ((i < 0) || (i >= (int)ctx->Const.MaxDrawBuffers)) {
921 program_error(ctx, Program->Position, "Invalid draw buffer index");
922 return 1;
923 }
924
925 *color = (GLuint) i;
926 return 0;
927 }
928
929
930 /**
931 * \param coord The texture unit index
932 * \return 0 on sucess, 1 on error
933 */
934 static GLuint
935 parse_texcoord_num (GLcontext * ctx, const GLubyte ** inst,
936 struct arb_program *Program, GLuint * coord)
937 {
938 GLint i = parse_integer (inst, Program);
939
940 if ((i < 0) || (i >= (int)ctx->Const.MaxTextureUnits)) {
941 program_error(ctx, Program->Position, "Invalid texture unit index");
942 return 1;
943 }
944
945 *coord = (GLuint) i;
946 return 0;
947 }
948
949 /**
950 * \param coord The weight index
951 * \return 0 on sucess, 1 on error
952 */
953 static GLuint
954 parse_weight_num (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
955 GLint * coord)
956 {
957 *coord = parse_integer (inst, Program);
958
959 if ((*coord < 0) || (*coord >= 1)) {
960 program_error(ctx, Program->Position, "Invalid weight index");
961 return 1;
962 }
963
964 return 0;
965 }
966
967 /**
968 * \param coord The clip plane index
969 * \return 0 on sucess, 1 on error
970 */
971 static GLuint
972 parse_clipplane_num (GLcontext * ctx, const GLubyte ** inst,
973 struct arb_program *Program, GLint * coord)
974 {
975 *coord = parse_integer (inst, Program);
976
977 if ((*coord < 0) || (*coord >= (GLint) ctx->Const.MaxClipPlanes)) {
978 program_error(ctx, Program->Position, "Invalid clip plane index");
979 return 1;
980 }
981
982 return 0;
983 }
984
985
986 /**
987 * \return 0 on front face, 1 on back face
988 */
989 static GLuint
990 parse_face_type (const GLubyte ** inst)
991 {
992 switch (*(*inst)++) {
993 case FACE_FRONT:
994 return 0;
995
996 case FACE_BACK:
997 return 1;
998 }
999 return 0;
1000 }
1001
1002
1003 /**
1004 * Given a matrix and a modifier token on the binary array, return tokens
1005 * that _mesa_fetch_state() [program.c] can understand.
1006 *
1007 * \param matrix - the matrix we are talking about
1008 * \param matrix_idx - the index of the matrix we have (for texture & program matricies)
1009 * \param matrix_modifier - the matrix modifier (trans, inv, etc)
1010 * \return 0 on sucess, 1 on failure
1011 */
1012 static GLuint
1013 parse_matrix (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program,
1014 GLint * matrix, GLint * matrix_idx, GLint * matrix_modifier)
1015 {
1016 GLubyte mat = *(*inst)++;
1017
1018 *matrix_idx = 0;
1019
1020 switch (mat) {
1021 case MATRIX_MODELVIEW:
1022 *matrix = STATE_MODELVIEW_MATRIX;
1023 *matrix_idx = parse_integer (inst, Program);
1024 if (*matrix_idx > 0) {
1025 program_error(ctx, Program->Position,
1026 "ARB_vertex_blend not supported");
1027 return 1;
1028 }
1029 break;
1030
1031 case MATRIX_PROJECTION:
1032 *matrix = STATE_PROJECTION_MATRIX;
1033 break;
1034
1035 case MATRIX_MVP:
1036 *matrix = STATE_MVP_MATRIX;
1037 break;
1038
1039 case MATRIX_TEXTURE:
1040 *matrix = STATE_TEXTURE_MATRIX;
1041 *matrix_idx = parse_integer (inst, Program);
1042 if (*matrix_idx >= (GLint) ctx->Const.MaxTextureUnits) {
1043 program_error(ctx, Program->Position, "Invalid Texture Unit");
1044 /* bad *matrix_id */
1045 return 1;
1046 }
1047 break;
1048
1049 /* This is not currently supported (ARB_matrix_palette) */
1050 case MATRIX_PALETTE:
1051 *matrix_idx = parse_integer (inst, Program);
1052 program_error(ctx, Program->Position,
1053 "ARB_matrix_palette not supported");
1054 return 1;
1055 break;
1056
1057 case MATRIX_PROGRAM:
1058 *matrix = STATE_PROGRAM_MATRIX;
1059 *matrix_idx = parse_integer (inst, Program);
1060 if (*matrix_idx >= (GLint) ctx->Const.MaxProgramMatrices) {
1061 program_error(ctx, Program->Position, "Invalid Program Matrix");
1062 /* bad *matrix_idx */
1063 return 1;
1064 }
1065 break;
1066 }
1067
1068 switch (*(*inst)++) {
1069 case MATRIX_MODIFIER_IDENTITY:
1070 *matrix_modifier = 0;
1071 break;
1072 case MATRIX_MODIFIER_INVERSE:
1073 *matrix_modifier = STATE_MATRIX_INVERSE;
1074 break;
1075 case MATRIX_MODIFIER_TRANSPOSE:
1076 *matrix_modifier = STATE_MATRIX_TRANSPOSE;
1077 break;
1078 case MATRIX_MODIFIER_INVTRANS:
1079 *matrix_modifier = STATE_MATRIX_INVTRANS;
1080 break;
1081 }
1082
1083 return 0;
1084 }
1085
1086
1087 /**
1088 * This parses a state string (rather, the binary version of it) into
1089 * a 6-token sequence as described in _mesa_fetch_state() [program.c]
1090 *
1091 * \param inst - the start in the binary arry to start working from
1092 * \param state_tokens - the storage for the 6-token state description
1093 * \return - 0 on sucess, 1 on error
1094 */
1095 static GLuint
1096 parse_state_single_item (GLcontext * ctx, const GLubyte ** inst,
1097 struct arb_program *Program,
1098 gl_state_index state_tokens[STATE_LENGTH])
1099 {
1100 switch (*(*inst)++) {
1101 case STATE_MATERIAL_PARSER:
1102 state_tokens[0] = STATE_MATERIAL;
1103 state_tokens[1] = parse_face_type (inst);
1104 switch (*(*inst)++) {
1105 case MATERIAL_AMBIENT:
1106 state_tokens[2] = STATE_AMBIENT;
1107 break;
1108 case MATERIAL_DIFFUSE:
1109 state_tokens[2] = STATE_DIFFUSE;
1110 break;
1111 case MATERIAL_SPECULAR:
1112 state_tokens[2] = STATE_SPECULAR;
1113 break;
1114 case MATERIAL_EMISSION:
1115 state_tokens[2] = STATE_EMISSION;
1116 break;
1117 case MATERIAL_SHININESS:
1118 state_tokens[2] = STATE_SHININESS;
1119 break;
1120 }
1121 break;
1122
1123 case STATE_LIGHT_PARSER:
1124 state_tokens[0] = STATE_LIGHT;
1125 state_tokens[1] = parse_integer (inst, Program);
1126
1127 /* Check the value of state_tokens[1] against the # of lights */
1128 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1129 program_error(ctx, Program->Position, "Invalid Light Number");
1130 /* bad state_tokens[1] */
1131 return 1;
1132 }
1133
1134 switch (*(*inst)++) {
1135 case LIGHT_AMBIENT:
1136 state_tokens[2] = STATE_AMBIENT;
1137 break;
1138 case LIGHT_DIFFUSE:
1139 state_tokens[2] = STATE_DIFFUSE;
1140 break;
1141 case LIGHT_SPECULAR:
1142 state_tokens[2] = STATE_SPECULAR;
1143 break;
1144 case LIGHT_POSITION:
1145 state_tokens[2] = STATE_POSITION;
1146 break;
1147 case LIGHT_ATTENUATION:
1148 state_tokens[2] = STATE_ATTENUATION;
1149 break;
1150 case LIGHT_HALF:
1151 state_tokens[2] = STATE_HALF_VECTOR;
1152 break;
1153 case LIGHT_SPOT_DIRECTION:
1154 state_tokens[2] = STATE_SPOT_DIRECTION;
1155 break;
1156 }
1157 break;
1158
1159 case STATE_LIGHT_MODEL:
1160 switch (*(*inst)++) {
1161 case LIGHT_MODEL_AMBIENT:
1162 state_tokens[0] = STATE_LIGHTMODEL_AMBIENT;
1163 break;
1164 case LIGHT_MODEL_SCENECOLOR:
1165 state_tokens[0] = STATE_LIGHTMODEL_SCENECOLOR;
1166 state_tokens[1] = parse_face_type (inst);
1167 break;
1168 }
1169 break;
1170
1171 case STATE_LIGHT_PROD:
1172 state_tokens[0] = STATE_LIGHTPROD;
1173 state_tokens[1] = parse_integer (inst, Program);
1174
1175 /* Check the value of state_tokens[1] against the # of lights */
1176 if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) {
1177 program_error(ctx, Program->Position, "Invalid Light Number");
1178 /* bad state_tokens[1] */
1179 return 1;
1180 }
1181
1182 state_tokens[2] = parse_face_type (inst);
1183 switch (*(*inst)++) {
1184 case LIGHT_PROD_AMBIENT:
1185 state_tokens[3] = STATE_AMBIENT;
1186 break;
1187 case LIGHT_PROD_DIFFUSE:
1188 state_tokens[3] = STATE_DIFFUSE;
1189 break;
1190 case LIGHT_PROD_SPECULAR:
1191 state_tokens[3] = STATE_SPECULAR;
1192 break;
1193 }
1194 break;
1195
1196
1197 case STATE_FOG:
1198 switch (*(*inst)++) {
1199 case FOG_COLOR:
1200 state_tokens[0] = STATE_FOG_COLOR;
1201 break;
1202 case FOG_PARAMS:
1203 state_tokens[0] = STATE_FOG_PARAMS;
1204 break;
1205 }
1206 break;
1207
1208 case STATE_TEX_ENV:
1209 state_tokens[1] = parse_integer (inst, Program);
1210 switch (*(*inst)++) {
1211 case TEX_ENV_COLOR:
1212 state_tokens[0] = STATE_TEXENV_COLOR;
1213 break;
1214 }
1215 break;
1216
1217 case STATE_TEX_GEN:
1218 {
1219 GLuint type, coord;
1220
1221 state_tokens[0] = STATE_TEXGEN;
1222 /*state_tokens[1] = parse_integer (inst, Program);*/ /* Texture Unit */
1223
1224 if (parse_texcoord_num (ctx, inst, Program, &coord))
1225 return 1;
1226 state_tokens[1] = coord;
1227
1228 /* EYE or OBJECT */
1229 type = *(*inst++);
1230
1231 /* 0 - s, 1 - t, 2 - r, 3 - q */
1232 coord = *(*inst++);
1233
1234 if (type == TEX_GEN_EYE) {
1235 switch (coord) {
1236 case COMPONENT_X:
1237 state_tokens[2] = STATE_TEXGEN_EYE_S;
1238 break;
1239 case COMPONENT_Y:
1240 state_tokens[2] = STATE_TEXGEN_EYE_T;
1241 break;
1242 case COMPONENT_Z:
1243 state_tokens[2] = STATE_TEXGEN_EYE_R;
1244 break;
1245 case COMPONENT_W:
1246 state_tokens[2] = STATE_TEXGEN_EYE_Q;
1247 break;
1248 }
1249 }
1250 else {
1251 switch (coord) {
1252 case COMPONENT_X:
1253 state_tokens[2] = STATE_TEXGEN_OBJECT_S;
1254 break;
1255 case COMPONENT_Y:
1256 state_tokens[2] = STATE_TEXGEN_OBJECT_T;
1257 break;
1258 case COMPONENT_Z:
1259 state_tokens[2] = STATE_TEXGEN_OBJECT_R;
1260 break;
1261 case COMPONENT_W:
1262 state_tokens[2] = STATE_TEXGEN_OBJECT_Q;
1263 break;
1264 }
1265 }
1266 }
1267 break;
1268
1269 case STATE_DEPTH:
1270 switch (*(*inst)++) {
1271 case DEPTH_RANGE:
1272 state_tokens[0] = STATE_DEPTH_RANGE;
1273 break;
1274 }
1275 break;
1276
1277 case STATE_CLIP_PLANE:
1278 state_tokens[0] = STATE_CLIPPLANE;
1279 state_tokens[1] = parse_integer (inst, Program);
1280 if (parse_clipplane_num (ctx, inst, Program,
1281 (GLint *) &state_tokens[1]))
1282 return 1;
1283 break;
1284
1285 case STATE_POINT:
1286 switch (*(*inst++)) {
1287 case POINT_SIZE:
1288 state_tokens[0] = STATE_POINT_SIZE;
1289 break;
1290
1291 case POINT_ATTENUATION:
1292 state_tokens[0] = STATE_POINT_ATTENUATION;
1293 break;
1294 }
1295 break;
1296
1297 /* XXX: I think this is the correct format for a matrix row */
1298 case STATE_MATRIX_ROWS:
1299 if (parse_matrix(ctx, inst, Program,
1300 (GLint *) &state_tokens[0],
1301 (GLint *) &state_tokens[1],
1302 (GLint *) &state_tokens[4]))
1303 return 1;
1304
1305 state_tokens[2] = parse_integer (inst, Program); /* The first row to grab */
1306
1307 if ((**inst) != 0) { /* Either the last row, 0 */
1308 state_tokens[3] = parse_integer (inst, Program);
1309 if (state_tokens[3] < state_tokens[2]) {
1310 program_error(ctx, Program->Position,
1311 "Second matrix index less than the first");
1312 /* state_tokens[4] vs. state_tokens[3] */
1313 return 1;
1314 }
1315 }
1316 else {
1317 state_tokens[3] = state_tokens[2];
1318 (*inst)++;
1319 }
1320 break;
1321 }
1322
1323 return 0;
1324 }
1325
1326 /**
1327 * This parses a state string (rather, the binary version of it) into
1328 * a 6-token similar for the state fetching code in program.c
1329 *
1330 * One might ask, why fetch these parameters into just like you fetch
1331 * state when they are already stored in other places?
1332 *
1333 * Because of array offsets -> We can stick env/local parameters in the
1334 * middle of a parameter array and then index someplace into the array
1335 * when we execute.
1336 *
1337 * One optimization might be to only do this for the cases where the
1338 * env/local parameters end up inside of an array, and leave the
1339 * single parameters (or arrays of pure env/local pareameters) in their
1340 * respective register files.
1341 *
1342 * For ENV parameters, the format is:
1343 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1344 * state_tokens[1] = STATE_ENV
1345 * state_tokens[2] = the parameter index
1346 *
1347 * for LOCAL parameters, the format is:
1348 * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM
1349 * state_tokens[1] = STATE_LOCAL
1350 * state_tokens[2] = the parameter index
1351 *
1352 * \param inst - the start in the binary arry to start working from
1353 * \param state_tokens - the storage for the 6-token state description
1354 * \return - 0 on sucess, 1 on failure
1355 */
1356 static GLuint
1357 parse_program_single_item (GLcontext * ctx, const GLubyte ** inst,
1358 struct arb_program *Program,
1359 gl_state_index state_tokens[STATE_LENGTH])
1360 {
1361 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1362 state_tokens[0] = STATE_FRAGMENT_PROGRAM;
1363 else
1364 state_tokens[0] = STATE_VERTEX_PROGRAM;
1365
1366
1367 switch (*(*inst)++) {
1368 case PROGRAM_PARAM_ENV:
1369 state_tokens[1] = STATE_ENV;
1370 state_tokens[2] = parse_integer (inst, Program);
1371
1372 /* Check state_tokens[2] against the number of ENV parameters available */
1373 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1374 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxEnvParams))
1375 ||
1376 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1377 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxEnvParams))) {
1378 program_error(ctx, Program->Position,
1379 "Invalid Program Env Parameter");
1380 /* bad state_tokens[2] */
1381 return 1;
1382 }
1383
1384 break;
1385
1386 case PROGRAM_PARAM_LOCAL:
1387 state_tokens[1] = STATE_LOCAL;
1388 state_tokens[2] = parse_integer (inst, Program);
1389
1390 /* Check state_tokens[2] against the number of LOCAL parameters available */
1391 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1392 (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxLocalParams))
1393 ||
1394 ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1395 (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxLocalParams))) {
1396 program_error(ctx, Program->Position,
1397 "Invalid Program Local Parameter");
1398 /* bad state_tokens[2] */
1399 return 1;
1400 }
1401 break;
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * For ARB_vertex_program, programs are not allowed to use both an explicit
1409 * vertex attribute and a generic vertex attribute corresponding to the same
1410 * state. See section 2.14.3.1 of the GL_ARB_vertex_program spec.
1411 *
1412 * This will walk our var_cache and make sure that nobody does anything fishy.
1413 *
1414 * \return 0 on sucess, 1 on error
1415 */
1416 static GLuint
1417 generic_attrib_check(struct var_cache *vc_head)
1418 {
1419 int a;
1420 struct var_cache *curr;
1421 GLboolean explicitAttrib[MAX_VERTEX_PROGRAM_ATTRIBS],
1422 genericAttrib[MAX_VERTEX_PROGRAM_ATTRIBS];
1423
1424 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1425 explicitAttrib[a] = GL_FALSE;
1426 genericAttrib[a] = GL_FALSE;
1427 }
1428
1429 curr = vc_head;
1430 while (curr) {
1431 if (curr->type == vt_attrib) {
1432 if (curr->attrib_is_generic)
1433 genericAttrib[ curr->attrib_binding ] = GL_TRUE;
1434 else
1435 explicitAttrib[ curr->attrib_binding ] = GL_TRUE;
1436 }
1437
1438 curr = curr->next;
1439 }
1440
1441 for (a=0; a<MAX_VERTEX_PROGRAM_ATTRIBS; a++) {
1442 if ((explicitAttrib[a]) && (genericAttrib[a]))
1443 return 1;
1444 }
1445
1446 return 0;
1447 }
1448
1449 /**
1450 * This will handle the binding side of an ATTRIB var declaration
1451 *
1452 * \param inputReg returns the input register index, one of the
1453 * VERT_ATTRIB_* or FRAG_ATTRIB_* values.
1454 * \return returns 0 on success, 1 on error
1455 */
1456 static GLuint
1457 parse_attrib_binding(GLcontext * ctx, const GLubyte ** inst,
1458 struct arb_program *Program,
1459 GLuint *inputReg, GLuint *is_generic)
1460 {
1461 GLint err = 0;
1462
1463 *is_generic = 0;
1464
1465 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1466 switch (*(*inst)++) {
1467 case FRAGMENT_ATTRIB_COLOR:
1468 {
1469 GLint coord;
1470 err = parse_color_type (ctx, inst, Program, &coord);
1471 *inputReg = FRAG_ATTRIB_COL0 + coord;
1472 }
1473 break;
1474 case FRAGMENT_ATTRIB_TEXCOORD:
1475 {
1476 GLuint texcoord = 0;
1477 err = parse_texcoord_num (ctx, inst, Program, &texcoord);
1478 *inputReg = FRAG_ATTRIB_TEX0 + texcoord;
1479 }
1480 break;
1481 case FRAGMENT_ATTRIB_FOGCOORD:
1482 *inputReg = FRAG_ATTRIB_FOGC;
1483 break;
1484 case FRAGMENT_ATTRIB_POSITION:
1485 *inputReg = FRAG_ATTRIB_WPOS;
1486 break;
1487 default:
1488 err = 1;
1489 break;
1490 }
1491 }
1492 else {
1493 switch (*(*inst)++) {
1494 case VERTEX_ATTRIB_POSITION:
1495 *inputReg = VERT_ATTRIB_POS;
1496 break;
1497
1498 case VERTEX_ATTRIB_WEIGHT:
1499 {
1500 GLint weight;
1501 err = parse_weight_num (ctx, inst, Program, &weight);
1502 *inputReg = VERT_ATTRIB_WEIGHT;
1503 #if 1
1504 /* hack for Warcraft (see bug 8060) */
1505 _mesa_warning(ctx, "Application error: vertex program uses 'vertex.weight' but GL_ARB_vertex_blend not supported.");
1506 break;
1507 #else
1508 program_error(ctx, Program->Position,
1509 "ARB_vertex_blend not supported");
1510 return 1;
1511 #endif
1512 }
1513
1514 case VERTEX_ATTRIB_NORMAL:
1515 *inputReg = VERT_ATTRIB_NORMAL;
1516 break;
1517
1518 case VERTEX_ATTRIB_COLOR:
1519 {
1520 GLint color;
1521 err = parse_color_type (ctx, inst, Program, &color);
1522 if (color) {
1523 *inputReg = VERT_ATTRIB_COLOR1;
1524 }
1525 else {
1526 *inputReg = VERT_ATTRIB_COLOR0;
1527 }
1528 }
1529 break;
1530
1531 case VERTEX_ATTRIB_FOGCOORD:
1532 *inputReg = VERT_ATTRIB_FOG;
1533 break;
1534
1535 case VERTEX_ATTRIB_TEXCOORD:
1536 {
1537 GLuint unit = 0;
1538 err = parse_texcoord_num (ctx, inst, Program, &unit);
1539 *inputReg = VERT_ATTRIB_TEX0 + unit;
1540 }
1541 break;
1542
1543 case VERTEX_ATTRIB_MATRIXINDEX:
1544 /* Not supported at this time */
1545 {
1546 const char *msg = "ARB_palette_matrix not supported";
1547 parse_integer (inst, Program);
1548 program_error(ctx, Program->Position, msg);
1549 }
1550 return 1;
1551
1552 case VERTEX_ATTRIB_GENERIC:
1553 {
1554 GLuint attrib;
1555 err = parse_generic_attrib_num(ctx, inst, Program, &attrib);
1556 if (!err) {
1557 *is_generic = 1;
1558 /* Add VERT_ATTRIB_GENERIC0 here because ARB_vertex_program's
1559 * attributes do not alias the conventional vertex
1560 * attributes.
1561 */
1562 if (attrib > 0)
1563 *inputReg = attrib + VERT_ATTRIB_GENERIC0;
1564 else
1565 *inputReg = 0;
1566 }
1567 }
1568 break;
1569
1570 default:
1571 err = 1;
1572 break;
1573 }
1574 }
1575
1576 if (err) {
1577 program_error(ctx, Program->Position, "Bad attribute binding");
1578 }
1579
1580 return err;
1581 }
1582
1583
1584 /**
1585 * This translates between a binary token for an output variable type
1586 * and the mesa token for the same thing.
1587 *
1588 * \param inst The parsed tokens
1589 * \param outputReg Returned index/number of the output register,
1590 * one of the VERT_RESULT_* or FRAG_RESULT_* values.
1591 */
1592 static GLuint
1593 parse_result_binding(GLcontext *ctx, const GLubyte **inst,
1594 GLuint *outputReg, struct arb_program *Program)
1595 {
1596 const GLubyte token = *(*inst)++;
1597
1598 switch (token) {
1599 case FRAGMENT_RESULT_COLOR:
1600 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1601 GLuint out_color;
1602
1603 /* This gets result of the color buffer we're supposed to
1604 * draw into. This pertains to GL_ARB_draw_buffers.
1605 */
1606 parse_output_color_num(ctx, inst, Program, &out_color);
1607 ASSERT(out_color < MAX_DRAW_BUFFERS);
1608 *outputReg = FRAG_RESULT_COLR;
1609 }
1610 else {
1611 /* for vtx programs, this is VERTEX_RESULT_POSITION */
1612 *outputReg = VERT_RESULT_HPOS;
1613 }
1614 break;
1615
1616 case FRAGMENT_RESULT_DEPTH:
1617 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1618 /* for frag programs, this is FRAGMENT_RESULT_DEPTH */
1619 *outputReg = FRAG_RESULT_DEPR;
1620 }
1621 else {
1622 /* for vtx programs, this is VERTEX_RESULT_COLOR */
1623 GLint color_type;
1624 GLuint face_type = parse_face_type(inst);
1625 GLint err = parse_color_type(ctx, inst, Program, &color_type);
1626 if (err)
1627 return 1;
1628
1629 if (face_type) {
1630 /* back face */
1631 if (color_type) {
1632 *outputReg = VERT_RESULT_BFC1; /* secondary color */
1633 }
1634 else {
1635 *outputReg = VERT_RESULT_BFC0; /* primary color */
1636 }
1637 }
1638 else {
1639 /* front face */
1640 if (color_type) {
1641 *outputReg = VERT_RESULT_COL1; /* secondary color */
1642 }
1643 /* primary color */
1644 else {
1645 *outputReg = VERT_RESULT_COL0; /* primary color */
1646 }
1647 }
1648 }
1649 break;
1650
1651 case VERTEX_RESULT_FOGCOORD:
1652 *outputReg = VERT_RESULT_FOGC;
1653 break;
1654
1655 case VERTEX_RESULT_POINTSIZE:
1656 *outputReg = VERT_RESULT_PSIZ;
1657 break;
1658
1659 case VERTEX_RESULT_TEXCOORD:
1660 {
1661 GLuint unit;
1662 if (parse_texcoord_num (ctx, inst, Program, &unit))
1663 return 1;
1664 *outputReg = VERT_RESULT_TEX0 + unit;
1665 }
1666 break;
1667 }
1668
1669 Program->Base.OutputsWritten |= (1 << *outputReg);
1670
1671 return 0;
1672 }
1673
1674
1675 /**
1676 * This handles the declaration of ATTRIB variables
1677 *
1678 * XXX: Still needs
1679 * parse_vert_attrib_binding(), or something like that
1680 *
1681 * \return 0 on sucess, 1 on error
1682 */
1683 static GLint
1684 parse_attrib (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1685 struct arb_program *Program)
1686 {
1687 GLuint found;
1688 char *error_msg;
1689 struct var_cache *attrib_var;
1690
1691 attrib_var = parse_string (inst, vc_head, Program, &found);
1692 Program->Position = parse_position (inst);
1693 if (found) {
1694 error_msg = (char *)
1695 _mesa_malloc (_mesa_strlen ((char *) attrib_var->name) + 40);
1696 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
1697 attrib_var->name);
1698 program_error(ctx, Program->Position, error_msg);
1699 _mesa_free (error_msg);
1700 return 1;
1701 }
1702
1703 attrib_var->type = vt_attrib;
1704
1705 if (parse_attrib_binding(ctx, inst, Program, &attrib_var->attrib_binding,
1706 &attrib_var->attrib_is_generic))
1707 return 1;
1708
1709 if (generic_attrib_check(*vc_head)) {
1710 program_error(ctx, Program->Position,
1711 "Cannot use both a generic vertex attribute "
1712 "and a specific attribute of the same type");
1713 return 1;
1714 }
1715
1716 Program->Base.NumAttributes++;
1717 return 0;
1718 }
1719
1720 /**
1721 * \param use -- TRUE if we're called when declaring implicit parameters,
1722 * FALSE if we're declaraing variables. This has to do with
1723 * if we get a signed or unsigned float for scalar constants
1724 */
1725 static GLuint
1726 parse_param_elements (GLcontext * ctx, const GLubyte ** inst,
1727 struct var_cache *param_var,
1728 struct arb_program *Program, GLboolean use)
1729 {
1730 GLint idx;
1731 GLuint err = 0;
1732 gl_state_index state_tokens[STATE_LENGTH];
1733 GLfloat const_values[4];
1734
1735 switch (*(*inst)++) {
1736 case PARAM_STATE_ELEMENT:
1737 if (parse_state_single_item (ctx, inst, Program, state_tokens))
1738 return 1;
1739
1740 /* If we adding STATE_MATRIX that has multiple rows, we need to
1741 * unroll it and call _mesa_add_state_reference() for each row
1742 */
1743 if ((state_tokens[0] == STATE_MODELVIEW_MATRIX ||
1744 state_tokens[0] == STATE_PROJECTION_MATRIX ||
1745 state_tokens[0] == STATE_MVP_MATRIX ||
1746 state_tokens[0] == STATE_TEXTURE_MATRIX ||
1747 state_tokens[0] == STATE_PROGRAM_MATRIX)
1748 && (state_tokens[2] != state_tokens[3])) {
1749 GLint row;
1750 const GLint first_row = state_tokens[2];
1751 const GLint last_row = state_tokens[3];
1752
1753 for (row = first_row; row <= last_row; row++) {
1754 state_tokens[2] = state_tokens[3] = row;
1755
1756 idx = _mesa_add_state_reference(Program->Base.Parameters,
1757 state_tokens);
1758 if (param_var->param_binding_begin == ~0U)
1759 param_var->param_binding_begin = idx;
1760 param_var->param_binding_length++;
1761 Program->Base.NumParameters++;
1762 }
1763 }
1764 else {
1765 idx = _mesa_add_state_reference(Program->Base.Parameters,
1766 state_tokens);
1767 if (param_var->param_binding_begin == ~0U)
1768 param_var->param_binding_begin = idx;
1769 param_var->param_binding_length++;
1770 Program->Base.NumParameters++;
1771 }
1772 break;
1773
1774 case PARAM_PROGRAM_ELEMENT:
1775 if (parse_program_single_item (ctx, inst, Program, state_tokens))
1776 return 1;
1777 idx = _mesa_add_state_reference (Program->Base.Parameters, state_tokens);
1778 if (param_var->param_binding_begin == ~0U)
1779 param_var->param_binding_begin = idx;
1780 param_var->param_binding_length++;
1781 Program->Base.NumParameters++;
1782
1783 /* Check if there is more: 0 -> we're done, else its an integer */
1784 if (**inst) {
1785 GLuint out_of_range, new_idx;
1786 GLuint start_idx = state_tokens[2] + 1;
1787 GLuint end_idx = parse_integer (inst, Program);
1788
1789 out_of_range = 0;
1790 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
1791 if (((state_tokens[1] == STATE_ENV)
1792 && (end_idx >= ctx->Const.FragmentProgram.MaxEnvParams))
1793 || ((state_tokens[1] == STATE_LOCAL)
1794 && (end_idx >=
1795 ctx->Const.FragmentProgram.MaxLocalParams)))
1796 out_of_range = 1;
1797 }
1798 else {
1799 if (((state_tokens[1] == STATE_ENV)
1800 && (end_idx >= ctx->Const.VertexProgram.MaxEnvParams))
1801 || ((state_tokens[1] == STATE_LOCAL)
1802 && (end_idx >=
1803 ctx->Const.VertexProgram.MaxLocalParams)))
1804 out_of_range = 1;
1805 }
1806 if (out_of_range) {
1807 program_error(ctx, Program->Position,
1808 "Invalid Program Parameter"); /*end_idx*/
1809 return 1;
1810 }
1811
1812 for (new_idx = start_idx; new_idx <= end_idx; new_idx++) {
1813 state_tokens[2] = new_idx;
1814 idx = _mesa_add_state_reference(Program->Base.Parameters,
1815 state_tokens);
1816 param_var->param_binding_length++;
1817 Program->Base.NumParameters++;
1818 }
1819 }
1820 else {
1821 (*inst)++;
1822 }
1823 break;
1824
1825 case PARAM_CONSTANT:
1826 /* parsing something like {1.0, 2.0, 3.0, 4.0} */
1827 parse_constant (inst, const_values, Program, use);
1828 idx = _mesa_add_named_constant(Program->Base.Parameters,
1829 (char *) param_var->name,
1830 const_values, 4);
1831 if (param_var->param_binding_begin == ~0U)
1832 param_var->param_binding_begin = idx;
1833 param_var->param_binding_type = PROGRAM_CONSTANT;
1834 param_var->param_binding_length++;
1835 Program->Base.NumParameters++;
1836 break;
1837
1838 default:
1839 program_error(ctx, Program->Position,
1840 "Unexpected token (in parse_param_elements())");
1841 return 1;
1842 }
1843
1844 /* Make sure we haven't blown past our parameter limits */
1845 if (((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) &&
1846 (Program->Base.NumParameters >=
1847 ctx->Const.VertexProgram.MaxLocalParams))
1848 || ((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
1849 && (Program->Base.NumParameters >=
1850 ctx->Const.FragmentProgram.MaxLocalParams))) {
1851 program_error(ctx, Program->Position, "Too many parameter variables");
1852 return 1;
1853 }
1854
1855 return err;
1856 }
1857
1858
1859 /**
1860 * This picks out PARAM program parameter bindings.
1861 *
1862 * XXX: This needs to be stressed & tested
1863 *
1864 * \return 0 on sucess, 1 on error
1865 */
1866 static GLuint
1867 parse_param (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1868 struct arb_program *Program)
1869 {
1870 GLuint found, err;
1871 GLint specified_length;
1872 struct var_cache *param_var;
1873
1874 err = 0;
1875 param_var = parse_string (inst, vc_head, Program, &found);
1876 Program->Position = parse_position (inst);
1877
1878 if (found) {
1879 char *error_msg = (char *)
1880 _mesa_malloc (_mesa_strlen ((char *) param_var->name) + 40);
1881 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
1882 param_var->name);
1883 program_error (ctx, Program->Position, error_msg);
1884 _mesa_free (error_msg);
1885 return 1;
1886 }
1887
1888 specified_length = parse_integer (inst, Program);
1889
1890 if (specified_length < 0) {
1891 program_error(ctx, Program->Position, "Negative parameter array length");
1892 return 1;
1893 }
1894
1895 param_var->type = vt_param;
1896 param_var->param_binding_length = 0;
1897
1898 /* Right now, everything is shoved into the main state register file.
1899 *
1900 * In the future, it would be nice to leave things ENV/LOCAL params
1901 * in their respective register files, if possible
1902 */
1903 param_var->param_binding_type = PROGRAM_STATE_VAR;
1904
1905 /* Remember to:
1906 * * - add each guy to the parameter list
1907 * * - increment the param_var->param_binding_len
1908 * * - store the param_var->param_binding_begin for the first one
1909 * * - compare the actual len to the specified len at the end
1910 */
1911 while (**inst != PARAM_NULL) {
1912 if (parse_param_elements (ctx, inst, param_var, Program, GL_FALSE))
1913 return 1;
1914 }
1915
1916 /* Test array length here! */
1917 if (specified_length) {
1918 if (specified_length != (int)param_var->param_binding_length) {
1919 program_error(ctx, Program->Position,
1920 "Declared parameter array length does not match parameter list");
1921 }
1922 }
1923
1924 (*inst)++;
1925
1926 return 0;
1927 }
1928
1929 /**
1930 *
1931 */
1932 static GLuint
1933 parse_param_use (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1934 struct arb_program *Program, struct var_cache **new_var)
1935 {
1936 struct var_cache *param_var;
1937
1938 /* First, insert a dummy entry into the var_cache */
1939 var_cache_create (&param_var);
1940 param_var->name = (const GLubyte *) " ";
1941 param_var->type = vt_param;
1942
1943 param_var->param_binding_length = 0;
1944 /* Don't fill in binding_begin; We use the default value of -1
1945 * to tell if its already initialized, elsewhere.
1946 *
1947 * param_var->param_binding_begin = 0;
1948 */
1949 param_var->param_binding_type = PROGRAM_STATE_VAR;
1950
1951 var_cache_append (vc_head, param_var);
1952
1953 /* Then fill it with juicy parameter goodness */
1954 if (parse_param_elements (ctx, inst, param_var, Program, GL_TRUE))
1955 return 1;
1956
1957 *new_var = param_var;
1958
1959 return 0;
1960 }
1961
1962
1963 /**
1964 * This handles the declaration of TEMP variables
1965 *
1966 * \return 0 on sucess, 1 on error
1967 */
1968 static GLuint
1969 parse_temp (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
1970 struct arb_program *Program)
1971 {
1972 GLuint found;
1973 struct var_cache *temp_var;
1974
1975 while (**inst != 0) {
1976 temp_var = parse_string (inst, vc_head, Program, &found);
1977 Program->Position = parse_position (inst);
1978 if (found) {
1979 char *error_msg = (char *)
1980 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
1981 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
1982 temp_var->name);
1983 program_error(ctx, Program->Position, error_msg);
1984 _mesa_free (error_msg);
1985 return 1;
1986 }
1987
1988 temp_var->type = vt_temp;
1989
1990 if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) &&
1991 (Program->Base.NumTemporaries >=
1992 ctx->Const.FragmentProgram.MaxTemps))
1993 || ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
1994 && (Program->Base.NumTemporaries >=
1995 ctx->Const.VertexProgram.MaxTemps))) {
1996 program_error(ctx, Program->Position,
1997 "Too many TEMP variables declared");
1998 return 1;
1999 }
2000
2001 temp_var->temp_binding = Program->Base.NumTemporaries;
2002 Program->Base.NumTemporaries++;
2003 }
2004 (*inst)++;
2005
2006 return 0;
2007 }
2008
2009 /**
2010 * This handles variables of the OUTPUT variety
2011 *
2012 * \return 0 on sucess, 1 on error
2013 */
2014 static GLuint
2015 parse_output (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2016 struct arb_program *Program)
2017 {
2018 GLuint found;
2019 struct var_cache *output_var;
2020 GLuint err;
2021
2022 output_var = parse_string (inst, vc_head, Program, &found);
2023 Program->Position = parse_position (inst);
2024 if (found) {
2025 char *error_msg = (char *)
2026 _mesa_malloc (_mesa_strlen ((char *) output_var->name) + 40);
2027 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
2028 output_var->name);
2029 program_error (ctx, Program->Position, error_msg);
2030 _mesa_free (error_msg);
2031 return 1;
2032 }
2033
2034 output_var->type = vt_output;
2035
2036 err = parse_result_binding(ctx, inst, &output_var->output_binding, Program);
2037 return err;
2038 }
2039
2040 /**
2041 * This handles variables of the ALIAS kind
2042 *
2043 * \return 0 on sucess, 1 on error
2044 */
2045 static GLuint
2046 parse_alias (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2047 struct arb_program *Program)
2048 {
2049 GLuint found;
2050 struct var_cache *temp_var;
2051
2052 temp_var = parse_string (inst, vc_head, Program, &found);
2053 Program->Position = parse_position (inst);
2054
2055 if (found) {
2056 char *error_msg = (char *)
2057 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
2058 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
2059 temp_var->name);
2060 program_error(ctx, Program->Position, error_msg);
2061 _mesa_free (error_msg);
2062 return 1;
2063 }
2064
2065 temp_var->type = vt_alias;
2066 temp_var->alias_binding = parse_string (inst, vc_head, Program, &found);
2067 Program->Position = parse_position (inst);
2068
2069 if (!found)
2070 {
2071 char *error_msg = (char *)
2072 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
2073 _mesa_sprintf (error_msg, "Alias value %s is not defined",
2074 temp_var->alias_binding->name);
2075 program_error (ctx, Program->Position, error_msg);
2076 _mesa_free (error_msg);
2077 return 1;
2078 }
2079
2080 return 0;
2081 }
2082
2083 /**
2084 * This handles variables of the ADDRESS kind
2085 *
2086 * \return 0 on sucess, 1 on error
2087 */
2088 static GLuint
2089 parse_address (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2090 struct arb_program *Program)
2091 {
2092 GLuint found;
2093 struct var_cache *temp_var;
2094
2095 while (**inst != 0) {
2096 temp_var = parse_string (inst, vc_head, Program, &found);
2097 Program->Position = parse_position (inst);
2098 if (found) {
2099 char *error_msg = (char *)
2100 _mesa_malloc (_mesa_strlen ((char *) temp_var->name) + 40);
2101 _mesa_sprintf (error_msg, "Duplicate Variable Declaration: %s",
2102 temp_var->name);
2103 program_error (ctx, Program->Position, error_msg);
2104 _mesa_free (error_msg);
2105 return 1;
2106 }
2107
2108 temp_var->type = vt_address;
2109
2110 if (Program->Base.NumAddressRegs >=
2111 ctx->Const.VertexProgram.MaxAddressRegs) {
2112 const char *msg = "Too many ADDRESS variables declared";
2113 program_error(ctx, Program->Position, msg);
2114 return 1;
2115 }
2116
2117 temp_var->address_binding = Program->Base.NumAddressRegs;
2118 Program->Base.NumAddressRegs++;
2119 }
2120 (*inst)++;
2121
2122 return 0;
2123 }
2124
2125 /**
2126 * Parse a program declaration
2127 *
2128 * \return 0 on sucess, 1 on error
2129 */
2130 static GLint
2131 parse_declaration (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head,
2132 struct arb_program *Program)
2133 {
2134 GLint err = 0;
2135
2136 switch (*(*inst)++) {
2137 case ADDRESS:
2138 err = parse_address (ctx, inst, vc_head, Program);
2139 break;
2140
2141 case ALIAS:
2142 err = parse_alias (ctx, inst, vc_head, Program);
2143 break;
2144
2145 case ATTRIB:
2146 err = parse_attrib (ctx, inst, vc_head, Program);
2147 break;
2148
2149 case OUTPUT:
2150 err = parse_output (ctx, inst, vc_head, Program);
2151 break;
2152
2153 case PARAM:
2154 err = parse_param (ctx, inst, vc_head, Program);
2155 break;
2156
2157 case TEMP:
2158 err = parse_temp (ctx, inst, vc_head, Program);
2159 break;
2160 }
2161
2162 return err;
2163 }
2164
2165 /**
2166 * Handle the parsing out of a masked destination register, either for a
2167 * vertex or fragment program.
2168 *
2169 * If we are a vertex program, make sure we don't write to
2170 * result.position if we have specified that the program is
2171 * position invariant
2172 *
2173 * \param File - The register file we write to
2174 * \param Index - The register index we write to
2175 * \param WriteMask - The mask controlling which components we write (1->write)
2176 *
2177 * \return 0 on sucess, 1 on error
2178 */
2179 static GLuint
2180 parse_masked_dst_reg (GLcontext * ctx, const GLubyte ** inst,
2181 struct var_cache **vc_head, struct arb_program *Program,
2182 enum register_file *File, GLuint *Index, GLint *WriteMask)
2183 {
2184 GLuint tmp, result;
2185 struct var_cache *dst;
2186
2187 /* We either have a result register specified, or a
2188 * variable that may or may not be writable
2189 */
2190 switch (*(*inst)++) {
2191 case REGISTER_RESULT:
2192 if (parse_result_binding(ctx, inst, Index, Program))
2193 return 1;
2194 *File = PROGRAM_OUTPUT;
2195 break;
2196
2197 case REGISTER_ESTABLISHED_NAME:
2198 dst = parse_string (inst, vc_head, Program, &result);
2199 Program->Position = parse_position (inst);
2200
2201 /* If the name has never been added to our symbol table, we're hosed */
2202 if (!result) {
2203 program_error(ctx, Program->Position, "0: Undefined variable");
2204 return 1;
2205 }
2206
2207 switch (dst->type) {
2208 case vt_output:
2209 *File = PROGRAM_OUTPUT;
2210 *Index = dst->output_binding;
2211 break;
2212
2213 case vt_temp:
2214 *File = PROGRAM_TEMPORARY;
2215 *Index = dst->temp_binding;
2216 break;
2217
2218 /* If the var type is not vt_output or vt_temp, no go */
2219 default:
2220 program_error(ctx, Program->Position,
2221 "Destination register is read only");
2222 return 1;
2223 }
2224 break;
2225
2226 default:
2227 program_error(ctx, Program->Position,
2228 "Unexpected opcode in parse_masked_dst_reg()");
2229 return 1;
2230 }
2231
2232
2233 /* Position invariance test */
2234 /* This test is done now in syntax portion - when position invariance OPTION
2235 is specified, "result.position" rule is disabled so there is no way
2236 to write the position
2237 */
2238 /*if ((Program->HintPositionInvariant) && (*File == PROGRAM_OUTPUT) &&
2239 (*Index == 0)) {
2240 program_error(ctx, Program->Position,
2241 "Vertex program specified position invariance and wrote vertex position");
2242 }*/
2243
2244 /* And then the mask.
2245 * w,a -> bit 0
2246 * z,b -> bit 1
2247 * y,g -> bit 2
2248 * x,r -> bit 3
2249 *
2250 * ==> Need to reverse the order of bits for this!
2251 */
2252 tmp = (GLint) *(*inst)++;
2253 *WriteMask = (((tmp>>3) & 0x1) |
2254 ((tmp>>1) & 0x2) |
2255 ((tmp<<1) & 0x4) |
2256 ((tmp<<3) & 0x8));
2257
2258 return 0;
2259 }
2260
2261
2262 /**
2263 * Handle the parsing of a address register
2264 *
2265 * \param Index - The register index we write to
2266 *
2267 * \return 0 on sucess, 1 on error
2268 */
2269 static GLuint
2270 parse_address_reg (GLcontext * ctx, const GLubyte ** inst,
2271 struct var_cache **vc_head,
2272 struct arb_program *Program, GLint * Index)
2273 {
2274 struct var_cache *dst;
2275 GLuint result;
2276
2277 *Index = 0; /* XXX */
2278
2279 dst = parse_string (inst, vc_head, Program, &result);
2280 Program->Position = parse_position (inst);
2281
2282 /* If the name has never been added to our symbol table, we're hosed */
2283 if (!result) {
2284 program_error(ctx, Program->Position, "Undefined variable");
2285 return 1;
2286 }
2287
2288 if (dst->type != vt_address) {
2289 program_error(ctx, Program->Position, "Variable is not of type ADDRESS");
2290 return 1;
2291 }
2292
2293 return 0;
2294 }
2295
2296 #if 0 /* unused */
2297 /**
2298 * Handle the parsing out of a masked address register
2299 *
2300 * \param Index - The register index we write to
2301 * \param WriteMask - The mask controlling which components we write (1->write)
2302 *
2303 * \return 0 on sucess, 1 on error
2304 */
2305 static GLuint
2306 parse_masked_address_reg (GLcontext * ctx, const GLubyte ** inst,
2307 struct var_cache **vc_head,
2308 struct arb_program *Program, GLint * Index,
2309 GLboolean * WriteMask)
2310 {
2311 if (parse_address_reg (ctx, inst, vc_head, Program, Index))
2312 return 1;
2313
2314 /* This should be 0x8 */
2315 (*inst)++;
2316
2317 /* Writemask of .x is implied */
2318 WriteMask[0] = 1;
2319 WriteMask[1] = WriteMask[2] = WriteMask[3] = 0;
2320
2321 return 0;
2322 }
2323 #endif
2324
2325 /**
2326 * Parse out a swizzle mask.
2327 *
2328 * Basically convert COMPONENT_X/Y/Z/W to SWIZZLE_X/Y/Z/W
2329 *
2330 * The len parameter allows us to grab 4 components for a vector
2331 * swizzle, or just 1 component for a scalar src register selection
2332 */
2333 static void
2334 parse_swizzle_mask(const GLubyte ** inst, GLubyte *swizzle, GLint len)
2335 {
2336 GLint i;
2337
2338 for (i = 0; i < 4; i++)
2339 swizzle[i] = i;
2340
2341 for (i = 0; i < len; i++) {
2342 switch (*(*inst)++) {
2343 case COMPONENT_X:
2344 swizzle[i] = SWIZZLE_X;
2345 break;
2346 case COMPONENT_Y:
2347 swizzle[i] = SWIZZLE_Y;
2348 break;
2349 case COMPONENT_Z:
2350 swizzle[i] = SWIZZLE_Z;
2351 break;
2352 case COMPONENT_W:
2353 swizzle[i] = SWIZZLE_W;
2354 break;
2355 default:
2356 _mesa_problem(NULL, "bad component in parse_swizzle_mask()");
2357 return;
2358 }
2359 }
2360 }
2361
2362
2363 /**
2364 * Parse an extended swizzle mask which is a sequence of
2365 * four x/y/z/w/0/1 tokens.
2366 * \return swizzle four swizzle values
2367 * \return negateMask four element bitfield
2368 */
2369 static void
2370 parse_extended_swizzle_mask(const GLubyte **inst, GLubyte swizzle[4],
2371 GLubyte *negateMask)
2372 {
2373 GLint i;
2374
2375 *negateMask = 0x0;
2376 for (i = 0; i < 4; i++) {
2377 GLubyte swz;
2378 if (parse_sign(inst) == -1)
2379 *negateMask |= (1 << i);
2380
2381 swz = *(*inst)++;
2382
2383 switch (swz) {
2384 case COMPONENT_0:
2385 swizzle[i] = SWIZZLE_ZERO;
2386 break;
2387 case COMPONENT_1:
2388 swizzle[i] = SWIZZLE_ONE;
2389 break;
2390 case COMPONENT_X:
2391 swizzle[i] = SWIZZLE_X;
2392 break;
2393 case COMPONENT_Y:
2394 swizzle[i] = SWIZZLE_Y;
2395 break;
2396 case COMPONENT_Z:
2397 swizzle[i] = SWIZZLE_Z;
2398 break;
2399 case COMPONENT_W:
2400 swizzle[i] = SWIZZLE_W;
2401 break;
2402 default:
2403 _mesa_problem(NULL, "bad case in parse_extended_swizzle_mask()");
2404 return;
2405 }
2406 }
2407 }
2408
2409
2410 static GLuint
2411 parse_src_reg (GLcontext * ctx, const GLubyte ** inst,
2412 struct var_cache **vc_head,
2413 struct arb_program *Program,
2414 enum register_file * File, GLint * Index,
2415 GLboolean *IsRelOffset )
2416 {
2417 struct var_cache *src;
2418 GLuint binding, is_generic, found;
2419 GLint offset;
2420
2421 *IsRelOffset = 0;
2422
2423 /* And the binding for the src */
2424 switch (*(*inst)++) {
2425 case REGISTER_ATTRIB:
2426 if (parse_attrib_binding
2427 (ctx, inst, Program, &binding, &is_generic))
2428 return 1;
2429 *File = PROGRAM_INPUT;
2430 *Index = binding;
2431
2432 /* We need to insert a dummy variable into the var_cache so we can
2433 * catch generic vertex attrib aliasing errors
2434 */
2435 var_cache_create(&src);
2436 src->type = vt_attrib;
2437 src->name = (const GLubyte *) "Dummy Attrib Variable";
2438 src->attrib_binding = binding;
2439 src->attrib_is_generic = is_generic;
2440 var_cache_append(vc_head, src);
2441 if (generic_attrib_check(*vc_head)) {
2442 program_error(ctx, Program->Position,
2443 "Cannot use both a generic vertex attribute "
2444 "and a specific attribute of the same type");
2445 return 1;
2446 }
2447 break;
2448
2449 case REGISTER_PARAM:
2450 switch (**inst) {
2451 case PARAM_ARRAY_ELEMENT:
2452 (*inst)++;
2453 src = parse_string (inst, vc_head, Program, &found);
2454 Program->Position = parse_position (inst);
2455
2456 if (!found) {
2457 program_error(ctx, Program->Position,
2458 "2: Undefined variable"); /* src->name */
2459 return 1;
2460 }
2461
2462 *File = (enum register_file) src->param_binding_type;
2463
2464 switch (*(*inst)++) {
2465 case ARRAY_INDEX_ABSOLUTE:
2466 offset = parse_integer (inst, Program);
2467
2468 if ((offset < 0)
2469 || (offset >= (int)src->param_binding_length)) {
2470 program_error(ctx, Program->Position,
2471 "Index out of range");
2472 /* offset, src->name */
2473 return 1;
2474 }
2475
2476 *Index = src->param_binding_begin + offset;
2477 break;
2478
2479 case ARRAY_INDEX_RELATIVE:
2480 {
2481 GLint addr_reg_idx, rel_off;
2482
2483 /* First, grab the address regiseter */
2484 if (parse_address_reg (ctx, inst, vc_head, Program, &addr_reg_idx))
2485 return 1;
2486
2487 /* And the .x */
2488 ((*inst)++);
2489 ((*inst)++);
2490 ((*inst)++);
2491 ((*inst)++);
2492
2493 /* Then the relative offset */
2494 if (parse_relative_offset(ctx, inst, Program, &rel_off)) return 1;
2495
2496 /* And store it properly */
2497 *Index = src->param_binding_begin + rel_off;
2498 *IsRelOffset = 1;
2499 }
2500 break;
2501 }
2502 break;
2503
2504 default:
2505 if (parse_param_use (ctx, inst, vc_head, Program, &src))
2506 return 1;
2507
2508 *File = (enum register_file) src->param_binding_type;
2509 *Index = src->param_binding_begin;
2510 break;
2511 }
2512 break;
2513
2514 case REGISTER_ESTABLISHED_NAME:
2515 src = parse_string (inst, vc_head, Program, &found);
2516 Program->Position = parse_position (inst);
2517
2518 /* If the name has never been added to our symbol table, we're hosed */
2519 if (!found) {
2520 program_error(ctx, Program->Position,
2521 "3: Undefined variable"); /* src->name */
2522 return 1;
2523 }
2524
2525 switch (src->type) {
2526 case vt_attrib:
2527 *File = PROGRAM_INPUT;
2528 *Index = src->attrib_binding;
2529 break;
2530
2531 /* XXX: We have to handle offsets someplace in here! -- or are those above? */
2532 case vt_param:
2533 *File = (enum register_file) src->param_binding_type;
2534 *Index = src->param_binding_begin;
2535 break;
2536
2537 case vt_temp:
2538 *File = PROGRAM_TEMPORARY;
2539 *Index = src->temp_binding;
2540 break;
2541
2542 /* If the var type is vt_output no go */
2543 default:
2544 program_error(ctx, Program->Position,
2545 "destination register is read only");
2546 /* bad src->name */
2547 return 1;
2548 }
2549 break;
2550
2551 default:
2552 program_error(ctx, Program->Position,
2553 "Unknown token in parse_src_reg");
2554 return 1;
2555 }
2556
2557 /* Add attributes to InputsRead only if they are used the program.
2558 * This avoids the handling of unused ATTRIB declarations in the drivers. */
2559 if (*File == PROGRAM_INPUT)
2560 Program->Base.InputsRead |= (1 << *Index);
2561
2562 return 0;
2563 }
2564
2565 /**
2566 * Parse fragment program vector source register.
2567 */
2568 static GLuint
2569 parse_fp_vector_src_reg(GLcontext * ctx, const GLubyte ** inst,
2570 struct var_cache **vc_head,
2571 struct arb_program *program,
2572 struct prog_src_register *reg)
2573 {
2574 enum register_file file;
2575 GLint index;
2576 GLboolean negate;
2577 GLubyte swizzle[4];
2578 GLboolean isRelOffset;
2579
2580 /* Grab the sign */
2581 negate = (parse_sign (inst) == -1) ? NEGATE_XYZW : NEGATE_NONE;
2582
2583 /* And the src reg */
2584 if (parse_src_reg(ctx, inst, vc_head, program, &file, &index, &isRelOffset))
2585 return 1;
2586
2587 /* finally, the swizzle */
2588 parse_swizzle_mask(inst, swizzle, 4);
2589
2590 reg->File = file;
2591 reg->Index = index;
2592 reg->NegateBase = negate;
2593 reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2594 return 0;
2595 }
2596
2597
2598 /**
2599 * Parse fragment program destination register.
2600 * \return 1 if error, 0 if no error.
2601 */
2602 static GLuint
2603 parse_fp_dst_reg(GLcontext * ctx, const GLubyte ** inst,
2604 struct var_cache **vc_head, struct arb_program *Program,
2605 struct prog_dst_register *reg )
2606 {
2607 GLint mask;
2608 GLuint idx;
2609 enum register_file file;
2610
2611 if (parse_masked_dst_reg (ctx, inst, vc_head, Program, &file, &idx, &mask))
2612 return 1;
2613
2614 reg->File = file;
2615 reg->Index = idx;
2616 reg->WriteMask = mask;
2617 return 0;
2618 }
2619
2620
2621 /**
2622 * Parse fragment program scalar src register.
2623 * \return 1 if error, 0 if no error.
2624 */
2625 static GLuint
2626 parse_fp_scalar_src_reg (GLcontext * ctx, const GLubyte ** inst,
2627 struct var_cache **vc_head,
2628 struct arb_program *Program,
2629 struct prog_src_register *reg )
2630 {
2631 enum register_file File;
2632 GLint Index;
2633 GLubyte Negate;
2634 GLubyte Swizzle[4];
2635 GLboolean IsRelOffset;
2636
2637 /* Grab the sign */
2638 Negate = (parse_sign (inst) == -1) ? NEGATE_XYZW : NEGATE_NONE;
2639
2640 /* And the src reg */
2641 if (parse_src_reg (ctx, inst, vc_head, Program, &File, &Index, &IsRelOffset))
2642 return 1;
2643
2644 /* finally, the swizzle */
2645 parse_swizzle_mask(inst, Swizzle, 1);
2646
2647 reg->File = File;
2648 reg->Index = Index;
2649 reg->NegateBase = Negate;
2650 reg->Swizzle = (Swizzle[0] << 0);
2651
2652 return 0;
2653 }
2654
2655
2656 /**
2657 * This is a big mother that handles getting opcodes into the instruction
2658 * and handling the src & dst registers for fragment program instructions
2659 * \return 1 if error, 0 if no error
2660 */
2661 static GLuint
2662 parse_fp_instruction (GLcontext * ctx, const GLubyte ** inst,
2663 struct var_cache **vc_head, struct arb_program *Program,
2664 struct prog_instruction *fp)
2665 {
2666 GLint a;
2667 GLuint texcoord;
2668 GLubyte instClass, type, code;
2669 GLboolean rel;
2670 GLuint shadow_tex = 0;
2671
2672 _mesa_init_instructions(fp, 1);
2673
2674 /* Record the position in the program string for debugging */
2675 fp->StringPos = Program->Position;
2676
2677 /* OP_ALU_INST or OP_TEX_INST */
2678 instClass = *(*inst)++;
2679
2680 /* OP_ALU_{VECTOR, SCALAR, BINSC, BIN, TRI, SWZ},
2681 * OP_TEX_{SAMPLE, KIL}
2682 */
2683 type = *(*inst)++;
2684
2685 /* The actual opcode name */
2686 code = *(*inst)++;
2687
2688 /* Increment the correct count */
2689 switch (instClass) {
2690 case OP_ALU_INST:
2691 Program->NumAluInstructions++;
2692 break;
2693 case OP_TEX_INST:
2694 Program->NumTexInstructions++;
2695 break;
2696 }
2697
2698 switch (type) {
2699 case OP_ALU_VECTOR:
2700 switch (code) {
2701 case OP_ABS_SAT:
2702 fp->SaturateMode = SATURATE_ZERO_ONE;
2703 case OP_ABS:
2704 fp->Opcode = OPCODE_ABS;
2705 break;
2706
2707 case OP_FLR_SAT:
2708 fp->SaturateMode = SATURATE_ZERO_ONE;
2709 case OP_FLR:
2710 fp->Opcode = OPCODE_FLR;
2711 break;
2712
2713 case OP_FRC_SAT:
2714 fp->SaturateMode = SATURATE_ZERO_ONE;
2715 case OP_FRC:
2716 fp->Opcode = OPCODE_FRC;
2717 break;
2718
2719 case OP_LIT_SAT:
2720 fp->SaturateMode = SATURATE_ZERO_ONE;
2721 case OP_LIT:
2722 fp->Opcode = OPCODE_LIT;
2723 break;
2724
2725 case OP_MOV_SAT:
2726 fp->SaturateMode = SATURATE_ZERO_ONE;
2727 case OP_MOV:
2728 fp->Opcode = OPCODE_MOV;
2729 break;
2730 }
2731
2732 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2733 return 1;
2734
2735 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2736 return 1;
2737 break;
2738
2739 case OP_ALU_SCALAR:
2740 switch (code) {
2741 case OP_COS_SAT:
2742 fp->SaturateMode = SATURATE_ZERO_ONE;
2743 case OP_COS:
2744 fp->Opcode = OPCODE_COS;
2745 break;
2746
2747 case OP_EX2_SAT:
2748 fp->SaturateMode = SATURATE_ZERO_ONE;
2749 case OP_EX2:
2750 fp->Opcode = OPCODE_EX2;
2751 break;
2752
2753 case OP_LG2_SAT:
2754 fp->SaturateMode = SATURATE_ZERO_ONE;
2755 case OP_LG2:
2756 fp->Opcode = OPCODE_LG2;
2757 break;
2758
2759 case OP_RCP_SAT:
2760 fp->SaturateMode = SATURATE_ZERO_ONE;
2761 case OP_RCP:
2762 fp->Opcode = OPCODE_RCP;
2763 break;
2764
2765 case OP_RSQ_SAT:
2766 fp->SaturateMode = SATURATE_ZERO_ONE;
2767 case OP_RSQ:
2768 fp->Opcode = OPCODE_RSQ;
2769 break;
2770
2771 case OP_SIN_SAT:
2772 fp->SaturateMode = SATURATE_ZERO_ONE;
2773 case OP_SIN:
2774 fp->Opcode = OPCODE_SIN;
2775 break;
2776
2777 case OP_SCS_SAT:
2778 fp->SaturateMode = SATURATE_ZERO_ONE;
2779 case OP_SCS:
2780
2781 fp->Opcode = OPCODE_SCS;
2782 break;
2783 }
2784
2785 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2786 return 1;
2787
2788 if (parse_fp_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2789 return 1;
2790 break;
2791
2792 case OP_ALU_BINSC:
2793 switch (code) {
2794 case OP_POW_SAT:
2795 fp->SaturateMode = SATURATE_ZERO_ONE;
2796 case OP_POW:
2797 fp->Opcode = OPCODE_POW;
2798 break;
2799 }
2800
2801 if (parse_fp_dst_reg(ctx, inst, vc_head, Program, &fp->DstReg))
2802 return 1;
2803
2804 for (a = 0; a < 2; a++) {
2805 if (parse_fp_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2806 return 1;
2807 }
2808 break;
2809
2810
2811 case OP_ALU_BIN:
2812 switch (code) {
2813 case OP_ADD_SAT:
2814 fp->SaturateMode = SATURATE_ZERO_ONE;
2815 case OP_ADD:
2816 fp->Opcode = OPCODE_ADD;
2817 break;
2818
2819 case OP_DP3_SAT:
2820 fp->SaturateMode = SATURATE_ZERO_ONE;
2821 case OP_DP3:
2822 fp->Opcode = OPCODE_DP3;
2823 break;
2824
2825 case OP_DP4_SAT:
2826 fp->SaturateMode = SATURATE_ZERO_ONE;
2827 case OP_DP4:
2828 fp->Opcode = OPCODE_DP4;
2829 break;
2830
2831 case OP_DPH_SAT:
2832 fp->SaturateMode = SATURATE_ZERO_ONE;
2833 case OP_DPH:
2834 fp->Opcode = OPCODE_DPH;
2835 break;
2836
2837 case OP_DST_SAT:
2838 fp->SaturateMode = SATURATE_ZERO_ONE;
2839 case OP_DST:
2840 fp->Opcode = OPCODE_DST;
2841 break;
2842
2843 case OP_MAX_SAT:
2844 fp->SaturateMode = SATURATE_ZERO_ONE;
2845 case OP_MAX:
2846 fp->Opcode = OPCODE_MAX;
2847 break;
2848
2849 case OP_MIN_SAT:
2850 fp->SaturateMode = SATURATE_ZERO_ONE;
2851 case OP_MIN:
2852 fp->Opcode = OPCODE_MIN;
2853 break;
2854
2855 case OP_MUL_SAT:
2856 fp->SaturateMode = SATURATE_ZERO_ONE;
2857 case OP_MUL:
2858 fp->Opcode = OPCODE_MUL;
2859 break;
2860
2861 case OP_SGE_SAT:
2862 fp->SaturateMode = SATURATE_ZERO_ONE;
2863 case OP_SGE:
2864 fp->Opcode = OPCODE_SGE;
2865 break;
2866
2867 case OP_SLT_SAT:
2868 fp->SaturateMode = SATURATE_ZERO_ONE;
2869 case OP_SLT:
2870 fp->Opcode = OPCODE_SLT;
2871 break;
2872
2873 case OP_SUB_SAT:
2874 fp->SaturateMode = SATURATE_ZERO_ONE;
2875 case OP_SUB:
2876 fp->Opcode = OPCODE_SUB;
2877 break;
2878
2879 case OP_XPD_SAT:
2880 fp->SaturateMode = SATURATE_ZERO_ONE;
2881 case OP_XPD:
2882 fp->Opcode = OPCODE_XPD;
2883 break;
2884 }
2885
2886 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2887 return 1;
2888 for (a = 0; a < 2; a++) {
2889 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2890 return 1;
2891 }
2892 break;
2893
2894 case OP_ALU_TRI:
2895 switch (code) {
2896 case OP_CMP_SAT:
2897 fp->SaturateMode = SATURATE_ZERO_ONE;
2898 case OP_CMP:
2899 fp->Opcode = OPCODE_CMP;
2900 break;
2901
2902 case OP_LRP_SAT:
2903 fp->SaturateMode = SATURATE_ZERO_ONE;
2904 case OP_LRP:
2905 fp->Opcode = OPCODE_LRP;
2906 break;
2907
2908 case OP_MAD_SAT:
2909 fp->SaturateMode = SATURATE_ZERO_ONE;
2910 case OP_MAD:
2911 fp->Opcode = OPCODE_MAD;
2912 break;
2913 }
2914
2915 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2916 return 1;
2917
2918 for (a = 0; a < 3; a++) {
2919 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a]))
2920 return 1;
2921 }
2922 break;
2923
2924 case OP_ALU_SWZ:
2925 switch (code) {
2926 case OP_SWZ_SAT:
2927 fp->SaturateMode = SATURATE_ZERO_ONE;
2928 case OP_SWZ:
2929 fp->Opcode = OPCODE_SWZ;
2930 break;
2931 }
2932 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2933 return 1;
2934
2935 {
2936 GLubyte swizzle[4];
2937 GLubyte negateMask;
2938 enum register_file file;
2939 GLint index;
2940
2941 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &rel))
2942 return 1;
2943 parse_extended_swizzle_mask(inst, swizzle, &negateMask);
2944 fp->SrcReg[0].File = file;
2945 fp->SrcReg[0].Index = index;
2946 fp->SrcReg[0].NegateBase = negateMask;
2947 fp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
2948 swizzle[1],
2949 swizzle[2],
2950 swizzle[3]);
2951 }
2952 break;
2953
2954 case OP_TEX_SAMPLE:
2955 switch (code) {
2956 case OP_TEX_SAT:
2957 fp->SaturateMode = SATURATE_ZERO_ONE;
2958 case OP_TEX:
2959 fp->Opcode = OPCODE_TEX;
2960 break;
2961
2962 case OP_TXP_SAT:
2963 fp->SaturateMode = SATURATE_ZERO_ONE;
2964 case OP_TXP:
2965 fp->Opcode = OPCODE_TXP;
2966 break;
2967
2968 case OP_TXB_SAT:
2969 fp->SaturateMode = SATURATE_ZERO_ONE;
2970 case OP_TXB:
2971 fp->Opcode = OPCODE_TXB;
2972 break;
2973 }
2974
2975 if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg))
2976 return 1;
2977
2978 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
2979 return 1;
2980
2981 /* texImageUnit */
2982 if (parse_texcoord_num (ctx, inst, Program, &texcoord))
2983 return 1;
2984 fp->TexSrcUnit = texcoord;
2985
2986 /* texTarget */
2987 switch (*(*inst)++) {
2988 case TEXTARGET_SHADOW1D:
2989 shadow_tex = 1 << texcoord;
2990 /* FALLTHROUGH */
2991 case TEXTARGET_1D:
2992 fp->TexSrcTarget = TEXTURE_1D_INDEX;
2993 break;
2994 case TEXTARGET_SHADOW2D:
2995 shadow_tex = 1 << texcoord;
2996 /* FALLTHROUGH */
2997 case TEXTARGET_2D:
2998 fp->TexSrcTarget = TEXTURE_2D_INDEX;
2999 break;
3000 case TEXTARGET_3D:
3001 fp->TexSrcTarget = TEXTURE_3D_INDEX;
3002 break;
3003 case TEXTARGET_SHADOWRECT:
3004 shadow_tex = 1 << texcoord;
3005 /* FALLTHROUGH */
3006 case TEXTARGET_RECT:
3007 fp->TexSrcTarget = TEXTURE_RECT_INDEX;
3008 break;
3009 case TEXTARGET_CUBE:
3010 fp->TexSrcTarget = TEXTURE_CUBE_INDEX;
3011 break;
3012 case TEXTARGET_SHADOW1D_ARRAY:
3013 shadow_tex = 1 << texcoord;
3014 /* FALLTHROUGH */
3015 case TEXTARGET_1D_ARRAY:
3016 fp->TexSrcTarget = TEXTURE_1D_ARRAY_INDEX;
3017 break;
3018 case TEXTARGET_SHADOW2D_ARRAY:
3019 shadow_tex = 1 << texcoord;
3020 /* FALLTHROUGH */
3021 case TEXTARGET_2D_ARRAY:
3022 fp->TexSrcTarget = TEXTURE_2D_ARRAY_INDEX;
3023 break;
3024 }
3025
3026 /* Don't test the first time a particular sampler is seen. Each time
3027 * after that, make sure the shadow state is the same.
3028 */
3029 if ((_mesa_bitcount(Program->TexturesUsed[texcoord]) > 0)
3030 && ((Program->ShadowSamplers & (1 << texcoord)) != shadow_tex)) {
3031 program_error(ctx, Program->Position,
3032 "texture image unit used for shadow sampling and non-shadow sampling");
3033 return 1;
3034 }
3035
3036 Program->TexturesUsed[texcoord] |= (1 << fp->TexSrcTarget);
3037 /* Check that both "2D" and "CUBE" (for example) aren't both used */
3038 if (_mesa_bitcount(Program->TexturesUsed[texcoord]) > 1) {
3039 program_error(ctx, Program->Position,
3040 "multiple targets used on one texture image unit");
3041 return 1;
3042 }
3043
3044
3045 Program->ShadowSamplers |= shadow_tex;
3046 break;
3047
3048 case OP_TEX_KIL:
3049 Program->UsesKill = 1;
3050 if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0]))
3051 return 1;
3052 fp->Opcode = OPCODE_KIL;
3053 break;
3054 default:
3055 _mesa_problem(ctx, "bad type 0x%x in parse_fp_instruction()", type);
3056 return 1;
3057 }
3058
3059 return 0;
3060 }
3061
3062 static GLuint
3063 parse_vp_dst_reg(GLcontext * ctx, const GLubyte ** inst,
3064 struct var_cache **vc_head, struct arb_program *Program,
3065 struct prog_dst_register *reg )
3066 {
3067 GLint mask;
3068 GLuint idx;
3069 enum register_file file;
3070
3071 if (parse_masked_dst_reg(ctx, inst, vc_head, Program, &file, &idx, &mask))
3072 return 1;
3073
3074 reg->File = file;
3075 reg->Index = idx;
3076 reg->WriteMask = mask;
3077 return 0;
3078 }
3079
3080 /**
3081 * Handle the parsing out of a masked address register
3082 *
3083 * \param Index - The register index we write to
3084 * \param WriteMask - The mask controlling which components we write (1->write)
3085 *
3086 * \return 0 on sucess, 1 on error
3087 */
3088 static GLuint
3089 parse_vp_address_reg (GLcontext * ctx, const GLubyte ** inst,
3090 struct var_cache **vc_head,
3091 struct arb_program *Program,
3092 struct prog_dst_register *reg)
3093 {
3094 GLint idx;
3095
3096 if (parse_address_reg (ctx, inst, vc_head, Program, &idx))
3097 return 1;
3098
3099 /* This should be 0x8 */
3100 (*inst)++;
3101
3102 reg->File = PROGRAM_ADDRESS;
3103 reg->Index = idx;
3104
3105 /* Writemask of .x is implied */
3106 reg->WriteMask = 0x1;
3107 return 0;
3108 }
3109
3110 /**
3111 * Parse vertex program vector source register.
3112 */
3113 static GLuint
3114 parse_vp_vector_src_reg(GLcontext * ctx, const GLubyte ** inst,
3115 struct var_cache **vc_head,
3116 struct arb_program *program,
3117 struct prog_src_register *reg )
3118 {
3119 enum register_file file;
3120 GLint index;
3121 GLubyte negateMask;
3122 GLubyte swizzle[4];
3123 GLboolean isRelOffset;
3124
3125 /* Grab the sign */
3126 negateMask = (parse_sign (inst) == -1) ? NEGATE_XYZW : NEGATE_NONE;
3127
3128 /* And the src reg */
3129 if (parse_src_reg (ctx, inst, vc_head, program, &file, &index, &isRelOffset))
3130 return 1;
3131
3132 /* finally, the swizzle */
3133 parse_swizzle_mask(inst, swizzle, 4);
3134
3135 reg->File = file;
3136 reg->Index = index;
3137 reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1],
3138 swizzle[2], swizzle[3]);
3139 reg->NegateBase = negateMask;
3140 reg->RelAddr = isRelOffset;
3141 return 0;
3142 }
3143
3144
3145 static GLuint
3146 parse_vp_scalar_src_reg (GLcontext * ctx, const GLubyte ** inst,
3147 struct var_cache **vc_head,
3148 struct arb_program *Program,
3149 struct prog_src_register *reg )
3150 {
3151 enum register_file File;
3152 GLint Index;
3153 GLubyte negateMask;
3154 GLubyte Swizzle[4];
3155 GLboolean IsRelOffset;
3156
3157 /* Grab the sign */
3158 negateMask = (parse_sign (inst) == -1) ? NEGATE_XYZW : NEGATE_NONE;
3159
3160 /* And the src reg */
3161 if (parse_src_reg (ctx, inst, vc_head, Program, &File, &Index, &IsRelOffset))
3162 return 1;
3163
3164 /* finally, the swizzle */
3165 parse_swizzle_mask(inst, Swizzle, 1);
3166
3167 reg->File = File;
3168 reg->Index = Index;
3169 reg->Swizzle = (Swizzle[0] << 0);
3170 reg->NegateBase = negateMask;
3171 reg->RelAddr = IsRelOffset;
3172 return 0;
3173 }
3174
3175
3176 /**
3177 * This is a big mother that handles getting opcodes into the instruction
3178 * and handling the src & dst registers for vertex program instructions
3179 */
3180 static GLuint
3181 parse_vp_instruction (GLcontext * ctx, const GLubyte ** inst,
3182 struct var_cache **vc_head, struct arb_program *Program,
3183 struct prog_instruction *vp)
3184 {
3185 GLint a;
3186 GLubyte type, code;
3187
3188 /* OP_ALU_{ARL, VECTOR, SCALAR, BINSC, BIN, TRI, SWZ} */
3189 type = *(*inst)++;
3190
3191 /* The actual opcode name */
3192 code = *(*inst)++;
3193
3194 _mesa_init_instructions(vp, 1);
3195 /* Record the position in the program string for debugging */
3196 vp->StringPos = Program->Position;
3197
3198 switch (type) {
3199 /* XXX: */
3200 case OP_ALU_ARL:
3201 vp->Opcode = OPCODE_ARL;
3202
3203 /* Remember to set SrcReg.RelAddr; */
3204
3205 /* Get the masked address register [dst] */
3206 if (parse_vp_address_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3207 return 1;
3208
3209 vp->DstReg.File = PROGRAM_ADDRESS;
3210
3211 /* Get a scalar src register */
3212 if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3213 return 1;
3214
3215 break;
3216
3217 case OP_ALU_VECTOR:
3218 switch (code) {
3219 case OP_ABS:
3220 vp->Opcode = OPCODE_ABS;
3221 break;
3222 case OP_FLR:
3223 vp->Opcode = OPCODE_FLR;
3224 break;
3225 case OP_FRC:
3226 vp->Opcode = OPCODE_FRC;
3227 break;
3228 case OP_LIT:
3229 vp->Opcode = OPCODE_LIT;
3230 break;
3231 case OP_MOV:
3232 vp->Opcode = OPCODE_MOV;
3233 break;
3234 }
3235
3236 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3237 return 1;
3238
3239 if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3240 return 1;
3241 break;
3242
3243 case OP_ALU_SCALAR:
3244 switch (code) {
3245 case OP_EX2:
3246 vp->Opcode = OPCODE_EX2;
3247 break;
3248 case OP_EXP:
3249 vp->Opcode = OPCODE_EXP;
3250 break;
3251 case OP_LG2:
3252 vp->Opcode = OPCODE_LG2;
3253 break;
3254 case OP_LOG:
3255 vp->Opcode = OPCODE_LOG;
3256 break;
3257 case OP_RCP:
3258 vp->Opcode = OPCODE_RCP;
3259 break;
3260 case OP_RSQ:
3261 vp->Opcode = OPCODE_RSQ;
3262 break;
3263 }
3264 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3265 return 1;
3266
3267 if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0]))
3268 return 1;
3269 break;
3270
3271 case OP_ALU_BINSC:
3272 switch (code) {
3273 case OP_POW:
3274 vp->Opcode = OPCODE_POW;
3275 break;
3276 }
3277 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3278 return 1;
3279
3280 for (a = 0; a < 2; a++) {
3281 if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3282 return 1;
3283 }
3284 break;
3285
3286 case OP_ALU_BIN:
3287 switch (code) {
3288 case OP_ADD:
3289 vp->Opcode = OPCODE_ADD;
3290 break;
3291 case OP_DP3:
3292 vp->Opcode = OPCODE_DP3;
3293 break;
3294 case OP_DP4:
3295 vp->Opcode = OPCODE_DP4;
3296 break;
3297 case OP_DPH:
3298 vp->Opcode = OPCODE_DPH;
3299 break;
3300 case OP_DST:
3301 vp->Opcode = OPCODE_DST;
3302 break;
3303 case OP_MAX:
3304 vp->Opcode = OPCODE_MAX;
3305 break;
3306 case OP_MIN:
3307 vp->Opcode = OPCODE_MIN;
3308 break;
3309 case OP_MUL:
3310 vp->Opcode = OPCODE_MUL;
3311 break;
3312 case OP_SGE:
3313 vp->Opcode = OPCODE_SGE;
3314 break;
3315 case OP_SLT:
3316 vp->Opcode = OPCODE_SLT;
3317 break;
3318 case OP_SUB:
3319 vp->Opcode = OPCODE_SUB;
3320 break;
3321 case OP_XPD:
3322 vp->Opcode = OPCODE_XPD;
3323 break;
3324 }
3325 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3326 return 1;
3327
3328 for (a = 0; a < 2; a++) {
3329 if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3330 return 1;
3331 }
3332 break;
3333
3334 case OP_ALU_TRI:
3335 switch (code) {
3336 case OP_MAD:
3337 vp->Opcode = OPCODE_MAD;
3338 break;
3339 }
3340
3341 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3342 return 1;
3343
3344 for (a = 0; a < 3; a++) {
3345 if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a]))
3346 return 1;
3347 }
3348 break;
3349
3350 case OP_ALU_SWZ:
3351 switch (code) {
3352 case OP_SWZ:
3353 vp->Opcode = OPCODE_SWZ;
3354 break;
3355 }
3356 {
3357 GLubyte swizzle[4];
3358 GLubyte negateMask;
3359 GLboolean relAddr;
3360 enum register_file file;
3361 GLint index;
3362
3363 if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg))
3364 return 1;
3365
3366 if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &relAddr))
3367 return 1;
3368 parse_extended_swizzle_mask (inst, swizzle, &negateMask);
3369 vp->SrcReg[0].File = file;
3370 vp->SrcReg[0].Index = index;
3371 vp->SrcReg[0].NegateBase = negateMask;
3372 vp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0],
3373 swizzle[1],
3374 swizzle[2],
3375 swizzle[3]);
3376 vp->SrcReg[0].RelAddr = relAddr;
3377 }
3378 break;
3379 }
3380 return 0;
3381 }
3382
3383 #if DEBUG_PARSING
3384
3385 static GLvoid
3386 debug_variables (GLcontext * ctx, struct var_cache *vc_head,
3387 struct arb_program *Program)
3388 {
3389 struct var_cache *vc;
3390 GLint a, b;
3391
3392 fprintf (stderr, "debug_variables, vc_head: %p\n", (void*) vc_head);
3393
3394 /* First of all, print out the contents of the var_cache */
3395 vc = vc_head;
3396 while (vc) {
3397 fprintf (stderr, "[%p]\n", (void*) vc);
3398 switch (vc->type) {
3399 case vt_none:
3400 fprintf (stderr, "UNDEFINED %s\n", vc->name);
3401 break;
3402 case vt_attrib:
3403 fprintf (stderr, "ATTRIB %s\n", vc->name);
3404 fprintf (stderr, " binding: 0x%x\n", vc->attrib_binding);
3405 break;
3406 case vt_param:
3407 fprintf (stderr, "PARAM %s begin: %d len: %d\n", vc->name,
3408 vc->param_binding_begin, vc->param_binding_length);
3409 b = vc->param_binding_begin;
3410 for (a = 0; a < vc->param_binding_length; a++) {
3411 fprintf (stderr, "%s\n",
3412 Program->Base.Parameters->Parameters[a + b].Name);
3413 if (Program->Base.Parameters->Parameters[a + b].Type == PROGRAM_STATE_VAR) {
3414 const char *s;
3415 s = _mesa_program_state_string(Program->Base.Parameters->Parameters
3416 [a + b].StateIndexes);
3417 fprintf(stderr, "%s\n", s);
3418 _mesa_free((char *) s);
3419 }
3420 else
3421 fprintf (stderr, "%f %f %f %f\n",
3422 Program->Base.Parameters->ParameterValues[a + b][0],
3423 Program->Base.Parameters->ParameterValues[a + b][1],
3424 Program->Base.Parameters->ParameterValues[a + b][2],
3425 Program->Base.Parameters->ParameterValues[a + b][3]);
3426 }
3427 break;
3428 case vt_temp:
3429 fprintf (stderr, "TEMP %s\n", vc->name);
3430 fprintf (stderr, " binding: 0x%x\n", vc->temp_binding);
3431 break;
3432 case vt_output:
3433 fprintf (stderr, "OUTPUT %s\n", vc->name);
3434 fprintf (stderr, " binding: 0x%x\n", vc->output_binding);
3435 break;
3436 case vt_alias:
3437 fprintf (stderr, "ALIAS %s\n", vc->name);
3438 fprintf (stderr, " binding: 0x%p (%s)\n",
3439 (void*) vc->alias_binding, vc->alias_binding->name);
3440 break;
3441 default:
3442 /* nothing */
3443 ;
3444 }
3445 vc = vc->next;
3446 }
3447 }
3448
3449 #endif /* DEBUG_PARSING */
3450
3451
3452 /**
3453 * The main loop for parsing a fragment or vertex program
3454 *
3455 * \return 1 on error, 0 on success
3456 */
3457 static GLint
3458 parse_instructions(GLcontext * ctx, const GLubyte * inst,
3459 struct var_cache **vc_head, struct arb_program *Program)
3460 {
3461 const GLuint maxInst = (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB)
3462 ? ctx->Const.FragmentProgram.MaxInstructions
3463 : ctx->Const.VertexProgram.MaxInstructions;
3464 GLint err = 0;
3465
3466 ASSERT(MAX_INSTRUCTIONS >= maxInst);
3467
3468 Program->MajorVersion = (GLuint) * inst++;
3469 Program->MinorVersion = (GLuint) * inst++;
3470
3471 while (*inst != END) {
3472 switch (*inst++) {
3473
3474 case OPTION:
3475 switch (*inst++) {
3476 case ARB_PRECISION_HINT_FASTEST:
3477 Program->PrecisionOption = GL_FASTEST;
3478 break;
3479
3480 case ARB_PRECISION_HINT_NICEST:
3481 Program->PrecisionOption = GL_NICEST;
3482 break;
3483
3484 case ARB_FOG_EXP:
3485 Program->FogOption = GL_EXP;
3486 break;
3487
3488 case ARB_FOG_EXP2:
3489 Program->FogOption = GL_EXP2;
3490 break;
3491
3492 case ARB_FOG_LINEAR:
3493 Program->FogOption = GL_LINEAR;
3494 break;
3495
3496 case ARB_POSITION_INVARIANT:
3497 if (Program->Base.Target == GL_VERTEX_PROGRAM_ARB)
3498 Program->HintPositionInvariant = GL_TRUE;
3499 break;
3500
3501 case ARB_FRAGMENT_PROGRAM_SHADOW:
3502 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3503 /* TODO ARB_fragment_program_shadow code */
3504 }
3505 break;
3506
3507 case ARB_DRAW_BUFFERS:
3508 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3509 /* do nothing for now */
3510 }
3511 break;
3512
3513 case MESA_TEXTURE_ARRAY:
3514 /* do nothing for now */
3515 break;
3516 }
3517 break;
3518
3519 case INSTRUCTION:
3520 /* check length */
3521 if (Program->Base.NumInstructions + 1 >= maxInst) {
3522 program_error(ctx, Program->Position,
3523 "Max instruction count exceeded");
3524 return 1;
3525 }
3526 Program->Position = parse_position (&inst);
3527 /* parse the current instruction */
3528 if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) {
3529 err = parse_fp_instruction (ctx, &inst, vc_head, Program,
3530 &Program->Base.Instructions[Program->Base.NumInstructions]);
3531 }
3532 else {
3533 err = parse_vp_instruction (ctx, &inst, vc_head, Program,
3534 &Program->Base.Instructions[Program->Base.NumInstructions]);
3535 }
3536
3537 /* increment instuction count */
3538 Program->Base.NumInstructions++;
3539 break;
3540
3541 case DECLARATION:
3542 err = parse_declaration (ctx, &inst, vc_head, Program);
3543 break;
3544
3545 default:
3546 break;
3547 }
3548
3549 if (err)
3550 break;
3551 }
3552
3553 /* Finally, tag on an OPCODE_END instruction */
3554 {
3555 const GLuint numInst = Program->Base.NumInstructions;
3556 _mesa_init_instructions(Program->Base.Instructions + numInst, 1);
3557 Program->Base.Instructions[numInst].Opcode = OPCODE_END;
3558 /* YYY Wrong Position in program, whatever, at least not random -> crash
3559 Program->Position = parse_position (&inst);
3560 */
3561 Program->Base.Instructions[numInst].StringPos = Program->Position;
3562 }
3563 Program->Base.NumInstructions++;
3564
3565 /*
3566 * Initialize native counts to logical counts. The device driver may
3567 * change them if program is translated into a hardware program.
3568 */
3569 Program->Base.NumNativeInstructions = Program->Base.NumInstructions;
3570 Program->Base.NumNativeTemporaries = Program->Base.NumTemporaries;
3571 Program->Base.NumNativeParameters = Program->Base.NumParameters;
3572 Program->Base.NumNativeAttributes = Program->Base.NumAttributes;
3573 Program->Base.NumNativeAddressRegs = Program->Base.NumAddressRegs;
3574
3575 return err;
3576 }
3577
3578
3579 /* XXX temporary */
3580 LONGSTRING static char core_grammar_text[] =
3581 #include "shader/grammar/grammar_syn.h"
3582 ;
3583
3584
3585 /**
3586 * Set a grammar parameter.
3587 * \param name the grammar parameter
3588 * \param value the new parameter value
3589 * \return 0 if OK, 1 if error
3590 */
3591 static int
3592 set_reg8 (GLcontext *ctx, grammar id, const char *name, GLubyte value)
3593 {
3594 char error_msg[300];
3595 GLint error_pos;
3596
3597 if (grammar_set_reg8 (id, (const byte *) name, value))
3598 return 0;
3599
3600 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3601 _mesa_set_program_error (ctx, error_pos, error_msg);
3602 _mesa_error (ctx, GL_INVALID_OPERATION, "Grammar Register Error");
3603 return 1;
3604 }
3605
3606
3607 /**
3608 * Enable support for the given language option in the parser.
3609 * \return 1 if OK, 0 if error
3610 */
3611 static int
3612 enable_ext(GLcontext *ctx, grammar id, const char *name)
3613 {
3614 return !set_reg8(ctx, id, name, 1);
3615 }
3616
3617
3618 /**
3619 * Enable parser extensions based on which OpenGL extensions are supported
3620 * by this rendering context.
3621 *
3622 * \return GL_TRUE if OK, GL_FALSE if error.
3623 */
3624 static GLboolean
3625 enable_parser_extensions(GLcontext *ctx, grammar id)
3626 {
3627 #if 0
3628 /* These are not supported at this time */
3629 if ((ctx->Extensions.ARB_vertex_blend ||
3630 ctx->Extensions.EXT_vertex_weighting)
3631 && !enable_ext(ctx, id, "vertex_blend"))
3632 return GL_FALSE;
3633 if (ctx->Extensions.ARB_matrix_palette
3634 && !enable_ext(ctx, id, "matrix_palette"))
3635 return GL_FALSE;
3636 #endif
3637 if (ctx->Extensions.ARB_fragment_program_shadow
3638 && !enable_ext(ctx, id, "fragment_program_shadow"))
3639 return GL_FALSE;
3640 if (ctx->Extensions.EXT_point_parameters
3641 && !enable_ext(ctx, id, "point_parameters"))
3642 return GL_FALSE;
3643 if (ctx->Extensions.EXT_secondary_color
3644 && !enable_ext(ctx, id, "secondary_color"))
3645 return GL_FALSE;
3646 if (ctx->Extensions.EXT_fog_coord
3647 && !enable_ext(ctx, id, "fog_coord"))
3648 return GL_FALSE;
3649 if (ctx->Extensions.NV_texture_rectangle
3650 && !enable_ext(ctx, id, "texture_rectangle"))
3651 return GL_FALSE;
3652 if (ctx->Extensions.ARB_draw_buffers
3653 && !enable_ext(ctx, id, "draw_buffers"))
3654 return GL_FALSE;
3655 if (ctx->Extensions.MESA_texture_array
3656 && !enable_ext(ctx, id, "texture_array"))
3657 return GL_FALSE;
3658 #if 1
3659 /* hack for Warcraft (see bug 8060) */
3660 enable_ext(ctx, id, "vertex_blend");
3661 #endif
3662
3663 return GL_TRUE;
3664 }
3665
3666
3667 /**
3668 * This kicks everything off.
3669 *
3670 * \param ctx - The GL Context
3671 * \param str - The program string
3672 * \param len - The program string length
3673 * \param program - The arb_program struct to return all the parsed info in
3674 * \return GL_TRUE on sucess, GL_FALSE on error
3675 */
3676 static GLboolean
3677 _mesa_parse_arb_program(GLcontext *ctx, GLenum target,
3678 const GLubyte *str, GLsizei len,
3679 struct arb_program *program)
3680 {
3681 GLint a, err, error_pos;
3682 char error_msg[300];
3683 GLuint parsed_len;
3684 struct var_cache *vc_head;
3685 grammar arbprogram_syn_id;
3686 GLubyte *parsed, *inst;
3687 GLubyte *strz = NULL;
3688 static int arbprogram_syn_is_ok = 0; /* XXX temporary */
3689
3690 /* set the program target before parsing */
3691 program->Base.Target = target;
3692
3693 /* Reset error state */
3694 _mesa_set_program_error(ctx, -1, NULL);
3695
3696 /* check if arb_grammar_text (arbprogram.syn) is syntactically correct */
3697 if (!arbprogram_syn_is_ok) {
3698 /* One-time initialization of parsing system */
3699 grammar grammar_syn_id;
3700 GLuint parsed_len;
3701
3702 grammar_syn_id = grammar_load_from_text ((byte *) core_grammar_text);
3703 if (grammar_syn_id == 0) {
3704 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3705 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3706 _mesa_set_program_error (ctx, error_pos, error_msg);
3707 _mesa_error (ctx, GL_INVALID_OPERATION,
3708 "glProgramStringARB(Error loading grammar rule set)");
3709 return GL_FALSE;
3710 }
3711
3712 err = !grammar_check(grammar_syn_id, (byte *) arb_grammar_text,
3713 &parsed, &parsed_len);
3714
3715 /* 'parsed' is unused here */
3716 _mesa_free (parsed);
3717 parsed = NULL;
3718
3719 /* NOTE: we can't destroy grammar_syn_id right here because
3720 * grammar_destroy() can reset the last error
3721 */
3722 if (err) {
3723 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3724 grammar_get_last_error ((byte *) error_msg, 300, &error_pos);
3725 _mesa_set_program_error (ctx, error_pos, error_msg);
3726 _mesa_error (ctx, GL_INVALID_OPERATION,
3727 "glProgramString(Error loading grammar rule set");
3728 grammar_destroy (grammar_syn_id);
3729 return GL_FALSE;
3730 }
3731
3732 grammar_destroy (grammar_syn_id);
3733
3734 arbprogram_syn_is_ok = 1;
3735 }
3736
3737 /* create the grammar object */
3738 arbprogram_syn_id = grammar_load_from_text ((byte *) arb_grammar_text);
3739 if (arbprogram_syn_id == 0) {
3740 /* XXX this is not a GL error - it's an implementation bug! - FIX */
3741 grammar_get_last_error ((GLubyte *) error_msg, 300, &error_pos);
3742 _mesa_set_program_error (ctx, error_pos, error_msg);
3743 _mesa_error (ctx, GL_INVALID_OPERATION,
3744 "glProgramString(Error loading grammer rule set)");
3745 return GL_FALSE;
3746 }
3747
3748 /* Set program_target register value */
3749 if (set_reg8 (ctx, arbprogram_syn_id, "program_target",
3750 program->Base.Target == GL_FRAGMENT_PROGRAM_ARB ? 0x10 : 0x20)) {
3751 grammar_destroy (arbprogram_syn_id);
3752 return GL_FALSE;
3753 }
3754
3755 if (!enable_parser_extensions(ctx, arbprogram_syn_id)) {
3756 grammar_destroy(arbprogram_syn_id);
3757 return GL_FALSE;
3758 }
3759
3760 /* check for NULL character occurences */
3761 {
3762 GLint i;
3763 for (i = 0; i < len; i++) {
3764 if (str[i] == '\0') {
3765 program_error(ctx, i, "illegal character");
3766 grammar_destroy (arbprogram_syn_id);
3767 return GL_FALSE;
3768 }
3769 }
3770 }
3771
3772 /* copy the program string to a null-terminated string */
3773 strz = (GLubyte *) _mesa_malloc (len + 1);
3774 if (!strz) {
3775 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB");
3776 grammar_destroy (arbprogram_syn_id);
3777 return GL_FALSE;
3778 }
3779 _mesa_memcpy (strz, str, len);
3780 strz[len] = '\0';
3781
3782 /* do a fast check on program string - initial production buffer is 4K */
3783 err = !grammar_fast_check(arbprogram_syn_id, strz,
3784 &parsed, &parsed_len, 0x1000);
3785
3786 /* Syntax parse error */
3787 if (err) {
3788 grammar_get_last_error((GLubyte *) error_msg, 300, &error_pos);
3789 program_error(ctx, error_pos, error_msg);
3790
3791 #if DEBUG_PARSING
3792 /* useful for debugging */
3793 do {
3794 int line, col;
3795 char *s;
3796 fprintf(stderr, "program: %s\n", (char *) strz);
3797 fprintf(stderr, "Error Pos: %d\n", ctx->program.ErrorPos);
3798 s = (char *) _mesa_find_line_column(strz, strz+ctx->program.ErrorPos,
3799 &line, &col);
3800 fprintf(stderr, "line %d col %d: %s\n", line, col, s);
3801 } while (0)
3802 #endif
3803
3804 _mesa_free(strz);
3805 _mesa_free(parsed);
3806
3807 grammar_destroy (arbprogram_syn_id);
3808 return GL_FALSE;
3809 }
3810
3811 grammar_destroy (arbprogram_syn_id);
3812
3813 /*
3814 * Program string is syntactically correct at this point
3815 * Parse the tokenized version of the program now, generating
3816 * vertex/fragment program instructions.
3817 */
3818
3819 /* Initialize the arb_program struct */
3820 program->Base.String = strz;
3821 program->Base.Instructions = _mesa_alloc_instructions(MAX_INSTRUCTIONS);
3822 program->Base.NumInstructions =
3823 program->Base.NumTemporaries =
3824 program->Base.NumParameters =
3825 program->Base.NumAttributes = program->Base.NumAddressRegs = 0;
3826 program->Base.Parameters = _mesa_new_parameter_list ();
3827 program->Base.InputsRead = 0x0;
3828 program->Base.OutputsWritten = 0x0;
3829 program->Position = 0;
3830 program->MajorVersion = program->MinorVersion = 0;
3831 program->PrecisionOption = GL_DONT_CARE;
3832 program->FogOption = GL_NONE;
3833 program->HintPositionInvariant = GL_FALSE;
3834 for (a = 0; a < MAX_TEXTURE_IMAGE_UNITS; a++)
3835 program->TexturesUsed[a] = 0x0;
3836 program->ShadowSamplers = 0x0;
3837 program->NumAluInstructions =
3838 program->NumTexInstructions =
3839 program->NumTexIndirections = 0;
3840 program->UsesKill = 0;
3841
3842 vc_head = NULL;
3843 err = GL_FALSE;
3844
3845 /* Start examining the tokens in the array */
3846 inst = parsed;
3847
3848 /* Check the grammer rev */
3849 if (*inst++ != REVISION) {
3850 program_error (ctx, 0, "Grammar version mismatch");
3851 err = GL_TRUE;
3852 }
3853 else {
3854 /* ignore program target */
3855 inst++;
3856 err = parse_instructions(ctx, inst, &vc_head, program);
3857 }
3858
3859 /*debug_variables(ctx, vc_head, program); */
3860
3861 /* We're done with the parsed binary array */
3862 var_cache_destroy (&vc_head);
3863
3864 _mesa_free (parsed);
3865
3866 /* Reallocate the instruction array from size [MAX_INSTRUCTIONS]
3867 * to size [ap.Base.NumInstructions].
3868 */
3869 program->Base.Instructions
3870 = _mesa_realloc_instructions(program->Base.Instructions,
3871 MAX_INSTRUCTIONS,
3872 program->Base.NumInstructions);
3873
3874 return !err;
3875 }
3876
3877
3878
3879 void
3880 _mesa_parse_arb_fragment_program(GLcontext* ctx, GLenum target,
3881 const GLvoid *str, GLsizei len,
3882 struct gl_fragment_program *program)
3883 {
3884 struct arb_program ap;
3885 GLuint i;
3886
3887 ASSERT(target == GL_FRAGMENT_PROGRAM_ARB);
3888 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3889 /* Error in the program. Just return. */
3890 return;
3891 }
3892
3893 /* Copy the relevant contents of the arb_program struct into the
3894 * fragment_program struct.
3895 */
3896 program->Base.String = ap.Base.String;
3897 program->Base.NumInstructions = ap.Base.NumInstructions;
3898 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3899 program->Base.NumParameters = ap.Base.NumParameters;
3900 program->Base.NumAttributes = ap.Base.NumAttributes;
3901 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3902 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3903 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3904 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3905 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3906 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3907 program->Base.NumAluInstructions = ap.Base.NumAluInstructions;
3908 program->Base.NumTexInstructions = ap.Base.NumTexInstructions;
3909 program->Base.NumTexIndirections = ap.Base.NumTexIndirections;
3910 program->Base.NumNativeAluInstructions = ap.Base.NumAluInstructions;
3911 program->Base.NumNativeTexInstructions = ap.Base.NumTexInstructions;
3912 program->Base.NumNativeTexIndirections = ap.Base.NumTexIndirections;
3913 program->Base.InputsRead = ap.Base.InputsRead;
3914 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3915 for (i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++) {
3916 program->Base.TexturesUsed[i] = ap.TexturesUsed[i];
3917 if (ap.TexturesUsed[i])
3918 program->Base.SamplersUsed |= (1 << i);
3919 }
3920 program->Base.ShadowSamplers = ap.ShadowSamplers;
3921 program->FogOption = ap.FogOption;
3922 program->UsesKill = ap.UsesKill;
3923
3924 if (program->Base.Instructions)
3925 _mesa_free(program->Base.Instructions);
3926 program->Base.Instructions = ap.Base.Instructions;
3927
3928 if (program->Base.Parameters)
3929 _mesa_free_parameter_list(program->Base.Parameters);
3930 program->Base.Parameters = ap.Base.Parameters;
3931
3932 #if DEBUG_FP
3933 _mesa_printf("____________Fragment program %u ________\n", program->Base.ID);
3934 _mesa_print_program(&program->Base);
3935 #endif
3936 }
3937
3938
3939
3940 /**
3941 * Parse the vertex program string. If success, update the given
3942 * vertex_program object with the new program. Else, leave the vertex_program
3943 * object unchanged.
3944 */
3945 void
3946 _mesa_parse_arb_vertex_program(GLcontext *ctx, GLenum target,
3947 const GLvoid *str, GLsizei len,
3948 struct gl_vertex_program *program)
3949 {
3950 struct arb_program ap;
3951
3952 ASSERT(target == GL_VERTEX_PROGRAM_ARB);
3953
3954 if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) {
3955 /* Error in the program. Just return. */
3956 return;
3957 }
3958
3959 /* Copy the relevant contents of the arb_program struct into the
3960 * vertex_program struct.
3961 */
3962 program->Base.String = ap.Base.String;
3963 program->Base.NumInstructions = ap.Base.NumInstructions;
3964 program->Base.NumTemporaries = ap.Base.NumTemporaries;
3965 program->Base.NumParameters = ap.Base.NumParameters;
3966 program->Base.NumAttributes = ap.Base.NumAttributes;
3967 program->Base.NumAddressRegs = ap.Base.NumAddressRegs;
3968 program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions;
3969 program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries;
3970 program->Base.NumNativeParameters = ap.Base.NumNativeParameters;
3971 program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes;
3972 program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs;
3973 program->Base.InputsRead = ap.Base.InputsRead;
3974 program->Base.OutputsWritten = ap.Base.OutputsWritten;
3975 program->IsPositionInvariant = ap.HintPositionInvariant;
3976
3977 if (program->Base.Instructions)
3978 _mesa_free(program->Base.Instructions);
3979 program->Base.Instructions = ap.Base.Instructions;
3980
3981 if (program->Base.Parameters)
3982 _mesa_free_parameter_list(program->Base.Parameters);
3983 program->Base.Parameters = ap.Base.Parameters;
3984
3985 #if DEBUG_VP
3986 _mesa_printf("____________Vertex program %u __________\n", program->Base.Id);
3987 _mesa_print_program(&program->Base);
3988 #endif
3989 }