Merge commit 'origin/gallium-0.1' into gallium-0.2
[mesa.git] / src / mesa / shader / prog_execute.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.0.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_execute.c
27 * Software interpreter for vertex/fragment programs.
28 * \author Brian Paul
29 */
30
31 /*
32 * NOTE: we do everything in single-precision floating point; we don't
33 * currently observe the single/half/fixed-precision qualifiers.
34 *
35 */
36
37
38 #include "main/glheader.h"
39 #include "main/colormac.h"
40 #include "main/context.h"
41 #include "program.h"
42 #include "prog_execute.h"
43 #include "prog_instruction.h"
44 #include "prog_parameter.h"
45 #include "prog_print.h"
46 #include "shader/slang/slang_library_noise.h"
47
48
49 /* debug predicate */
50 #define DEBUG_PROG 0
51
52
53 /**
54 * Set x to positive or negative infinity.
55 */
56 #if defined(USE_IEEE) || defined(_WIN32)
57 #define SET_POS_INFINITY(x) ( *((GLuint *) (void *)&x) = 0x7F800000 )
58 #define SET_NEG_INFINITY(x) ( *((GLuint *) (void *)&x) = 0xFF800000 )
59 #elif defined(VMS)
60 #define SET_POS_INFINITY(x) x = __MAXFLOAT
61 #define SET_NEG_INFINITY(x) x = -__MAXFLOAT
62 #else
63 #define SET_POS_INFINITY(x) x = (GLfloat) HUGE_VAL
64 #define SET_NEG_INFINITY(x) x = (GLfloat) -HUGE_VAL
65 #endif
66
67 #define SET_FLOAT_BITS(x, bits) ((fi_type *) (void *) &(x))->i = bits
68
69
70 static const GLfloat ZeroVec[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
71
72
73
74 /**
75 * Return a pointer to the 4-element float vector specified by the given
76 * source register.
77 */
78 static INLINE const GLfloat *
79 get_register_pointer(const struct prog_src_register *source,
80 const struct gl_program_machine *machine)
81 {
82 if (source->RelAddr) {
83 const GLint reg = source->Index + machine->AddressReg[0][0];
84 if (source->File == PROGRAM_ENV_PARAM)
85 if (reg < 0 || reg >= MAX_PROGRAM_ENV_PARAMS)
86 return ZeroVec;
87 else
88 return machine->EnvParams[reg];
89 else {
90 const struct gl_program_parameter_list *params;
91 ASSERT(source->File == PROGRAM_LOCAL_PARAM ||
92 source->File == PROGRAM_CONSTANT ||
93 source->File == PROGRAM_STATE_VAR ||
94 source->File == PROGRAM_UNIFORM);
95 params = machine->CurProgram->Parameters;
96 if (reg < 0 || reg >= (GLint)params->NumParameters)
97 return ZeroVec;
98 else
99 return params->ParameterValues[reg];
100 }
101 }
102
103 switch (source->File) {
104 case PROGRAM_TEMPORARY:
105 ASSERT(source->Index < MAX_PROGRAM_TEMPS);
106 return machine->Temporaries[source->Index];
107
108 case PROGRAM_INPUT:
109 if (machine->CurProgram->Target == GL_VERTEX_PROGRAM_ARB) {
110 ASSERT(source->Index < VERT_ATTRIB_MAX);
111 return machine->VertAttribs[source->Index];
112 }
113 else {
114 ASSERT(source->Index < FRAG_ATTRIB_MAX);
115 return machine->Attribs[source->Index][machine->CurElement];
116 }
117
118 case PROGRAM_OUTPUT:
119 ASSERT(source->Index < MAX_PROGRAM_OUTPUTS);
120 return machine->Outputs[source->Index];
121
122 case PROGRAM_LOCAL_PARAM:
123 ASSERT(source->Index < MAX_PROGRAM_LOCAL_PARAMS);
124 return machine->CurProgram->LocalParams[source->Index];
125
126 case PROGRAM_ENV_PARAM:
127 ASSERT(source->Index < MAX_PROGRAM_ENV_PARAMS);
128 return machine->EnvParams[source->Index];
129
130 case PROGRAM_STATE_VAR:
131 /* Fallthrough */
132 case PROGRAM_CONSTANT:
133 /* Fallthrough */
134 case PROGRAM_UNIFORM:
135 /* Fallthrough */
136 case PROGRAM_NAMED_PARAM:
137 ASSERT(source->Index <
138 (GLint) machine->CurProgram->Parameters->NumParameters);
139 return machine->CurProgram->Parameters->ParameterValues[source->Index];
140
141 default:
142 _mesa_problem(NULL,
143 "Invalid input register file %d in get_register_pointer()",
144 source->File);
145 return NULL;
146 }
147 }
148
149
150 #if FEATURE_MESA_program_debug
151 static struct gl_program_machine *CurrentMachine = NULL;
152
153 /**
154 * For GL_MESA_program_debug.
155 * Return current value (4*GLfloat) of a program register.
156 * Called via ctx->Driver.GetProgramRegister().
157 */
158 void
159 _mesa_get_program_register(GLcontext *ctx, enum register_file file,
160 GLuint index, GLfloat val[4])
161 {
162 if (CurrentMachine) {
163 struct prog_src_register src;
164 const GLfloat *reg;
165 src.File = file;
166 src.Index = index;
167 reg = get_register_pointer(&src, CurrentMachine);
168 COPY_4V(val, reg);
169 }
170 }
171 #endif /* FEATURE_MESA_program_debug */
172
173
174 /**
175 * Fetch a 4-element float vector from the given source register.
176 * Apply swizzling and negating as needed.
177 */
178 static void
179 fetch_vector4(const struct prog_src_register *source,
180 const struct gl_program_machine *machine, GLfloat result[4])
181 {
182 const GLfloat *src = get_register_pointer(source, machine);
183 ASSERT(src);
184
185 if (source->Swizzle == SWIZZLE_NOOP) {
186 /* no swizzling */
187 COPY_4V(result, src);
188 }
189 else {
190 ASSERT(GET_SWZ(source->Swizzle, 0) <= 3);
191 ASSERT(GET_SWZ(source->Swizzle, 1) <= 3);
192 ASSERT(GET_SWZ(source->Swizzle, 2) <= 3);
193 ASSERT(GET_SWZ(source->Swizzle, 3) <= 3);
194 result[0] = src[GET_SWZ(source->Swizzle, 0)];
195 result[1] = src[GET_SWZ(source->Swizzle, 1)];
196 result[2] = src[GET_SWZ(source->Swizzle, 2)];
197 result[3] = src[GET_SWZ(source->Swizzle, 3)];
198 }
199
200 if (source->NegateBase) {
201 result[0] = -result[0];
202 result[1] = -result[1];
203 result[2] = -result[2];
204 result[3] = -result[3];
205 }
206 if (source->Abs) {
207 result[0] = FABSF(result[0]);
208 result[1] = FABSF(result[1]);
209 result[2] = FABSF(result[2]);
210 result[3] = FABSF(result[3]);
211 }
212 if (source->NegateAbs) {
213 result[0] = -result[0];
214 result[1] = -result[1];
215 result[2] = -result[2];
216 result[3] = -result[3];
217 }
218 }
219
220
221 /**
222 * Fetch the derivative with respect to X or Y for the given register.
223 * XXX this currently only works for fragment program input attribs.
224 */
225 static void
226 fetch_vector4_deriv(GLcontext * ctx,
227 const struct prog_src_register *source,
228 const struct gl_program_machine *machine,
229 char xOrY, GLfloat result[4])
230 {
231 if (source->File == PROGRAM_INPUT && source->Index < (GLint)machine->NumDeriv) {
232 const GLint col = machine->CurElement;
233 const GLfloat w = machine->Attribs[FRAG_ATTRIB_WPOS][col][3];
234 const GLfloat invQ = 1.0f / w;
235 GLfloat deriv[4];
236
237 if (xOrY == 'X') {
238 deriv[0] = machine->DerivX[source->Index][0] * invQ;
239 deriv[1] = machine->DerivX[source->Index][1] * invQ;
240 deriv[2] = machine->DerivX[source->Index][2] * invQ;
241 deriv[3] = machine->DerivX[source->Index][3] * invQ;
242 }
243 else {
244 deriv[0] = machine->DerivY[source->Index][0] * invQ;
245 deriv[1] = machine->DerivY[source->Index][1] * invQ;
246 deriv[2] = machine->DerivY[source->Index][2] * invQ;
247 deriv[3] = machine->DerivY[source->Index][3] * invQ;
248 }
249
250 result[0] = deriv[GET_SWZ(source->Swizzle, 0)];
251 result[1] = deriv[GET_SWZ(source->Swizzle, 1)];
252 result[2] = deriv[GET_SWZ(source->Swizzle, 2)];
253 result[3] = deriv[GET_SWZ(source->Swizzle, 3)];
254
255 if (source->NegateBase) {
256 result[0] = -result[0];
257 result[1] = -result[1];
258 result[2] = -result[2];
259 result[3] = -result[3];
260 }
261 if (source->Abs) {
262 result[0] = FABSF(result[0]);
263 result[1] = FABSF(result[1]);
264 result[2] = FABSF(result[2]);
265 result[3] = FABSF(result[3]);
266 }
267 if (source->NegateAbs) {
268 result[0] = -result[0];
269 result[1] = -result[1];
270 result[2] = -result[2];
271 result[3] = -result[3];
272 }
273 }
274 else {
275 ASSIGN_4V(result, 0.0, 0.0, 0.0, 0.0);
276 }
277 }
278
279
280 /**
281 * As above, but only return result[0] element.
282 */
283 static void
284 fetch_vector1(const struct prog_src_register *source,
285 const struct gl_program_machine *machine, GLfloat result[4])
286 {
287 const GLfloat *src = get_register_pointer(source, machine);
288 ASSERT(src);
289
290 result[0] = src[GET_SWZ(source->Swizzle, 0)];
291
292 if (source->NegateBase) {
293 result[0] = -result[0];
294 }
295 if (source->Abs) {
296 result[0] = FABSF(result[0]);
297 }
298 if (source->NegateAbs) {
299 result[0] = -result[0];
300 }
301 }
302
303
304 /**
305 * Fetch texel from texture. Use partial derivatives when possible.
306 */
307 static INLINE void
308 fetch_texel(GLcontext *ctx,
309 const struct gl_program_machine *machine,
310 const struct prog_instruction *inst,
311 const GLfloat texcoord[4], GLfloat lodBias,
312 GLfloat color[4])
313 {
314 const GLuint unit = machine->Samplers[inst->TexSrcUnit];
315
316 /* Note: we only have the right derivatives for fragment input attribs.
317 */
318 if (machine->NumDeriv > 0 &&
319 inst->SrcReg[0].File == PROGRAM_INPUT &&
320 inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0 + inst->TexSrcUnit) {
321 /* simple texture fetch for which we should have derivatives */
322 GLuint attr = inst->SrcReg[0].Index;
323 machine->FetchTexelDeriv(ctx, texcoord,
324 machine->DerivX[attr],
325 machine->DerivY[attr],
326 lodBias, unit, color);
327 }
328 else {
329 machine->FetchTexelLod(ctx, texcoord, lodBias, unit, color);
330 }
331 }
332
333
334 /**
335 * Test value against zero and return GT, LT, EQ or UN if NaN.
336 */
337 static INLINE GLuint
338 generate_cc(float value)
339 {
340 if (value != value)
341 return COND_UN; /* NaN */
342 if (value > 0.0F)
343 return COND_GT;
344 if (value < 0.0F)
345 return COND_LT;
346 return COND_EQ;
347 }
348
349
350 /**
351 * Test if the ccMaskRule is satisfied by the given condition code.
352 * Used to mask destination writes according to the current condition code.
353 */
354 static INLINE GLboolean
355 test_cc(GLuint condCode, GLuint ccMaskRule)
356 {
357 switch (ccMaskRule) {
358 case COND_EQ: return (condCode == COND_EQ);
359 case COND_NE: return (condCode != COND_EQ);
360 case COND_LT: return (condCode == COND_LT);
361 case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
362 case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
363 case COND_GT: return (condCode == COND_GT);
364 case COND_TR: return GL_TRUE;
365 case COND_FL: return GL_FALSE;
366 default: return GL_TRUE;
367 }
368 }
369
370
371 /**
372 * Evaluate the 4 condition codes against a predicate and return GL_TRUE
373 * or GL_FALSE to indicate result.
374 */
375 static INLINE GLboolean
376 eval_condition(const struct gl_program_machine *machine,
377 const struct prog_instruction *inst)
378 {
379 const GLuint swizzle = inst->DstReg.CondSwizzle;
380 const GLuint condMask = inst->DstReg.CondMask;
381 if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
382 test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
383 test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
384 test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
385 return GL_TRUE;
386 }
387 else {
388 return GL_FALSE;
389 }
390 }
391
392
393
394 /**
395 * Store 4 floats into a register. Observe the instructions saturate and
396 * set-condition-code flags.
397 */
398 static void
399 store_vector4(const struct prog_instruction *inst,
400 struct gl_program_machine *machine, const GLfloat value[4])
401 {
402 const struct prog_dst_register *dest = &(inst->DstReg);
403 const GLboolean clamp = inst->SaturateMode == SATURATE_ZERO_ONE;
404 GLfloat *dstReg;
405 GLfloat dummyReg[4];
406 GLfloat clampedValue[4];
407 GLuint writeMask = dest->WriteMask;
408
409 switch (dest->File) {
410 case PROGRAM_OUTPUT:
411 ASSERT(dest->Index < MAX_PROGRAM_OUTPUTS);
412 dstReg = machine->Outputs[dest->Index];
413 break;
414 case PROGRAM_TEMPORARY:
415 ASSERT(dest->Index < MAX_PROGRAM_TEMPS);
416 dstReg = machine->Temporaries[dest->Index];
417 break;
418 case PROGRAM_WRITE_ONLY:
419 dstReg = dummyReg;
420 return;
421 default:
422 _mesa_problem(NULL, "bad register file in store_vector4(fp)");
423 return;
424 }
425
426 #if 0
427 if (value[0] > 1.0e10 ||
428 IS_INF_OR_NAN(value[0]) ||
429 IS_INF_OR_NAN(value[1]) ||
430 IS_INF_OR_NAN(value[2]) || IS_INF_OR_NAN(value[3]))
431 printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
432 #endif
433
434 if (clamp) {
435 clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
436 clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
437 clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
438 clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
439 value = clampedValue;
440 }
441
442 if (dest->CondMask != COND_TR) {
443 /* condition codes may turn off some writes */
444 if (writeMask & WRITEMASK_X) {
445 if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 0)],
446 dest->CondMask))
447 writeMask &= ~WRITEMASK_X;
448 }
449 if (writeMask & WRITEMASK_Y) {
450 if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 1)],
451 dest->CondMask))
452 writeMask &= ~WRITEMASK_Y;
453 }
454 if (writeMask & WRITEMASK_Z) {
455 if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 2)],
456 dest->CondMask))
457 writeMask &= ~WRITEMASK_Z;
458 }
459 if (writeMask & WRITEMASK_W) {
460 if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 3)],
461 dest->CondMask))
462 writeMask &= ~WRITEMASK_W;
463 }
464 }
465
466 if (writeMask & WRITEMASK_X)
467 dstReg[0] = value[0];
468 if (writeMask & WRITEMASK_Y)
469 dstReg[1] = value[1];
470 if (writeMask & WRITEMASK_Z)
471 dstReg[2] = value[2];
472 if (writeMask & WRITEMASK_W)
473 dstReg[3] = value[3];
474
475 if (inst->CondUpdate) {
476 if (writeMask & WRITEMASK_X)
477 machine->CondCodes[0] = generate_cc(value[0]);
478 if (writeMask & WRITEMASK_Y)
479 machine->CondCodes[1] = generate_cc(value[1]);
480 if (writeMask & WRITEMASK_Z)
481 machine->CondCodes[2] = generate_cc(value[2]);
482 if (writeMask & WRITEMASK_W)
483 machine->CondCodes[3] = generate_cc(value[3]);
484 #if DEBUG_PROG
485 printf("CondCodes=(%s,%s,%s,%s) for:\n",
486 _mesa_condcode_string(machine->CondCodes[0]),
487 _mesa_condcode_string(machine->CondCodes[1]),
488 _mesa_condcode_string(machine->CondCodes[2]),
489 _mesa_condcode_string(machine->CondCodes[3]));
490 #endif
491 }
492 }
493
494
495 /**
496 * Execute the given vertex/fragment program.
497 *
498 * \param ctx rendering context
499 * \param program the program to execute
500 * \param machine machine state (must be initialized)
501 * \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
502 */
503 GLboolean
504 _mesa_execute_program(GLcontext * ctx,
505 const struct gl_program *program,
506 struct gl_program_machine *machine)
507 {
508 const GLuint numInst = program->NumInstructions;
509 const GLuint maxExec = 10000;
510 GLuint pc, numExec = 0;
511
512 machine->CurProgram = program;
513
514 if (DEBUG_PROG) {
515 printf("execute program %u --------------------\n", program->Id);
516 }
517
518 #if FEATURE_MESA_program_debug
519 CurrentMachine = machine;
520 #endif
521
522 if (program->Target == GL_VERTEX_PROGRAM_ARB) {
523 machine->EnvParams = ctx->VertexProgram.Parameters;
524 }
525 else {
526 machine->EnvParams = ctx->FragmentProgram.Parameters;
527 }
528
529 for (pc = 0; pc < numInst; pc++) {
530 const struct prog_instruction *inst = program->Instructions + pc;
531
532 #if FEATURE_MESA_program_debug
533 if (ctx->FragmentProgram.CallbackEnabled &&
534 ctx->FragmentProgram.Callback) {
535 ctx->FragmentProgram.CurrentPosition = inst->StringPos;
536 ctx->FragmentProgram.Callback(program->Target,
537 ctx->FragmentProgram.CallbackData);
538 }
539 #endif
540
541 if (DEBUG_PROG) {
542 _mesa_print_instruction(inst);
543 }
544
545 switch (inst->Opcode) {
546 case OPCODE_ABS:
547 {
548 GLfloat a[4], result[4];
549 fetch_vector4(&inst->SrcReg[0], machine, a);
550 result[0] = FABSF(a[0]);
551 result[1] = FABSF(a[1]);
552 result[2] = FABSF(a[2]);
553 result[3] = FABSF(a[3]);
554 store_vector4(inst, machine, result);
555 }
556 break;
557 case OPCODE_ADD:
558 {
559 GLfloat a[4], b[4], result[4];
560 fetch_vector4(&inst->SrcReg[0], machine, a);
561 fetch_vector4(&inst->SrcReg[1], machine, b);
562 result[0] = a[0] + b[0];
563 result[1] = a[1] + b[1];
564 result[2] = a[2] + b[2];
565 result[3] = a[3] + b[3];
566 store_vector4(inst, machine, result);
567 if (DEBUG_PROG) {
568 printf("ADD (%g %g %g %g) = (%g %g %g %g) + (%g %g %g %g)\n",
569 result[0], result[1], result[2], result[3],
570 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
571 }
572 }
573 break;
574 case OPCODE_ARL:
575 {
576 GLfloat t[4];
577 fetch_vector4(&inst->SrcReg[0], machine, t);
578 machine->AddressReg[0][0] = (GLint) FLOORF(t[0]);
579 }
580 break;
581 case OPCODE_BGNLOOP:
582 /* no-op */
583 break;
584 case OPCODE_ENDLOOP:
585 /* subtract 1 here since pc is incremented by for(pc) loop */
586 pc = inst->BranchTarget - 1; /* go to matching BNGLOOP */
587 break;
588 case OPCODE_BGNSUB: /* begin subroutine */
589 break;
590 case OPCODE_ENDSUB: /* end subroutine */
591 break;
592 case OPCODE_BRA: /* branch (conditional) */
593 /* fall-through */
594 case OPCODE_BRK: /* break out of loop (conditional) */
595 /* fall-through */
596 case OPCODE_CONT: /* continue loop (conditional) */
597 if (eval_condition(machine, inst)) {
598 /* take branch */
599 /* Subtract 1 here since we'll do pc++ at end of for-loop */
600 pc = inst->BranchTarget - 1;
601 }
602 break;
603 case OPCODE_CAL: /* Call subroutine (conditional) */
604 if (eval_condition(machine, inst)) {
605 /* call the subroutine */
606 if (machine->StackDepth >= MAX_PROGRAM_CALL_DEPTH) {
607 return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
608 }
609 machine->CallStack[machine->StackDepth++] = pc + 1; /* next inst */
610 /* Subtract 1 here since we'll do pc++ at end of for-loop */
611 pc = inst->BranchTarget - 1;
612 }
613 break;
614 case OPCODE_CMP:
615 {
616 GLfloat a[4], b[4], c[4], result[4];
617 fetch_vector4(&inst->SrcReg[0], machine, a);
618 fetch_vector4(&inst->SrcReg[1], machine, b);
619 fetch_vector4(&inst->SrcReg[2], machine, c);
620 result[0] = a[0] < 0.0F ? b[0] : c[0];
621 result[1] = a[1] < 0.0F ? b[1] : c[1];
622 result[2] = a[2] < 0.0F ? b[2] : c[2];
623 result[3] = a[3] < 0.0F ? b[3] : c[3];
624 store_vector4(inst, machine, result);
625 }
626 break;
627 case OPCODE_COS:
628 {
629 GLfloat a[4], result[4];
630 fetch_vector1(&inst->SrcReg[0], machine, a);
631 result[0] = result[1] = result[2] = result[3]
632 = (GLfloat) _mesa_cos(a[0]);
633 store_vector4(inst, machine, result);
634 }
635 break;
636 case OPCODE_DDX: /* Partial derivative with respect to X */
637 {
638 GLfloat result[4];
639 fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
640 'X', result);
641 store_vector4(inst, machine, result);
642 }
643 break;
644 case OPCODE_DDY: /* Partial derivative with respect to Y */
645 {
646 GLfloat result[4];
647 fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
648 'Y', result);
649 store_vector4(inst, machine, result);
650 }
651 break;
652 case OPCODE_DP3:
653 {
654 GLfloat a[4], b[4], result[4];
655 fetch_vector4(&inst->SrcReg[0], machine, a);
656 fetch_vector4(&inst->SrcReg[1], machine, b);
657 result[0] = result[1] = result[2] = result[3] = DOT3(a, b);
658 store_vector4(inst, machine, result);
659 if (DEBUG_PROG) {
660 printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
661 result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
662 }
663 }
664 break;
665 case OPCODE_DP4:
666 {
667 GLfloat a[4], b[4], result[4];
668 fetch_vector4(&inst->SrcReg[0], machine, a);
669 fetch_vector4(&inst->SrcReg[1], machine, b);
670 result[0] = result[1] = result[2] = result[3] = DOT4(a, b);
671 store_vector4(inst, machine, result);
672 if (DEBUG_PROG) {
673 printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
674 result[0], a[0], a[1], a[2], a[3],
675 b[0], b[1], b[2], b[3]);
676 }
677 }
678 break;
679 case OPCODE_DPH:
680 {
681 GLfloat a[4], b[4], result[4];
682 fetch_vector4(&inst->SrcReg[0], machine, a);
683 fetch_vector4(&inst->SrcReg[1], machine, b);
684 result[0] = result[1] = result[2] = result[3] =
685 a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + b[3];
686 store_vector4(inst, machine, result);
687 }
688 break;
689 case OPCODE_DST: /* Distance vector */
690 {
691 GLfloat a[4], b[4], result[4];
692 fetch_vector4(&inst->SrcReg[0], machine, a);
693 fetch_vector4(&inst->SrcReg[1], machine, b);
694 result[0] = 1.0F;
695 result[1] = a[1] * b[1];
696 result[2] = a[2];
697 result[3] = b[3];
698 store_vector4(inst, machine, result);
699 }
700 break;
701 case OPCODE_EXP:
702 {
703 GLfloat t[4], q[4], floor_t0;
704 fetch_vector1(&inst->SrcReg[0], machine, t);
705 floor_t0 = FLOORF(t[0]);
706 if (floor_t0 > FLT_MAX_EXP) {
707 SET_POS_INFINITY(q[0]);
708 SET_POS_INFINITY(q[2]);
709 }
710 else if (floor_t0 < FLT_MIN_EXP) {
711 q[0] = 0.0F;
712 q[2] = 0.0F;
713 }
714 else {
715 q[0] = LDEXPF(1.0, (int) floor_t0);
716 /* Note: GL_NV_vertex_program expects
717 * result.z = result.x * APPX(result.y)
718 * We do what the ARB extension says.
719 */
720 q[2] = (GLfloat) pow(2.0, t[0]);
721 }
722 q[1] = t[0] - floor_t0;
723 q[3] = 1.0F;
724 store_vector4( inst, machine, q );
725 }
726 break;
727 case OPCODE_EX2: /* Exponential base 2 */
728 {
729 GLfloat a[4], result[4];
730 fetch_vector1(&inst->SrcReg[0], machine, a);
731 result[0] = result[1] = result[2] = result[3] =
732 (GLfloat) _mesa_pow(2.0, a[0]);
733 store_vector4(inst, machine, result);
734 }
735 break;
736 case OPCODE_FLR:
737 {
738 GLfloat a[4], result[4];
739 fetch_vector4(&inst->SrcReg[0], machine, a);
740 result[0] = FLOORF(a[0]);
741 result[1] = FLOORF(a[1]);
742 result[2] = FLOORF(a[2]);
743 result[3] = FLOORF(a[3]);
744 store_vector4(inst, machine, result);
745 }
746 break;
747 case OPCODE_FRC:
748 {
749 GLfloat a[4], result[4];
750 fetch_vector4(&inst->SrcReg[0], machine, a);
751 result[0] = a[0] - FLOORF(a[0]);
752 result[1] = a[1] - FLOORF(a[1]);
753 result[2] = a[2] - FLOORF(a[2]);
754 result[3] = a[3] - FLOORF(a[3]);
755 store_vector4(inst, machine, result);
756 }
757 break;
758 case OPCODE_IF:
759 {
760 GLboolean cond;
761 /* eval condition */
762 if (inst->SrcReg[0].File != PROGRAM_UNDEFINED) {
763 GLfloat a[4];
764 fetch_vector1(&inst->SrcReg[0], machine, a);
765 cond = (a[0] != 0.0);
766 }
767 else {
768 cond = eval_condition(machine, inst);
769 }
770 if (DEBUG_PROG) {
771 printf("IF: %d\n", cond);
772 }
773 /* do if/else */
774 if (cond) {
775 /* do if-clause (just continue execution) */
776 }
777 else {
778 /* go to the instruction after ELSE or ENDIF */
779 assert(inst->BranchTarget >= 0);
780 pc = inst->BranchTarget - 1;
781 }
782 }
783 break;
784 case OPCODE_ELSE:
785 /* goto ENDIF */
786 assert(inst->BranchTarget >= 0);
787 pc = inst->BranchTarget - 1;
788 break;
789 case OPCODE_ENDIF:
790 /* nothing */
791 break;
792 case OPCODE_INT: /* float to int */
793 {
794 GLfloat a[4], result[4];
795 fetch_vector4(&inst->SrcReg[0], machine, a);
796 result[0] = (GLfloat) (GLint) a[0];
797 result[1] = (GLfloat) (GLint) a[1];
798 result[2] = (GLfloat) (GLint) a[2];
799 result[3] = (GLfloat) (GLint) a[3];
800 store_vector4(inst, machine, result);
801 }
802 break;
803 case OPCODE_KIL_NV: /* NV_f_p only (conditional) */
804 if (eval_condition(machine, inst)) {
805 return GL_FALSE;
806 }
807 break;
808 case OPCODE_KIL: /* ARB_f_p only */
809 {
810 GLfloat a[4];
811 fetch_vector4(&inst->SrcReg[0], machine, a);
812 if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
813 return GL_FALSE;
814 }
815 }
816 break;
817 case OPCODE_LG2: /* log base 2 */
818 {
819 GLfloat a[4], result[4];
820 fetch_vector1(&inst->SrcReg[0], machine, a);
821 result[0] = result[1] = result[2] = result[3] = LOG2(a[0]);
822 store_vector4(inst, machine, result);
823 }
824 break;
825 case OPCODE_LIT:
826 {
827 const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */
828 GLfloat a[4], result[4];
829 fetch_vector4(&inst->SrcReg[0], machine, a);
830 a[0] = MAX2(a[0], 0.0F);
831 a[1] = MAX2(a[1], 0.0F);
832 /* XXX ARB version clamps a[3], NV version doesn't */
833 a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
834 result[0] = 1.0F;
835 result[1] = a[0];
836 /* XXX we could probably just use pow() here */
837 if (a[0] > 0.0F) {
838 if (a[1] == 0.0 && a[3] == 0.0)
839 result[2] = 1.0;
840 else
841 result[2] = EXPF(a[3] * LOGF(a[1]));
842 }
843 else {
844 result[2] = 0.0;
845 }
846 result[3] = 1.0F;
847 store_vector4(inst, machine, result);
848 if (DEBUG_PROG) {
849 printf("LIT (%g %g %g %g) : (%g %g %g %g)\n",
850 result[0], result[1], result[2], result[3],
851 a[0], a[1], a[2], a[3]);
852 }
853 }
854 break;
855 case OPCODE_LOG:
856 {
857 GLfloat t[4], q[4], abs_t0;
858 fetch_vector1(&inst->SrcReg[0], machine, t);
859 abs_t0 = FABSF(t[0]);
860 if (abs_t0 != 0.0F) {
861 /* Since we really can't handle infinite values on VMS
862 * like other OSes we'll use __MAXFLOAT to represent
863 * infinity. This may need some tweaking.
864 */
865 #ifdef VMS
866 if (abs_t0 == __MAXFLOAT)
867 #else
868 if (IS_INF_OR_NAN(abs_t0))
869 #endif
870 {
871 SET_POS_INFINITY(q[0]);
872 q[1] = 1.0F;
873 SET_POS_INFINITY(q[2]);
874 }
875 else {
876 int exponent;
877 GLfloat mantissa = FREXPF(t[0], &exponent);
878 q[0] = (GLfloat) (exponent - 1);
879 q[1] = (GLfloat) (2.0 * mantissa); /* map [.5, 1) -> [1, 2) */
880 q[2] = (GLfloat) (q[0] + LOG2(q[1]));
881 }
882 }
883 else {
884 SET_NEG_INFINITY(q[0]);
885 q[1] = 1.0F;
886 SET_NEG_INFINITY(q[2]);
887 }
888 q[3] = 1.0;
889 store_vector4(inst, machine, q);
890 }
891 break;
892 case OPCODE_LRP:
893 {
894 GLfloat a[4], b[4], c[4], result[4];
895 fetch_vector4(&inst->SrcReg[0], machine, a);
896 fetch_vector4(&inst->SrcReg[1], machine, b);
897 fetch_vector4(&inst->SrcReg[2], machine, c);
898 result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
899 result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
900 result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
901 result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
902 store_vector4(inst, machine, result);
903 if (DEBUG_PROG) {
904 printf("LRP (%g %g %g %g) = (%g %g %g %g), "
905 "(%g %g %g %g), (%g %g %g %g)\n",
906 result[0], result[1], result[2], result[3],
907 a[0], a[1], a[2], a[3],
908 b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
909 }
910 }
911 break;
912 case OPCODE_MAD:
913 {
914 GLfloat a[4], b[4], c[4], result[4];
915 fetch_vector4(&inst->SrcReg[0], machine, a);
916 fetch_vector4(&inst->SrcReg[1], machine, b);
917 fetch_vector4(&inst->SrcReg[2], machine, c);
918 result[0] = a[0] * b[0] + c[0];
919 result[1] = a[1] * b[1] + c[1];
920 result[2] = a[2] * b[2] + c[2];
921 result[3] = a[3] * b[3] + c[3];
922 store_vector4(inst, machine, result);
923 if (DEBUG_PROG) {
924 printf("MAD (%g %g %g %g) = (%g %g %g %g) * "
925 "(%g %g %g %g) + (%g %g %g %g)\n",
926 result[0], result[1], result[2], result[3],
927 a[0], a[1], a[2], a[3],
928 b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
929 }
930 }
931 break;
932 case OPCODE_MAX:
933 {
934 GLfloat a[4], b[4], result[4];
935 fetch_vector4(&inst->SrcReg[0], machine, a);
936 fetch_vector4(&inst->SrcReg[1], machine, b);
937 result[0] = MAX2(a[0], b[0]);
938 result[1] = MAX2(a[1], b[1]);
939 result[2] = MAX2(a[2], b[2]);
940 result[3] = MAX2(a[3], b[3]);
941 store_vector4(inst, machine, result);
942 if (DEBUG_PROG) {
943 printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
944 result[0], result[1], result[2], result[3],
945 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
946 }
947 }
948 break;
949 case OPCODE_MIN:
950 {
951 GLfloat a[4], b[4], result[4];
952 fetch_vector4(&inst->SrcReg[0], machine, a);
953 fetch_vector4(&inst->SrcReg[1], machine, b);
954 result[0] = MIN2(a[0], b[0]);
955 result[1] = MIN2(a[1], b[1]);
956 result[2] = MIN2(a[2], b[2]);
957 result[3] = MIN2(a[3], b[3]);
958 store_vector4(inst, machine, result);
959 }
960 break;
961 case OPCODE_MOV:
962 {
963 GLfloat result[4];
964 fetch_vector4(&inst->SrcReg[0], machine, result);
965 store_vector4(inst, machine, result);
966 if (DEBUG_PROG) {
967 printf("MOV (%g %g %g %g)\n",
968 result[0], result[1], result[2], result[3]);
969 }
970 }
971 break;
972 case OPCODE_MUL:
973 {
974 GLfloat a[4], b[4], result[4];
975 fetch_vector4(&inst->SrcReg[0], machine, a);
976 fetch_vector4(&inst->SrcReg[1], machine, b);
977 result[0] = a[0] * b[0];
978 result[1] = a[1] * b[1];
979 result[2] = a[2] * b[2];
980 result[3] = a[3] * b[3];
981 store_vector4(inst, machine, result);
982 if (DEBUG_PROG) {
983 printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
984 result[0], result[1], result[2], result[3],
985 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
986 }
987 }
988 break;
989 case OPCODE_NOISE1:
990 {
991 GLfloat a[4], result[4];
992 fetch_vector1(&inst->SrcReg[0], machine, a);
993 result[0] =
994 result[1] =
995 result[2] = result[3] = _slang_library_noise1(a[0]);
996 store_vector4(inst, machine, result);
997 }
998 break;
999 case OPCODE_NOISE2:
1000 {
1001 GLfloat a[4], result[4];
1002 fetch_vector4(&inst->SrcReg[0], machine, a);
1003 result[0] =
1004 result[1] =
1005 result[2] = result[3] = _slang_library_noise2(a[0], a[1]);
1006 store_vector4(inst, machine, result);
1007 }
1008 break;
1009 case OPCODE_NOISE3:
1010 {
1011 GLfloat a[4], result[4];
1012 fetch_vector4(&inst->SrcReg[0], machine, a);
1013 result[0] =
1014 result[1] =
1015 result[2] =
1016 result[3] = _slang_library_noise3(a[0], a[1], a[2]);
1017 store_vector4(inst, machine, result);
1018 }
1019 break;
1020 case OPCODE_NOISE4:
1021 {
1022 GLfloat a[4], result[4];
1023 fetch_vector4(&inst->SrcReg[0], machine, a);
1024 result[0] =
1025 result[1] =
1026 result[2] =
1027 result[3] = _slang_library_noise4(a[0], a[1], a[2], a[3]);
1028 store_vector4(inst, machine, result);
1029 }
1030 break;
1031 case OPCODE_NOP:
1032 break;
1033 case OPCODE_PK2H: /* pack two 16-bit floats in one 32-bit float */
1034 {
1035 GLfloat a[4], result[4];
1036 GLhalfNV hx, hy;
1037 GLuint *rawResult = (GLuint *) result;
1038 GLuint twoHalves;
1039 fetch_vector4(&inst->SrcReg[0], machine, a);
1040 hx = _mesa_float_to_half(a[0]);
1041 hy = _mesa_float_to_half(a[1]);
1042 twoHalves = hx | (hy << 16);
1043 rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
1044 = twoHalves;
1045 store_vector4(inst, machine, result);
1046 }
1047 break;
1048 case OPCODE_PK2US: /* pack two GLushorts into one 32-bit float */
1049 {
1050 GLfloat a[4], result[4];
1051 GLuint usx, usy, *rawResult = (GLuint *) result;
1052 fetch_vector4(&inst->SrcReg[0], machine, a);
1053 a[0] = CLAMP(a[0], 0.0F, 1.0F);
1054 a[1] = CLAMP(a[1], 0.0F, 1.0F);
1055 usx = IROUND(a[0] * 65535.0F);
1056 usy = IROUND(a[1] * 65535.0F);
1057 rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
1058 = usx | (usy << 16);
1059 store_vector4(inst, machine, result);
1060 }
1061 break;
1062 case OPCODE_PK4B: /* pack four GLbytes into one 32-bit float */
1063 {
1064 GLfloat a[4], result[4];
1065 GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
1066 fetch_vector4(&inst->SrcReg[0], machine, a);
1067 a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
1068 a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
1069 a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
1070 a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
1071 ubx = IROUND(127.0F * a[0] + 128.0F);
1072 uby = IROUND(127.0F * a[1] + 128.0F);
1073 ubz = IROUND(127.0F * a[2] + 128.0F);
1074 ubw = IROUND(127.0F * a[3] + 128.0F);
1075 rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
1076 = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
1077 store_vector4(inst, machine, result);
1078 }
1079 break;
1080 case OPCODE_PK4UB: /* pack four GLubytes into one 32-bit float */
1081 {
1082 GLfloat a[4], result[4];
1083 GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
1084 fetch_vector4(&inst->SrcReg[0], machine, a);
1085 a[0] = CLAMP(a[0], 0.0F, 1.0F);
1086 a[1] = CLAMP(a[1], 0.0F, 1.0F);
1087 a[2] = CLAMP(a[2], 0.0F, 1.0F);
1088 a[3] = CLAMP(a[3], 0.0F, 1.0F);
1089 ubx = IROUND(255.0F * a[0]);
1090 uby = IROUND(255.0F * a[1]);
1091 ubz = IROUND(255.0F * a[2]);
1092 ubw = IROUND(255.0F * a[3]);
1093 rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
1094 = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
1095 store_vector4(inst, machine, result);
1096 }
1097 break;
1098 case OPCODE_POW:
1099 {
1100 GLfloat a[4], b[4], result[4];
1101 fetch_vector1(&inst->SrcReg[0], machine, a);
1102 fetch_vector1(&inst->SrcReg[1], machine, b);
1103 result[0] = result[1] = result[2] = result[3]
1104 = (GLfloat) _mesa_pow(a[0], b[0]);
1105 store_vector4(inst, machine, result);
1106 }
1107 break;
1108 case OPCODE_RCP:
1109 {
1110 GLfloat a[4], result[4];
1111 fetch_vector1(&inst->SrcReg[0], machine, a);
1112 if (DEBUG_PROG) {
1113 if (a[0] == 0)
1114 printf("RCP(0)\n");
1115 else if (IS_INF_OR_NAN(a[0]))
1116 printf("RCP(inf)\n");
1117 }
1118 result[0] = result[1] = result[2] = result[3] = 1.0F / a[0];
1119 store_vector4(inst, machine, result);
1120 }
1121 break;
1122 case OPCODE_RET: /* return from subroutine (conditional) */
1123 if (eval_condition(machine, inst)) {
1124 if (machine->StackDepth == 0) {
1125 return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
1126 }
1127 /* subtract one because of pc++ in the for loop */
1128 pc = machine->CallStack[--machine->StackDepth] - 1;
1129 }
1130 break;
1131 case OPCODE_RFL: /* reflection vector */
1132 {
1133 GLfloat axis[4], dir[4], result[4], tmpX, tmpW;
1134 fetch_vector4(&inst->SrcReg[0], machine, axis);
1135 fetch_vector4(&inst->SrcReg[1], machine, dir);
1136 tmpW = DOT3(axis, axis);
1137 tmpX = (2.0F * DOT3(axis, dir)) / tmpW;
1138 result[0] = tmpX * axis[0] - dir[0];
1139 result[1] = tmpX * axis[1] - dir[1];
1140 result[2] = tmpX * axis[2] - dir[2];
1141 /* result[3] is never written! XXX enforce in parser! */
1142 store_vector4(inst, machine, result);
1143 }
1144 break;
1145 case OPCODE_RSQ: /* 1 / sqrt() */
1146 {
1147 GLfloat a[4], result[4];
1148 fetch_vector1(&inst->SrcReg[0], machine, a);
1149 a[0] = FABSF(a[0]);
1150 result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
1151 store_vector4(inst, machine, result);
1152 if (DEBUG_PROG) {
1153 printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
1154 }
1155 }
1156 break;
1157 case OPCODE_SCS: /* sine and cos */
1158 {
1159 GLfloat a[4], result[4];
1160 fetch_vector1(&inst->SrcReg[0], machine, a);
1161 result[0] = (GLfloat) _mesa_cos(a[0]);
1162 result[1] = (GLfloat) _mesa_sin(a[0]);
1163 result[2] = 0.0; /* undefined! */
1164 result[3] = 0.0; /* undefined! */
1165 store_vector4(inst, machine, result);
1166 }
1167 break;
1168 case OPCODE_SEQ: /* set on equal */
1169 {
1170 GLfloat a[4], b[4], result[4];
1171 fetch_vector4(&inst->SrcReg[0], machine, a);
1172 fetch_vector4(&inst->SrcReg[1], machine, b);
1173 result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
1174 result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
1175 result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
1176 result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
1177 store_vector4(inst, machine, result);
1178 if (DEBUG_PROG) {
1179 printf("SEQ (%g %g %g %g) = (%g %g %g %g) == (%g %g %g %g)\n",
1180 result[0], result[1], result[2], result[3],
1181 a[0], a[1], a[2], a[3],
1182 b[0], b[1], b[2], b[3]);
1183 }
1184 }
1185 break;
1186 case OPCODE_SFL: /* set false, operands ignored */
1187 {
1188 static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
1189 store_vector4(inst, machine, result);
1190 }
1191 break;
1192 case OPCODE_SGE: /* set on greater or equal */
1193 {
1194 GLfloat a[4], b[4], result[4];
1195 fetch_vector4(&inst->SrcReg[0], machine, a);
1196 fetch_vector4(&inst->SrcReg[1], machine, b);
1197 result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
1198 result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
1199 result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
1200 result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
1201 store_vector4(inst, machine, result);
1202 if (DEBUG_PROG) {
1203 printf("SGE (%g %g %g %g) = (%g %g %g %g) >= (%g %g %g %g)\n",
1204 result[0], result[1], result[2], result[3],
1205 a[0], a[1], a[2], a[3],
1206 b[0], b[1], b[2], b[3]);
1207 }
1208 }
1209 break;
1210 case OPCODE_SGT: /* set on greater */
1211 {
1212 GLfloat a[4], b[4], result[4];
1213 fetch_vector4(&inst->SrcReg[0], machine, a);
1214 fetch_vector4(&inst->SrcReg[1], machine, b);
1215 result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
1216 result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
1217 result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
1218 result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
1219 store_vector4(inst, machine, result);
1220 if (DEBUG_PROG) {
1221 printf("SGT (%g %g %g %g) = (%g %g %g %g) > (%g %g %g %g)\n",
1222 result[0], result[1], result[2], result[3],
1223 a[0], a[1], a[2], a[3],
1224 b[0], b[1], b[2], b[3]);
1225 }
1226 }
1227 break;
1228 case OPCODE_SIN:
1229 {
1230 GLfloat a[4], result[4];
1231 fetch_vector1(&inst->SrcReg[0], machine, a);
1232 result[0] = result[1] = result[2] = result[3]
1233 = (GLfloat) _mesa_sin(a[0]);
1234 store_vector4(inst, machine, result);
1235 }
1236 break;
1237 case OPCODE_SLE: /* set on less or equal */
1238 {
1239 GLfloat a[4], b[4], result[4];
1240 fetch_vector4(&inst->SrcReg[0], machine, a);
1241 fetch_vector4(&inst->SrcReg[1], machine, b);
1242 result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
1243 result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
1244 result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
1245 result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
1246 store_vector4(inst, machine, result);
1247 if (DEBUG_PROG) {
1248 printf("SLE (%g %g %g %g) = (%g %g %g %g) <= (%g %g %g %g)\n",
1249 result[0], result[1], result[2], result[3],
1250 a[0], a[1], a[2], a[3],
1251 b[0], b[1], b[2], b[3]);
1252 }
1253 }
1254 break;
1255 case OPCODE_SLT: /* set on less */
1256 {
1257 GLfloat a[4], b[4], result[4];
1258 fetch_vector4(&inst->SrcReg[0], machine, a);
1259 fetch_vector4(&inst->SrcReg[1], machine, b);
1260 result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
1261 result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
1262 result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
1263 result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
1264 store_vector4(inst, machine, result);
1265 if (DEBUG_PROG) {
1266 printf("SLT (%g %g %g %g) = (%g %g %g %g) < (%g %g %g %g)\n",
1267 result[0], result[1], result[2], result[3],
1268 a[0], a[1], a[2], a[3],
1269 b[0], b[1], b[2], b[3]);
1270 }
1271 }
1272 break;
1273 case OPCODE_SNE: /* set on not equal */
1274 {
1275 GLfloat a[4], b[4], result[4];
1276 fetch_vector4(&inst->SrcReg[0], machine, a);
1277 fetch_vector4(&inst->SrcReg[1], machine, b);
1278 result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
1279 result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
1280 result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
1281 result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
1282 store_vector4(inst, machine, result);
1283 if (DEBUG_PROG) {
1284 printf("SNE (%g %g %g %g) = (%g %g %g %g) != (%g %g %g %g)\n",
1285 result[0], result[1], result[2], result[3],
1286 a[0], a[1], a[2], a[3],
1287 b[0], b[1], b[2], b[3]);
1288 }
1289 }
1290 break;
1291 case OPCODE_STR: /* set true, operands ignored */
1292 {
1293 static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
1294 store_vector4(inst, machine, result);
1295 }
1296 break;
1297 case OPCODE_SUB:
1298 {
1299 GLfloat a[4], b[4], result[4];
1300 fetch_vector4(&inst->SrcReg[0], machine, a);
1301 fetch_vector4(&inst->SrcReg[1], machine, b);
1302 result[0] = a[0] - b[0];
1303 result[1] = a[1] - b[1];
1304 result[2] = a[2] - b[2];
1305 result[3] = a[3] - b[3];
1306 store_vector4(inst, machine, result);
1307 if (DEBUG_PROG) {
1308 printf("SUB (%g %g %g %g) = (%g %g %g %g) - (%g %g %g %g)\n",
1309 result[0], result[1], result[2], result[3],
1310 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1311 }
1312 }
1313 break;
1314 case OPCODE_SWZ: /* extended swizzle */
1315 {
1316 const struct prog_src_register *source = &inst->SrcReg[0];
1317 const GLfloat *src = get_register_pointer(source, machine);
1318 GLfloat result[4];
1319 GLuint i;
1320 for (i = 0; i < 4; i++) {
1321 const GLuint swz = GET_SWZ(source->Swizzle, i);
1322 if (swz == SWIZZLE_ZERO)
1323 result[i] = 0.0;
1324 else if (swz == SWIZZLE_ONE)
1325 result[i] = 1.0;
1326 else {
1327 ASSERT(swz >= 0);
1328 ASSERT(swz <= 3);
1329 result[i] = src[swz];
1330 }
1331 if (source->NegateBase & (1 << i))
1332 result[i] = -result[i];
1333 }
1334 store_vector4(inst, machine, result);
1335 }
1336 break;
1337 case OPCODE_TEX: /* Both ARB and NV frag prog */
1338 /* Simple texel lookup */
1339 {
1340 GLfloat texcoord[4], color[4];
1341 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1342
1343 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1344
1345 if (DEBUG_PROG) {
1346 printf("TEX (%g, %g, %g, %g) = texture[%d][%g, %g, %g, %g]\n",
1347 color[0], color[1], color[2], color[3],
1348 inst->TexSrcUnit,
1349 texcoord[0], texcoord[1], texcoord[2], texcoord[3]);
1350 }
1351 store_vector4(inst, machine, color);
1352 }
1353 break;
1354 case OPCODE_TXB: /* GL_ARB_fragment_program only */
1355 /* Texel lookup with LOD bias */
1356 {
1357 const struct gl_texture_unit *texUnit
1358 = &ctx->Texture.Unit[inst->TexSrcUnit];
1359 GLfloat texcoord[4], color[4], lodBias;
1360
1361 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1362
1363 /* texcoord[3] is the bias to add to lambda */
1364 lodBias = texUnit->LodBias + texcoord[3];
1365 if (texUnit->_Current) {
1366 lodBias += texUnit->_Current->LodBias;
1367 }
1368
1369 fetch_texel(ctx, machine, inst, texcoord, lodBias, color);
1370
1371 store_vector4(inst, machine, color);
1372 }
1373 break;
1374 case OPCODE_TXD: /* GL_NV_fragment_program only */
1375 /* Texture lookup w/ partial derivatives for LOD */
1376 {
1377 GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
1378 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1379 fetch_vector4(&inst->SrcReg[1], machine, dtdx);
1380 fetch_vector4(&inst->SrcReg[2], machine, dtdy);
1381 machine->FetchTexelDeriv(ctx, texcoord, dtdx, dtdy,
1382 0.0, /* lodBias */
1383 inst->TexSrcUnit, color);
1384 store_vector4(inst, machine, color);
1385 }
1386 break;
1387 case OPCODE_TXP: /* GL_ARB_fragment_program only */
1388 /* Texture lookup w/ projective divide */
1389 {
1390 GLfloat texcoord[4], color[4];
1391
1392 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1393 /* Not so sure about this test - if texcoord[3] is
1394 * zero, we'd probably be fine except for an ASSERT in
1395 * IROUND_POS() which gets triggered by the inf values created.
1396 */
1397 if (texcoord[3] != 0.0) {
1398 texcoord[0] /= texcoord[3];
1399 texcoord[1] /= texcoord[3];
1400 texcoord[2] /= texcoord[3];
1401 }
1402
1403 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1404
1405 store_vector4(inst, machine, color);
1406 }
1407 break;
1408 case OPCODE_TXP_NV: /* GL_NV_fragment_program only */
1409 /* Texture lookup w/ projective divide, as above, but do not
1410 * do the divide by w if sampling from a cube map.
1411 */
1412 {
1413 GLfloat texcoord[4], color[4];
1414
1415 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1416 if (inst->TexSrcTarget != TEXTURE_CUBE_INDEX &&
1417 texcoord[3] != 0.0) {
1418 texcoord[0] /= texcoord[3];
1419 texcoord[1] /= texcoord[3];
1420 texcoord[2] /= texcoord[3];
1421 }
1422
1423 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1424
1425 store_vector4(inst, machine, color);
1426 }
1427 break;
1428 case OPCODE_UP2H: /* unpack two 16-bit floats */
1429 {
1430 GLfloat a[4], result[4];
1431 const GLuint *rawBits = (const GLuint *) a;
1432 GLhalfNV hx, hy;
1433 fetch_vector1(&inst->SrcReg[0], machine, a);
1434 hx = rawBits[0] & 0xffff;
1435 hy = rawBits[0] >> 16;
1436 result[0] = result[2] = _mesa_half_to_float(hx);
1437 result[1] = result[3] = _mesa_half_to_float(hy);
1438 store_vector4(inst, machine, result);
1439 }
1440 break;
1441 case OPCODE_UP2US: /* unpack two GLushorts */
1442 {
1443 GLfloat a[4], result[4];
1444 const GLuint *rawBits = (const GLuint *) a;
1445 GLushort usx, usy;
1446 fetch_vector1(&inst->SrcReg[0], machine, a);
1447 usx = rawBits[0] & 0xffff;
1448 usy = rawBits[0] >> 16;
1449 result[0] = result[2] = usx * (1.0f / 65535.0f);
1450 result[1] = result[3] = usy * (1.0f / 65535.0f);
1451 store_vector4(inst, machine, result);
1452 }
1453 break;
1454 case OPCODE_UP4B: /* unpack four GLbytes */
1455 {
1456 GLfloat a[4], result[4];
1457 const GLuint *rawBits = (const GLuint *) a;
1458 fetch_vector1(&inst->SrcReg[0], machine, a);
1459 result[0] = (((rawBits[0] >> 0) & 0xff) - 128) / 127.0F;
1460 result[1] = (((rawBits[0] >> 8) & 0xff) - 128) / 127.0F;
1461 result[2] = (((rawBits[0] >> 16) & 0xff) - 128) / 127.0F;
1462 result[3] = (((rawBits[0] >> 24) & 0xff) - 128) / 127.0F;
1463 store_vector4(inst, machine, result);
1464 }
1465 break;
1466 case OPCODE_UP4UB: /* unpack four GLubytes */
1467 {
1468 GLfloat a[4], result[4];
1469 const GLuint *rawBits = (const GLuint *) a;
1470 fetch_vector1(&inst->SrcReg[0], machine, a);
1471 result[0] = ((rawBits[0] >> 0) & 0xff) / 255.0F;
1472 result[1] = ((rawBits[0] >> 8) & 0xff) / 255.0F;
1473 result[2] = ((rawBits[0] >> 16) & 0xff) / 255.0F;
1474 result[3] = ((rawBits[0] >> 24) & 0xff) / 255.0F;
1475 store_vector4(inst, machine, result);
1476 }
1477 break;
1478 case OPCODE_XPD: /* cross product */
1479 {
1480 GLfloat a[4], b[4], result[4];
1481 fetch_vector4(&inst->SrcReg[0], machine, a);
1482 fetch_vector4(&inst->SrcReg[1], machine, b);
1483 result[0] = a[1] * b[2] - a[2] * b[1];
1484 result[1] = a[2] * b[0] - a[0] * b[2];
1485 result[2] = a[0] * b[1] - a[1] * b[0];
1486 result[3] = 1.0;
1487 store_vector4(inst, machine, result);
1488 if (DEBUG_PROG) {
1489 printf("XPD (%g %g %g %g) = (%g %g %g) X (%g %g %g)\n",
1490 result[0], result[1], result[2], result[3],
1491 a[0], a[1], a[2], b[0], b[1], b[2]);
1492 }
1493 }
1494 break;
1495 case OPCODE_X2D: /* 2-D matrix transform */
1496 {
1497 GLfloat a[4], b[4], c[4], result[4];
1498 fetch_vector4(&inst->SrcReg[0], machine, a);
1499 fetch_vector4(&inst->SrcReg[1], machine, b);
1500 fetch_vector4(&inst->SrcReg[2], machine, c);
1501 result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
1502 result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
1503 result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
1504 result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
1505 store_vector4(inst, machine, result);
1506 }
1507 break;
1508 case OPCODE_PRINT:
1509 {
1510 if (inst->SrcReg[0].File != -1) {
1511 GLfloat a[4];
1512 fetch_vector4(&inst->SrcReg[0], machine, a);
1513 _mesa_printf("%s%g, %g, %g, %g\n", (const char *) inst->Data,
1514 a[0], a[1], a[2], a[3]);
1515 }
1516 else {
1517 _mesa_printf("%s\n", (const char *) inst->Data);
1518 }
1519 }
1520 break;
1521 case OPCODE_END:
1522 return GL_TRUE;
1523 default:
1524 _mesa_problem(ctx, "Bad opcode %d in _mesa_execute_program",
1525 inst->Opcode);
1526 return GL_TRUE; /* return value doesn't matter */
1527 }
1528
1529 numExec++;
1530 if (numExec > maxExec) {
1531 _mesa_problem(ctx, "Infinite loop detected in fragment program");
1532 return GL_TRUE;
1533 }
1534
1535 } /* for pc */
1536
1537 #if FEATURE_MESA_program_debug
1538 CurrentMachine = NULL;
1539 #endif
1540
1541 return GL_TRUE;
1542 }