mesa: debug output for ARL
[mesa.git] / src / mesa / shader / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/imports.h"
35 #include "main/macros.h"
36 #include "main/mtypes.h"
37 #include "prog_statevars.h"
38 #include "prog_parameter.h"
39
40
41 /**
42 * Use the list of tokens in the state[] array to find global GL state
43 * and return it in <value>. Usually, four values are returned in <value>
44 * but matrix queries may return as many as 16 values.
45 * This function is used for ARB vertex/fragment programs.
46 * The program parser will produce the state[] values.
47 */
48 static void
49 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
50 GLfloat *value)
51 {
52 switch (state[0]) {
53 case STATE_MATERIAL:
54 {
55 /* state[1] is either 0=front or 1=back side */
56 const GLuint face = (GLuint) state[1];
57 const struct gl_material *mat = &ctx->Light.Material;
58 ASSERT(face == 0 || face == 1);
59 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
60 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
61 /* XXX we could get rid of this switch entirely with a little
62 * work in arbprogparse.c's parse_state_single_item().
63 */
64 /* state[2] is the material attribute */
65 switch (state[2]) {
66 case STATE_AMBIENT:
67 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
68 return;
69 case STATE_DIFFUSE:
70 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
71 return;
72 case STATE_SPECULAR:
73 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
74 return;
75 case STATE_EMISSION:
76 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
77 return;
78 case STATE_SHININESS:
79 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
80 value[1] = 0.0F;
81 value[2] = 0.0F;
82 value[3] = 1.0F;
83 return;
84 default:
85 _mesa_problem(ctx, "Invalid material state in fetch_state");
86 return;
87 }
88 }
89 case STATE_LIGHT:
90 {
91 /* state[1] is the light number */
92 const GLuint ln = (GLuint) state[1];
93 /* state[2] is the light attribute */
94 switch (state[2]) {
95 case STATE_AMBIENT:
96 COPY_4V(value, ctx->Light.Light[ln].Ambient);
97 return;
98 case STATE_DIFFUSE:
99 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
100 return;
101 case STATE_SPECULAR:
102 COPY_4V(value, ctx->Light.Light[ln].Specular);
103 return;
104 case STATE_POSITION:
105 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
106 return;
107 case STATE_ATTENUATION:
108 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
109 value[1] = ctx->Light.Light[ln].LinearAttenuation;
110 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
111 value[3] = ctx->Light.Light[ln].SpotExponent;
112 return;
113 case STATE_SPOT_DIRECTION:
114 COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
115 value[3] = ctx->Light.Light[ln]._CosCutoff;
116 return;
117 case STATE_SPOT_CUTOFF:
118 value[0] = ctx->Light.Light[ln].SpotCutoff;
119 return;
120 case STATE_HALF_VECTOR:
121 {
122 static const GLfloat eye_z[] = {0, 0, 1};
123 GLfloat p[3];
124 /* Compute infinite half angle vector:
125 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
126 * light.EyePosition.w should be 0 for infinite lights.
127 */
128 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
129 NORMALIZE_3FV(p);
130 ADD_3V(value, p, eye_z);
131 NORMALIZE_3FV(value);
132 value[3] = 1.0;
133 }
134 return;
135 default:
136 _mesa_problem(ctx, "Invalid light state in fetch_state");
137 return;
138 }
139 }
140 case STATE_LIGHTMODEL_AMBIENT:
141 COPY_4V(value, ctx->Light.Model.Ambient);
142 return;
143 case STATE_LIGHTMODEL_SCENECOLOR:
144 if (state[1] == 0) {
145 /* front */
146 GLint i;
147 for (i = 0; i < 3; i++) {
148 value[i] = ctx->Light.Model.Ambient[i]
149 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
150 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
151 }
152 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
153 }
154 else {
155 /* back */
156 GLint i;
157 for (i = 0; i < 3; i++) {
158 value[i] = ctx->Light.Model.Ambient[i]
159 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
160 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
161 }
162 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
163 }
164 return;
165 case STATE_LIGHTPROD:
166 {
167 const GLuint ln = (GLuint) state[1];
168 const GLuint face = (GLuint) state[2];
169 GLint i;
170 ASSERT(face == 0 || face == 1);
171 switch (state[3]) {
172 case STATE_AMBIENT:
173 for (i = 0; i < 3; i++) {
174 value[i] = ctx->Light.Light[ln].Ambient[i] *
175 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
176 }
177 /* [3] = material alpha */
178 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
179 return;
180 case STATE_DIFFUSE:
181 for (i = 0; i < 3; i++) {
182 value[i] = ctx->Light.Light[ln].Diffuse[i] *
183 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
184 }
185 /* [3] = material alpha */
186 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
187 return;
188 case STATE_SPECULAR:
189 for (i = 0; i < 3; i++) {
190 value[i] = ctx->Light.Light[ln].Specular[i] *
191 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
192 }
193 /* [3] = material alpha */
194 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
195 return;
196 default:
197 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
198 return;
199 }
200 }
201 case STATE_TEXGEN:
202 {
203 /* state[1] is the texture unit */
204 const GLuint unit = (GLuint) state[1];
205 /* state[2] is the texgen attribute */
206 switch (state[2]) {
207 case STATE_TEXGEN_EYE_S:
208 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
209 return;
210 case STATE_TEXGEN_EYE_T:
211 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
212 return;
213 case STATE_TEXGEN_EYE_R:
214 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
215 return;
216 case STATE_TEXGEN_EYE_Q:
217 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
218 return;
219 case STATE_TEXGEN_OBJECT_S:
220 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
221 return;
222 case STATE_TEXGEN_OBJECT_T:
223 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
224 return;
225 case STATE_TEXGEN_OBJECT_R:
226 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
227 return;
228 case STATE_TEXGEN_OBJECT_Q:
229 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
230 return;
231 default:
232 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
233 return;
234 }
235 }
236 case STATE_TEXENV_COLOR:
237 {
238 /* state[1] is the texture unit */
239 const GLuint unit = (GLuint) state[1];
240 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
241 }
242 return;
243 case STATE_FOG_COLOR:
244 COPY_4V(value, ctx->Fog.Color);
245 return;
246 case STATE_FOG_PARAMS:
247 value[0] = ctx->Fog.Density;
248 value[1] = ctx->Fog.Start;
249 value[2] = ctx->Fog.End;
250 value[3] = (ctx->Fog.End == ctx->Fog.Start)
251 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
252 return;
253 case STATE_CLIPPLANE:
254 {
255 const GLuint plane = (GLuint) state[1];
256 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
257 }
258 return;
259 case STATE_POINT_SIZE:
260 value[0] = ctx->Point.Size;
261 value[1] = ctx->Point.MinSize;
262 value[2] = ctx->Point.MaxSize;
263 value[3] = ctx->Point.Threshold;
264 return;
265 case STATE_POINT_ATTENUATION:
266 value[0] = ctx->Point.Params[0];
267 value[1] = ctx->Point.Params[1];
268 value[2] = ctx->Point.Params[2];
269 value[3] = 1.0F;
270 return;
271 case STATE_MODELVIEW_MATRIX:
272 case STATE_PROJECTION_MATRIX:
273 case STATE_MVP_MATRIX:
274 case STATE_TEXTURE_MATRIX:
275 case STATE_PROGRAM_MATRIX:
276 case STATE_COLOR_MATRIX:
277 {
278 /* state[0] = modelview, projection, texture, etc. */
279 /* state[1] = which texture matrix or program matrix */
280 /* state[2] = first row to fetch */
281 /* state[3] = last row to fetch */
282 /* state[4] = transpose, inverse or invtrans */
283 const GLmatrix *matrix;
284 const gl_state_index mat = state[0];
285 const GLuint index = (GLuint) state[1];
286 const GLuint firstRow = (GLuint) state[2];
287 const GLuint lastRow = (GLuint) state[3];
288 const gl_state_index modifier = state[4];
289 const GLfloat *m;
290 GLuint row, i;
291 ASSERT(firstRow >= 0);
292 ASSERT(firstRow < 4);
293 ASSERT(lastRow >= 0);
294 ASSERT(lastRow < 4);
295 if (mat == STATE_MODELVIEW_MATRIX) {
296 matrix = ctx->ModelviewMatrixStack.Top;
297 }
298 else if (mat == STATE_PROJECTION_MATRIX) {
299 matrix = ctx->ProjectionMatrixStack.Top;
300 }
301 else if (mat == STATE_MVP_MATRIX) {
302 matrix = &ctx->_ModelProjectMatrix;
303 }
304 else if (mat == STATE_TEXTURE_MATRIX) {
305 ASSERT(index < Elements(ctx->TextureMatrixStack));
306 matrix = ctx->TextureMatrixStack[index].Top;
307 }
308 else if (mat == STATE_PROGRAM_MATRIX) {
309 ASSERT(index < Elements(ctx->ProgramMatrixStack));
310 matrix = ctx->ProgramMatrixStack[index].Top;
311 }
312 else if (mat == STATE_COLOR_MATRIX) {
313 matrix = ctx->ColorMatrixStack.Top;
314 }
315 else {
316 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
317 return;
318 }
319 if (modifier == STATE_MATRIX_INVERSE ||
320 modifier == STATE_MATRIX_INVTRANS) {
321 /* Be sure inverse is up to date:
322 */
323 _math_matrix_alloc_inv( (GLmatrix *) matrix );
324 _math_matrix_analyse( (GLmatrix*) matrix );
325 m = matrix->inv;
326 }
327 else {
328 m = matrix->m;
329 }
330 if (modifier == STATE_MATRIX_TRANSPOSE ||
331 modifier == STATE_MATRIX_INVTRANS) {
332 for (i = 0, row = firstRow; row <= lastRow; row++) {
333 value[i++] = m[row * 4 + 0];
334 value[i++] = m[row * 4 + 1];
335 value[i++] = m[row * 4 + 2];
336 value[i++] = m[row * 4 + 3];
337 }
338 }
339 else {
340 for (i = 0, row = firstRow; row <= lastRow; row++) {
341 value[i++] = m[row + 0];
342 value[i++] = m[row + 4];
343 value[i++] = m[row + 8];
344 value[i++] = m[row + 12];
345 }
346 }
347 }
348 return;
349 case STATE_DEPTH_RANGE:
350 value[0] = ctx->Viewport.Near; /* near */
351 value[1] = ctx->Viewport.Far; /* far */
352 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
353 value[3] = 1.0;
354 return;
355 case STATE_FRAGMENT_PROGRAM:
356 {
357 /* state[1] = {STATE_ENV, STATE_LOCAL} */
358 /* state[2] = parameter index */
359 const int idx = (int) state[2];
360 switch (state[1]) {
361 case STATE_ENV:
362 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
363 return;
364 case STATE_LOCAL:
365 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
366 return;
367 default:
368 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
369 return;
370 }
371 }
372 return;
373
374 case STATE_VERTEX_PROGRAM:
375 {
376 /* state[1] = {STATE_ENV, STATE_LOCAL} */
377 /* state[2] = parameter index */
378 const int idx = (int) state[2];
379 switch (state[1]) {
380 case STATE_ENV:
381 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
382 return;
383 case STATE_LOCAL:
384 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
385 return;
386 default:
387 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
388 return;
389 }
390 }
391 return;
392
393 case STATE_NORMAL_SCALE:
394 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
395 return;
396
397 case STATE_INTERNAL:
398 switch (state[1]) {
399 case STATE_CURRENT_ATTRIB:
400 {
401 const GLuint idx = (GLuint) state[2];
402 COPY_4V(value, ctx->Current.Attrib[idx]);
403 }
404 return;
405
406 case STATE_NORMAL_SCALE:
407 ASSIGN_4V(value,
408 ctx->_ModelViewInvScale,
409 ctx->_ModelViewInvScale,
410 ctx->_ModelViewInvScale,
411 1);
412 return;
413
414 case STATE_TEXRECT_SCALE:
415 /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
416 * Used to convert unnormalized texcoords to normalized texcoords.
417 */
418 {
419 const int unit = (int) state[2];
420 const struct gl_texture_object *texObj
421 = ctx->Texture.Unit[unit]._Current;
422 if (texObj) {
423 struct gl_texture_image *texImage = texObj->Image[0][0];
424 ASSIGN_4V(value,
425 (GLfloat) (1.0 / texImage->Width),
426 (GLfloat) (1.0 / texImage->Height),
427 0.0f, 1.0f);
428 }
429 }
430 return;
431
432 case STATE_FOG_PARAMS_OPTIMIZED:
433 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
434 * might be more expensive than EX2 on some hw, plus it needs
435 * another constant (e) anyway. Linear fog can now be done with a
436 * single MAD.
437 * linear: fogcoord * -1/(end-start) + end/(end-start)
438 * exp: 2^-(density/ln(2) * fogcoord)
439 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
440 */
441 value[0] = (ctx->Fog.End == ctx->Fog.Start)
442 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
443 value[1] = ctx->Fog.End * -value[0];
444 value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
445 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
446 return;
447
448 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
449 {
450 /* here, state[2] is the light number */
451 /* pre-normalize spot dir */
452 const GLuint ln = (GLuint) state[2];
453 COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
454 value[3] = ctx->Light.Light[ln]._CosCutoff;
455 }
456 return;
457
458 case STATE_LIGHT_POSITION:
459 {
460 const GLuint ln = (GLuint) state[2];
461 COPY_4V(value, ctx->Light.Light[ln]._Position);
462 }
463 return;
464
465 case STATE_LIGHT_POSITION_NORMALIZED:
466 {
467 const GLuint ln = (GLuint) state[2];
468 COPY_4V(value, ctx->Light.Light[ln]._Position);
469 NORMALIZE_3FV( value );
470 }
471 return;
472
473 case STATE_LIGHT_HALF_VECTOR:
474 {
475 const GLuint ln = (GLuint) state[2];
476 GLfloat p[3];
477 /* Compute infinite half angle vector:
478 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
479 * light.EyePosition.w should be 0 for infinite lights.
480 */
481 COPY_3V(p, ctx->Light.Light[ln]._Position);
482 NORMALIZE_3FV(p);
483 ADD_3V(value, p, ctx->_EyeZDir);
484 NORMALIZE_3FV(value);
485 value[3] = 1.0;
486 }
487 return;
488
489 case STATE_PT_SCALE:
490 value[0] = ctx->Pixel.RedScale;
491 value[1] = ctx->Pixel.GreenScale;
492 value[2] = ctx->Pixel.BlueScale;
493 value[3] = ctx->Pixel.AlphaScale;
494 return;
495
496 case STATE_PT_BIAS:
497 value[0] = ctx->Pixel.RedBias;
498 value[1] = ctx->Pixel.GreenBias;
499 value[2] = ctx->Pixel.BlueBias;
500 value[3] = ctx->Pixel.AlphaBias;
501 return;
502
503 case STATE_PCM_SCALE:
504 COPY_4V(value, ctx->Pixel.PostColorMatrixScale);
505 return;
506
507 case STATE_PCM_BIAS:
508 COPY_4V(value, ctx->Pixel.PostColorMatrixBias);
509 return;
510
511 case STATE_SHADOW_AMBIENT:
512 {
513 const int unit = (int) state[2];
514 const struct gl_texture_object *texObj
515 = ctx->Texture.Unit[unit]._Current;
516 if (texObj) {
517 value[0] =
518 value[1] =
519 value[2] =
520 value[3] = texObj->CompareFailValue;
521 }
522 }
523 return;
524
525 case STATE_FB_SIZE:
526 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
527 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
528 value[2] = 0.0F;
529 value[3] = 0.0F;
530 return;
531
532 case STATE_ROT_MATRIX_0:
533 {
534 const int unit = (int) state[2];
535 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
536 value[0] = rotMat22[0];
537 value[1] = rotMat22[2];
538 value[2] = 0.0;
539 value[3] = 0.0;
540 }
541 return;
542
543 case STATE_ROT_MATRIX_1:
544 {
545 const int unit = (int) state[2];
546 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
547 value[0] = rotMat22[1];
548 value[1] = rotMat22[3];
549 value[2] = 0.0;
550 value[3] = 0.0;
551 }
552 return;
553
554 /* XXX: make sure new tokens added here are also handled in the
555 * _mesa_program_state_flags() switch, below.
556 */
557 default:
558 /* Unknown state indexes are silently ignored here.
559 * Drivers may do something special.
560 */
561 return;
562 }
563 return;
564
565 default:
566 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
567 return;
568 }
569 }
570
571
572 /**
573 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
574 * indicate that the given context state may have changed.
575 * The bitmask is used during validation to determine if we need to update
576 * vertex/fragment program parameters (like "state.material.color") when
577 * some GL state has changed.
578 */
579 GLbitfield
580 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
581 {
582 switch (state[0]) {
583 case STATE_MATERIAL:
584 case STATE_LIGHT:
585 case STATE_LIGHTMODEL_AMBIENT:
586 case STATE_LIGHTMODEL_SCENECOLOR:
587 case STATE_LIGHTPROD:
588 return _NEW_LIGHT;
589
590 case STATE_TEXGEN:
591 case STATE_TEXENV_COLOR:
592 return _NEW_TEXTURE;
593
594 case STATE_FOG_COLOR:
595 case STATE_FOG_PARAMS:
596 return _NEW_FOG;
597
598 case STATE_CLIPPLANE:
599 return _NEW_TRANSFORM;
600
601 case STATE_POINT_SIZE:
602 case STATE_POINT_ATTENUATION:
603 return _NEW_POINT;
604
605 case STATE_MODELVIEW_MATRIX:
606 return _NEW_MODELVIEW;
607 case STATE_PROJECTION_MATRIX:
608 return _NEW_PROJECTION;
609 case STATE_MVP_MATRIX:
610 return _NEW_MODELVIEW | _NEW_PROJECTION;
611 case STATE_TEXTURE_MATRIX:
612 return _NEW_TEXTURE_MATRIX;
613 case STATE_PROGRAM_MATRIX:
614 return _NEW_TRACK_MATRIX;
615 case STATE_COLOR_MATRIX:
616 return _NEW_COLOR_MATRIX;
617
618 case STATE_DEPTH_RANGE:
619 return _NEW_VIEWPORT;
620
621 case STATE_FRAGMENT_PROGRAM:
622 case STATE_VERTEX_PROGRAM:
623 return _NEW_PROGRAM;
624
625 case STATE_NORMAL_SCALE:
626 return _NEW_MODELVIEW;
627
628 case STATE_INTERNAL:
629 switch (state[1]) {
630 case STATE_CURRENT_ATTRIB:
631 return _NEW_CURRENT_ATTRIB;
632
633 case STATE_NORMAL_SCALE:
634 return _NEW_MODELVIEW;
635
636 case STATE_TEXRECT_SCALE:
637 case STATE_SHADOW_AMBIENT:
638 case STATE_ROT_MATRIX_0:
639 case STATE_ROT_MATRIX_1:
640 return _NEW_TEXTURE;
641 case STATE_FOG_PARAMS_OPTIMIZED:
642 return _NEW_FOG;
643 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
644 case STATE_LIGHT_POSITION:
645 case STATE_LIGHT_POSITION_NORMALIZED:
646 case STATE_LIGHT_HALF_VECTOR:
647 return _NEW_LIGHT;
648
649 case STATE_PT_SCALE:
650 case STATE_PT_BIAS:
651 case STATE_PCM_SCALE:
652 case STATE_PCM_BIAS:
653 return _NEW_PIXEL;
654
655 case STATE_FB_SIZE:
656 return _NEW_BUFFERS;
657
658 default:
659 /* unknown state indexes are silently ignored and
660 * no flag set, since it is handled by the driver.
661 */
662 return 0;
663 }
664
665 default:
666 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
667 return 0;
668 }
669 }
670
671
672 static void
673 append(char *dst, const char *src)
674 {
675 while (*dst)
676 dst++;
677 while (*src)
678 *dst++ = *src++;
679 *dst = 0;
680 }
681
682
683 /**
684 * Convert token 'k' to a string, append it onto 'dst' string.
685 */
686 static void
687 append_token(char *dst, gl_state_index k)
688 {
689 switch (k) {
690 case STATE_MATERIAL:
691 append(dst, "material");
692 break;
693 case STATE_LIGHT:
694 append(dst, "light");
695 break;
696 case STATE_LIGHTMODEL_AMBIENT:
697 append(dst, "lightmodel.ambient");
698 break;
699 case STATE_LIGHTMODEL_SCENECOLOR:
700 break;
701 case STATE_LIGHTPROD:
702 append(dst, "lightprod");
703 break;
704 case STATE_TEXGEN:
705 append(dst, "texgen");
706 break;
707 case STATE_FOG_COLOR:
708 append(dst, "fog.color");
709 break;
710 case STATE_FOG_PARAMS:
711 append(dst, "fog.params");
712 break;
713 case STATE_CLIPPLANE:
714 append(dst, "clip");
715 break;
716 case STATE_POINT_SIZE:
717 append(dst, "point.size");
718 break;
719 case STATE_POINT_ATTENUATION:
720 append(dst, "point.attenuation");
721 break;
722 case STATE_MODELVIEW_MATRIX:
723 append(dst, "matrix.modelview");
724 break;
725 case STATE_PROJECTION_MATRIX:
726 append(dst, "matrix.projection");
727 break;
728 case STATE_MVP_MATRIX:
729 append(dst, "matrix.mvp");
730 break;
731 case STATE_TEXTURE_MATRIX:
732 append(dst, "matrix.texture");
733 break;
734 case STATE_PROGRAM_MATRIX:
735 append(dst, "matrix.program");
736 break;
737 case STATE_COLOR_MATRIX:
738 append(dst, "matrix.color");
739 break;
740 case STATE_MATRIX_INVERSE:
741 append(dst, ".inverse");
742 break;
743 case STATE_MATRIX_TRANSPOSE:
744 append(dst, ".transpose");
745 break;
746 case STATE_MATRIX_INVTRANS:
747 append(dst, ".invtrans");
748 break;
749 case STATE_AMBIENT:
750 append(dst, ".ambient");
751 break;
752 case STATE_DIFFUSE:
753 append(dst, ".diffuse");
754 break;
755 case STATE_SPECULAR:
756 append(dst, ".specular");
757 break;
758 case STATE_EMISSION:
759 append(dst, ".emission");
760 break;
761 case STATE_SHININESS:
762 append(dst, "lshininess");
763 break;
764 case STATE_HALF_VECTOR:
765 append(dst, ".half");
766 break;
767 case STATE_POSITION:
768 append(dst, ".position");
769 break;
770 case STATE_ATTENUATION:
771 append(dst, ".attenuation");
772 break;
773 case STATE_SPOT_DIRECTION:
774 append(dst, ".spot.direction");
775 break;
776 case STATE_SPOT_CUTOFF:
777 append(dst, ".spot.cutoff");
778 break;
779 case STATE_TEXGEN_EYE_S:
780 append(dst, ".eye.s");
781 break;
782 case STATE_TEXGEN_EYE_T:
783 append(dst, ".eye.t");
784 break;
785 case STATE_TEXGEN_EYE_R:
786 append(dst, ".eye.r");
787 break;
788 case STATE_TEXGEN_EYE_Q:
789 append(dst, ".eye.q");
790 break;
791 case STATE_TEXGEN_OBJECT_S:
792 append(dst, ".object.s");
793 break;
794 case STATE_TEXGEN_OBJECT_T:
795 append(dst, ".object.t");
796 break;
797 case STATE_TEXGEN_OBJECT_R:
798 append(dst, ".object.r");
799 break;
800 case STATE_TEXGEN_OBJECT_Q:
801 append(dst, ".object.q");
802 break;
803 case STATE_TEXENV_COLOR:
804 append(dst, "texenv");
805 break;
806 case STATE_DEPTH_RANGE:
807 append(dst, "depth.range");
808 break;
809 case STATE_VERTEX_PROGRAM:
810 case STATE_FRAGMENT_PROGRAM:
811 break;
812 case STATE_ENV:
813 append(dst, "env");
814 break;
815 case STATE_LOCAL:
816 append(dst, "local");
817 break;
818 /* BEGIN internal state vars */
819 case STATE_INTERNAL:
820 append(dst, ".internal.");
821 break;
822 case STATE_CURRENT_ATTRIB:
823 append(dst, "current");
824 break;
825 case STATE_NORMAL_SCALE:
826 append(dst, "normalScale");
827 break;
828 case STATE_TEXRECT_SCALE:
829 append(dst, "texrectScale");
830 break;
831 case STATE_FOG_PARAMS_OPTIMIZED:
832 append(dst, "fogParamsOptimized");
833 break;
834 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
835 append(dst, "lightSpotDirNormalized");
836 break;
837 case STATE_LIGHT_POSITION:
838 append(dst, "lightPosition");
839 break;
840 case STATE_LIGHT_POSITION_NORMALIZED:
841 append(dst, "light.position.normalized");
842 break;
843 case STATE_LIGHT_HALF_VECTOR:
844 append(dst, "lightHalfVector");
845 break;
846 case STATE_PT_SCALE:
847 append(dst, "PTscale");
848 break;
849 case STATE_PT_BIAS:
850 append(dst, "PTbias");
851 break;
852 case STATE_PCM_SCALE:
853 append(dst, "PCMscale");
854 break;
855 case STATE_PCM_BIAS:
856 append(dst, "PCMbias");
857 break;
858 case STATE_SHADOW_AMBIENT:
859 append(dst, "CompareFailValue");
860 break;
861 case STATE_FB_SIZE:
862 append(dst, "FbSize");
863 break;
864 case STATE_ROT_MATRIX_0:
865 append(dst, "rotMatrixRow0");
866 break;
867 case STATE_ROT_MATRIX_1:
868 append(dst, "rotMatrixRow1");
869 break;
870 default:
871 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
872 append(dst, "driverState");
873 }
874 }
875
876 static void
877 append_face(char *dst, GLint face)
878 {
879 if (face == 0)
880 append(dst, "front.");
881 else
882 append(dst, "back.");
883 }
884
885 static void
886 append_index(char *dst, GLint index)
887 {
888 char s[20];
889 _mesa_sprintf(s, "[%d]", index);
890 append(dst, s);
891 }
892
893 /**
894 * Make a string from the given state vector.
895 * For example, return "state.matrix.texture[2].inverse".
896 * Use _mesa_free() to deallocate the string.
897 */
898 char *
899 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
900 {
901 char str[1000] = "";
902 char tmp[30];
903
904 append(str, "state.");
905 append_token(str, state[0]);
906
907 switch (state[0]) {
908 case STATE_MATERIAL:
909 append_face(str, state[1]);
910 append_token(str, state[2]);
911 break;
912 case STATE_LIGHT:
913 append_index(str, state[1]); /* light number [i]. */
914 append_token(str, state[2]); /* coefficients */
915 break;
916 case STATE_LIGHTMODEL_AMBIENT:
917 append(str, "lightmodel.ambient");
918 break;
919 case STATE_LIGHTMODEL_SCENECOLOR:
920 if (state[1] == 0) {
921 append(str, "lightmodel.front.scenecolor");
922 }
923 else {
924 append(str, "lightmodel.back.scenecolor");
925 }
926 break;
927 case STATE_LIGHTPROD:
928 append_index(str, state[1]); /* light number [i]. */
929 append_face(str, state[2]);
930 append_token(str, state[3]);
931 break;
932 case STATE_TEXGEN:
933 append_index(str, state[1]); /* tex unit [i] */
934 append_token(str, state[2]); /* plane coef */
935 break;
936 case STATE_TEXENV_COLOR:
937 append_index(str, state[1]); /* tex unit [i] */
938 append(str, "color");
939 break;
940 case STATE_CLIPPLANE:
941 append_index(str, state[1]); /* plane [i] */
942 append(str, ".plane");
943 break;
944 case STATE_MODELVIEW_MATRIX:
945 case STATE_PROJECTION_MATRIX:
946 case STATE_MVP_MATRIX:
947 case STATE_TEXTURE_MATRIX:
948 case STATE_PROGRAM_MATRIX:
949 case STATE_COLOR_MATRIX:
950 {
951 /* state[0] = modelview, projection, texture, etc. */
952 /* state[1] = which texture matrix or program matrix */
953 /* state[2] = first row to fetch */
954 /* state[3] = last row to fetch */
955 /* state[4] = transpose, inverse or invtrans */
956 const gl_state_index mat = state[0];
957 const GLuint index = (GLuint) state[1];
958 const GLuint firstRow = (GLuint) state[2];
959 const GLuint lastRow = (GLuint) state[3];
960 const gl_state_index modifier = state[4];
961 if (index ||
962 mat == STATE_TEXTURE_MATRIX ||
963 mat == STATE_PROGRAM_MATRIX)
964 append_index(str, index);
965 if (modifier)
966 append_token(str, modifier);
967 if (firstRow == lastRow)
968 _mesa_sprintf(tmp, ".row[%d]", firstRow);
969 else
970 _mesa_sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
971 append(str, tmp);
972 }
973 break;
974 case STATE_POINT_SIZE:
975 break;
976 case STATE_POINT_ATTENUATION:
977 break;
978 case STATE_FOG_PARAMS:
979 break;
980 case STATE_FOG_COLOR:
981 break;
982 case STATE_DEPTH_RANGE:
983 break;
984 case STATE_FRAGMENT_PROGRAM:
985 case STATE_VERTEX_PROGRAM:
986 /* state[1] = {STATE_ENV, STATE_LOCAL} */
987 /* state[2] = parameter index */
988 append_token(str, state[1]);
989 append_index(str, state[2]);
990 break;
991 case STATE_INTERNAL:
992 append_token(str, state[1]);
993 if (state[1] == STATE_CURRENT_ATTRIB)
994 append_index(str, state[2]);
995 break;
996 default:
997 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
998 break;
999 }
1000
1001 return _mesa_strdup(str);
1002 }
1003
1004
1005 /**
1006 * Loop over all the parameters in a parameter list. If the parameter
1007 * is a GL state reference, look up the current value of that state
1008 * variable and put it into the parameter's Value[4] array.
1009 * This would be called at glBegin time when using a fragment program.
1010 */
1011 void
1012 _mesa_load_state_parameters(GLcontext *ctx,
1013 struct gl_program_parameter_list *paramList)
1014 {
1015 GLuint i;
1016
1017 if (!paramList)
1018 return;
1019
1020 /*assert(ctx->Driver.NeedFlush == 0);*/
1021
1022 for (i = 0; i < paramList->NumParameters; i++) {
1023 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1024 _mesa_fetch_state(ctx,
1025 (gl_state_index *) paramList->Parameters[i].StateIndexes,
1026 paramList->ParameterValues[i]);
1027 }
1028 }
1029 }
1030
1031
1032 /**
1033 * Copy the 16 elements of a matrix into four consecutive program
1034 * registers starting at 'pos'.
1035 */
1036 static void
1037 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
1038 {
1039 GLuint i;
1040 for (i = 0; i < 4; i++) {
1041 registers[pos + i][0] = mat[0 + i];
1042 registers[pos + i][1] = mat[4 + i];
1043 registers[pos + i][2] = mat[8 + i];
1044 registers[pos + i][3] = mat[12 + i];
1045 }
1046 }
1047
1048
1049 /**
1050 * As above, but transpose the matrix.
1051 */
1052 static void
1053 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
1054 const GLfloat mat[16])
1055 {
1056 MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
1057 }
1058
1059
1060 /**
1061 * Load current vertex program's parameter registers with tracked
1062 * matrices (if NV program). This only needs to be done per
1063 * glBegin/glEnd, not per-vertex.
1064 */
1065 void
1066 _mesa_load_tracked_matrices(GLcontext *ctx)
1067 {
1068 GLuint i;
1069
1070 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
1071 /* point 'mat' at source matrix */
1072 GLmatrix *mat;
1073 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
1074 mat = ctx->ModelviewMatrixStack.Top;
1075 }
1076 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
1077 mat = ctx->ProjectionMatrixStack.Top;
1078 }
1079 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
1080 GLuint unit = MIN2(ctx->Texture.CurrentUnit,
1081 Elements(ctx->TextureMatrixStack) - 1);
1082 mat = ctx->TextureMatrixStack[unit].Top;
1083 }
1084 else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
1085 mat = ctx->ColorMatrixStack.Top;
1086 }
1087 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
1088 /* XXX verify the combined matrix is up to date */
1089 mat = &ctx->_ModelProjectMatrix;
1090 }
1091 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
1092 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
1093 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
1094 ASSERT(n < Elements(ctx->ProgramMatrixStack));
1095 mat = ctx->ProgramMatrixStack[n].Top;
1096 }
1097 else {
1098 /* no matrix is tracked, but we leave the register values as-is */
1099 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
1100 continue;
1101 }
1102
1103 /* load the matrix values into sequential registers */
1104 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
1105 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1106 }
1107 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
1108 _math_matrix_analyse(mat); /* update the inverse */
1109 ASSERT(!_math_matrix_is_dirty(mat));
1110 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1111 }
1112 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
1113 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1114 }
1115 else {
1116 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1117 == GL_INVERSE_TRANSPOSE_NV);
1118 _math_matrix_analyse(mat); /* update the inverse */
1119 ASSERT(!_math_matrix_is_dirty(mat));
1120 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1121 }
1122 }
1123 }