539057b43821a135b5db1adf4892c4ad959d78b8
[mesa.git] / src / mesa / shader / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "glheader.h"
33 #include "context.h"
34 #include "hash.h"
35 #include "imports.h"
36 #include "macros.h"
37 #include "mtypes.h"
38 #include "prog_statevars.h"
39 #include "prog_parameter.h"
40 #include "nvvertparse.h"
41
42
43 /**
44 * Use the list of tokens in the state[] array to find global GL state
45 * and return it in <value>. Usually, four values are returned in <value>
46 * but matrix queries may return as many as 16 values.
47 * This function is used for ARB vertex/fragment programs.
48 * The program parser will produce the state[] values.
49 */
50 static void
51 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
52 GLfloat *value)
53 {
54 switch (state[0]) {
55 case STATE_MATERIAL:
56 {
57 /* state[1] is either 0=front or 1=back side */
58 const GLuint face = (GLuint) state[1];
59 const struct gl_material *mat = &ctx->Light.Material;
60 ASSERT(face == 0 || face == 1);
61 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
62 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
63 /* XXX we could get rid of this switch entirely with a little
64 * work in arbprogparse.c's parse_state_single_item().
65 */
66 /* state[2] is the material attribute */
67 switch (state[2]) {
68 case STATE_AMBIENT:
69 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
70 return;
71 case STATE_DIFFUSE:
72 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
73 return;
74 case STATE_SPECULAR:
75 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
76 return;
77 case STATE_EMISSION:
78 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
79 return;
80 case STATE_SHININESS:
81 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
82 value[1] = 0.0F;
83 value[2] = 0.0F;
84 value[3] = 1.0F;
85 return;
86 default:
87 _mesa_problem(ctx, "Invalid material state in fetch_state");
88 return;
89 }
90 }
91 case STATE_LIGHT:
92 {
93 /* state[1] is the light number */
94 const GLuint ln = (GLuint) state[1];
95 /* state[2] is the light attribute */
96 switch (state[2]) {
97 case STATE_AMBIENT:
98 COPY_4V(value, ctx->Light.Light[ln].Ambient);
99 return;
100 case STATE_DIFFUSE:
101 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
102 return;
103 case STATE_SPECULAR:
104 COPY_4V(value, ctx->Light.Light[ln].Specular);
105 return;
106 case STATE_POSITION:
107 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
108 return;
109 case STATE_ATTENUATION:
110 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
111 value[1] = ctx->Light.Light[ln].LinearAttenuation;
112 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
113 value[3] = ctx->Light.Light[ln].SpotExponent;
114 return;
115 case STATE_SPOT_DIRECTION:
116 COPY_3V(value, ctx->Light.Light[ln].EyeDirection);
117 value[3] = ctx->Light.Light[ln]._CosCutoff;
118 return;
119 case STATE_SPOT_CUTOFF:
120 value[0] = ctx->Light.Light[ln].SpotCutoff;
121 return;
122 case STATE_HALF_VECTOR:
123 {
124 static const GLfloat eye_z[] = {0, 0, 1};
125 GLfloat p[3];
126 /* Compute infinite half angle vector:
127 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
128 * light.EyePosition.w should be 0 for infinite lights.
129 */
130 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
131 NORMALIZE_3FV(p);
132 ADD_3V(value, p, eye_z);
133 NORMALIZE_3FV(value);
134 value[3] = 1.0;
135 }
136 return;
137 case STATE_POSITION_NORMALIZED:
138 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
139 NORMALIZE_3FV( value );
140 return;
141 default:
142 _mesa_problem(ctx, "Invalid light state in fetch_state");
143 return;
144 }
145 }
146 case STATE_LIGHTMODEL_AMBIENT:
147 COPY_4V(value, ctx->Light.Model.Ambient);
148 return;
149 case STATE_LIGHTMODEL_SCENECOLOR:
150 if (state[1] == 0) {
151 /* front */
152 GLint i;
153 for (i = 0; i < 3; i++) {
154 value[i] = ctx->Light.Model.Ambient[i]
155 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
156 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
157 }
158 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
159 }
160 else {
161 /* back */
162 GLint i;
163 for (i = 0; i < 3; i++) {
164 value[i] = ctx->Light.Model.Ambient[i]
165 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
166 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
167 }
168 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
169 }
170 return;
171 case STATE_LIGHTPROD:
172 {
173 const GLuint ln = (GLuint) state[1];
174 const GLuint face = (GLuint) state[2];
175 GLint i;
176 ASSERT(face == 0 || face == 1);
177 switch (state[3]) {
178 case STATE_AMBIENT:
179 for (i = 0; i < 3; i++) {
180 value[i] = ctx->Light.Light[ln].Ambient[i] *
181 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
182 }
183 /* [3] = material alpha */
184 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
185 return;
186 case STATE_DIFFUSE:
187 for (i = 0; i < 3; i++) {
188 value[i] = ctx->Light.Light[ln].Diffuse[i] *
189 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
190 }
191 /* [3] = material alpha */
192 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
193 return;
194 case STATE_SPECULAR:
195 for (i = 0; i < 3; i++) {
196 value[i] = ctx->Light.Light[ln].Specular[i] *
197 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
198 }
199 /* [3] = material alpha */
200 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
201 return;
202 default:
203 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
204 return;
205 }
206 }
207 case STATE_TEXGEN:
208 {
209 /* state[1] is the texture unit */
210 const GLuint unit = (GLuint) state[1];
211 /* state[2] is the texgen attribute */
212 switch (state[2]) {
213 case STATE_TEXGEN_EYE_S:
214 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneS);
215 return;
216 case STATE_TEXGEN_EYE_T:
217 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneT);
218 return;
219 case STATE_TEXGEN_EYE_R:
220 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneR);
221 return;
222 case STATE_TEXGEN_EYE_Q:
223 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneQ);
224 return;
225 case STATE_TEXGEN_OBJECT_S:
226 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneS);
227 return;
228 case STATE_TEXGEN_OBJECT_T:
229 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneT);
230 return;
231 case STATE_TEXGEN_OBJECT_R:
232 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneR);
233 return;
234 case STATE_TEXGEN_OBJECT_Q:
235 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneQ);
236 return;
237 default:
238 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
239 return;
240 }
241 }
242 case STATE_TEXENV_COLOR:
243 {
244 /* state[1] is the texture unit */
245 const GLuint unit = (GLuint) state[1];
246 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
247 }
248 return;
249 case STATE_FOG_COLOR:
250 COPY_4V(value, ctx->Fog.Color);
251 return;
252 case STATE_FOG_PARAMS:
253 value[0] = ctx->Fog.Density;
254 value[1] = ctx->Fog.Start;
255 value[2] = ctx->Fog.End;
256 value[3] = (ctx->Fog.End == ctx->Fog.Start)
257 ? 1.0 : 1.0F / (ctx->Fog.End - ctx->Fog.Start);
258 return;
259 case STATE_CLIPPLANE:
260 {
261 const GLuint plane = (GLuint) state[1];
262 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
263 }
264 return;
265 case STATE_POINT_SIZE:
266 value[0] = ctx->Point.Size;
267 value[1] = ctx->Point.MinSize;
268 value[2] = ctx->Point.MaxSize;
269 value[3] = ctx->Point.Threshold;
270 return;
271 case STATE_POINT_ATTENUATION:
272 value[0] = ctx->Point.Params[0];
273 value[1] = ctx->Point.Params[1];
274 value[2] = ctx->Point.Params[2];
275 value[3] = 1.0F;
276 return;
277 case STATE_MODELVIEW_MATRIX:
278 case STATE_PROJECTION_MATRIX:
279 case STATE_MVP_MATRIX:
280 case STATE_TEXTURE_MATRIX:
281 case STATE_PROGRAM_MATRIX:
282 case STATE_COLOR_MATRIX:
283 {
284 /* state[0] = modelview, projection, texture, etc. */
285 /* state[1] = which texture matrix or program matrix */
286 /* state[2] = first row to fetch */
287 /* state[3] = last row to fetch */
288 /* state[4] = transpose, inverse or invtrans */
289 const GLmatrix *matrix;
290 const gl_state_index mat = state[0];
291 const GLuint index = (GLuint) state[1];
292 const GLuint firstRow = (GLuint) state[2];
293 const GLuint lastRow = (GLuint) state[3];
294 const gl_state_index modifier = state[4];
295 const GLfloat *m;
296 GLuint row, i;
297 ASSERT(firstRow >= 0);
298 ASSERT(firstRow < 4);
299 ASSERT(lastRow >= 0);
300 ASSERT(lastRow < 4);
301 if (mat == STATE_MODELVIEW_MATRIX) {
302 matrix = ctx->ModelviewMatrixStack.Top;
303 }
304 else if (mat == STATE_PROJECTION_MATRIX) {
305 matrix = ctx->ProjectionMatrixStack.Top;
306 }
307 else if (mat == STATE_MVP_MATRIX) {
308 matrix = &ctx->_ModelProjectMatrix;
309 }
310 else if (mat == STATE_TEXTURE_MATRIX) {
311 matrix = ctx->TextureMatrixStack[index].Top;
312 }
313 else if (mat == STATE_PROGRAM_MATRIX) {
314 matrix = ctx->ProgramMatrixStack[index].Top;
315 }
316 else if (mat == STATE_COLOR_MATRIX) {
317 matrix = ctx->ColorMatrixStack.Top;
318 }
319 else {
320 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
321 return;
322 }
323 if (modifier == STATE_MATRIX_INVERSE ||
324 modifier == STATE_MATRIX_INVTRANS) {
325 /* Be sure inverse is up to date:
326 */
327 _math_matrix_alloc_inv( (GLmatrix *) matrix );
328 _math_matrix_analyse( (GLmatrix*) matrix );
329 m = matrix->inv;
330 }
331 else {
332 m = matrix->m;
333 }
334 if (modifier == STATE_MATRIX_TRANSPOSE ||
335 modifier == STATE_MATRIX_INVTRANS) {
336 for (i = 0, row = firstRow; row <= lastRow; row++) {
337 value[i++] = m[row * 4 + 0];
338 value[i++] = m[row * 4 + 1];
339 value[i++] = m[row * 4 + 2];
340 value[i++] = m[row * 4 + 3];
341 }
342 }
343 else {
344 for (i = 0, row = firstRow; row <= lastRow; row++) {
345 value[i++] = m[row + 0];
346 value[i++] = m[row + 4];
347 value[i++] = m[row + 8];
348 value[i++] = m[row + 12];
349 }
350 }
351 }
352 return;
353 case STATE_DEPTH_RANGE:
354 value[0] = ctx->Viewport.Near; /* near */
355 value[1] = ctx->Viewport.Far; /* far */
356 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
357 value[3] = 1.0;
358 return;
359 case STATE_FRAGMENT_PROGRAM:
360 {
361 /* state[1] = {STATE_ENV, STATE_LOCAL} */
362 /* state[2] = parameter index */
363 const int idx = (int) state[2];
364 switch (state[1]) {
365 case STATE_ENV:
366 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
367 break;
368 case STATE_LOCAL:
369 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
370 break;
371 default:
372 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
373 return;
374 }
375 }
376 return;
377
378 case STATE_VERTEX_PROGRAM:
379 {
380 /* state[1] = {STATE_ENV, STATE_LOCAL} */
381 /* state[2] = parameter index */
382 const int idx = (int) state[2];
383 switch (state[1]) {
384 case STATE_ENV:
385 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
386 break;
387 case STATE_LOCAL:
388 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
389 break;
390 default:
391 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
392 return;
393 }
394 }
395 return;
396
397 case STATE_NORMAL_SCALE:
398 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
399 return;
400
401 case STATE_INTERNAL:
402 switch (state[1]) {
403 case STATE_NORMAL_SCALE:
404 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
405 return;
406 case STATE_TEXRECT_SCALE:
407 {
408 const int unit = (int) state[2];
409 const struct gl_texture_object *texObj
410 = ctx->Texture.Unit[unit]._Current;
411 if (texObj) {
412 struct gl_texture_image *texImage = texObj->Image[0][0];
413 ASSIGN_4V(value, 1.0 / texImage->Width,
414 1.0 / texImage->Height,
415 0.0, 1.0);
416 }
417 }
418 return;
419 case STATE_FOG_PARAMS_OPTIMIZED:
420 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
421 * might be more expensive than EX2 on some hw, plus it needs
422 * another constant (e) anyway. Linear fog can now be done with a
423 * single MAD.
424 * linear: fogcoord * -1/(end-start) + end/(end-start)
425 * exp: 2^-(density/ln(2) * fogcoord)
426 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
427 */
428 value[0] = (ctx->Fog.End == ctx->Fog.Start)
429 ? 1.0 : -1.0F / (ctx->Fog.End - ctx->Fog.Start);
430 value[1] = ctx->Fog.End * -value[0];
431 value[2] = ctx->Fog.Density * ONE_DIV_LN2;
432 value[3] = ctx->Fog.Density * ONE_DIV_SQRT_LN2;
433 return;
434 case STATE_SPOT_DIR_NORMALIZED: {
435 /* here, state[2] is the light number */
436 /* pre-normalize spot dir */
437 const GLuint ln = (GLuint) state[2];
438 COPY_3V(value, ctx->Light.Light[ln].EyeDirection);
439 NORMALIZE_3FV(value);
440 value[3] = ctx->Light.Light[ln]._CosCutoff;
441 return;
442 }
443 case STATE_PT_SCALE:
444 value[0] = ctx->Pixel.RedScale;
445 value[1] = ctx->Pixel.GreenScale;
446 value[2] = ctx->Pixel.BlueScale;
447 value[3] = ctx->Pixel.AlphaScale;
448 break;
449 case STATE_PT_BIAS:
450 value[0] = ctx->Pixel.RedBias;
451 value[1] = ctx->Pixel.GreenBias;
452 value[2] = ctx->Pixel.BlueBias;
453 value[3] = ctx->Pixel.AlphaBias;
454 break;
455 case STATE_PCM_SCALE:
456 COPY_4V(value, ctx->Pixel.PostColorMatrixScale);
457 break;
458 case STATE_PCM_BIAS:
459 COPY_4V(value, ctx->Pixel.PostColorMatrixBias);
460 break;
461 default:
462 /* unknown state indexes are silently ignored
463 * should be handled by the driver.
464 */
465 return;
466 }
467 return;
468
469 default:
470 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
471 return;
472 }
473 }
474
475
476 /**
477 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
478 * indicate that the given context state may have changed.
479 * The bitmask is used during validation to determine if we need to update
480 * vertex/fragment program parameters (like "state.material.color") when
481 * some GL state has changed.
482 */
483 GLbitfield
484 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
485 {
486 switch (state[0]) {
487 case STATE_MATERIAL:
488 case STATE_LIGHT:
489 case STATE_LIGHTMODEL_AMBIENT:
490 case STATE_LIGHTMODEL_SCENECOLOR:
491 case STATE_LIGHTPROD:
492 return _NEW_LIGHT;
493
494 case STATE_TEXGEN:
495 case STATE_TEXENV_COLOR:
496 return _NEW_TEXTURE;
497
498 case STATE_FOG_COLOR:
499 case STATE_FOG_PARAMS:
500 return _NEW_FOG;
501
502 case STATE_CLIPPLANE:
503 return _NEW_TRANSFORM;
504
505 case STATE_POINT_SIZE:
506 case STATE_POINT_ATTENUATION:
507 return _NEW_POINT;
508
509 case STATE_MODELVIEW_MATRIX:
510 return _NEW_MODELVIEW;
511 case STATE_PROJECTION_MATRIX:
512 return _NEW_PROJECTION;
513 case STATE_MVP_MATRIX:
514 return _NEW_MODELVIEW | _NEW_PROJECTION;
515 case STATE_TEXTURE_MATRIX:
516 return _NEW_TEXTURE_MATRIX;
517 case STATE_PROGRAM_MATRIX:
518 return _NEW_TRACK_MATRIX;
519 case STATE_COLOR_MATRIX:
520 return _NEW_COLOR_MATRIX;
521
522 case STATE_DEPTH_RANGE:
523 return _NEW_VIEWPORT;
524
525 case STATE_FRAGMENT_PROGRAM:
526 case STATE_VERTEX_PROGRAM:
527 return _NEW_PROGRAM;
528
529 case STATE_NORMAL_SCALE:
530 return _NEW_MODELVIEW;
531
532 case STATE_INTERNAL:
533 switch (state[1]) {
534 case STATE_TEXRECT_SCALE:
535 return _NEW_TEXTURE;
536 case STATE_FOG_PARAMS_OPTIMIZED:
537 return _NEW_FOG;
538 default:
539 /* unknown state indexes are silently ignored and
540 * no flag set, since it is handled by the driver.
541 */
542 return 0;
543 }
544
545 default:
546 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
547 return 0;
548 }
549 }
550
551
552 static void
553 append(char *dst, const char *src)
554 {
555 while (*dst)
556 dst++;
557 while (*src)
558 *dst++ = *src++;
559 *dst = 0;
560 }
561
562
563 static void
564 append_token(char *dst, gl_state_index k)
565 {
566 switch (k) {
567 case STATE_MATERIAL:
568 append(dst, "material");
569 break;
570 case STATE_LIGHT:
571 append(dst, "light");
572 break;
573 case STATE_LIGHTMODEL_AMBIENT:
574 append(dst, "lightmodel.ambient");
575 break;
576 case STATE_LIGHTMODEL_SCENECOLOR:
577 break;
578 case STATE_LIGHTPROD:
579 append(dst, "lightprod");
580 break;
581 case STATE_TEXGEN:
582 append(dst, "texgen");
583 break;
584 case STATE_FOG_COLOR:
585 append(dst, "fog.color");
586 break;
587 case STATE_FOG_PARAMS:
588 append(dst, "fog.params");
589 break;
590 case STATE_CLIPPLANE:
591 append(dst, "clip");
592 break;
593 case STATE_POINT_SIZE:
594 append(dst, "point.size");
595 break;
596 case STATE_POINT_ATTENUATION:
597 append(dst, "point.attenuation");
598 break;
599 case STATE_MODELVIEW_MATRIX:
600 append(dst, "matrix.modelview");
601 break;
602 case STATE_PROJECTION_MATRIX:
603 append(dst, "matrix.projection");
604 break;
605 case STATE_MVP_MATRIX:
606 append(dst, "matrix.mvp");
607 break;
608 case STATE_TEXTURE_MATRIX:
609 append(dst, "matrix.texture");
610 break;
611 case STATE_PROGRAM_MATRIX:
612 append(dst, "matrix.program");
613 break;
614 case STATE_COLOR_MATRIX:
615 append(dst, "matrix.color");
616 break;
617 case STATE_MATRIX_INVERSE:
618 append(dst, ".inverse");
619 break;
620 case STATE_MATRIX_TRANSPOSE:
621 append(dst, ".transpose");
622 break;
623 case STATE_MATRIX_INVTRANS:
624 append(dst, ".invtrans");
625 break;
626 case STATE_AMBIENT:
627 append(dst, ".ambient");
628 break;
629 case STATE_DIFFUSE:
630 append(dst, ".diffuse");
631 break;
632 case STATE_SPECULAR:
633 append(dst, ".specular");
634 break;
635 case STATE_EMISSION:
636 append(dst, ".emission");
637 break;
638 case STATE_SHININESS:
639 append(dst, "lshininess");
640 break;
641 case STATE_HALF_VECTOR:
642 append(dst, ".half");
643 break;
644 case STATE_POSITION:
645 append(dst, ".position");
646 break;
647 case STATE_ATTENUATION:
648 append(dst, ".attenuation");
649 break;
650 case STATE_SPOT_DIRECTION:
651 append(dst, ".spot.direction");
652 break;
653 case STATE_SPOT_CUTOFF:
654 append(dst, ".spot.cutoff");
655 break;
656 case STATE_TEXGEN_EYE_S:
657 append(dst, "eye.s");
658 break;
659 case STATE_TEXGEN_EYE_T:
660 append(dst, "eye.t");
661 break;
662 case STATE_TEXGEN_EYE_R:
663 append(dst, "eye.r");
664 break;
665 case STATE_TEXGEN_EYE_Q:
666 append(dst, "eye.q");
667 break;
668 case STATE_TEXGEN_OBJECT_S:
669 append(dst, "object.s");
670 break;
671 case STATE_TEXGEN_OBJECT_T:
672 append(dst, "object.t");
673 break;
674 case STATE_TEXGEN_OBJECT_R:
675 append(dst, "object.r");
676 break;
677 case STATE_TEXGEN_OBJECT_Q:
678 append(dst, "object.q");
679 break;
680 case STATE_TEXENV_COLOR:
681 append(dst, "texenv");
682 break;
683 case STATE_DEPTH_RANGE:
684 append(dst, "depth.range");
685 break;
686 case STATE_VERTEX_PROGRAM:
687 case STATE_FRAGMENT_PROGRAM:
688 break;
689 case STATE_ENV:
690 append(dst, "env");
691 break;
692 case STATE_LOCAL:
693 append(dst, "local");
694 break;
695 case STATE_NORMAL_SCALE:
696 append(dst, "normalScale");
697 break;
698 case STATE_INTERNAL:
699 case STATE_POSITION_NORMALIZED:
700 append(dst, "(internal)");
701 break;
702 case STATE_PT_SCALE:
703 append(dst, "PTscale");
704 break;
705 case STATE_PT_BIAS:
706 append(dst, "PTbias");
707 break;
708 case STATE_PCM_SCALE:
709 append(dst, "PCMscale");
710 break;
711 case STATE_PCM_BIAS:
712 append(dst, "PCMbias");
713 break;
714 default:
715 ;
716 }
717 }
718
719 static void
720 append_face(char *dst, GLint face)
721 {
722 if (face == 0)
723 append(dst, "front.");
724 else
725 append(dst, "back.");
726 }
727
728 static void
729 append_index(char *dst, GLint index)
730 {
731 char s[20];
732 _mesa_sprintf(s, "[%d]", index);
733 append(dst, s);
734 }
735
736 /**
737 * Make a string from the given state vector.
738 * For example, return "state.matrix.texture[2].inverse".
739 * Use _mesa_free() to deallocate the string.
740 */
741 const char *
742 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
743 {
744 char str[1000] = "";
745 char tmp[30];
746
747 append(str, "state.");
748 append_token(str, (gl_state_index) state[0]);
749
750 switch (state[0]) {
751 case STATE_MATERIAL:
752 append_face(str, state[1]);
753 append_token(str, (gl_state_index) state[2]);
754 break;
755 case STATE_LIGHT:
756 append_index(str, state[1]); /* light number [i]. */
757 append_token(str, (gl_state_index) state[2]); /* coefficients */
758 break;
759 case STATE_LIGHTMODEL_AMBIENT:
760 append(str, "lightmodel.ambient");
761 break;
762 case STATE_LIGHTMODEL_SCENECOLOR:
763 if (state[1] == 0) {
764 append(str, "lightmodel.front.scenecolor");
765 }
766 else {
767 append(str, "lightmodel.back.scenecolor");
768 }
769 break;
770 case STATE_LIGHTPROD:
771 append_index(str, state[1]); /* light number [i]. */
772 append_face(str, state[2]);
773 append_token(str, (gl_state_index) state[3]);
774 break;
775 case STATE_TEXGEN:
776 append_index(str, state[1]); /* tex unit [i] */
777 append_token(str, (gl_state_index) state[2]); /* plane coef */
778 break;
779 case STATE_TEXENV_COLOR:
780 append_index(str, state[1]); /* tex unit [i] */
781 append(str, "color");
782 break;
783 case STATE_CLIPPLANE:
784 append_index(str, state[1]); /* plane [i] */
785 append(str, ".plane");
786 break;
787 case STATE_MODELVIEW_MATRIX:
788 case STATE_PROJECTION_MATRIX:
789 case STATE_MVP_MATRIX:
790 case STATE_TEXTURE_MATRIX:
791 case STATE_PROGRAM_MATRIX:
792 case STATE_COLOR_MATRIX:
793 {
794 /* state[0] = modelview, projection, texture, etc. */
795 /* state[1] = which texture matrix or program matrix */
796 /* state[2] = first row to fetch */
797 /* state[3] = last row to fetch */
798 /* state[4] = transpose, inverse or invtrans */
799 const gl_state_index mat = (gl_state_index) state[0];
800 const GLuint index = (GLuint) state[1];
801 const GLuint firstRow = (GLuint) state[2];
802 const GLuint lastRow = (GLuint) state[3];
803 const gl_state_index modifier = (gl_state_index) state[4];
804 if (index ||
805 mat == STATE_TEXTURE_MATRIX ||
806 mat == STATE_PROGRAM_MATRIX)
807 append_index(str, index);
808 if (modifier)
809 append_token(str, modifier);
810 if (firstRow == lastRow)
811 _mesa_sprintf(tmp, ".row[%d]", firstRow);
812 else
813 _mesa_sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
814 append(str, tmp);
815 }
816 break;
817 case STATE_POINT_SIZE:
818 break;
819 case STATE_POINT_ATTENUATION:
820 break;
821 case STATE_FOG_PARAMS:
822 break;
823 case STATE_FOG_COLOR:
824 break;
825 case STATE_DEPTH_RANGE:
826 break;
827 case STATE_FRAGMENT_PROGRAM:
828 case STATE_VERTEX_PROGRAM:
829 /* state[1] = {STATE_ENV, STATE_LOCAL} */
830 /* state[2] = parameter index */
831 append_token(str, (gl_state_index) state[1]);
832 append_index(str, state[2]);
833 break;
834 case STATE_INTERNAL:
835 break;
836 default:
837 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
838 break;
839 }
840
841 return _mesa_strdup(str);
842 }
843
844
845 /**
846 * Loop over all the parameters in a parameter list. If the parameter
847 * is a GL state reference, look up the current value of that state
848 * variable and put it into the parameter's Value[4] array.
849 * This would be called at glBegin time when using a fragment program.
850 */
851 void
852 _mesa_load_state_parameters(GLcontext *ctx,
853 struct gl_program_parameter_list *paramList)
854 {
855 GLuint i;
856
857 if (!paramList)
858 return;
859
860 /*assert(ctx->Driver.NeedFlush == 0);*/
861
862 for (i = 0; i < paramList->NumParameters; i++) {
863 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
864 _mesa_fetch_state(ctx,
865 (gl_state_index *) paramList->Parameters[i].StateIndexes,
866 paramList->ParameterValues[i]);
867 }
868 }
869 }
870
871
872 /**
873 * Copy the 16 elements of a matrix into four consecutive program
874 * registers starting at 'pos'.
875 */
876 static void
877 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
878 {
879 GLuint i;
880 for (i = 0; i < 4; i++) {
881 registers[pos + i][0] = mat[0 + i];
882 registers[pos + i][1] = mat[4 + i];
883 registers[pos + i][2] = mat[8 + i];
884 registers[pos + i][3] = mat[12 + i];
885 }
886 }
887
888
889 /**
890 * As above, but transpose the matrix.
891 */
892 static void
893 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
894 const GLfloat mat[16])
895 {
896 MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
897 }
898
899
900 /**
901 * Load current vertex program's parameter registers with tracked
902 * matrices (if NV program). This only needs to be done per
903 * glBegin/glEnd, not per-vertex.
904 */
905 void
906 _mesa_load_tracked_matrices(GLcontext *ctx)
907 {
908 GLuint i;
909
910 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
911 /* point 'mat' at source matrix */
912 GLmatrix *mat;
913 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
914 mat = ctx->ModelviewMatrixStack.Top;
915 }
916 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
917 mat = ctx->ProjectionMatrixStack.Top;
918 }
919 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
920 mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
921 }
922 else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
923 mat = ctx->ColorMatrixStack.Top;
924 }
925 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
926 /* XXX verify the combined matrix is up to date */
927 mat = &ctx->_ModelProjectMatrix;
928 }
929 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
930 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
931 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
932 ASSERT(n < MAX_PROGRAM_MATRICES);
933 mat = ctx->ProgramMatrixStack[n].Top;
934 }
935 else {
936 /* no matrix is tracked, but we leave the register values as-is */
937 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
938 continue;
939 }
940
941 /* load the matrix values into sequential registers */
942 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
943 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
944 }
945 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
946 _math_matrix_analyse(mat); /* update the inverse */
947 ASSERT(!_math_matrix_is_dirty(mat));
948 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
949 }
950 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
951 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
952 }
953 else {
954 assert(ctx->VertexProgram.TrackMatrixTransform[i]
955 == GL_INVERSE_TRANSPOSE_NV);
956 _math_matrix_analyse(mat); /* update the inverse */
957 ASSERT(!_math_matrix_is_dirty(mat));
958 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
959 }
960 }
961 }