Move _mesa_load_tracked_matrices() from TNL module to prog_statevars.c
[mesa.git] / src / mesa / shader / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "glheader.h"
33 #include "context.h"
34 #include "hash.h"
35 #include "imports.h"
36 #include "macros.h"
37 #include "mtypes.h"
38 #include "prog_statevars.h"
39 #include "prog_parameter.h"
40 #include "nvvertparse.h"
41
42
43 /**
44 * Use the list of tokens in the state[] array to find global GL state
45 * and return it in <value>. Usually, four values are returned in <value>
46 * but matrix queries may return as many as 16 values.
47 * This function is used for ARB vertex/fragment programs.
48 * The program parser will produce the state[] values.
49 */
50 static void
51 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
52 GLfloat *value)
53 {
54 switch (state[0]) {
55 case STATE_MATERIAL:
56 {
57 /* state[1] is either 0=front or 1=back side */
58 const GLuint face = (GLuint) state[1];
59 const struct gl_material *mat = &ctx->Light.Material;
60 ASSERT(face == 0 || face == 1);
61 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
62 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
63 /* XXX we could get rid of this switch entirely with a little
64 * work in arbprogparse.c's parse_state_single_item().
65 */
66 /* state[2] is the material attribute */
67 switch (state[2]) {
68 case STATE_AMBIENT:
69 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
70 return;
71 case STATE_DIFFUSE:
72 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
73 return;
74 case STATE_SPECULAR:
75 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
76 return;
77 case STATE_EMISSION:
78 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
79 return;
80 case STATE_SHININESS:
81 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
82 value[1] = 0.0F;
83 value[2] = 0.0F;
84 value[3] = 1.0F;
85 return;
86 default:
87 _mesa_problem(ctx, "Invalid material state in fetch_state");
88 return;
89 }
90 }
91 case STATE_LIGHT:
92 {
93 /* state[1] is the light number */
94 const GLuint ln = (GLuint) state[1];
95 /* state[2] is the light attribute */
96 switch (state[2]) {
97 case STATE_AMBIENT:
98 COPY_4V(value, ctx->Light.Light[ln].Ambient);
99 return;
100 case STATE_DIFFUSE:
101 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
102 return;
103 case STATE_SPECULAR:
104 COPY_4V(value, ctx->Light.Light[ln].Specular);
105 return;
106 case STATE_POSITION:
107 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
108 return;
109 case STATE_ATTENUATION:
110 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
111 value[1] = ctx->Light.Light[ln].LinearAttenuation;
112 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
113 value[3] = ctx->Light.Light[ln].SpotExponent;
114 return;
115 case STATE_SPOT_DIRECTION:
116 COPY_3V(value, ctx->Light.Light[ln].EyeDirection);
117 value[3] = ctx->Light.Light[ln]._CosCutoff;
118 return;
119 case STATE_SPOT_CUTOFF:
120 value[0] = ctx->Light.Light[ln].SpotCutoff;
121 return;
122 case STATE_HALF_VECTOR:
123 {
124 static const GLfloat eye_z[] = {0, 0, 1};
125 GLfloat p[3];
126 /* Compute infinite half angle vector:
127 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
128 * light.EyePosition.w should be 0 for infinite lights.
129 */
130 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
131 NORMALIZE_3FV(p);
132 ADD_3V(value, p, eye_z);
133 NORMALIZE_3FV(value);
134 value[3] = 1.0;
135 }
136 return;
137 case STATE_POSITION_NORMALIZED:
138 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
139 NORMALIZE_3FV( value );
140 return;
141 default:
142 _mesa_problem(ctx, "Invalid light state in fetch_state");
143 return;
144 }
145 }
146 case STATE_LIGHTMODEL_AMBIENT:
147 COPY_4V(value, ctx->Light.Model.Ambient);
148 return;
149 case STATE_LIGHTMODEL_SCENECOLOR:
150 if (state[1] == 0) {
151 /* front */
152 GLint i;
153 for (i = 0; i < 3; i++) {
154 value[i] = ctx->Light.Model.Ambient[i]
155 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
156 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
157 }
158 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
159 }
160 else {
161 /* back */
162 GLint i;
163 for (i = 0; i < 3; i++) {
164 value[i] = ctx->Light.Model.Ambient[i]
165 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
166 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
167 }
168 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
169 }
170 return;
171 case STATE_LIGHTPROD:
172 {
173 const GLuint ln = (GLuint) state[1];
174 const GLuint face = (GLuint) state[2];
175 GLint i;
176 ASSERT(face == 0 || face == 1);
177 switch (state[3]) {
178 case STATE_AMBIENT:
179 for (i = 0; i < 3; i++) {
180 value[i] = ctx->Light.Light[ln].Ambient[i] *
181 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
182 }
183 /* [3] = material alpha */
184 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
185 return;
186 case STATE_DIFFUSE:
187 for (i = 0; i < 3; i++) {
188 value[i] = ctx->Light.Light[ln].Diffuse[i] *
189 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
190 }
191 /* [3] = material alpha */
192 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
193 return;
194 case STATE_SPECULAR:
195 for (i = 0; i < 3; i++) {
196 value[i] = ctx->Light.Light[ln].Specular[i] *
197 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
198 }
199 /* [3] = material alpha */
200 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
201 return;
202 default:
203 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
204 return;
205 }
206 }
207 case STATE_TEXGEN:
208 {
209 /* state[1] is the texture unit */
210 const GLuint unit = (GLuint) state[1];
211 /* state[2] is the texgen attribute */
212 switch (state[2]) {
213 case STATE_TEXGEN_EYE_S:
214 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneS);
215 return;
216 case STATE_TEXGEN_EYE_T:
217 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneT);
218 return;
219 case STATE_TEXGEN_EYE_R:
220 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneR);
221 return;
222 case STATE_TEXGEN_EYE_Q:
223 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneQ);
224 return;
225 case STATE_TEXGEN_OBJECT_S:
226 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneS);
227 return;
228 case STATE_TEXGEN_OBJECT_T:
229 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneT);
230 return;
231 case STATE_TEXGEN_OBJECT_R:
232 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneR);
233 return;
234 case STATE_TEXGEN_OBJECT_Q:
235 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneQ);
236 return;
237 default:
238 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
239 return;
240 }
241 }
242 case STATE_TEXENV_COLOR:
243 {
244 /* state[1] is the texture unit */
245 const GLuint unit = (GLuint) state[1];
246 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
247 }
248 return;
249 case STATE_FOG_COLOR:
250 COPY_4V(value, ctx->Fog.Color);
251 return;
252 case STATE_FOG_PARAMS:
253 value[0] = ctx->Fog.Density;
254 value[1] = ctx->Fog.Start;
255 value[2] = ctx->Fog.End;
256 value[3] = 1.0F / (ctx->Fog.End - ctx->Fog.Start);
257 return;
258 case STATE_CLIPPLANE:
259 {
260 const GLuint plane = (GLuint) state[1];
261 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
262 }
263 return;
264 case STATE_POINT_SIZE:
265 value[0] = ctx->Point.Size;
266 value[1] = ctx->Point.MinSize;
267 value[2] = ctx->Point.MaxSize;
268 value[3] = ctx->Point.Threshold;
269 return;
270 case STATE_POINT_ATTENUATION:
271 value[0] = ctx->Point.Params[0];
272 value[1] = ctx->Point.Params[1];
273 value[2] = ctx->Point.Params[2];
274 value[3] = 1.0F;
275 return;
276 case STATE_MODELVIEW_MATRIX:
277 case STATE_PROJECTION_MATRIX:
278 case STATE_MVP_MATRIX:
279 case STATE_TEXTURE_MATRIX:
280 case STATE_PROGRAM_MATRIX:
281 {
282 /* state[0] = modelview, projection, texture, etc. */
283 /* state[1] = which texture matrix or program matrix */
284 /* state[2] = first row to fetch */
285 /* state[3] = last row to fetch */
286 /* state[4] = transpose, inverse or invtrans */
287 const GLmatrix *matrix;
288 const gl_state_index mat = state[0];
289 const GLuint index = (GLuint) state[1];
290 const GLuint firstRow = (GLuint) state[2];
291 const GLuint lastRow = (GLuint) state[3];
292 const gl_state_index modifier = state[4];
293 const GLfloat *m;
294 GLuint row, i;
295 ASSERT(firstRow >= 0);
296 ASSERT(firstRow < 4);
297 ASSERT(lastRow >= 0);
298 ASSERT(lastRow < 4);
299 if (mat == STATE_MODELVIEW_MATRIX) {
300 matrix = ctx->ModelviewMatrixStack.Top;
301 }
302 else if (mat == STATE_PROJECTION_MATRIX) {
303 matrix = ctx->ProjectionMatrixStack.Top;
304 }
305 else if (mat == STATE_MVP_MATRIX) {
306 matrix = &ctx->_ModelProjectMatrix;
307 }
308 else if (mat == STATE_TEXTURE_MATRIX) {
309 matrix = ctx->TextureMatrixStack[index].Top;
310 }
311 else if (mat == STATE_PROGRAM_MATRIX) {
312 matrix = ctx->ProgramMatrixStack[index].Top;
313 }
314 else {
315 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
316 return;
317 }
318 if (modifier == STATE_MATRIX_INVERSE ||
319 modifier == STATE_MATRIX_INVTRANS) {
320 /* Be sure inverse is up to date:
321 */
322 _math_matrix_alloc_inv( (GLmatrix *) matrix );
323 _math_matrix_analyse( (GLmatrix*) matrix );
324 m = matrix->inv;
325 }
326 else {
327 m = matrix->m;
328 }
329 if (modifier == STATE_MATRIX_TRANSPOSE ||
330 modifier == STATE_MATRIX_INVTRANS) {
331 for (i = 0, row = firstRow; row <= lastRow; row++) {
332 value[i++] = m[row * 4 + 0];
333 value[i++] = m[row * 4 + 1];
334 value[i++] = m[row * 4 + 2];
335 value[i++] = m[row * 4 + 3];
336 }
337 }
338 else {
339 for (i = 0, row = firstRow; row <= lastRow; row++) {
340 value[i++] = m[row + 0];
341 value[i++] = m[row + 4];
342 value[i++] = m[row + 8];
343 value[i++] = m[row + 12];
344 }
345 }
346 }
347 return;
348 case STATE_DEPTH_RANGE:
349 value[0] = ctx->Viewport.Near; /* near */
350 value[1] = ctx->Viewport.Far; /* far */
351 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
352 value[3] = 0;
353 return;
354 case STATE_FRAGMENT_PROGRAM:
355 {
356 /* state[1] = {STATE_ENV, STATE_LOCAL} */
357 /* state[2] = parameter index */
358 const int idx = (int) state[2];
359 switch (state[1]) {
360 case STATE_ENV:
361 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
362 break;
363 case STATE_LOCAL:
364 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
365 break;
366 default:
367 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
368 return;
369 }
370 }
371 return;
372
373 case STATE_VERTEX_PROGRAM:
374 {
375 /* state[1] = {STATE_ENV, STATE_LOCAL} */
376 /* state[2] = parameter index */
377 const int idx = (int) state[2];
378 switch (state[1]) {
379 case STATE_ENV:
380 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
381 break;
382 case STATE_LOCAL:
383 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
384 break;
385 default:
386 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
387 return;
388 }
389 }
390 return;
391
392 case STATE_NORMAL_SCALE:
393 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
394 return;
395
396 case STATE_INTERNAL:
397 switch (state[1]) {
398 case STATE_NORMAL_SCALE:
399 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
400 return;
401 case STATE_TEXRECT_SCALE:
402 {
403 const int unit = (int) state[2];
404 const struct gl_texture_object *texObj
405 = ctx->Texture.Unit[unit]._Current;
406 if (texObj) {
407 struct gl_texture_image *texImage = texObj->Image[0][0];
408 ASSIGN_4V(value, 1.0 / texImage->Width,
409 1.0 / texImage->Height,
410 0.0, 1.0);
411 }
412 }
413 return;
414 case STATE_FOG_PARAMS_OPTIMIZED:
415 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
416 * might be more expensive than EX2 on some hw, plus it needs
417 * another constant (e) anyway. Linear fog can now be done with a
418 * single MAD.
419 * linear: fogcoord * -1/(end-start) + end/(end-start)
420 * exp: 2^-(density/ln(2) * fogcoord)
421 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
422 */
423 value[0] = -1.0F / (ctx->Fog.End - ctx->Fog.Start);
424 value[1] = ctx->Fog.End / (ctx->Fog.End - ctx->Fog.Start);
425 value[2] = ctx->Fog.Density * ONE_DIV_LN2;
426 value[3] = ctx->Fog.Density * ONE_DIV_SQRT_LN2;
427 return;
428 case STATE_SPOT_DIR_NORMALIZED: {
429 /* here, state[2] is the light number */
430 /* pre-normalize spot dir */
431 const GLuint ln = (GLuint) state[2];
432 COPY_3V(value, ctx->Light.Light[ln].EyeDirection);
433 NORMALIZE_3FV(value);
434 value[3] = ctx->Light.Light[ln]._CosCutoff;
435 return;
436 }
437 default:
438 /* unknown state indexes are silently ignored
439 * should be handled by the driver.
440 */
441 return;
442 }
443 return;
444
445 default:
446 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
447 return;
448 }
449 }
450
451
452 /**
453 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
454 * indicate that the given context state may have changed.
455 * The bitmask is used during validation to determine if we need to update
456 * vertex/fragment program parameters (like "state.material.color") when
457 * some GL state has changed.
458 */
459 GLbitfield
460 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
461 {
462 switch (state[0]) {
463 case STATE_MATERIAL:
464 case STATE_LIGHT:
465 case STATE_LIGHTMODEL_AMBIENT:
466 case STATE_LIGHTMODEL_SCENECOLOR:
467 case STATE_LIGHTPROD:
468 return _NEW_LIGHT;
469
470 case STATE_TEXGEN:
471 case STATE_TEXENV_COLOR:
472 return _NEW_TEXTURE;
473
474 case STATE_FOG_COLOR:
475 case STATE_FOG_PARAMS:
476 return _NEW_FOG;
477
478 case STATE_CLIPPLANE:
479 return _NEW_TRANSFORM;
480
481 case STATE_POINT_SIZE:
482 case STATE_POINT_ATTENUATION:
483 return _NEW_POINT;
484
485 case STATE_MODELVIEW_MATRIX:
486 return _NEW_MODELVIEW;
487 case STATE_PROJECTION_MATRIX:
488 return _NEW_PROJECTION;
489 case STATE_MVP_MATRIX:
490 return _NEW_MODELVIEW | _NEW_PROJECTION;
491 case STATE_TEXTURE_MATRIX:
492 return _NEW_TEXTURE_MATRIX;
493 case STATE_PROGRAM_MATRIX:
494 return _NEW_TRACK_MATRIX;
495
496 case STATE_DEPTH_RANGE:
497 return _NEW_VIEWPORT;
498
499 case STATE_FRAGMENT_PROGRAM:
500 case STATE_VERTEX_PROGRAM:
501 return _NEW_PROGRAM;
502
503 case STATE_NORMAL_SCALE:
504 return _NEW_MODELVIEW;
505
506 case STATE_INTERNAL:
507 switch (state[1]) {
508 case STATE_TEXRECT_SCALE:
509 return _NEW_TEXTURE;
510 case STATE_FOG_PARAMS_OPTIMIZED:
511 return _NEW_FOG;
512 default:
513 /* unknown state indexes are silently ignored and
514 * no flag set, since it is handled by the driver.
515 */
516 return 0;
517 }
518
519 default:
520 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
521 return 0;
522 }
523 }
524
525
526 static void
527 append(char *dst, const char *src)
528 {
529 while (*dst)
530 dst++;
531 while (*src)
532 *dst++ = *src++;
533 *dst = 0;
534 }
535
536
537 static void
538 append_token(char *dst, gl_state_index k)
539 {
540 switch (k) {
541 case STATE_MATERIAL:
542 append(dst, "material");
543 break;
544 case STATE_LIGHT:
545 append(dst, "light");
546 break;
547 case STATE_LIGHTMODEL_AMBIENT:
548 append(dst, "lightmodel.ambient");
549 break;
550 case STATE_LIGHTMODEL_SCENECOLOR:
551 break;
552 case STATE_LIGHTPROD:
553 append(dst, "lightprod");
554 break;
555 case STATE_TEXGEN:
556 append(dst, "texgen");
557 break;
558 case STATE_FOG_COLOR:
559 append(dst, "fog.color");
560 break;
561 case STATE_FOG_PARAMS:
562 append(dst, "fog.params");
563 break;
564 case STATE_CLIPPLANE:
565 append(dst, "clip");
566 break;
567 case STATE_POINT_SIZE:
568 append(dst, "point.size");
569 break;
570 case STATE_POINT_ATTENUATION:
571 append(dst, "point.attenuation");
572 break;
573 case STATE_MODELVIEW_MATRIX:
574 append(dst, "matrix.modelview");
575 break;
576 case STATE_PROJECTION_MATRIX:
577 append(dst, "matrix.projection");
578 break;
579 case STATE_MVP_MATRIX:
580 append(dst, "matrix.mvp");
581 break;
582 case STATE_TEXTURE_MATRIX:
583 append(dst, "matrix.texture");
584 break;
585 case STATE_PROGRAM_MATRIX:
586 append(dst, "matrix.program");
587 break;
588 case STATE_MATRIX_INVERSE:
589 append(dst, ".inverse");
590 break;
591 case STATE_MATRIX_TRANSPOSE:
592 append(dst, ".transpose");
593 break;
594 case STATE_MATRIX_INVTRANS:
595 append(dst, ".invtrans");
596 break;
597 case STATE_AMBIENT:
598 append(dst, ".ambient");
599 break;
600 case STATE_DIFFUSE:
601 append(dst, ".diffuse");
602 break;
603 case STATE_SPECULAR:
604 append(dst, ".specular");
605 break;
606 case STATE_EMISSION:
607 append(dst, ".emission");
608 break;
609 case STATE_SHININESS:
610 append(dst, "lshininess");
611 break;
612 case STATE_HALF_VECTOR:
613 append(dst, ".half");
614 break;
615 case STATE_POSITION:
616 append(dst, ".position");
617 break;
618 case STATE_ATTENUATION:
619 append(dst, ".attenuation");
620 break;
621 case STATE_SPOT_DIRECTION:
622 append(dst, ".spot.direction");
623 break;
624 case STATE_SPOT_CUTOFF:
625 append(dst, ".spot.cutoff");
626 break;
627 case STATE_TEXGEN_EYE_S:
628 append(dst, "eye.s");
629 break;
630 case STATE_TEXGEN_EYE_T:
631 append(dst, "eye.t");
632 break;
633 case STATE_TEXGEN_EYE_R:
634 append(dst, "eye.r");
635 break;
636 case STATE_TEXGEN_EYE_Q:
637 append(dst, "eye.q");
638 break;
639 case STATE_TEXGEN_OBJECT_S:
640 append(dst, "object.s");
641 break;
642 case STATE_TEXGEN_OBJECT_T:
643 append(dst, "object.t");
644 break;
645 case STATE_TEXGEN_OBJECT_R:
646 append(dst, "object.r");
647 break;
648 case STATE_TEXGEN_OBJECT_Q:
649 append(dst, "object.q");
650 break;
651 case STATE_TEXENV_COLOR:
652 append(dst, "texenv");
653 break;
654 case STATE_DEPTH_RANGE:
655 append(dst, "depth.range");
656 break;
657 case STATE_VERTEX_PROGRAM:
658 case STATE_FRAGMENT_PROGRAM:
659 break;
660 case STATE_ENV:
661 append(dst, "env");
662 break;
663 case STATE_LOCAL:
664 append(dst, "local");
665 break;
666 case STATE_NORMAL_SCALE:
667 append(dst, "normalScale");
668 break;
669 case STATE_INTERNAL:
670 case STATE_POSITION_NORMALIZED:
671 append(dst, "(internal)");
672 break;
673 default:
674 ;
675 }
676 }
677
678 static void
679 append_face(char *dst, GLint face)
680 {
681 if (face == 0)
682 append(dst, "front.");
683 else
684 append(dst, "back.");
685 }
686
687 static void
688 append_index(char *dst, GLint index)
689 {
690 char s[20];
691 _mesa_sprintf(s, "[%d]", index);
692 append(dst, s);
693 }
694
695 /**
696 * Make a string from the given state vector.
697 * For example, return "state.matrix.texture[2].inverse".
698 * Use _mesa_free() to deallocate the string.
699 */
700 const char *
701 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
702 {
703 char str[1000] = "";
704 char tmp[30];
705
706 append(str, "state.");
707 append_token(str, (gl_state_index) state[0]);
708
709 switch (state[0]) {
710 case STATE_MATERIAL:
711 append_face(str, state[1]);
712 append_token(str, (gl_state_index) state[2]);
713 break;
714 case STATE_LIGHT:
715 append_index(str, state[1]); /* light number [i]. */
716 append_token(str, (gl_state_index) state[2]); /* coefficients */
717 break;
718 case STATE_LIGHTMODEL_AMBIENT:
719 append(str, "lightmodel.ambient");
720 break;
721 case STATE_LIGHTMODEL_SCENECOLOR:
722 if (state[1] == 0) {
723 append(str, "lightmodel.front.scenecolor");
724 }
725 else {
726 append(str, "lightmodel.back.scenecolor");
727 }
728 break;
729 case STATE_LIGHTPROD:
730 append_index(str, state[1]); /* light number [i]. */
731 append_face(str, state[2]);
732 append_token(str, (gl_state_index) state[3]);
733 break;
734 case STATE_TEXGEN:
735 append_index(str, state[1]); /* tex unit [i] */
736 append_token(str, (gl_state_index) state[2]); /* plane coef */
737 break;
738 case STATE_TEXENV_COLOR:
739 append_index(str, state[1]); /* tex unit [i] */
740 append(str, "color");
741 break;
742 case STATE_CLIPPLANE:
743 append_index(str, state[1]); /* plane [i] */
744 append(str, ".plane");
745 break;
746 case STATE_MODELVIEW_MATRIX:
747 case STATE_PROJECTION_MATRIX:
748 case STATE_MVP_MATRIX:
749 case STATE_TEXTURE_MATRIX:
750 case STATE_PROGRAM_MATRIX:
751 {
752 /* state[0] = modelview, projection, texture, etc. */
753 /* state[1] = which texture matrix or program matrix */
754 /* state[2] = first row to fetch */
755 /* state[3] = last row to fetch */
756 /* state[4] = transpose, inverse or invtrans */
757 const gl_state_index mat = (gl_state_index) state[0];
758 const GLuint index = (GLuint) state[1];
759 const GLuint firstRow = (GLuint) state[2];
760 const GLuint lastRow = (GLuint) state[3];
761 const gl_state_index modifier = (gl_state_index) state[4];
762 if (index ||
763 mat == STATE_TEXTURE_MATRIX ||
764 mat == STATE_PROGRAM_MATRIX)
765 append_index(str, index);
766 if (modifier)
767 append_token(str, modifier);
768 if (firstRow == lastRow)
769 _mesa_sprintf(tmp, ".row[%d]", firstRow);
770 else
771 _mesa_sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
772 append(str, tmp);
773 }
774 break;
775 case STATE_POINT_SIZE:
776 break;
777 case STATE_POINT_ATTENUATION:
778 break;
779 case STATE_FOG_PARAMS:
780 break;
781 case STATE_FOG_COLOR:
782 break;
783 case STATE_DEPTH_RANGE:
784 break;
785 case STATE_FRAGMENT_PROGRAM:
786 case STATE_VERTEX_PROGRAM:
787 /* state[1] = {STATE_ENV, STATE_LOCAL} */
788 /* state[2] = parameter index */
789 append_token(str, (gl_state_index) state[1]);
790 append_index(str, state[2]);
791 break;
792 case STATE_INTERNAL:
793 break;
794 default:
795 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
796 break;
797 }
798
799 return _mesa_strdup(str);
800 }
801
802
803 /**
804 * Loop over all the parameters in a parameter list. If the parameter
805 * is a GL state reference, look up the current value of that state
806 * variable and put it into the parameter's Value[4] array.
807 * This would be called at glBegin time when using a fragment program.
808 */
809 void
810 _mesa_load_state_parameters(GLcontext *ctx,
811 struct gl_program_parameter_list *paramList)
812 {
813 GLuint i;
814
815 if (!paramList)
816 return;
817
818 for (i = 0; i < paramList->NumParameters; i++) {
819 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
820 _mesa_fetch_state(ctx,
821 paramList->Parameters[i].StateIndexes,
822 paramList->ParameterValues[i]);
823 }
824 }
825 }
826
827
828 /**
829 * Copy the 16 elements of a matrix into four consecutive program
830 * registers starting at 'pos'.
831 */
832 static void
833 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
834 {
835 GLuint i;
836 for (i = 0; i < 4; i++) {
837 registers[pos + i][0] = mat[0 + i];
838 registers[pos + i][1] = mat[4 + i];
839 registers[pos + i][2] = mat[8 + i];
840 registers[pos + i][3] = mat[12 + i];
841 }
842 }
843
844
845 /**
846 * As above, but transpose the matrix.
847 */
848 static void
849 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
850 const GLfloat mat[16])
851 {
852 MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
853 }
854
855
856 /**
857 * Load current vertex program's parameter registers with tracked
858 * matrices (if NV program). This only needs to be done per
859 * glBegin/glEnd, not per-vertex.
860 */
861 void
862 _mesa_load_tracked_matrices(GLcontext *ctx)
863 {
864 GLuint i;
865
866 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
867 /* point 'mat' at source matrix */
868 GLmatrix *mat;
869 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
870 mat = ctx->ModelviewMatrixStack.Top;
871 }
872 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
873 mat = ctx->ProjectionMatrixStack.Top;
874 }
875 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
876 mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
877 }
878 else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
879 mat = ctx->ColorMatrixStack.Top;
880 }
881 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
882 /* XXX verify the combined matrix is up to date */
883 mat = &ctx->_ModelProjectMatrix;
884 }
885 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
886 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
887 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
888 ASSERT(n < MAX_PROGRAM_MATRICES);
889 mat = ctx->ProgramMatrixStack[n].Top;
890 }
891 else {
892 /* no matrix is tracked, but we leave the register values as-is */
893 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
894 continue;
895 }
896
897 /* load the matrix values into sequential registers */
898 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
899 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
900 }
901 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
902 _math_matrix_analyse(mat); /* update the inverse */
903 ASSERT(!_math_matrix_is_dirty(mat));
904 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
905 }
906 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
907 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
908 }
909 else {
910 assert(ctx->VertexProgram.TrackMatrixTransform[i]
911 == GL_INVERSE_TRANSPOSE_NV);
912 _math_matrix_analyse(mat); /* update the inverse */
913 ASSERT(!_math_matrix_is_dirty(mat));
914 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
915 }
916 }
917 }