Merge branch '7.8'
[mesa.git] / src / mesa / shader / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/imports.h"
35 #include "main/macros.h"
36 #include "main/mtypes.h"
37 #include "prog_statevars.h"
38 #include "prog_parameter.h"
39
40
41 /**
42 * Use the list of tokens in the state[] array to find global GL state
43 * and return it in <value>. Usually, four values are returned in <value>
44 * but matrix queries may return as many as 16 values.
45 * This function is used for ARB vertex/fragment programs.
46 * The program parser will produce the state[] values.
47 */
48 static void
49 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
50 GLfloat *value)
51 {
52 switch (state[0]) {
53 case STATE_MATERIAL:
54 {
55 /* state[1] is either 0=front or 1=back side */
56 const GLuint face = (GLuint) state[1];
57 const struct gl_material *mat = &ctx->Light.Material;
58 ASSERT(face == 0 || face == 1);
59 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
60 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
61 /* XXX we could get rid of this switch entirely with a little
62 * work in arbprogparse.c's parse_state_single_item().
63 */
64 /* state[2] is the material attribute */
65 switch (state[2]) {
66 case STATE_AMBIENT:
67 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
68 return;
69 case STATE_DIFFUSE:
70 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
71 return;
72 case STATE_SPECULAR:
73 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
74 return;
75 case STATE_EMISSION:
76 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
77 return;
78 case STATE_SHININESS:
79 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
80 value[1] = 0.0F;
81 value[2] = 0.0F;
82 value[3] = 1.0F;
83 return;
84 default:
85 _mesa_problem(ctx, "Invalid material state in fetch_state");
86 return;
87 }
88 }
89 case STATE_LIGHT:
90 {
91 /* state[1] is the light number */
92 const GLuint ln = (GLuint) state[1];
93 /* state[2] is the light attribute */
94 switch (state[2]) {
95 case STATE_AMBIENT:
96 COPY_4V(value, ctx->Light.Light[ln].Ambient);
97 return;
98 case STATE_DIFFUSE:
99 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
100 return;
101 case STATE_SPECULAR:
102 COPY_4V(value, ctx->Light.Light[ln].Specular);
103 return;
104 case STATE_POSITION:
105 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
106 return;
107 case STATE_ATTENUATION:
108 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
109 value[1] = ctx->Light.Light[ln].LinearAttenuation;
110 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
111 value[3] = ctx->Light.Light[ln].SpotExponent;
112 return;
113 case STATE_SPOT_DIRECTION:
114 COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
115 value[3] = ctx->Light.Light[ln]._CosCutoff;
116 return;
117 case STATE_SPOT_CUTOFF:
118 value[0] = ctx->Light.Light[ln].SpotCutoff;
119 return;
120 case STATE_HALF_VECTOR:
121 {
122 static const GLfloat eye_z[] = {0, 0, 1};
123 GLfloat p[3];
124 /* Compute infinite half angle vector:
125 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
126 * light.EyePosition.w should be 0 for infinite lights.
127 */
128 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
129 NORMALIZE_3FV(p);
130 ADD_3V(value, p, eye_z);
131 NORMALIZE_3FV(value);
132 value[3] = 1.0;
133 }
134 return;
135 default:
136 _mesa_problem(ctx, "Invalid light state in fetch_state");
137 return;
138 }
139 }
140 case STATE_LIGHTMODEL_AMBIENT:
141 COPY_4V(value, ctx->Light.Model.Ambient);
142 return;
143 case STATE_LIGHTMODEL_SCENECOLOR:
144 if (state[1] == 0) {
145 /* front */
146 GLint i;
147 for (i = 0; i < 3; i++) {
148 value[i] = ctx->Light.Model.Ambient[i]
149 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
150 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
151 }
152 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
153 }
154 else {
155 /* back */
156 GLint i;
157 for (i = 0; i < 3; i++) {
158 value[i] = ctx->Light.Model.Ambient[i]
159 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
160 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
161 }
162 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
163 }
164 return;
165 case STATE_LIGHTPROD:
166 {
167 const GLuint ln = (GLuint) state[1];
168 const GLuint face = (GLuint) state[2];
169 GLint i;
170 ASSERT(face == 0 || face == 1);
171 switch (state[3]) {
172 case STATE_AMBIENT:
173 for (i = 0; i < 3; i++) {
174 value[i] = ctx->Light.Light[ln].Ambient[i] *
175 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
176 }
177 /* [3] = material alpha */
178 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
179 return;
180 case STATE_DIFFUSE:
181 for (i = 0; i < 3; i++) {
182 value[i] = ctx->Light.Light[ln].Diffuse[i] *
183 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
184 }
185 /* [3] = material alpha */
186 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
187 return;
188 case STATE_SPECULAR:
189 for (i = 0; i < 3; i++) {
190 value[i] = ctx->Light.Light[ln].Specular[i] *
191 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
192 }
193 /* [3] = material alpha */
194 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
195 return;
196 default:
197 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
198 return;
199 }
200 }
201 case STATE_TEXGEN:
202 {
203 /* state[1] is the texture unit */
204 const GLuint unit = (GLuint) state[1];
205 /* state[2] is the texgen attribute */
206 switch (state[2]) {
207 case STATE_TEXGEN_EYE_S:
208 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
209 return;
210 case STATE_TEXGEN_EYE_T:
211 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
212 return;
213 case STATE_TEXGEN_EYE_R:
214 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
215 return;
216 case STATE_TEXGEN_EYE_Q:
217 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
218 return;
219 case STATE_TEXGEN_OBJECT_S:
220 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
221 return;
222 case STATE_TEXGEN_OBJECT_T:
223 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
224 return;
225 case STATE_TEXGEN_OBJECT_R:
226 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
227 return;
228 case STATE_TEXGEN_OBJECT_Q:
229 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
230 return;
231 default:
232 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
233 return;
234 }
235 }
236 case STATE_TEXENV_COLOR:
237 {
238 /* state[1] is the texture unit */
239 const GLuint unit = (GLuint) state[1];
240 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
241 }
242 return;
243 case STATE_FOG_COLOR:
244 COPY_4V(value, ctx->Fog.Color);
245 return;
246 case STATE_FOG_PARAMS:
247 value[0] = ctx->Fog.Density;
248 value[1] = ctx->Fog.Start;
249 value[2] = ctx->Fog.End;
250 value[3] = (ctx->Fog.End == ctx->Fog.Start)
251 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
252 return;
253 case STATE_CLIPPLANE:
254 {
255 const GLuint plane = (GLuint) state[1];
256 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
257 }
258 return;
259 case STATE_POINT_SIZE:
260 value[0] = ctx->Point.Size;
261 value[1] = ctx->Point.MinSize;
262 value[2] = ctx->Point.MaxSize;
263 value[3] = ctx->Point.Threshold;
264 return;
265 case STATE_POINT_ATTENUATION:
266 value[0] = ctx->Point.Params[0];
267 value[1] = ctx->Point.Params[1];
268 value[2] = ctx->Point.Params[2];
269 value[3] = 1.0F;
270 return;
271 case STATE_MODELVIEW_MATRIX:
272 case STATE_PROJECTION_MATRIX:
273 case STATE_MVP_MATRIX:
274 case STATE_TEXTURE_MATRIX:
275 case STATE_PROGRAM_MATRIX:
276 case STATE_COLOR_MATRIX:
277 {
278 /* state[0] = modelview, projection, texture, etc. */
279 /* state[1] = which texture matrix or program matrix */
280 /* state[2] = first row to fetch */
281 /* state[3] = last row to fetch */
282 /* state[4] = transpose, inverse or invtrans */
283 const GLmatrix *matrix;
284 const gl_state_index mat = state[0];
285 const GLuint index = (GLuint) state[1];
286 const GLuint firstRow = (GLuint) state[2];
287 const GLuint lastRow = (GLuint) state[3];
288 const gl_state_index modifier = state[4];
289 const GLfloat *m;
290 GLuint row, i;
291 ASSERT(firstRow >= 0);
292 ASSERT(firstRow < 4);
293 ASSERT(lastRow >= 0);
294 ASSERT(lastRow < 4);
295 if (mat == STATE_MODELVIEW_MATRIX) {
296 matrix = ctx->ModelviewMatrixStack.Top;
297 }
298 else if (mat == STATE_PROJECTION_MATRIX) {
299 matrix = ctx->ProjectionMatrixStack.Top;
300 }
301 else if (mat == STATE_MVP_MATRIX) {
302 matrix = &ctx->_ModelProjectMatrix;
303 }
304 else if (mat == STATE_TEXTURE_MATRIX) {
305 ASSERT(index < Elements(ctx->TextureMatrixStack));
306 matrix = ctx->TextureMatrixStack[index].Top;
307 }
308 else if (mat == STATE_PROGRAM_MATRIX) {
309 ASSERT(index < Elements(ctx->ProgramMatrixStack));
310 matrix = ctx->ProgramMatrixStack[index].Top;
311 }
312 else if (mat == STATE_COLOR_MATRIX) {
313 matrix = ctx->ColorMatrixStack.Top;
314 }
315 else {
316 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
317 return;
318 }
319 if (modifier == STATE_MATRIX_INVERSE ||
320 modifier == STATE_MATRIX_INVTRANS) {
321 /* Be sure inverse is up to date:
322 */
323 _math_matrix_alloc_inv( (GLmatrix *) matrix );
324 _math_matrix_analyse( (GLmatrix*) matrix );
325 m = matrix->inv;
326 }
327 else {
328 m = matrix->m;
329 }
330 if (modifier == STATE_MATRIX_TRANSPOSE ||
331 modifier == STATE_MATRIX_INVTRANS) {
332 for (i = 0, row = firstRow; row <= lastRow; row++) {
333 value[i++] = m[row * 4 + 0];
334 value[i++] = m[row * 4 + 1];
335 value[i++] = m[row * 4 + 2];
336 value[i++] = m[row * 4 + 3];
337 }
338 }
339 else {
340 for (i = 0, row = firstRow; row <= lastRow; row++) {
341 value[i++] = m[row + 0];
342 value[i++] = m[row + 4];
343 value[i++] = m[row + 8];
344 value[i++] = m[row + 12];
345 }
346 }
347 }
348 return;
349 case STATE_DEPTH_RANGE:
350 value[0] = ctx->Viewport.Near; /* near */
351 value[1] = ctx->Viewport.Far; /* far */
352 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
353 value[3] = 1.0;
354 return;
355 case STATE_FRAGMENT_PROGRAM:
356 {
357 /* state[1] = {STATE_ENV, STATE_LOCAL} */
358 /* state[2] = parameter index */
359 const int idx = (int) state[2];
360 switch (state[1]) {
361 case STATE_ENV:
362 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
363 return;
364 case STATE_LOCAL:
365 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
366 return;
367 default:
368 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
369 return;
370 }
371 }
372 return;
373
374 case STATE_VERTEX_PROGRAM:
375 {
376 /* state[1] = {STATE_ENV, STATE_LOCAL} */
377 /* state[2] = parameter index */
378 const int idx = (int) state[2];
379 switch (state[1]) {
380 case STATE_ENV:
381 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
382 return;
383 case STATE_LOCAL:
384 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
385 return;
386 default:
387 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
388 return;
389 }
390 }
391 return;
392
393 case STATE_NORMAL_SCALE:
394 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
395 return;
396
397 case STATE_INTERNAL:
398 switch (state[1]) {
399 case STATE_CURRENT_ATTRIB:
400 {
401 const GLuint idx = (GLuint) state[2];
402 COPY_4V(value, ctx->Current.Attrib[idx]);
403 }
404 return;
405
406 case STATE_NORMAL_SCALE:
407 ASSIGN_4V(value,
408 ctx->_ModelViewInvScale,
409 ctx->_ModelViewInvScale,
410 ctx->_ModelViewInvScale,
411 1);
412 return;
413
414 case STATE_TEXRECT_SCALE:
415 /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
416 * Used to convert unnormalized texcoords to normalized texcoords.
417 */
418 {
419 const int unit = (int) state[2];
420 const struct gl_texture_object *texObj
421 = ctx->Texture.Unit[unit]._Current;
422 if (texObj) {
423 struct gl_texture_image *texImage = texObj->Image[0][0];
424 ASSIGN_4V(value,
425 (GLfloat) (1.0 / texImage->Width),
426 (GLfloat) (1.0 / texImage->Height),
427 0.0f, 1.0f);
428 }
429 }
430 return;
431
432 case STATE_FOG_PARAMS_OPTIMIZED:
433 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
434 * might be more expensive than EX2 on some hw, plus it needs
435 * another constant (e) anyway. Linear fog can now be done with a
436 * single MAD.
437 * linear: fogcoord * -1/(end-start) + end/(end-start)
438 * exp: 2^-(density/ln(2) * fogcoord)
439 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
440 */
441 value[0] = (ctx->Fog.End == ctx->Fog.Start)
442 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
443 value[1] = ctx->Fog.End * -value[0];
444 value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
445 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
446 return;
447
448 case STATE_POINT_SIZE_CLAMPED:
449 {
450 /* this includes implementation dependent limits, to avoid
451 * another potentially necessary clamp.
452 * Note: for sprites, point smooth (point AA) is ignored
453 * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
454 * expect drivers will want to say their minimum for AA size is 0.0
455 * but for non-AA it's 1.0 (because normal points with size below 1.0
456 * need to get rounded up to 1.0, hence never disappear). GL does
457 * not specify max clamp size for sprites, other than it needs to be
458 * at least as large as max AA size, hence use non-AA size there.
459 */
460 GLfloat minImplSize;
461 GLfloat maxImplSize;
462 if (ctx->Point.PointSprite) {
463 minImplSize = ctx->Const.MinPointSizeAA;
464 maxImplSize = ctx->Const.MaxPointSize;
465 }
466 else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
467 minImplSize = ctx->Const.MinPointSizeAA;
468 maxImplSize = ctx->Const.MaxPointSizeAA;
469 }
470 else {
471 minImplSize = ctx->Const.MinPointSize;
472 maxImplSize = ctx->Const.MaxPointSize;
473 }
474 value[0] = ctx->Point.Size;
475 value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
476 value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
477 value[3] = ctx->Point.Threshold;
478 }
479 return;
480 case STATE_POINT_SIZE_IMPL_CLAMP:
481 {
482 /* for implementation clamp only in vs */
483 GLfloat minImplSize;
484 GLfloat maxImplSize;
485 if (ctx->Point.PointSprite) {
486 minImplSize = ctx->Const.MinPointSizeAA;
487 maxImplSize = ctx->Const.MaxPointSize;
488 }
489 else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
490 minImplSize = ctx->Const.MinPointSizeAA;
491 maxImplSize = ctx->Const.MaxPointSizeAA;
492 }
493 else {
494 minImplSize = ctx->Const.MinPointSize;
495 maxImplSize = ctx->Const.MaxPointSize;
496 }
497 value[0] = ctx->Point.Size;
498 value[1] = minImplSize;
499 value[2] = maxImplSize;
500 value[3] = ctx->Point.Threshold;
501 }
502 return;
503 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
504 {
505 /* here, state[2] is the light number */
506 /* pre-normalize spot dir */
507 const GLuint ln = (GLuint) state[2];
508 COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
509 value[3] = ctx->Light.Light[ln]._CosCutoff;
510 }
511 return;
512
513 case STATE_LIGHT_POSITION:
514 {
515 const GLuint ln = (GLuint) state[2];
516 COPY_4V(value, ctx->Light.Light[ln]._Position);
517 }
518 return;
519
520 case STATE_LIGHT_POSITION_NORMALIZED:
521 {
522 const GLuint ln = (GLuint) state[2];
523 COPY_4V(value, ctx->Light.Light[ln]._Position);
524 NORMALIZE_3FV( value );
525 }
526 return;
527
528 case STATE_LIGHT_HALF_VECTOR:
529 {
530 const GLuint ln = (GLuint) state[2];
531 GLfloat p[3];
532 /* Compute infinite half angle vector:
533 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
534 * light.EyePosition.w should be 0 for infinite lights.
535 */
536 COPY_3V(p, ctx->Light.Light[ln]._Position);
537 NORMALIZE_3FV(p);
538 ADD_3V(value, p, ctx->_EyeZDir);
539 NORMALIZE_3FV(value);
540 value[3] = 1.0;
541 }
542 return;
543
544 case STATE_PT_SCALE:
545 value[0] = ctx->Pixel.RedScale;
546 value[1] = ctx->Pixel.GreenScale;
547 value[2] = ctx->Pixel.BlueScale;
548 value[3] = ctx->Pixel.AlphaScale;
549 return;
550
551 case STATE_PT_BIAS:
552 value[0] = ctx->Pixel.RedBias;
553 value[1] = ctx->Pixel.GreenBias;
554 value[2] = ctx->Pixel.BlueBias;
555 value[3] = ctx->Pixel.AlphaBias;
556 return;
557
558 case STATE_PCM_SCALE:
559 COPY_4V(value, ctx->Pixel.PostColorMatrixScale);
560 return;
561
562 case STATE_PCM_BIAS:
563 COPY_4V(value, ctx->Pixel.PostColorMatrixBias);
564 return;
565
566 case STATE_SHADOW_AMBIENT:
567 {
568 const int unit = (int) state[2];
569 const struct gl_texture_object *texObj
570 = ctx->Texture.Unit[unit]._Current;
571 if (texObj) {
572 value[0] =
573 value[1] =
574 value[2] =
575 value[3] = texObj->CompareFailValue;
576 }
577 }
578 return;
579
580 case STATE_FB_SIZE:
581 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
582 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
583 value[2] = 0.0F;
584 value[3] = 0.0F;
585 return;
586
587 case STATE_ROT_MATRIX_0:
588 {
589 const int unit = (int) state[2];
590 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
591 value[0] = rotMat22[0];
592 value[1] = rotMat22[2];
593 value[2] = 0.0;
594 value[3] = 0.0;
595 }
596 return;
597
598 case STATE_ROT_MATRIX_1:
599 {
600 const int unit = (int) state[2];
601 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
602 value[0] = rotMat22[1];
603 value[1] = rotMat22[3];
604 value[2] = 0.0;
605 value[3] = 0.0;
606 }
607 return;
608
609 /* XXX: make sure new tokens added here are also handled in the
610 * _mesa_program_state_flags() switch, below.
611 */
612 default:
613 /* Unknown state indexes are silently ignored here.
614 * Drivers may do something special.
615 */
616 return;
617 }
618 return;
619
620 default:
621 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
622 return;
623 }
624 }
625
626
627 /**
628 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
629 * indicate that the given context state may have changed.
630 * The bitmask is used during validation to determine if we need to update
631 * vertex/fragment program parameters (like "state.material.color") when
632 * some GL state has changed.
633 */
634 GLbitfield
635 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
636 {
637 switch (state[0]) {
638 case STATE_MATERIAL:
639 case STATE_LIGHT:
640 case STATE_LIGHTMODEL_AMBIENT:
641 case STATE_LIGHTMODEL_SCENECOLOR:
642 case STATE_LIGHTPROD:
643 return _NEW_LIGHT;
644
645 case STATE_TEXGEN:
646 case STATE_TEXENV_COLOR:
647 return _NEW_TEXTURE;
648
649 case STATE_FOG_COLOR:
650 case STATE_FOG_PARAMS:
651 return _NEW_FOG;
652
653 case STATE_CLIPPLANE:
654 return _NEW_TRANSFORM;
655
656 case STATE_POINT_SIZE:
657 case STATE_POINT_ATTENUATION:
658 return _NEW_POINT;
659
660 case STATE_MODELVIEW_MATRIX:
661 return _NEW_MODELVIEW;
662 case STATE_PROJECTION_MATRIX:
663 return _NEW_PROJECTION;
664 case STATE_MVP_MATRIX:
665 return _NEW_MODELVIEW | _NEW_PROJECTION;
666 case STATE_TEXTURE_MATRIX:
667 return _NEW_TEXTURE_MATRIX;
668 case STATE_PROGRAM_MATRIX:
669 return _NEW_TRACK_MATRIX;
670 case STATE_COLOR_MATRIX:
671 return _NEW_COLOR_MATRIX;
672
673 case STATE_DEPTH_RANGE:
674 return _NEW_VIEWPORT;
675
676 case STATE_FRAGMENT_PROGRAM:
677 case STATE_VERTEX_PROGRAM:
678 return _NEW_PROGRAM;
679
680 case STATE_NORMAL_SCALE:
681 return _NEW_MODELVIEW;
682
683 case STATE_INTERNAL:
684 switch (state[1]) {
685 case STATE_CURRENT_ATTRIB:
686 return _NEW_CURRENT_ATTRIB;
687
688 case STATE_NORMAL_SCALE:
689 return _NEW_MODELVIEW;
690
691 case STATE_TEXRECT_SCALE:
692 case STATE_SHADOW_AMBIENT:
693 case STATE_ROT_MATRIX_0:
694 case STATE_ROT_MATRIX_1:
695 return _NEW_TEXTURE;
696 case STATE_FOG_PARAMS_OPTIMIZED:
697 return _NEW_FOG;
698 case STATE_POINT_SIZE_CLAMPED:
699 case STATE_POINT_SIZE_IMPL_CLAMP:
700 return _NEW_POINT | _NEW_MULTISAMPLE;
701 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
702 case STATE_LIGHT_POSITION:
703 case STATE_LIGHT_POSITION_NORMALIZED:
704 case STATE_LIGHT_HALF_VECTOR:
705 return _NEW_LIGHT;
706
707 case STATE_PT_SCALE:
708 case STATE_PT_BIAS:
709 case STATE_PCM_SCALE:
710 case STATE_PCM_BIAS:
711 return _NEW_PIXEL;
712
713 case STATE_FB_SIZE:
714 return _NEW_BUFFERS;
715
716 default:
717 /* unknown state indexes are silently ignored and
718 * no flag set, since it is handled by the driver.
719 */
720 return 0;
721 }
722
723 default:
724 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
725 return 0;
726 }
727 }
728
729
730 static void
731 append(char *dst, const char *src)
732 {
733 while (*dst)
734 dst++;
735 while (*src)
736 *dst++ = *src++;
737 *dst = 0;
738 }
739
740
741 /**
742 * Convert token 'k' to a string, append it onto 'dst' string.
743 */
744 static void
745 append_token(char *dst, gl_state_index k)
746 {
747 switch (k) {
748 case STATE_MATERIAL:
749 append(dst, "material");
750 break;
751 case STATE_LIGHT:
752 append(dst, "light");
753 break;
754 case STATE_LIGHTMODEL_AMBIENT:
755 append(dst, "lightmodel.ambient");
756 break;
757 case STATE_LIGHTMODEL_SCENECOLOR:
758 break;
759 case STATE_LIGHTPROD:
760 append(dst, "lightprod");
761 break;
762 case STATE_TEXGEN:
763 append(dst, "texgen");
764 break;
765 case STATE_FOG_COLOR:
766 append(dst, "fog.color");
767 break;
768 case STATE_FOG_PARAMS:
769 append(dst, "fog.params");
770 break;
771 case STATE_CLIPPLANE:
772 append(dst, "clip");
773 break;
774 case STATE_POINT_SIZE:
775 append(dst, "point.size");
776 break;
777 case STATE_POINT_ATTENUATION:
778 append(dst, "point.attenuation");
779 break;
780 case STATE_MODELVIEW_MATRIX:
781 append(dst, "matrix.modelview");
782 break;
783 case STATE_PROJECTION_MATRIX:
784 append(dst, "matrix.projection");
785 break;
786 case STATE_MVP_MATRIX:
787 append(dst, "matrix.mvp");
788 break;
789 case STATE_TEXTURE_MATRIX:
790 append(dst, "matrix.texture");
791 break;
792 case STATE_PROGRAM_MATRIX:
793 append(dst, "matrix.program");
794 break;
795 case STATE_COLOR_MATRIX:
796 append(dst, "matrix.color");
797 break;
798 case STATE_MATRIX_INVERSE:
799 append(dst, ".inverse");
800 break;
801 case STATE_MATRIX_TRANSPOSE:
802 append(dst, ".transpose");
803 break;
804 case STATE_MATRIX_INVTRANS:
805 append(dst, ".invtrans");
806 break;
807 case STATE_AMBIENT:
808 append(dst, ".ambient");
809 break;
810 case STATE_DIFFUSE:
811 append(dst, ".diffuse");
812 break;
813 case STATE_SPECULAR:
814 append(dst, ".specular");
815 break;
816 case STATE_EMISSION:
817 append(dst, ".emission");
818 break;
819 case STATE_SHININESS:
820 append(dst, "lshininess");
821 break;
822 case STATE_HALF_VECTOR:
823 append(dst, ".half");
824 break;
825 case STATE_POSITION:
826 append(dst, ".position");
827 break;
828 case STATE_ATTENUATION:
829 append(dst, ".attenuation");
830 break;
831 case STATE_SPOT_DIRECTION:
832 append(dst, ".spot.direction");
833 break;
834 case STATE_SPOT_CUTOFF:
835 append(dst, ".spot.cutoff");
836 break;
837 case STATE_TEXGEN_EYE_S:
838 append(dst, ".eye.s");
839 break;
840 case STATE_TEXGEN_EYE_T:
841 append(dst, ".eye.t");
842 break;
843 case STATE_TEXGEN_EYE_R:
844 append(dst, ".eye.r");
845 break;
846 case STATE_TEXGEN_EYE_Q:
847 append(dst, ".eye.q");
848 break;
849 case STATE_TEXGEN_OBJECT_S:
850 append(dst, ".object.s");
851 break;
852 case STATE_TEXGEN_OBJECT_T:
853 append(dst, ".object.t");
854 break;
855 case STATE_TEXGEN_OBJECT_R:
856 append(dst, ".object.r");
857 break;
858 case STATE_TEXGEN_OBJECT_Q:
859 append(dst, ".object.q");
860 break;
861 case STATE_TEXENV_COLOR:
862 append(dst, "texenv");
863 break;
864 case STATE_DEPTH_RANGE:
865 append(dst, "depth.range");
866 break;
867 case STATE_VERTEX_PROGRAM:
868 case STATE_FRAGMENT_PROGRAM:
869 break;
870 case STATE_ENV:
871 append(dst, "env");
872 break;
873 case STATE_LOCAL:
874 append(dst, "local");
875 break;
876 /* BEGIN internal state vars */
877 case STATE_INTERNAL:
878 append(dst, ".internal.");
879 break;
880 case STATE_CURRENT_ATTRIB:
881 append(dst, "current");
882 break;
883 case STATE_NORMAL_SCALE:
884 append(dst, "normalScale");
885 break;
886 case STATE_TEXRECT_SCALE:
887 append(dst, "texrectScale");
888 break;
889 case STATE_FOG_PARAMS_OPTIMIZED:
890 append(dst, "fogParamsOptimized");
891 break;
892 case STATE_POINT_SIZE_CLAMPED:
893 append(dst, "pointSizeClamped");
894 break;
895 case STATE_POINT_SIZE_IMPL_CLAMP:
896 append(dst, "pointSizeImplClamp");
897 break;
898 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
899 append(dst, "lightSpotDirNormalized");
900 break;
901 case STATE_LIGHT_POSITION:
902 append(dst, "lightPosition");
903 break;
904 case STATE_LIGHT_POSITION_NORMALIZED:
905 append(dst, "light.position.normalized");
906 break;
907 case STATE_LIGHT_HALF_VECTOR:
908 append(dst, "lightHalfVector");
909 break;
910 case STATE_PT_SCALE:
911 append(dst, "PTscale");
912 break;
913 case STATE_PT_BIAS:
914 append(dst, "PTbias");
915 break;
916 case STATE_PCM_SCALE:
917 append(dst, "PCMscale");
918 break;
919 case STATE_PCM_BIAS:
920 append(dst, "PCMbias");
921 break;
922 case STATE_SHADOW_AMBIENT:
923 append(dst, "CompareFailValue");
924 break;
925 case STATE_FB_SIZE:
926 append(dst, "FbSize");
927 break;
928 case STATE_ROT_MATRIX_0:
929 append(dst, "rotMatrixRow0");
930 break;
931 case STATE_ROT_MATRIX_1:
932 append(dst, "rotMatrixRow1");
933 break;
934 default:
935 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
936 append(dst, "driverState");
937 }
938 }
939
940 static void
941 append_face(char *dst, GLint face)
942 {
943 if (face == 0)
944 append(dst, "front.");
945 else
946 append(dst, "back.");
947 }
948
949 static void
950 append_index(char *dst, GLint index)
951 {
952 char s[20];
953 sprintf(s, "[%d]", index);
954 append(dst, s);
955 }
956
957 /**
958 * Make a string from the given state vector.
959 * For example, return "state.matrix.texture[2].inverse".
960 * Use free() to deallocate the string.
961 */
962 char *
963 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
964 {
965 char str[1000] = "";
966 char tmp[30];
967
968 append(str, "state.");
969 append_token(str, state[0]);
970
971 switch (state[0]) {
972 case STATE_MATERIAL:
973 append_face(str, state[1]);
974 append_token(str, state[2]);
975 break;
976 case STATE_LIGHT:
977 append_index(str, state[1]); /* light number [i]. */
978 append_token(str, state[2]); /* coefficients */
979 break;
980 case STATE_LIGHTMODEL_AMBIENT:
981 append(str, "lightmodel.ambient");
982 break;
983 case STATE_LIGHTMODEL_SCENECOLOR:
984 if (state[1] == 0) {
985 append(str, "lightmodel.front.scenecolor");
986 }
987 else {
988 append(str, "lightmodel.back.scenecolor");
989 }
990 break;
991 case STATE_LIGHTPROD:
992 append_index(str, state[1]); /* light number [i]. */
993 append_face(str, state[2]);
994 append_token(str, state[3]);
995 break;
996 case STATE_TEXGEN:
997 append_index(str, state[1]); /* tex unit [i] */
998 append_token(str, state[2]); /* plane coef */
999 break;
1000 case STATE_TEXENV_COLOR:
1001 append_index(str, state[1]); /* tex unit [i] */
1002 append(str, "color");
1003 break;
1004 case STATE_CLIPPLANE:
1005 append_index(str, state[1]); /* plane [i] */
1006 append(str, ".plane");
1007 break;
1008 case STATE_MODELVIEW_MATRIX:
1009 case STATE_PROJECTION_MATRIX:
1010 case STATE_MVP_MATRIX:
1011 case STATE_TEXTURE_MATRIX:
1012 case STATE_PROGRAM_MATRIX:
1013 case STATE_COLOR_MATRIX:
1014 {
1015 /* state[0] = modelview, projection, texture, etc. */
1016 /* state[1] = which texture matrix or program matrix */
1017 /* state[2] = first row to fetch */
1018 /* state[3] = last row to fetch */
1019 /* state[4] = transpose, inverse or invtrans */
1020 const gl_state_index mat = state[0];
1021 const GLuint index = (GLuint) state[1];
1022 const GLuint firstRow = (GLuint) state[2];
1023 const GLuint lastRow = (GLuint) state[3];
1024 const gl_state_index modifier = state[4];
1025 if (index ||
1026 mat == STATE_TEXTURE_MATRIX ||
1027 mat == STATE_PROGRAM_MATRIX)
1028 append_index(str, index);
1029 if (modifier)
1030 append_token(str, modifier);
1031 if (firstRow == lastRow)
1032 sprintf(tmp, ".row[%d]", firstRow);
1033 else
1034 sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
1035 append(str, tmp);
1036 }
1037 break;
1038 case STATE_POINT_SIZE:
1039 break;
1040 case STATE_POINT_ATTENUATION:
1041 break;
1042 case STATE_FOG_PARAMS:
1043 break;
1044 case STATE_FOG_COLOR:
1045 break;
1046 case STATE_DEPTH_RANGE:
1047 break;
1048 case STATE_FRAGMENT_PROGRAM:
1049 case STATE_VERTEX_PROGRAM:
1050 /* state[1] = {STATE_ENV, STATE_LOCAL} */
1051 /* state[2] = parameter index */
1052 append_token(str, state[1]);
1053 append_index(str, state[2]);
1054 break;
1055 case STATE_INTERNAL:
1056 append_token(str, state[1]);
1057 if (state[1] == STATE_CURRENT_ATTRIB)
1058 append_index(str, state[2]);
1059 break;
1060 default:
1061 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
1062 break;
1063 }
1064
1065 return _mesa_strdup(str);
1066 }
1067
1068
1069 /**
1070 * Loop over all the parameters in a parameter list. If the parameter
1071 * is a GL state reference, look up the current value of that state
1072 * variable and put it into the parameter's Value[4] array.
1073 * This would be called at glBegin time when using a fragment program.
1074 */
1075 void
1076 _mesa_load_state_parameters(GLcontext *ctx,
1077 struct gl_program_parameter_list *paramList)
1078 {
1079 GLuint i;
1080
1081 if (!paramList)
1082 return;
1083
1084 /*assert(ctx->Driver.NeedFlush == 0);*/
1085
1086 for (i = 0; i < paramList->NumParameters; i++) {
1087 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1088 _mesa_fetch_state(ctx,
1089 (gl_state_index *) paramList->Parameters[i].StateIndexes,
1090 paramList->ParameterValues[i]);
1091 }
1092 }
1093 }
1094
1095
1096 /**
1097 * Copy the 16 elements of a matrix into four consecutive program
1098 * registers starting at 'pos'.
1099 */
1100 static void
1101 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
1102 {
1103 GLuint i;
1104 for (i = 0; i < 4; i++) {
1105 registers[pos + i][0] = mat[0 + i];
1106 registers[pos + i][1] = mat[4 + i];
1107 registers[pos + i][2] = mat[8 + i];
1108 registers[pos + i][3] = mat[12 + i];
1109 }
1110 }
1111
1112
1113 /**
1114 * As above, but transpose the matrix.
1115 */
1116 static void
1117 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
1118 const GLfloat mat[16])
1119 {
1120 memcpy(registers[pos], mat, 16 * sizeof(GLfloat));
1121 }
1122
1123
1124 /**
1125 * Load current vertex program's parameter registers with tracked
1126 * matrices (if NV program). This only needs to be done per
1127 * glBegin/glEnd, not per-vertex.
1128 */
1129 void
1130 _mesa_load_tracked_matrices(GLcontext *ctx)
1131 {
1132 GLuint i;
1133
1134 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
1135 /* point 'mat' at source matrix */
1136 GLmatrix *mat;
1137 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
1138 mat = ctx->ModelviewMatrixStack.Top;
1139 }
1140 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
1141 mat = ctx->ProjectionMatrixStack.Top;
1142 }
1143 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
1144 GLuint unit = MIN2(ctx->Texture.CurrentUnit,
1145 Elements(ctx->TextureMatrixStack) - 1);
1146 mat = ctx->TextureMatrixStack[unit].Top;
1147 }
1148 else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
1149 mat = ctx->ColorMatrixStack.Top;
1150 }
1151 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
1152 /* XXX verify the combined matrix is up to date */
1153 mat = &ctx->_ModelProjectMatrix;
1154 }
1155 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
1156 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
1157 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
1158 ASSERT(n < Elements(ctx->ProgramMatrixStack));
1159 mat = ctx->ProgramMatrixStack[n].Top;
1160 }
1161 else {
1162 /* no matrix is tracked, but we leave the register values as-is */
1163 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
1164 continue;
1165 }
1166
1167 /* load the matrix values into sequential registers */
1168 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
1169 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1170 }
1171 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
1172 _math_matrix_analyse(mat); /* update the inverse */
1173 ASSERT(!_math_matrix_is_dirty(mat));
1174 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1175 }
1176 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
1177 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1178 }
1179 else {
1180 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1181 == GL_INVERSE_TRANSPOSE_NV);
1182 _math_matrix_analyse(mat); /* update the inverse */
1183 ASSERT(!_math_matrix_is_dirty(mat));
1184 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1185 }
1186 }
1187 }