slang: Use _mesa_snprintf() wrapper.
[mesa.git] / src / mesa / shader / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/hash.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/mtypes.h"
38 #include "prog_statevars.h"
39 #include "prog_parameter.h"
40
41
42 /**
43 * Use the list of tokens in the state[] array to find global GL state
44 * and return it in <value>. Usually, four values are returned in <value>
45 * but matrix queries may return as many as 16 values.
46 * This function is used for ARB vertex/fragment programs.
47 * The program parser will produce the state[] values.
48 */
49 static void
50 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
51 GLfloat *value)
52 {
53 switch (state[0]) {
54 case STATE_MATERIAL:
55 {
56 /* state[1] is either 0=front or 1=back side */
57 const GLuint face = (GLuint) state[1];
58 const struct gl_material *mat = &ctx->Light.Material;
59 ASSERT(face == 0 || face == 1);
60 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
61 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
62 /* XXX we could get rid of this switch entirely with a little
63 * work in arbprogparse.c's parse_state_single_item().
64 */
65 /* state[2] is the material attribute */
66 switch (state[2]) {
67 case STATE_AMBIENT:
68 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
69 return;
70 case STATE_DIFFUSE:
71 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
72 return;
73 case STATE_SPECULAR:
74 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
75 return;
76 case STATE_EMISSION:
77 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
78 return;
79 case STATE_SHININESS:
80 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
81 value[1] = 0.0F;
82 value[2] = 0.0F;
83 value[3] = 1.0F;
84 return;
85 default:
86 _mesa_problem(ctx, "Invalid material state in fetch_state");
87 return;
88 }
89 }
90 case STATE_LIGHT:
91 {
92 /* state[1] is the light number */
93 const GLuint ln = (GLuint) state[1];
94 /* state[2] is the light attribute */
95 switch (state[2]) {
96 case STATE_AMBIENT:
97 COPY_4V(value, ctx->Light.Light[ln].Ambient);
98 return;
99 case STATE_DIFFUSE:
100 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
101 return;
102 case STATE_SPECULAR:
103 COPY_4V(value, ctx->Light.Light[ln].Specular);
104 return;
105 case STATE_POSITION:
106 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
107 return;
108 case STATE_ATTENUATION:
109 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
110 value[1] = ctx->Light.Light[ln].LinearAttenuation;
111 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
112 value[3] = ctx->Light.Light[ln].SpotExponent;
113 return;
114 case STATE_SPOT_DIRECTION:
115 COPY_3V(value, ctx->Light.Light[ln].EyeDirection);
116 value[3] = ctx->Light.Light[ln]._CosCutoff;
117 return;
118 case STATE_SPOT_CUTOFF:
119 value[0] = ctx->Light.Light[ln].SpotCutoff;
120 return;
121 case STATE_HALF_VECTOR:
122 {
123 static const GLfloat eye_z[] = {0, 0, 1};
124 GLfloat p[3];
125 /* Compute infinite half angle vector:
126 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
127 * light.EyePosition.w should be 0 for infinite lights.
128 */
129 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
130 NORMALIZE_3FV(p);
131 ADD_3V(value, p, eye_z);
132 NORMALIZE_3FV(value);
133 value[3] = 1.0;
134 }
135 return;
136 default:
137 _mesa_problem(ctx, "Invalid light state in fetch_state");
138 return;
139 }
140 }
141 case STATE_LIGHTMODEL_AMBIENT:
142 COPY_4V(value, ctx->Light.Model.Ambient);
143 return;
144 case STATE_LIGHTMODEL_SCENECOLOR:
145 if (state[1] == 0) {
146 /* front */
147 GLint i;
148 for (i = 0; i < 3; i++) {
149 value[i] = ctx->Light.Model.Ambient[i]
150 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
151 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
152 }
153 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
154 }
155 else {
156 /* back */
157 GLint i;
158 for (i = 0; i < 3; i++) {
159 value[i] = ctx->Light.Model.Ambient[i]
160 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
161 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
162 }
163 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
164 }
165 return;
166 case STATE_LIGHTPROD:
167 {
168 const GLuint ln = (GLuint) state[1];
169 const GLuint face = (GLuint) state[2];
170 GLint i;
171 ASSERT(face == 0 || face == 1);
172 switch (state[3]) {
173 case STATE_AMBIENT:
174 for (i = 0; i < 3; i++) {
175 value[i] = ctx->Light.Light[ln].Ambient[i] *
176 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
177 }
178 /* [3] = material alpha */
179 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
180 return;
181 case STATE_DIFFUSE:
182 for (i = 0; i < 3; i++) {
183 value[i] = ctx->Light.Light[ln].Diffuse[i] *
184 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
185 }
186 /* [3] = material alpha */
187 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
188 return;
189 case STATE_SPECULAR:
190 for (i = 0; i < 3; i++) {
191 value[i] = ctx->Light.Light[ln].Specular[i] *
192 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
193 }
194 /* [3] = material alpha */
195 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
196 return;
197 default:
198 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
199 return;
200 }
201 }
202 case STATE_TEXGEN:
203 {
204 /* state[1] is the texture unit */
205 const GLuint unit = (GLuint) state[1];
206 /* state[2] is the texgen attribute */
207 switch (state[2]) {
208 case STATE_TEXGEN_EYE_S:
209 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
210 return;
211 case STATE_TEXGEN_EYE_T:
212 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
213 return;
214 case STATE_TEXGEN_EYE_R:
215 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
216 return;
217 case STATE_TEXGEN_EYE_Q:
218 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
219 return;
220 case STATE_TEXGEN_OBJECT_S:
221 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
222 return;
223 case STATE_TEXGEN_OBJECT_T:
224 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
225 return;
226 case STATE_TEXGEN_OBJECT_R:
227 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
228 return;
229 case STATE_TEXGEN_OBJECT_Q:
230 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
231 return;
232 default:
233 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
234 return;
235 }
236 }
237 case STATE_TEXENV_COLOR:
238 {
239 /* state[1] is the texture unit */
240 const GLuint unit = (GLuint) state[1];
241 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
242 }
243 return;
244 case STATE_FOG_COLOR:
245 COPY_4V(value, ctx->Fog.Color);
246 return;
247 case STATE_FOG_PARAMS:
248 value[0] = ctx->Fog.Density;
249 value[1] = ctx->Fog.Start;
250 value[2] = ctx->Fog.End;
251 value[3] = (ctx->Fog.End == ctx->Fog.Start)
252 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
253 return;
254 case STATE_CLIPPLANE:
255 {
256 const GLuint plane = (GLuint) state[1];
257 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
258 }
259 return;
260 case STATE_POINT_SIZE:
261 value[0] = ctx->Point.Size;
262 value[1] = ctx->Point.MinSize;
263 value[2] = ctx->Point.MaxSize;
264 value[3] = ctx->Point.Threshold;
265 return;
266 case STATE_POINT_ATTENUATION:
267 value[0] = ctx->Point.Params[0];
268 value[1] = ctx->Point.Params[1];
269 value[2] = ctx->Point.Params[2];
270 value[3] = 1.0F;
271 return;
272 case STATE_MODELVIEW_MATRIX:
273 case STATE_PROJECTION_MATRIX:
274 case STATE_MVP_MATRIX:
275 case STATE_TEXTURE_MATRIX:
276 case STATE_PROGRAM_MATRIX:
277 case STATE_COLOR_MATRIX:
278 {
279 /* state[0] = modelview, projection, texture, etc. */
280 /* state[1] = which texture matrix or program matrix */
281 /* state[2] = first row to fetch */
282 /* state[3] = last row to fetch */
283 /* state[4] = transpose, inverse or invtrans */
284 const GLmatrix *matrix;
285 const gl_state_index mat = state[0];
286 const GLuint index = (GLuint) state[1];
287 const GLuint firstRow = (GLuint) state[2];
288 const GLuint lastRow = (GLuint) state[3];
289 const gl_state_index modifier = state[4];
290 const GLfloat *m;
291 GLuint row, i;
292 ASSERT(firstRow >= 0);
293 ASSERT(firstRow < 4);
294 ASSERT(lastRow >= 0);
295 ASSERT(lastRow < 4);
296 if (mat == STATE_MODELVIEW_MATRIX) {
297 matrix = ctx->ModelviewMatrixStack.Top;
298 }
299 else if (mat == STATE_PROJECTION_MATRIX) {
300 matrix = ctx->ProjectionMatrixStack.Top;
301 }
302 else if (mat == STATE_MVP_MATRIX) {
303 matrix = &ctx->_ModelProjectMatrix;
304 }
305 else if (mat == STATE_TEXTURE_MATRIX) {
306 matrix = ctx->TextureMatrixStack[index].Top;
307 }
308 else if (mat == STATE_PROGRAM_MATRIX) {
309 matrix = ctx->ProgramMatrixStack[index].Top;
310 }
311 else if (mat == STATE_COLOR_MATRIX) {
312 matrix = ctx->ColorMatrixStack.Top;
313 }
314 else {
315 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
316 return;
317 }
318 if (modifier == STATE_MATRIX_INVERSE ||
319 modifier == STATE_MATRIX_INVTRANS) {
320 /* Be sure inverse is up to date:
321 */
322 _math_matrix_alloc_inv( (GLmatrix *) matrix );
323 _math_matrix_analyse( (GLmatrix*) matrix );
324 m = matrix->inv;
325 }
326 else {
327 m = matrix->m;
328 }
329 if (modifier == STATE_MATRIX_TRANSPOSE ||
330 modifier == STATE_MATRIX_INVTRANS) {
331 for (i = 0, row = firstRow; row <= lastRow; row++) {
332 value[i++] = m[row * 4 + 0];
333 value[i++] = m[row * 4 + 1];
334 value[i++] = m[row * 4 + 2];
335 value[i++] = m[row * 4 + 3];
336 }
337 }
338 else {
339 for (i = 0, row = firstRow; row <= lastRow; row++) {
340 value[i++] = m[row + 0];
341 value[i++] = m[row + 4];
342 value[i++] = m[row + 8];
343 value[i++] = m[row + 12];
344 }
345 }
346 }
347 return;
348 case STATE_DEPTH_RANGE:
349 value[0] = ctx->Viewport.Near; /* near */
350 value[1] = ctx->Viewport.Far; /* far */
351 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
352 value[3] = 1.0;
353 return;
354 case STATE_FRAGMENT_PROGRAM:
355 {
356 /* state[1] = {STATE_ENV, STATE_LOCAL} */
357 /* state[2] = parameter index */
358 const int idx = (int) state[2];
359 switch (state[1]) {
360 case STATE_ENV:
361 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
362 break;
363 case STATE_LOCAL:
364 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
365 break;
366 default:
367 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
368 return;
369 }
370 }
371 return;
372
373 case STATE_VERTEX_PROGRAM:
374 {
375 /* state[1] = {STATE_ENV, STATE_LOCAL} */
376 /* state[2] = parameter index */
377 const int idx = (int) state[2];
378 switch (state[1]) {
379 case STATE_ENV:
380 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
381 break;
382 case STATE_LOCAL:
383 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
384 break;
385 default:
386 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
387 return;
388 }
389 }
390 return;
391
392 case STATE_NORMAL_SCALE:
393 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
394 return;
395
396 case STATE_INTERNAL:
397 switch (state[1]) {
398 case STATE_CURRENT_ATTRIB: {
399 const GLuint idx = (GLuint) state[2];
400 COPY_4V(value, ctx->Current.Attrib[idx]);
401 return;
402 }
403
404 case STATE_NORMAL_SCALE:
405 ASSIGN_4V(value,
406 ctx->_ModelViewInvScale,
407 ctx->_ModelViewInvScale,
408 ctx->_ModelViewInvScale,
409 1);
410 return;
411 case STATE_TEXRECT_SCALE:
412 {
413 const int unit = (int) state[2];
414 const struct gl_texture_object *texObj
415 = ctx->Texture.Unit[unit]._Current;
416 if (texObj) {
417 struct gl_texture_image *texImage = texObj->Image[0][0];
418 ASSIGN_4V(value, (GLfloat) (1.0 / texImage->Width),
419 (GLfloat)(1.0 / texImage->Height),
420 0.0f, 1.0f);
421 }
422 }
423 return;
424 case STATE_FOG_PARAMS_OPTIMIZED:
425 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
426 * might be more expensive than EX2 on some hw, plus it needs
427 * another constant (e) anyway. Linear fog can now be done with a
428 * single MAD.
429 * linear: fogcoord * -1/(end-start) + end/(end-start)
430 * exp: 2^-(density/ln(2) * fogcoord)
431 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
432 */
433 value[0] = (ctx->Fog.End == ctx->Fog.Start)
434 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
435 value[1] = ctx->Fog.End * -value[0];
436 value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
437 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
438 return;
439
440 case STATE_LIGHT_SPOT_DIR_NORMALIZED: {
441 /* here, state[2] is the light number */
442 /* pre-normalize spot dir */
443 const GLuint ln = (GLuint) state[2];
444 COPY_3V(value, ctx->Light.Light[ln]._NormDirection);
445 value[3] = ctx->Light.Light[ln]._CosCutoff;
446 return;
447 }
448
449 case STATE_LIGHT_POSITION: {
450 const GLuint ln = (GLuint) state[2];
451 COPY_4V(value, ctx->Light.Light[ln]._Position);
452 return;
453 }
454
455 case STATE_LIGHT_POSITION_NORMALIZED: {
456 const GLuint ln = (GLuint) state[2];
457 COPY_4V(value, ctx->Light.Light[ln]._Position);
458 NORMALIZE_3FV( value );
459 return;
460 }
461
462 case STATE_LIGHT_HALF_VECTOR: {
463 const GLuint ln = (GLuint) state[2];
464 GLfloat p[3];
465 /* Compute infinite half angle vector:
466 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
467 * light.EyePosition.w should be 0 for infinite lights.
468 */
469 COPY_3V(p, ctx->Light.Light[ln]._Position);
470 NORMALIZE_3FV(p);
471 ADD_3V(value, p, ctx->_EyeZDir);
472 NORMALIZE_3FV(value);
473 value[3] = 1.0;
474 return;
475 }
476
477
478 case STATE_PT_SCALE:
479 value[0] = ctx->Pixel.RedScale;
480 value[1] = ctx->Pixel.GreenScale;
481 value[2] = ctx->Pixel.BlueScale;
482 value[3] = ctx->Pixel.AlphaScale;
483 break;
484 case STATE_PT_BIAS:
485 value[0] = ctx->Pixel.RedBias;
486 value[1] = ctx->Pixel.GreenBias;
487 value[2] = ctx->Pixel.BlueBias;
488 value[3] = ctx->Pixel.AlphaBias;
489 break;
490 case STATE_PCM_SCALE:
491 COPY_4V(value, ctx->Pixel.PostColorMatrixScale);
492 break;
493 case STATE_PCM_BIAS:
494 COPY_4V(value, ctx->Pixel.PostColorMatrixBias);
495 break;
496 case STATE_SHADOW_AMBIENT:
497 {
498 const int unit = (int) state[2];
499 const struct gl_texture_object *texObj
500 = ctx->Texture.Unit[unit]._Current;
501 if (texObj) {
502 value[0] =
503 value[1] =
504 value[2] =
505 value[3] = texObj->CompareFailValue;
506 }
507 }
508 return;
509 case STATE_ROT_MATRIX_0:
510 {
511 const int unit = (int) state[2];
512 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
513 value[0] = rotMat22[0];
514 value[1] = rotMat22[2];
515 value[2] = 0.0;
516 value[3] = 0.0;
517 }
518 break;
519 case STATE_ROT_MATRIX_1:
520 {
521 const int unit = (int) state[2];
522 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
523 value[0] = rotMat22[1];
524 value[1] = rotMat22[3];
525 value[2] = 0.0;
526 value[3] = 0.0;
527 }
528 break;
529
530 /* XXX: make sure new tokens added here are also handled in the
531 * _mesa_program_state_flags() switch, below.
532 */
533 default:
534 /* unknown state indexes are silently ignored
535 * should be handled by the driver.
536 */
537 return;
538 }
539 return;
540
541 default:
542 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
543 return;
544 }
545 }
546
547
548 /**
549 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
550 * indicate that the given context state may have changed.
551 * The bitmask is used during validation to determine if we need to update
552 * vertex/fragment program parameters (like "state.material.color") when
553 * some GL state has changed.
554 */
555 GLbitfield
556 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
557 {
558 switch (state[0]) {
559 case STATE_MATERIAL:
560 case STATE_LIGHT:
561 case STATE_LIGHTMODEL_AMBIENT:
562 case STATE_LIGHTMODEL_SCENECOLOR:
563 case STATE_LIGHTPROD:
564 return _NEW_LIGHT;
565
566 case STATE_TEXGEN:
567 case STATE_TEXENV_COLOR:
568 return _NEW_TEXTURE;
569
570 case STATE_FOG_COLOR:
571 case STATE_FOG_PARAMS:
572 return _NEW_FOG;
573
574 case STATE_CLIPPLANE:
575 return _NEW_TRANSFORM;
576
577 case STATE_POINT_SIZE:
578 case STATE_POINT_ATTENUATION:
579 return _NEW_POINT;
580
581 case STATE_MODELVIEW_MATRIX:
582 return _NEW_MODELVIEW;
583 case STATE_PROJECTION_MATRIX:
584 return _NEW_PROJECTION;
585 case STATE_MVP_MATRIX:
586 return _NEW_MODELVIEW | _NEW_PROJECTION;
587 case STATE_TEXTURE_MATRIX:
588 return _NEW_TEXTURE_MATRIX;
589 case STATE_PROGRAM_MATRIX:
590 return _NEW_TRACK_MATRIX;
591 case STATE_COLOR_MATRIX:
592 return _NEW_COLOR_MATRIX;
593
594 case STATE_DEPTH_RANGE:
595 return _NEW_VIEWPORT;
596
597 case STATE_FRAGMENT_PROGRAM:
598 case STATE_VERTEX_PROGRAM:
599 return _NEW_PROGRAM;
600
601 case STATE_NORMAL_SCALE:
602 return _NEW_MODELVIEW;
603
604 case STATE_INTERNAL:
605 switch (state[1]) {
606 case STATE_CURRENT_ATTRIB:
607 return _NEW_CURRENT_ATTRIB;
608
609 case STATE_NORMAL_SCALE:
610 return _NEW_MODELVIEW;
611
612 case STATE_TEXRECT_SCALE:
613 case STATE_SHADOW_AMBIENT:
614 case STATE_ROT_MATRIX_0:
615 case STATE_ROT_MATRIX_1:
616 return _NEW_TEXTURE;
617 case STATE_FOG_PARAMS_OPTIMIZED:
618 return _NEW_FOG;
619 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
620 case STATE_LIGHT_POSITION:
621 case STATE_LIGHT_POSITION_NORMALIZED:
622 case STATE_LIGHT_HALF_VECTOR:
623 return _NEW_LIGHT;
624
625 case STATE_PT_SCALE:
626 case STATE_PT_BIAS:
627 case STATE_PCM_SCALE:
628 case STATE_PCM_BIAS:
629 return _NEW_PIXEL;
630
631 default:
632 /* unknown state indexes are silently ignored and
633 * no flag set, since it is handled by the driver.
634 */
635 return 0;
636 }
637
638 default:
639 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
640 return 0;
641 }
642 }
643
644
645 static void
646 append(char *dst, const char *src)
647 {
648 while (*dst)
649 dst++;
650 while (*src)
651 *dst++ = *src++;
652 *dst = 0;
653 }
654
655
656 /**
657 * Convert token 'k' to a string, append it onto 'dst' string.
658 */
659 static void
660 append_token(char *dst, gl_state_index k)
661 {
662 switch (k) {
663 case STATE_MATERIAL:
664 append(dst, "material");
665 break;
666 case STATE_LIGHT:
667 append(dst, "light");
668 break;
669 case STATE_LIGHTMODEL_AMBIENT:
670 append(dst, "lightmodel.ambient");
671 break;
672 case STATE_LIGHTMODEL_SCENECOLOR:
673 break;
674 case STATE_LIGHTPROD:
675 append(dst, "lightprod");
676 break;
677 case STATE_TEXGEN:
678 append(dst, "texgen");
679 break;
680 case STATE_FOG_COLOR:
681 append(dst, "fog.color");
682 break;
683 case STATE_FOG_PARAMS:
684 append(dst, "fog.params");
685 break;
686 case STATE_CLIPPLANE:
687 append(dst, "clip");
688 break;
689 case STATE_POINT_SIZE:
690 append(dst, "point.size");
691 break;
692 case STATE_POINT_ATTENUATION:
693 append(dst, "point.attenuation");
694 break;
695 case STATE_MODELVIEW_MATRIX:
696 append(dst, "matrix.modelview");
697 break;
698 case STATE_PROJECTION_MATRIX:
699 append(dst, "matrix.projection");
700 break;
701 case STATE_MVP_MATRIX:
702 append(dst, "matrix.mvp");
703 break;
704 case STATE_TEXTURE_MATRIX:
705 append(dst, "matrix.texture");
706 break;
707 case STATE_PROGRAM_MATRIX:
708 append(dst, "matrix.program");
709 break;
710 case STATE_COLOR_MATRIX:
711 append(dst, "matrix.color");
712 break;
713 case STATE_MATRIX_INVERSE:
714 append(dst, ".inverse");
715 break;
716 case STATE_MATRIX_TRANSPOSE:
717 append(dst, ".transpose");
718 break;
719 case STATE_MATRIX_INVTRANS:
720 append(dst, ".invtrans");
721 break;
722 case STATE_AMBIENT:
723 append(dst, ".ambient");
724 break;
725 case STATE_DIFFUSE:
726 append(dst, ".diffuse");
727 break;
728 case STATE_SPECULAR:
729 append(dst, ".specular");
730 break;
731 case STATE_EMISSION:
732 append(dst, ".emission");
733 break;
734 case STATE_SHININESS:
735 append(dst, "lshininess");
736 break;
737 case STATE_HALF_VECTOR:
738 append(dst, ".half");
739 break;
740 case STATE_POSITION:
741 append(dst, ".position");
742 break;
743 case STATE_ATTENUATION:
744 append(dst, ".attenuation");
745 break;
746 case STATE_SPOT_DIRECTION:
747 append(dst, ".spot.direction");
748 break;
749 case STATE_SPOT_CUTOFF:
750 append(dst, ".spot.cutoff");
751 break;
752 case STATE_TEXGEN_EYE_S:
753 append(dst, "eye.s");
754 break;
755 case STATE_TEXGEN_EYE_T:
756 append(dst, "eye.t");
757 break;
758 case STATE_TEXGEN_EYE_R:
759 append(dst, "eye.r");
760 break;
761 case STATE_TEXGEN_EYE_Q:
762 append(dst, "eye.q");
763 break;
764 case STATE_TEXGEN_OBJECT_S:
765 append(dst, "object.s");
766 break;
767 case STATE_TEXGEN_OBJECT_T:
768 append(dst, "object.t");
769 break;
770 case STATE_TEXGEN_OBJECT_R:
771 append(dst, "object.r");
772 break;
773 case STATE_TEXGEN_OBJECT_Q:
774 append(dst, "object.q");
775 break;
776 case STATE_TEXENV_COLOR:
777 append(dst, "texenv");
778 break;
779 case STATE_DEPTH_RANGE:
780 append(dst, "depth.range");
781 break;
782 case STATE_VERTEX_PROGRAM:
783 case STATE_FRAGMENT_PROGRAM:
784 break;
785 case STATE_ENV:
786 append(dst, "env");
787 break;
788 case STATE_LOCAL:
789 append(dst, "local");
790 break;
791 /* BEGIN internal state vars */
792 case STATE_INTERNAL:
793 append(dst, "(internal)");
794 break;
795 case STATE_NORMAL_SCALE:
796 append(dst, "normalScale");
797 break;
798 case STATE_TEXRECT_SCALE:
799 append(dst, "texrectScale");
800 break;
801 case STATE_FOG_PARAMS_OPTIMIZED:
802 append(dst, "fogParamsOptimized");
803 break;
804 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
805 append(dst, "lightSpotDirNormalized");
806 break;
807 case STATE_LIGHT_POSITION:
808 append(dst, "lightPosition");
809 break;
810 case STATE_LIGHT_POSITION_NORMALIZED:
811 append(dst, "light.position.normalized");
812 break;
813 case STATE_LIGHT_HALF_VECTOR:
814 append(dst, "lightHalfVector");
815 break;
816 case STATE_PT_SCALE:
817 append(dst, "PTscale");
818 break;
819 case STATE_PT_BIAS:
820 append(dst, "PTbias");
821 break;
822 case STATE_PCM_SCALE:
823 append(dst, "PCMscale");
824 break;
825 case STATE_PCM_BIAS:
826 append(dst, "PCMbias");
827 break;
828 case STATE_SHADOW_AMBIENT:
829 append(dst, "CompareFailValue");
830 break;
831 case STATE_ROT_MATRIX_0:
832 append(dst, "rotMatrixRow0");
833 break;
834 case STATE_ROT_MATRIX_1:
835 append(dst, "rotMatrixRow1");
836 break;
837 default:
838 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
839 append(dst, "driverState");
840 }
841 }
842
843 static void
844 append_face(char *dst, GLint face)
845 {
846 if (face == 0)
847 append(dst, "front.");
848 else
849 append(dst, "back.");
850 }
851
852 static void
853 append_index(char *dst, GLint index)
854 {
855 char s[20];
856 _mesa_sprintf(s, "[%d]", index);
857 append(dst, s);
858 }
859
860 /**
861 * Make a string from the given state vector.
862 * For example, return "state.matrix.texture[2].inverse".
863 * Use _mesa_free() to deallocate the string.
864 */
865 char *
866 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
867 {
868 char str[1000] = "";
869 char tmp[30];
870
871 append(str, "state.");
872 append_token(str, state[0]);
873
874 switch (state[0]) {
875 case STATE_MATERIAL:
876 append_face(str, state[1]);
877 append_token(str, state[2]);
878 break;
879 case STATE_LIGHT:
880 append_index(str, state[1]); /* light number [i]. */
881 append_token(str, state[2]); /* coefficients */
882 break;
883 case STATE_LIGHTMODEL_AMBIENT:
884 append(str, "lightmodel.ambient");
885 break;
886 case STATE_LIGHTMODEL_SCENECOLOR:
887 if (state[1] == 0) {
888 append(str, "lightmodel.front.scenecolor");
889 }
890 else {
891 append(str, "lightmodel.back.scenecolor");
892 }
893 break;
894 case STATE_LIGHTPROD:
895 append_index(str, state[1]); /* light number [i]. */
896 append_face(str, state[2]);
897 append_token(str, state[3]);
898 break;
899 case STATE_TEXGEN:
900 append_index(str, state[1]); /* tex unit [i] */
901 append_token(str, state[2]); /* plane coef */
902 break;
903 case STATE_TEXENV_COLOR:
904 append_index(str, state[1]); /* tex unit [i] */
905 append(str, "color");
906 break;
907 case STATE_CLIPPLANE:
908 append_index(str, state[1]); /* plane [i] */
909 append(str, ".plane");
910 break;
911 case STATE_MODELVIEW_MATRIX:
912 case STATE_PROJECTION_MATRIX:
913 case STATE_MVP_MATRIX:
914 case STATE_TEXTURE_MATRIX:
915 case STATE_PROGRAM_MATRIX:
916 case STATE_COLOR_MATRIX:
917 {
918 /* state[0] = modelview, projection, texture, etc. */
919 /* state[1] = which texture matrix or program matrix */
920 /* state[2] = first row to fetch */
921 /* state[3] = last row to fetch */
922 /* state[4] = transpose, inverse or invtrans */
923 const gl_state_index mat = state[0];
924 const GLuint index = (GLuint) state[1];
925 const GLuint firstRow = (GLuint) state[2];
926 const GLuint lastRow = (GLuint) state[3];
927 const gl_state_index modifier = state[4];
928 if (index ||
929 mat == STATE_TEXTURE_MATRIX ||
930 mat == STATE_PROGRAM_MATRIX)
931 append_index(str, index);
932 if (modifier)
933 append_token(str, modifier);
934 if (firstRow == lastRow)
935 _mesa_sprintf(tmp, ".row[%d]", firstRow);
936 else
937 _mesa_sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
938 append(str, tmp);
939 }
940 break;
941 case STATE_POINT_SIZE:
942 break;
943 case STATE_POINT_ATTENUATION:
944 break;
945 case STATE_FOG_PARAMS:
946 break;
947 case STATE_FOG_COLOR:
948 break;
949 case STATE_DEPTH_RANGE:
950 break;
951 case STATE_FRAGMENT_PROGRAM:
952 case STATE_VERTEX_PROGRAM:
953 /* state[1] = {STATE_ENV, STATE_LOCAL} */
954 /* state[2] = parameter index */
955 append_token(str, state[1]);
956 append_index(str, state[2]);
957 break;
958 case STATE_INTERNAL:
959 append_token(str, state[1]);
960 break;
961 default:
962 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
963 break;
964 }
965
966 return _mesa_strdup(str);
967 }
968
969
970 /**
971 * Loop over all the parameters in a parameter list. If the parameter
972 * is a GL state reference, look up the current value of that state
973 * variable and put it into the parameter's Value[4] array.
974 * This would be called at glBegin time when using a fragment program.
975 */
976 void
977 _mesa_load_state_parameters(GLcontext *ctx,
978 struct gl_program_parameter_list *paramList)
979 {
980 GLuint i;
981
982 if (!paramList)
983 return;
984
985 /*assert(ctx->Driver.NeedFlush == 0);*/
986
987 for (i = 0; i < paramList->NumParameters; i++) {
988 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
989 _mesa_fetch_state(ctx,
990 (gl_state_index *) paramList->Parameters[i].StateIndexes,
991 paramList->ParameterValues[i]);
992 }
993 }
994 }
995
996
997 /**
998 * Copy the 16 elements of a matrix into four consecutive program
999 * registers starting at 'pos'.
1000 */
1001 static void
1002 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
1003 {
1004 GLuint i;
1005 for (i = 0; i < 4; i++) {
1006 registers[pos + i][0] = mat[0 + i];
1007 registers[pos + i][1] = mat[4 + i];
1008 registers[pos + i][2] = mat[8 + i];
1009 registers[pos + i][3] = mat[12 + i];
1010 }
1011 }
1012
1013
1014 /**
1015 * As above, but transpose the matrix.
1016 */
1017 static void
1018 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
1019 const GLfloat mat[16])
1020 {
1021 MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
1022 }
1023
1024
1025 /**
1026 * Load current vertex program's parameter registers with tracked
1027 * matrices (if NV program). This only needs to be done per
1028 * glBegin/glEnd, not per-vertex.
1029 */
1030 void
1031 _mesa_load_tracked_matrices(GLcontext *ctx)
1032 {
1033 GLuint i;
1034
1035 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
1036 /* point 'mat' at source matrix */
1037 GLmatrix *mat;
1038 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
1039 mat = ctx->ModelviewMatrixStack.Top;
1040 }
1041 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
1042 mat = ctx->ProjectionMatrixStack.Top;
1043 }
1044 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
1045 mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
1046 }
1047 else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
1048 mat = ctx->ColorMatrixStack.Top;
1049 }
1050 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
1051 /* XXX verify the combined matrix is up to date */
1052 mat = &ctx->_ModelProjectMatrix;
1053 }
1054 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
1055 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
1056 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
1057 ASSERT(n < MAX_PROGRAM_MATRICES);
1058 mat = ctx->ProgramMatrixStack[n].Top;
1059 }
1060 else {
1061 /* no matrix is tracked, but we leave the register values as-is */
1062 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
1063 continue;
1064 }
1065
1066 /* load the matrix values into sequential registers */
1067 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
1068 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1069 }
1070 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
1071 _math_matrix_analyse(mat); /* update the inverse */
1072 ASSERT(!_math_matrix_is_dirty(mat));
1073 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1074 }
1075 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
1076 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1077 }
1078 else {
1079 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1080 == GL_INVERSE_TRANSPOSE_NV);
1081 _math_matrix_analyse(mat); /* update the inverse */
1082 ASSERT(!_math_matrix_is_dirty(mat));
1083 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1084 }
1085 }
1086 }