mesa: minor tweaks in append_token() for printing state var strings
[mesa.git] / src / mesa / shader / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/hash.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/mtypes.h"
38 #include "prog_statevars.h"
39 #include "prog_parameter.h"
40
41
42 /**
43 * Use the list of tokens in the state[] array to find global GL state
44 * and return it in <value>. Usually, four values are returned in <value>
45 * but matrix queries may return as many as 16 values.
46 * This function is used for ARB vertex/fragment programs.
47 * The program parser will produce the state[] values.
48 */
49 static void
50 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
51 GLfloat *value)
52 {
53 switch (state[0]) {
54 case STATE_MATERIAL:
55 {
56 /* state[1] is either 0=front or 1=back side */
57 const GLuint face = (GLuint) state[1];
58 const struct gl_material *mat = &ctx->Light.Material;
59 ASSERT(face == 0 || face == 1);
60 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
61 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
62 /* XXX we could get rid of this switch entirely with a little
63 * work in arbprogparse.c's parse_state_single_item().
64 */
65 /* state[2] is the material attribute */
66 switch (state[2]) {
67 case STATE_AMBIENT:
68 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
69 return;
70 case STATE_DIFFUSE:
71 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
72 return;
73 case STATE_SPECULAR:
74 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
75 return;
76 case STATE_EMISSION:
77 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
78 return;
79 case STATE_SHININESS:
80 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
81 value[1] = 0.0F;
82 value[2] = 0.0F;
83 value[3] = 1.0F;
84 return;
85 default:
86 _mesa_problem(ctx, "Invalid material state in fetch_state");
87 return;
88 }
89 }
90 case STATE_LIGHT:
91 {
92 /* state[1] is the light number */
93 const GLuint ln = (GLuint) state[1];
94 /* state[2] is the light attribute */
95 switch (state[2]) {
96 case STATE_AMBIENT:
97 COPY_4V(value, ctx->Light.Light[ln].Ambient);
98 return;
99 case STATE_DIFFUSE:
100 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
101 return;
102 case STATE_SPECULAR:
103 COPY_4V(value, ctx->Light.Light[ln].Specular);
104 return;
105 case STATE_POSITION:
106 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
107 return;
108 case STATE_ATTENUATION:
109 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
110 value[1] = ctx->Light.Light[ln].LinearAttenuation;
111 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
112 value[3] = ctx->Light.Light[ln].SpotExponent;
113 return;
114 case STATE_SPOT_DIRECTION:
115 COPY_3V(value, ctx->Light.Light[ln].EyeDirection);
116 value[3] = ctx->Light.Light[ln]._CosCutoff;
117 return;
118 case STATE_SPOT_CUTOFF:
119 value[0] = ctx->Light.Light[ln].SpotCutoff;
120 return;
121 case STATE_HALF_VECTOR:
122 {
123 static const GLfloat eye_z[] = {0, 0, 1};
124 GLfloat p[3];
125 /* Compute infinite half angle vector:
126 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
127 * light.EyePosition.w should be 0 for infinite lights.
128 */
129 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
130 NORMALIZE_3FV(p);
131 ADD_3V(value, p, eye_z);
132 NORMALIZE_3FV(value);
133 value[3] = 1.0;
134 }
135 return;
136 default:
137 _mesa_problem(ctx, "Invalid light state in fetch_state");
138 return;
139 }
140 }
141 case STATE_LIGHTMODEL_AMBIENT:
142 COPY_4V(value, ctx->Light.Model.Ambient);
143 return;
144 case STATE_LIGHTMODEL_SCENECOLOR:
145 if (state[1] == 0) {
146 /* front */
147 GLint i;
148 for (i = 0; i < 3; i++) {
149 value[i] = ctx->Light.Model.Ambient[i]
150 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
151 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
152 }
153 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
154 }
155 else {
156 /* back */
157 GLint i;
158 for (i = 0; i < 3; i++) {
159 value[i] = ctx->Light.Model.Ambient[i]
160 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
161 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
162 }
163 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
164 }
165 return;
166 case STATE_LIGHTPROD:
167 {
168 const GLuint ln = (GLuint) state[1];
169 const GLuint face = (GLuint) state[2];
170 GLint i;
171 ASSERT(face == 0 || face == 1);
172 switch (state[3]) {
173 case STATE_AMBIENT:
174 for (i = 0; i < 3; i++) {
175 value[i] = ctx->Light.Light[ln].Ambient[i] *
176 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
177 }
178 /* [3] = material alpha */
179 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
180 return;
181 case STATE_DIFFUSE:
182 for (i = 0; i < 3; i++) {
183 value[i] = ctx->Light.Light[ln].Diffuse[i] *
184 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
185 }
186 /* [3] = material alpha */
187 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
188 return;
189 case STATE_SPECULAR:
190 for (i = 0; i < 3; i++) {
191 value[i] = ctx->Light.Light[ln].Specular[i] *
192 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
193 }
194 /* [3] = material alpha */
195 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
196 return;
197 default:
198 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
199 return;
200 }
201 }
202 case STATE_TEXGEN:
203 {
204 /* state[1] is the texture unit */
205 const GLuint unit = (GLuint) state[1];
206 /* state[2] is the texgen attribute */
207 switch (state[2]) {
208 case STATE_TEXGEN_EYE_S:
209 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
210 return;
211 case STATE_TEXGEN_EYE_T:
212 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
213 return;
214 case STATE_TEXGEN_EYE_R:
215 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
216 return;
217 case STATE_TEXGEN_EYE_Q:
218 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
219 return;
220 case STATE_TEXGEN_OBJECT_S:
221 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
222 return;
223 case STATE_TEXGEN_OBJECT_T:
224 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
225 return;
226 case STATE_TEXGEN_OBJECT_R:
227 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
228 return;
229 case STATE_TEXGEN_OBJECT_Q:
230 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
231 return;
232 default:
233 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
234 return;
235 }
236 }
237 case STATE_TEXENV_COLOR:
238 {
239 /* state[1] is the texture unit */
240 const GLuint unit = (GLuint) state[1];
241 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
242 }
243 return;
244 case STATE_FOG_COLOR:
245 COPY_4V(value, ctx->Fog.Color);
246 return;
247 case STATE_FOG_PARAMS:
248 value[0] = ctx->Fog.Density;
249 value[1] = ctx->Fog.Start;
250 value[2] = ctx->Fog.End;
251 value[3] = (ctx->Fog.End == ctx->Fog.Start)
252 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
253 return;
254 case STATE_CLIPPLANE:
255 {
256 const GLuint plane = (GLuint) state[1];
257 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
258 }
259 return;
260 case STATE_POINT_SIZE:
261 value[0] = ctx->Point.Size;
262 value[1] = ctx->Point.MinSize;
263 value[2] = ctx->Point.MaxSize;
264 value[3] = ctx->Point.Threshold;
265 return;
266 case STATE_POINT_ATTENUATION:
267 value[0] = ctx->Point.Params[0];
268 value[1] = ctx->Point.Params[1];
269 value[2] = ctx->Point.Params[2];
270 value[3] = 1.0F;
271 return;
272 case STATE_MODELVIEW_MATRIX:
273 case STATE_PROJECTION_MATRIX:
274 case STATE_MVP_MATRIX:
275 case STATE_TEXTURE_MATRIX:
276 case STATE_PROGRAM_MATRIX:
277 case STATE_COLOR_MATRIX:
278 {
279 /* state[0] = modelview, projection, texture, etc. */
280 /* state[1] = which texture matrix or program matrix */
281 /* state[2] = first row to fetch */
282 /* state[3] = last row to fetch */
283 /* state[4] = transpose, inverse or invtrans */
284 const GLmatrix *matrix;
285 const gl_state_index mat = state[0];
286 const GLuint index = (GLuint) state[1];
287 const GLuint firstRow = (GLuint) state[2];
288 const GLuint lastRow = (GLuint) state[3];
289 const gl_state_index modifier = state[4];
290 const GLfloat *m;
291 GLuint row, i;
292 ASSERT(firstRow >= 0);
293 ASSERT(firstRow < 4);
294 ASSERT(lastRow >= 0);
295 ASSERT(lastRow < 4);
296 if (mat == STATE_MODELVIEW_MATRIX) {
297 matrix = ctx->ModelviewMatrixStack.Top;
298 }
299 else if (mat == STATE_PROJECTION_MATRIX) {
300 matrix = ctx->ProjectionMatrixStack.Top;
301 }
302 else if (mat == STATE_MVP_MATRIX) {
303 matrix = &ctx->_ModelProjectMatrix;
304 }
305 else if (mat == STATE_TEXTURE_MATRIX) {
306 matrix = ctx->TextureMatrixStack[index].Top;
307 }
308 else if (mat == STATE_PROGRAM_MATRIX) {
309 matrix = ctx->ProgramMatrixStack[index].Top;
310 }
311 else if (mat == STATE_COLOR_MATRIX) {
312 matrix = ctx->ColorMatrixStack.Top;
313 }
314 else {
315 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
316 return;
317 }
318 if (modifier == STATE_MATRIX_INVERSE ||
319 modifier == STATE_MATRIX_INVTRANS) {
320 /* Be sure inverse is up to date:
321 */
322 _math_matrix_alloc_inv( (GLmatrix *) matrix );
323 _math_matrix_analyse( (GLmatrix*) matrix );
324 m = matrix->inv;
325 }
326 else {
327 m = matrix->m;
328 }
329 if (modifier == STATE_MATRIX_TRANSPOSE ||
330 modifier == STATE_MATRIX_INVTRANS) {
331 for (i = 0, row = firstRow; row <= lastRow; row++) {
332 value[i++] = m[row * 4 + 0];
333 value[i++] = m[row * 4 + 1];
334 value[i++] = m[row * 4 + 2];
335 value[i++] = m[row * 4 + 3];
336 }
337 }
338 else {
339 for (i = 0, row = firstRow; row <= lastRow; row++) {
340 value[i++] = m[row + 0];
341 value[i++] = m[row + 4];
342 value[i++] = m[row + 8];
343 value[i++] = m[row + 12];
344 }
345 }
346 }
347 return;
348 case STATE_DEPTH_RANGE:
349 value[0] = ctx->Viewport.Near; /* near */
350 value[1] = ctx->Viewport.Far; /* far */
351 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
352 value[3] = 1.0;
353 return;
354 case STATE_FRAGMENT_PROGRAM:
355 {
356 /* state[1] = {STATE_ENV, STATE_LOCAL} */
357 /* state[2] = parameter index */
358 const int idx = (int) state[2];
359 switch (state[1]) {
360 case STATE_ENV:
361 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
362 break;
363 case STATE_LOCAL:
364 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
365 break;
366 default:
367 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
368 return;
369 }
370 }
371 return;
372
373 case STATE_VERTEX_PROGRAM:
374 {
375 /* state[1] = {STATE_ENV, STATE_LOCAL} */
376 /* state[2] = parameter index */
377 const int idx = (int) state[2];
378 switch (state[1]) {
379 case STATE_ENV:
380 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
381 break;
382 case STATE_LOCAL:
383 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
384 break;
385 default:
386 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
387 return;
388 }
389 }
390 return;
391
392 case STATE_NORMAL_SCALE:
393 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
394 return;
395
396 case STATE_INTERNAL:
397 switch (state[1]) {
398 case STATE_CURRENT_ATTRIB: {
399 const GLuint idx = (GLuint) state[2];
400 COPY_4V(value, ctx->Current.Attrib[idx]);
401 return;
402 }
403
404 case STATE_NORMAL_SCALE:
405 ASSIGN_4V(value,
406 ctx->_ModelViewInvScale,
407 ctx->_ModelViewInvScale,
408 ctx->_ModelViewInvScale,
409 1);
410 return;
411 case STATE_TEXRECT_SCALE:
412 {
413 const int unit = (int) state[2];
414 const struct gl_texture_object *texObj
415 = ctx->Texture.Unit[unit]._Current;
416 if (texObj) {
417 struct gl_texture_image *texImage = texObj->Image[0][0];
418 ASSIGN_4V(value, (GLfloat) (1.0 / texImage->Width),
419 (GLfloat)(1.0 / texImage->Height),
420 0.0f, 1.0f);
421 }
422 }
423 return;
424 case STATE_FOG_PARAMS_OPTIMIZED:
425 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
426 * might be more expensive than EX2 on some hw, plus it needs
427 * another constant (e) anyway. Linear fog can now be done with a
428 * single MAD.
429 * linear: fogcoord * -1/(end-start) + end/(end-start)
430 * exp: 2^-(density/ln(2) * fogcoord)
431 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
432 */
433 value[0] = (ctx->Fog.End == ctx->Fog.Start)
434 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
435 value[1] = ctx->Fog.End * -value[0];
436 value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
437 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
438 return;
439
440 case STATE_LIGHT_SPOT_DIR_NORMALIZED: {
441 /* here, state[2] is the light number */
442 /* pre-normalize spot dir */
443 const GLuint ln = (GLuint) state[2];
444 COPY_3V(value, ctx->Light.Light[ln]._NormDirection);
445 value[3] = ctx->Light.Light[ln]._CosCutoff;
446 return;
447 }
448
449 case STATE_LIGHT_POSITION: {
450 const GLuint ln = (GLuint) state[2];
451 COPY_4V(value, ctx->Light.Light[ln]._Position);
452 return;
453 }
454
455 case STATE_LIGHT_POSITION_NORMALIZED: {
456 const GLuint ln = (GLuint) state[2];
457 COPY_4V(value, ctx->Light.Light[ln]._Position);
458 NORMALIZE_3FV( value );
459 return;
460 }
461
462 case STATE_LIGHT_HALF_VECTOR: {
463 const GLuint ln = (GLuint) state[2];
464 GLfloat p[3];
465 /* Compute infinite half angle vector:
466 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
467 * light.EyePosition.w should be 0 for infinite lights.
468 */
469 COPY_3V(p, ctx->Light.Light[ln]._Position);
470 NORMALIZE_3FV(p);
471 ADD_3V(value, p, ctx->_EyeZDir);
472 NORMALIZE_3FV(value);
473 value[3] = 1.0;
474 return;
475 }
476
477
478 case STATE_PT_SCALE:
479 value[0] = ctx->Pixel.RedScale;
480 value[1] = ctx->Pixel.GreenScale;
481 value[2] = ctx->Pixel.BlueScale;
482 value[3] = ctx->Pixel.AlphaScale;
483 break;
484 case STATE_PT_BIAS:
485 value[0] = ctx->Pixel.RedBias;
486 value[1] = ctx->Pixel.GreenBias;
487 value[2] = ctx->Pixel.BlueBias;
488 value[3] = ctx->Pixel.AlphaBias;
489 break;
490 case STATE_PCM_SCALE:
491 COPY_4V(value, ctx->Pixel.PostColorMatrixScale);
492 break;
493 case STATE_PCM_BIAS:
494 COPY_4V(value, ctx->Pixel.PostColorMatrixBias);
495 break;
496 case STATE_SHADOW_AMBIENT:
497 {
498 const int unit = (int) state[2];
499 const struct gl_texture_object *texObj
500 = ctx->Texture.Unit[unit]._Current;
501 if (texObj) {
502 value[0] =
503 value[1] =
504 value[2] =
505 value[3] = texObj->CompareFailValue;
506 }
507 }
508 return;
509 case STATE_FB_SIZE:
510 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
511 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
512 value[2] = 0.0F;
513 value[3] = 0.0F;
514 return;
515
516 case STATE_ROT_MATRIX_0:
517 {
518 const int unit = (int) state[2];
519 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
520 value[0] = rotMat22[0];
521 value[1] = rotMat22[2];
522 value[2] = 0.0;
523 value[3] = 0.0;
524 }
525 break;
526 case STATE_ROT_MATRIX_1:
527 {
528 const int unit = (int) state[2];
529 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
530 value[0] = rotMat22[1];
531 value[1] = rotMat22[3];
532 value[2] = 0.0;
533 value[3] = 0.0;
534 }
535 break;
536
537 /* XXX: make sure new tokens added here are also handled in the
538 * _mesa_program_state_flags() switch, below.
539 */
540 default:
541 /* unknown state indexes are silently ignored
542 * should be handled by the driver.
543 */
544 return;
545 }
546 return;
547
548 default:
549 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
550 return;
551 }
552 }
553
554
555 /**
556 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
557 * indicate that the given context state may have changed.
558 * The bitmask is used during validation to determine if we need to update
559 * vertex/fragment program parameters (like "state.material.color") when
560 * some GL state has changed.
561 */
562 GLbitfield
563 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
564 {
565 switch (state[0]) {
566 case STATE_MATERIAL:
567 case STATE_LIGHT:
568 case STATE_LIGHTMODEL_AMBIENT:
569 case STATE_LIGHTMODEL_SCENECOLOR:
570 case STATE_LIGHTPROD:
571 return _NEW_LIGHT;
572
573 case STATE_TEXGEN:
574 case STATE_TEXENV_COLOR:
575 return _NEW_TEXTURE;
576
577 case STATE_FOG_COLOR:
578 case STATE_FOG_PARAMS:
579 return _NEW_FOG;
580
581 case STATE_CLIPPLANE:
582 return _NEW_TRANSFORM;
583
584 case STATE_POINT_SIZE:
585 case STATE_POINT_ATTENUATION:
586 return _NEW_POINT;
587
588 case STATE_MODELVIEW_MATRIX:
589 return _NEW_MODELVIEW;
590 case STATE_PROJECTION_MATRIX:
591 return _NEW_PROJECTION;
592 case STATE_MVP_MATRIX:
593 return _NEW_MODELVIEW | _NEW_PROJECTION;
594 case STATE_TEXTURE_MATRIX:
595 return _NEW_TEXTURE_MATRIX;
596 case STATE_PROGRAM_MATRIX:
597 return _NEW_TRACK_MATRIX;
598 case STATE_COLOR_MATRIX:
599 return _NEW_COLOR_MATRIX;
600
601 case STATE_DEPTH_RANGE:
602 return _NEW_VIEWPORT;
603
604 case STATE_FRAGMENT_PROGRAM:
605 case STATE_VERTEX_PROGRAM:
606 return _NEW_PROGRAM;
607
608 case STATE_NORMAL_SCALE:
609 return _NEW_MODELVIEW;
610
611 case STATE_INTERNAL:
612 switch (state[1]) {
613 case STATE_CURRENT_ATTRIB:
614 return _NEW_CURRENT_ATTRIB;
615
616 case STATE_NORMAL_SCALE:
617 return _NEW_MODELVIEW;
618
619 case STATE_TEXRECT_SCALE:
620 case STATE_SHADOW_AMBIENT:
621 case STATE_ROT_MATRIX_0:
622 case STATE_ROT_MATRIX_1:
623 return _NEW_TEXTURE;
624 case STATE_FOG_PARAMS_OPTIMIZED:
625 return _NEW_FOG;
626 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
627 case STATE_LIGHT_POSITION:
628 case STATE_LIGHT_POSITION_NORMALIZED:
629 case STATE_LIGHT_HALF_VECTOR:
630 return _NEW_LIGHT;
631
632 case STATE_PT_SCALE:
633 case STATE_PT_BIAS:
634 case STATE_PCM_SCALE:
635 case STATE_PCM_BIAS:
636 return _NEW_PIXEL;
637
638 case STATE_FB_SIZE:
639 return _NEW_BUFFERS;
640
641 default:
642 /* unknown state indexes are silently ignored and
643 * no flag set, since it is handled by the driver.
644 */
645 return 0;
646 }
647
648 default:
649 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
650 return 0;
651 }
652 }
653
654
655 static void
656 append(char *dst, const char *src)
657 {
658 while (*dst)
659 dst++;
660 while (*src)
661 *dst++ = *src++;
662 *dst = 0;
663 }
664
665
666 /**
667 * Convert token 'k' to a string, append it onto 'dst' string.
668 */
669 static void
670 append_token(char *dst, gl_state_index k)
671 {
672 switch (k) {
673 case STATE_MATERIAL:
674 append(dst, "material");
675 break;
676 case STATE_LIGHT:
677 append(dst, "light");
678 break;
679 case STATE_LIGHTMODEL_AMBIENT:
680 append(dst, "lightmodel.ambient");
681 break;
682 case STATE_LIGHTMODEL_SCENECOLOR:
683 break;
684 case STATE_LIGHTPROD:
685 append(dst, "lightprod");
686 break;
687 case STATE_TEXGEN:
688 append(dst, "texgen");
689 break;
690 case STATE_FOG_COLOR:
691 append(dst, "fog.color");
692 break;
693 case STATE_FOG_PARAMS:
694 append(dst, "fog.params");
695 break;
696 case STATE_CLIPPLANE:
697 append(dst, "clip");
698 break;
699 case STATE_POINT_SIZE:
700 append(dst, "point.size");
701 break;
702 case STATE_POINT_ATTENUATION:
703 append(dst, "point.attenuation");
704 break;
705 case STATE_MODELVIEW_MATRIX:
706 append(dst, "matrix.modelview");
707 break;
708 case STATE_PROJECTION_MATRIX:
709 append(dst, "matrix.projection");
710 break;
711 case STATE_MVP_MATRIX:
712 append(dst, "matrix.mvp");
713 break;
714 case STATE_TEXTURE_MATRIX:
715 append(dst, "matrix.texture");
716 break;
717 case STATE_PROGRAM_MATRIX:
718 append(dst, "matrix.program");
719 break;
720 case STATE_COLOR_MATRIX:
721 append(dst, "matrix.color");
722 break;
723 case STATE_MATRIX_INVERSE:
724 append(dst, ".inverse");
725 break;
726 case STATE_MATRIX_TRANSPOSE:
727 append(dst, ".transpose");
728 break;
729 case STATE_MATRIX_INVTRANS:
730 append(dst, ".invtrans");
731 break;
732 case STATE_AMBIENT:
733 append(dst, ".ambient");
734 break;
735 case STATE_DIFFUSE:
736 append(dst, ".diffuse");
737 break;
738 case STATE_SPECULAR:
739 append(dst, ".specular");
740 break;
741 case STATE_EMISSION:
742 append(dst, ".emission");
743 break;
744 case STATE_SHININESS:
745 append(dst, "lshininess");
746 break;
747 case STATE_HALF_VECTOR:
748 append(dst, ".half");
749 break;
750 case STATE_POSITION:
751 append(dst, ".position");
752 break;
753 case STATE_ATTENUATION:
754 append(dst, ".attenuation");
755 break;
756 case STATE_SPOT_DIRECTION:
757 append(dst, ".spot.direction");
758 break;
759 case STATE_SPOT_CUTOFF:
760 append(dst, ".spot.cutoff");
761 break;
762 case STATE_TEXGEN_EYE_S:
763 append(dst, ".eye.s");
764 break;
765 case STATE_TEXGEN_EYE_T:
766 append(dst, ".eye.t");
767 break;
768 case STATE_TEXGEN_EYE_R:
769 append(dst, ".eye.r");
770 break;
771 case STATE_TEXGEN_EYE_Q:
772 append(dst, ".eye.q");
773 break;
774 case STATE_TEXGEN_OBJECT_S:
775 append(dst, ".object.s");
776 break;
777 case STATE_TEXGEN_OBJECT_T:
778 append(dst, ".object.t");
779 break;
780 case STATE_TEXGEN_OBJECT_R:
781 append(dst, ".object.r");
782 break;
783 case STATE_TEXGEN_OBJECT_Q:
784 append(dst, ".object.q");
785 break;
786 case STATE_TEXENV_COLOR:
787 append(dst, "texenv");
788 break;
789 case STATE_DEPTH_RANGE:
790 append(dst, "depth.range");
791 break;
792 case STATE_VERTEX_PROGRAM:
793 case STATE_FRAGMENT_PROGRAM:
794 break;
795 case STATE_ENV:
796 append(dst, "env");
797 break;
798 case STATE_LOCAL:
799 append(dst, "local");
800 break;
801 /* BEGIN internal state vars */
802 case STATE_INTERNAL:
803 append(dst, "(internal)");
804 break;
805 case STATE_NORMAL_SCALE:
806 append(dst, "normalScale");
807 break;
808 case STATE_TEXRECT_SCALE:
809 append(dst, "texrectScale");
810 break;
811 case STATE_FOG_PARAMS_OPTIMIZED:
812 append(dst, "fogParamsOptimized");
813 break;
814 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
815 append(dst, "lightSpotDirNormalized");
816 break;
817 case STATE_LIGHT_POSITION:
818 append(dst, "lightPosition");
819 break;
820 case STATE_LIGHT_POSITION_NORMALIZED:
821 append(dst, "light.position.normalized");
822 break;
823 case STATE_LIGHT_HALF_VECTOR:
824 append(dst, "lightHalfVector");
825 break;
826 case STATE_PT_SCALE:
827 append(dst, "PTscale");
828 break;
829 case STATE_PT_BIAS:
830 append(dst, "PTbias");
831 break;
832 case STATE_PCM_SCALE:
833 append(dst, "PCMscale");
834 break;
835 case STATE_PCM_BIAS:
836 append(dst, "PCMbias");
837 break;
838 case STATE_SHADOW_AMBIENT:
839 append(dst, "CompareFailValue");
840 break;
841 case STATE_FB_SIZE:
842 append(dst, "FbSize");
843 break;
844 case STATE_ROT_MATRIX_0:
845 append(dst, "rotMatrixRow0");
846 break;
847 case STATE_ROT_MATRIX_1:
848 append(dst, "rotMatrixRow1");
849 break;
850 default:
851 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
852 append(dst, "driverState");
853 }
854 }
855
856 static void
857 append_face(char *dst, GLint face)
858 {
859 if (face == 0)
860 append(dst, "front.");
861 else
862 append(dst, "back.");
863 }
864
865 static void
866 append_index(char *dst, GLint index)
867 {
868 char s[20];
869 _mesa_sprintf(s, "[%d]", index);
870 append(dst, s);
871 }
872
873 /**
874 * Make a string from the given state vector.
875 * For example, return "state.matrix.texture[2].inverse".
876 * Use _mesa_free() to deallocate the string.
877 */
878 char *
879 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
880 {
881 char str[1000] = "";
882 char tmp[30];
883
884 append(str, "state.");
885 append_token(str, state[0]);
886
887 switch (state[0]) {
888 case STATE_MATERIAL:
889 append_face(str, state[1]);
890 append_token(str, state[2]);
891 break;
892 case STATE_LIGHT:
893 append_index(str, state[1]); /* light number [i]. */
894 append_token(str, state[2]); /* coefficients */
895 break;
896 case STATE_LIGHTMODEL_AMBIENT:
897 append(str, "lightmodel.ambient");
898 break;
899 case STATE_LIGHTMODEL_SCENECOLOR:
900 if (state[1] == 0) {
901 append(str, "lightmodel.front.scenecolor");
902 }
903 else {
904 append(str, "lightmodel.back.scenecolor");
905 }
906 break;
907 case STATE_LIGHTPROD:
908 append_index(str, state[1]); /* light number [i]. */
909 append_face(str, state[2]);
910 append_token(str, state[3]);
911 break;
912 case STATE_TEXGEN:
913 append_index(str, state[1]); /* tex unit [i] */
914 append_token(str, state[2]); /* plane coef */
915 break;
916 case STATE_TEXENV_COLOR:
917 append_index(str, state[1]); /* tex unit [i] */
918 append(str, "color");
919 break;
920 case STATE_CLIPPLANE:
921 append_index(str, state[1]); /* plane [i] */
922 append(str, ".plane");
923 break;
924 case STATE_MODELVIEW_MATRIX:
925 case STATE_PROJECTION_MATRIX:
926 case STATE_MVP_MATRIX:
927 case STATE_TEXTURE_MATRIX:
928 case STATE_PROGRAM_MATRIX:
929 case STATE_COLOR_MATRIX:
930 {
931 /* state[0] = modelview, projection, texture, etc. */
932 /* state[1] = which texture matrix or program matrix */
933 /* state[2] = first row to fetch */
934 /* state[3] = last row to fetch */
935 /* state[4] = transpose, inverse or invtrans */
936 const gl_state_index mat = state[0];
937 const GLuint index = (GLuint) state[1];
938 const GLuint firstRow = (GLuint) state[2];
939 const GLuint lastRow = (GLuint) state[3];
940 const gl_state_index modifier = state[4];
941 if (index ||
942 mat == STATE_TEXTURE_MATRIX ||
943 mat == STATE_PROGRAM_MATRIX)
944 append_index(str, index);
945 if (modifier)
946 append_token(str, modifier);
947 if (firstRow == lastRow)
948 _mesa_sprintf(tmp, ".row[%d]", firstRow);
949 else
950 _mesa_sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
951 append(str, tmp);
952 }
953 break;
954 case STATE_POINT_SIZE:
955 break;
956 case STATE_POINT_ATTENUATION:
957 break;
958 case STATE_FOG_PARAMS:
959 break;
960 case STATE_FOG_COLOR:
961 break;
962 case STATE_DEPTH_RANGE:
963 break;
964 case STATE_FRAGMENT_PROGRAM:
965 case STATE_VERTEX_PROGRAM:
966 /* state[1] = {STATE_ENV, STATE_LOCAL} */
967 /* state[2] = parameter index */
968 append_token(str, state[1]);
969 append_index(str, state[2]);
970 break;
971 case STATE_INTERNAL:
972 append_token(str, state[1]);
973 break;
974 default:
975 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
976 break;
977 }
978
979 return _mesa_strdup(str);
980 }
981
982
983 /**
984 * Loop over all the parameters in a parameter list. If the parameter
985 * is a GL state reference, look up the current value of that state
986 * variable and put it into the parameter's Value[4] array.
987 * This would be called at glBegin time when using a fragment program.
988 */
989 void
990 _mesa_load_state_parameters(GLcontext *ctx,
991 struct gl_program_parameter_list *paramList)
992 {
993 GLuint i;
994
995 if (!paramList)
996 return;
997
998 /*assert(ctx->Driver.NeedFlush == 0);*/
999
1000 for (i = 0; i < paramList->NumParameters; i++) {
1001 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1002 _mesa_fetch_state(ctx,
1003 (gl_state_index *) paramList->Parameters[i].StateIndexes,
1004 paramList->ParameterValues[i]);
1005 }
1006 }
1007 }
1008
1009
1010 /**
1011 * Copy the 16 elements of a matrix into four consecutive program
1012 * registers starting at 'pos'.
1013 */
1014 static void
1015 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
1016 {
1017 GLuint i;
1018 for (i = 0; i < 4; i++) {
1019 registers[pos + i][0] = mat[0 + i];
1020 registers[pos + i][1] = mat[4 + i];
1021 registers[pos + i][2] = mat[8 + i];
1022 registers[pos + i][3] = mat[12 + i];
1023 }
1024 }
1025
1026
1027 /**
1028 * As above, but transpose the matrix.
1029 */
1030 static void
1031 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
1032 const GLfloat mat[16])
1033 {
1034 MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
1035 }
1036
1037
1038 /**
1039 * Load current vertex program's parameter registers with tracked
1040 * matrices (if NV program). This only needs to be done per
1041 * glBegin/glEnd, not per-vertex.
1042 */
1043 void
1044 _mesa_load_tracked_matrices(GLcontext *ctx)
1045 {
1046 GLuint i;
1047
1048 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
1049 /* point 'mat' at source matrix */
1050 GLmatrix *mat;
1051 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
1052 mat = ctx->ModelviewMatrixStack.Top;
1053 }
1054 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
1055 mat = ctx->ProjectionMatrixStack.Top;
1056 }
1057 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
1058 mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
1059 }
1060 else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
1061 mat = ctx->ColorMatrixStack.Top;
1062 }
1063 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
1064 /* XXX verify the combined matrix is up to date */
1065 mat = &ctx->_ModelProjectMatrix;
1066 }
1067 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
1068 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
1069 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
1070 ASSERT(n < MAX_PROGRAM_MATRICES);
1071 mat = ctx->ProgramMatrixStack[n].Top;
1072 }
1073 else {
1074 /* no matrix is tracked, but we leave the register values as-is */
1075 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
1076 continue;
1077 }
1078
1079 /* load the matrix values into sequential registers */
1080 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
1081 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1082 }
1083 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
1084 _math_matrix_analyse(mat); /* update the inverse */
1085 ASSERT(!_math_matrix_is_dirty(mat));
1086 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1087 }
1088 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
1089 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1090 }
1091 else {
1092 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1093 == GL_INVERSE_TRANSPOSE_NV);
1094 _math_matrix_analyse(mat); /* update the inverse */
1095 ASSERT(!_math_matrix_is_dirty(mat));
1096 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1097 }
1098 }
1099 }