mesa: move fixed function vertex program builder from tnl to core mesa
[mesa.git] / src / mesa / shader / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/hash.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/mtypes.h"
38 #include "prog_statevars.h"
39 #include "prog_parameter.h"
40 #include "nvvertparse.h"
41
42
43 /**
44 * Use the list of tokens in the state[] array to find global GL state
45 * and return it in <value>. Usually, four values are returned in <value>
46 * but matrix queries may return as many as 16 values.
47 * This function is used for ARB vertex/fragment programs.
48 * The program parser will produce the state[] values.
49 */
50 static void
51 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
52 GLfloat *value)
53 {
54 switch (state[0]) {
55 case STATE_MATERIAL:
56 {
57 /* state[1] is either 0=front or 1=back side */
58 const GLuint face = (GLuint) state[1];
59 const struct gl_material *mat = &ctx->Light.Material;
60 ASSERT(face == 0 || face == 1);
61 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
62 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
63 /* XXX we could get rid of this switch entirely with a little
64 * work in arbprogparse.c's parse_state_single_item().
65 */
66 /* state[2] is the material attribute */
67 switch (state[2]) {
68 case STATE_AMBIENT:
69 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
70 return;
71 case STATE_DIFFUSE:
72 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
73 return;
74 case STATE_SPECULAR:
75 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
76 return;
77 case STATE_EMISSION:
78 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
79 return;
80 case STATE_SHININESS:
81 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
82 value[1] = 0.0F;
83 value[2] = 0.0F;
84 value[3] = 1.0F;
85 return;
86 default:
87 _mesa_problem(ctx, "Invalid material state in fetch_state");
88 return;
89 }
90 }
91 case STATE_LIGHT:
92 {
93 /* state[1] is the light number */
94 const GLuint ln = (GLuint) state[1];
95 /* state[2] is the light attribute */
96 switch (state[2]) {
97 case STATE_AMBIENT:
98 COPY_4V(value, ctx->Light.Light[ln].Ambient);
99 return;
100 case STATE_DIFFUSE:
101 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
102 return;
103 case STATE_SPECULAR:
104 COPY_4V(value, ctx->Light.Light[ln].Specular);
105 return;
106 case STATE_POSITION:
107 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
108 return;
109 case STATE_ATTENUATION:
110 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
111 value[1] = ctx->Light.Light[ln].LinearAttenuation;
112 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
113 value[3] = ctx->Light.Light[ln].SpotExponent;
114 return;
115 case STATE_SPOT_DIRECTION:
116 COPY_3V(value, ctx->Light.Light[ln].EyeDirection);
117 value[3] = ctx->Light.Light[ln]._CosCutoff;
118 return;
119 case STATE_SPOT_CUTOFF:
120 value[0] = ctx->Light.Light[ln].SpotCutoff;
121 return;
122 case STATE_HALF_VECTOR:
123 {
124 static const GLfloat eye_z[] = {0, 0, 1};
125 GLfloat p[3];
126 /* Compute infinite half angle vector:
127 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
128 * light.EyePosition.w should be 0 for infinite lights.
129 */
130 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
131 NORMALIZE_3FV(p);
132 ADD_3V(value, p, eye_z);
133 NORMALIZE_3FV(value);
134 value[3] = 1.0;
135 }
136 return;
137 default:
138 _mesa_problem(ctx, "Invalid light state in fetch_state");
139 return;
140 }
141 }
142 case STATE_LIGHTMODEL_AMBIENT:
143 COPY_4V(value, ctx->Light.Model.Ambient);
144 return;
145 case STATE_LIGHTMODEL_SCENECOLOR:
146 if (state[1] == 0) {
147 /* front */
148 GLint i;
149 for (i = 0; i < 3; i++) {
150 value[i] = ctx->Light.Model.Ambient[i]
151 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
152 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
153 }
154 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
155 }
156 else {
157 /* back */
158 GLint i;
159 for (i = 0; i < 3; i++) {
160 value[i] = ctx->Light.Model.Ambient[i]
161 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
162 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
163 }
164 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
165 }
166 return;
167 case STATE_LIGHTPROD:
168 {
169 const GLuint ln = (GLuint) state[1];
170 const GLuint face = (GLuint) state[2];
171 GLint i;
172 ASSERT(face == 0 || face == 1);
173 switch (state[3]) {
174 case STATE_AMBIENT:
175 for (i = 0; i < 3; i++) {
176 value[i] = ctx->Light.Light[ln].Ambient[i] *
177 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
178 }
179 /* [3] = material alpha */
180 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
181 return;
182 case STATE_DIFFUSE:
183 for (i = 0; i < 3; i++) {
184 value[i] = ctx->Light.Light[ln].Diffuse[i] *
185 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
186 }
187 /* [3] = material alpha */
188 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
189 return;
190 case STATE_SPECULAR:
191 for (i = 0; i < 3; i++) {
192 value[i] = ctx->Light.Light[ln].Specular[i] *
193 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
194 }
195 /* [3] = material alpha */
196 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
197 return;
198 default:
199 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
200 return;
201 }
202 }
203 case STATE_TEXGEN:
204 {
205 /* state[1] is the texture unit */
206 const GLuint unit = (GLuint) state[1];
207 /* state[2] is the texgen attribute */
208 switch (state[2]) {
209 case STATE_TEXGEN_EYE_S:
210 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneS);
211 return;
212 case STATE_TEXGEN_EYE_T:
213 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneT);
214 return;
215 case STATE_TEXGEN_EYE_R:
216 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneR);
217 return;
218 case STATE_TEXGEN_EYE_Q:
219 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneQ);
220 return;
221 case STATE_TEXGEN_OBJECT_S:
222 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneS);
223 return;
224 case STATE_TEXGEN_OBJECT_T:
225 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneT);
226 return;
227 case STATE_TEXGEN_OBJECT_R:
228 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneR);
229 return;
230 case STATE_TEXGEN_OBJECT_Q:
231 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneQ);
232 return;
233 default:
234 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
235 return;
236 }
237 }
238 case STATE_TEXENV_COLOR:
239 {
240 /* state[1] is the texture unit */
241 const GLuint unit = (GLuint) state[1];
242 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
243 }
244 return;
245 case STATE_FOG_COLOR:
246 COPY_4V(value, ctx->Fog.Color);
247 return;
248 case STATE_FOG_PARAMS:
249 value[0] = ctx->Fog.Density;
250 value[1] = ctx->Fog.Start;
251 value[2] = ctx->Fog.End;
252 value[3] = (ctx->Fog.End == ctx->Fog.Start)
253 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
254 return;
255 case STATE_CLIPPLANE:
256 {
257 const GLuint plane = (GLuint) state[1];
258 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
259 }
260 return;
261 case STATE_POINT_SIZE:
262 value[0] = ctx->Point.Size;
263 value[1] = ctx->Point.MinSize;
264 value[2] = ctx->Point.MaxSize;
265 value[3] = ctx->Point.Threshold;
266 return;
267 case STATE_POINT_ATTENUATION:
268 value[0] = ctx->Point.Params[0];
269 value[1] = ctx->Point.Params[1];
270 value[2] = ctx->Point.Params[2];
271 value[3] = 1.0F;
272 return;
273 case STATE_MODELVIEW_MATRIX:
274 case STATE_PROJECTION_MATRIX:
275 case STATE_MVP_MATRIX:
276 case STATE_TEXTURE_MATRIX:
277 case STATE_PROGRAM_MATRIX:
278 case STATE_COLOR_MATRIX:
279 {
280 /* state[0] = modelview, projection, texture, etc. */
281 /* state[1] = which texture matrix or program matrix */
282 /* state[2] = first row to fetch */
283 /* state[3] = last row to fetch */
284 /* state[4] = transpose, inverse or invtrans */
285 const GLmatrix *matrix;
286 const gl_state_index mat = state[0];
287 const GLuint index = (GLuint) state[1];
288 const GLuint firstRow = (GLuint) state[2];
289 const GLuint lastRow = (GLuint) state[3];
290 const gl_state_index modifier = state[4];
291 const GLfloat *m;
292 GLuint row, i;
293 ASSERT(firstRow >= 0);
294 ASSERT(firstRow < 4);
295 ASSERT(lastRow >= 0);
296 ASSERT(lastRow < 4);
297 if (mat == STATE_MODELVIEW_MATRIX) {
298 matrix = ctx->ModelviewMatrixStack.Top;
299 }
300 else if (mat == STATE_PROJECTION_MATRIX) {
301 matrix = ctx->ProjectionMatrixStack.Top;
302 }
303 else if (mat == STATE_MVP_MATRIX) {
304 matrix = &ctx->_ModelProjectMatrix;
305 }
306 else if (mat == STATE_TEXTURE_MATRIX) {
307 matrix = ctx->TextureMatrixStack[index].Top;
308 }
309 else if (mat == STATE_PROGRAM_MATRIX) {
310 matrix = ctx->ProgramMatrixStack[index].Top;
311 }
312 else if (mat == STATE_COLOR_MATRIX) {
313 matrix = ctx->ColorMatrixStack.Top;
314 }
315 else {
316 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
317 return;
318 }
319 if (modifier == STATE_MATRIX_INVERSE ||
320 modifier == STATE_MATRIX_INVTRANS) {
321 /* Be sure inverse is up to date:
322 */
323 _math_matrix_alloc_inv( (GLmatrix *) matrix );
324 _math_matrix_analyse( (GLmatrix*) matrix );
325 m = matrix->inv;
326 }
327 else {
328 m = matrix->m;
329 }
330 if (modifier == STATE_MATRIX_TRANSPOSE ||
331 modifier == STATE_MATRIX_INVTRANS) {
332 for (i = 0, row = firstRow; row <= lastRow; row++) {
333 value[i++] = m[row * 4 + 0];
334 value[i++] = m[row * 4 + 1];
335 value[i++] = m[row * 4 + 2];
336 value[i++] = m[row * 4 + 3];
337 }
338 }
339 else {
340 for (i = 0, row = firstRow; row <= lastRow; row++) {
341 value[i++] = m[row + 0];
342 value[i++] = m[row + 4];
343 value[i++] = m[row + 8];
344 value[i++] = m[row + 12];
345 }
346 }
347 }
348 return;
349 case STATE_DEPTH_RANGE:
350 value[0] = ctx->Viewport.Near; /* near */
351 value[1] = ctx->Viewport.Far; /* far */
352 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
353 value[3] = 1.0;
354 return;
355 case STATE_FRAGMENT_PROGRAM:
356 {
357 /* state[1] = {STATE_ENV, STATE_LOCAL} */
358 /* state[2] = parameter index */
359 const int idx = (int) state[2];
360 switch (state[1]) {
361 case STATE_ENV:
362 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
363 break;
364 case STATE_LOCAL:
365 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
366 break;
367 default:
368 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
369 return;
370 }
371 }
372 return;
373
374 case STATE_VERTEX_PROGRAM:
375 {
376 /* state[1] = {STATE_ENV, STATE_LOCAL} */
377 /* state[2] = parameter index */
378 const int idx = (int) state[2];
379 switch (state[1]) {
380 case STATE_ENV:
381 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
382 break;
383 case STATE_LOCAL:
384 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
385 break;
386 default:
387 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
388 return;
389 }
390 }
391 return;
392
393 case STATE_NORMAL_SCALE:
394 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
395 return;
396
397 case STATE_INTERNAL:
398 switch (state[1]) {
399 case STATE_NORMAL_SCALE:
400 ASSIGN_4V(value,
401 ctx->_ModelViewInvScale,
402 ctx->_ModelViewInvScale,
403 ctx->_ModelViewInvScale,
404 1);
405 return;
406 case STATE_TEXRECT_SCALE:
407 {
408 const int unit = (int) state[2];
409 const struct gl_texture_object *texObj
410 = ctx->Texture.Unit[unit]._Current;
411 if (texObj) {
412 struct gl_texture_image *texImage = texObj->Image[0][0];
413 ASSIGN_4V(value, (GLfloat) (1.0 / texImage->Width),
414 (GLfloat)(1.0 / texImage->Height),
415 0.0f, 1.0f);
416 }
417 }
418 return;
419 case STATE_FOG_PARAMS_OPTIMIZED:
420 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
421 * might be more expensive than EX2 on some hw, plus it needs
422 * another constant (e) anyway. Linear fog can now be done with a
423 * single MAD.
424 * linear: fogcoord * -1/(end-start) + end/(end-start)
425 * exp: 2^-(density/ln(2) * fogcoord)
426 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
427 */
428 value[0] = (ctx->Fog.End == ctx->Fog.Start)
429 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
430 value[1] = ctx->Fog.End * -value[0];
431 value[2] = ctx->Fog.Density * ONE_DIV_LN2;
432 value[3] = ctx->Fog.Density * ONE_DIV_SQRT_LN2;
433 return;
434
435 case STATE_LIGHT_SPOT_DIR_NORMALIZED: {
436 /* here, state[2] is the light number */
437 /* pre-normalize spot dir */
438 const GLuint ln = (GLuint) state[2];
439 COPY_3V(value, ctx->Light.Light[ln]._NormDirection);
440 value[3] = ctx->Light.Light[ln]._CosCutoff;
441 return;
442 }
443
444 case STATE_LIGHT_POSITION: {
445 const GLuint ln = (GLuint) state[2];
446 COPY_4V(value, ctx->Light.Light[ln]._Position);
447 return;
448 }
449
450 case STATE_LIGHT_POSITION_NORMALIZED: {
451 const GLuint ln = (GLuint) state[2];
452 COPY_4V(value, ctx->Light.Light[ln]._Position);
453 NORMALIZE_3FV( value );
454 return;
455 }
456
457 case STATE_LIGHT_HALF_VECTOR: {
458 const GLuint ln = (GLuint) state[2];
459 GLfloat p[3];
460 /* Compute infinite half angle vector:
461 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
462 * light.EyePosition.w should be 0 for infinite lights.
463 */
464 COPY_3V(p, ctx->Light.Light[ln]._Position);
465 NORMALIZE_3FV(p);
466 ADD_3V(value, p, ctx->_EyeZDir);
467 NORMALIZE_3FV(value);
468 value[3] = 1.0;
469 return;
470 }
471
472
473 case STATE_PT_SCALE:
474 value[0] = ctx->Pixel.RedScale;
475 value[1] = ctx->Pixel.GreenScale;
476 value[2] = ctx->Pixel.BlueScale;
477 value[3] = ctx->Pixel.AlphaScale;
478 break;
479 case STATE_PT_BIAS:
480 value[0] = ctx->Pixel.RedBias;
481 value[1] = ctx->Pixel.GreenBias;
482 value[2] = ctx->Pixel.BlueBias;
483 value[3] = ctx->Pixel.AlphaBias;
484 break;
485 case STATE_PCM_SCALE:
486 COPY_4V(value, ctx->Pixel.PostColorMatrixScale);
487 break;
488 case STATE_PCM_BIAS:
489 COPY_4V(value, ctx->Pixel.PostColorMatrixBias);
490 break;
491 case STATE_SHADOW_AMBIENT:
492 {
493 const int unit = (int) state[2];
494 const struct gl_texture_object *texObj
495 = ctx->Texture.Unit[unit]._Current;
496 if (texObj) {
497 value[0] = texObj->ShadowAmbient;
498 value[1] = texObj->ShadowAmbient;
499 value[2] = texObj->ShadowAmbient;
500 value[3] = texObj->ShadowAmbient;
501 }
502 }
503 return;
504
505 default:
506 /* unknown state indexes are silently ignored
507 * should be handled by the driver.
508 */
509 return;
510 }
511 return;
512
513 default:
514 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
515 return;
516 }
517 }
518
519
520 /**
521 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
522 * indicate that the given context state may have changed.
523 * The bitmask is used during validation to determine if we need to update
524 * vertex/fragment program parameters (like "state.material.color") when
525 * some GL state has changed.
526 */
527 GLbitfield
528 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
529 {
530 switch (state[0]) {
531 case STATE_MATERIAL:
532 case STATE_LIGHT:
533 case STATE_LIGHTMODEL_AMBIENT:
534 case STATE_LIGHTMODEL_SCENECOLOR:
535 case STATE_LIGHTPROD:
536 return _NEW_LIGHT;
537
538 case STATE_TEXGEN:
539 case STATE_TEXENV_COLOR:
540 return _NEW_TEXTURE;
541
542 case STATE_FOG_COLOR:
543 case STATE_FOG_PARAMS:
544 return _NEW_FOG;
545
546 case STATE_CLIPPLANE:
547 return _NEW_TRANSFORM;
548
549 case STATE_POINT_SIZE:
550 case STATE_POINT_ATTENUATION:
551 return _NEW_POINT;
552
553 case STATE_MODELVIEW_MATRIX:
554 return _NEW_MODELVIEW;
555 case STATE_PROJECTION_MATRIX:
556 return _NEW_PROJECTION;
557 case STATE_MVP_MATRIX:
558 return _NEW_MODELVIEW | _NEW_PROJECTION;
559 case STATE_TEXTURE_MATRIX:
560 return _NEW_TEXTURE_MATRIX;
561 case STATE_PROGRAM_MATRIX:
562 return _NEW_TRACK_MATRIX;
563 case STATE_COLOR_MATRIX:
564 return _NEW_COLOR_MATRIX;
565
566 case STATE_DEPTH_RANGE:
567 return _NEW_VIEWPORT;
568
569 case STATE_FRAGMENT_PROGRAM:
570 case STATE_VERTEX_PROGRAM:
571 return _NEW_PROGRAM;
572
573 case STATE_NORMAL_SCALE:
574 return _NEW_MODELVIEW;
575
576 case STATE_INTERNAL:
577 switch (state[1]) {
578 case STATE_TEXRECT_SCALE:
579 case STATE_SHADOW_AMBIENT:
580 return _NEW_TEXTURE;
581 case STATE_FOG_PARAMS_OPTIMIZED:
582 return _NEW_FOG;
583 default:
584 /* unknown state indexes are silently ignored and
585 * no flag set, since it is handled by the driver.
586 */
587 return 0;
588 }
589
590 default:
591 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
592 return 0;
593 }
594 }
595
596
597 static void
598 append(char *dst, const char *src)
599 {
600 while (*dst)
601 dst++;
602 while (*src)
603 *dst++ = *src++;
604 *dst = 0;
605 }
606
607
608 static void
609 append_token(char *dst, gl_state_index k)
610 {
611 switch (k) {
612 case STATE_MATERIAL:
613 append(dst, "material");
614 break;
615 case STATE_LIGHT:
616 append(dst, "light");
617 break;
618 case STATE_LIGHTMODEL_AMBIENT:
619 append(dst, "lightmodel.ambient");
620 break;
621 case STATE_LIGHTMODEL_SCENECOLOR:
622 break;
623 case STATE_LIGHTPROD:
624 append(dst, "lightprod");
625 break;
626 case STATE_TEXGEN:
627 append(dst, "texgen");
628 break;
629 case STATE_FOG_COLOR:
630 append(dst, "fog.color");
631 break;
632 case STATE_FOG_PARAMS:
633 append(dst, "fog.params");
634 break;
635 case STATE_CLIPPLANE:
636 append(dst, "clip");
637 break;
638 case STATE_POINT_SIZE:
639 append(dst, "point.size");
640 break;
641 case STATE_POINT_ATTENUATION:
642 append(dst, "point.attenuation");
643 break;
644 case STATE_MODELVIEW_MATRIX:
645 append(dst, "matrix.modelview");
646 break;
647 case STATE_PROJECTION_MATRIX:
648 append(dst, "matrix.projection");
649 break;
650 case STATE_MVP_MATRIX:
651 append(dst, "matrix.mvp");
652 break;
653 case STATE_TEXTURE_MATRIX:
654 append(dst, "matrix.texture");
655 break;
656 case STATE_PROGRAM_MATRIX:
657 append(dst, "matrix.program");
658 break;
659 case STATE_COLOR_MATRIX:
660 append(dst, "matrix.color");
661 break;
662 case STATE_MATRIX_INVERSE:
663 append(dst, ".inverse");
664 break;
665 case STATE_MATRIX_TRANSPOSE:
666 append(dst, ".transpose");
667 break;
668 case STATE_MATRIX_INVTRANS:
669 append(dst, ".invtrans");
670 break;
671 case STATE_AMBIENT:
672 append(dst, ".ambient");
673 break;
674 case STATE_DIFFUSE:
675 append(dst, ".diffuse");
676 break;
677 case STATE_SPECULAR:
678 append(dst, ".specular");
679 break;
680 case STATE_EMISSION:
681 append(dst, ".emission");
682 break;
683 case STATE_SHININESS:
684 append(dst, "lshininess");
685 break;
686 case STATE_HALF_VECTOR:
687 append(dst, ".half");
688 break;
689 case STATE_POSITION:
690 append(dst, ".position");
691 break;
692 case STATE_ATTENUATION:
693 append(dst, ".attenuation");
694 break;
695 case STATE_SPOT_DIRECTION:
696 append(dst, ".spot.direction");
697 break;
698 case STATE_SPOT_CUTOFF:
699 append(dst, ".spot.cutoff");
700 break;
701 case STATE_TEXGEN_EYE_S:
702 append(dst, "eye.s");
703 break;
704 case STATE_TEXGEN_EYE_T:
705 append(dst, "eye.t");
706 break;
707 case STATE_TEXGEN_EYE_R:
708 append(dst, "eye.r");
709 break;
710 case STATE_TEXGEN_EYE_Q:
711 append(dst, "eye.q");
712 break;
713 case STATE_TEXGEN_OBJECT_S:
714 append(dst, "object.s");
715 break;
716 case STATE_TEXGEN_OBJECT_T:
717 append(dst, "object.t");
718 break;
719 case STATE_TEXGEN_OBJECT_R:
720 append(dst, "object.r");
721 break;
722 case STATE_TEXGEN_OBJECT_Q:
723 append(dst, "object.q");
724 break;
725 case STATE_TEXENV_COLOR:
726 append(dst, "texenv");
727 break;
728 case STATE_DEPTH_RANGE:
729 append(dst, "depth.range");
730 break;
731 case STATE_VERTEX_PROGRAM:
732 case STATE_FRAGMENT_PROGRAM:
733 break;
734 case STATE_ENV:
735 append(dst, "env");
736 break;
737 case STATE_LOCAL:
738 append(dst, "local");
739 break;
740 case STATE_NORMAL_SCALE:
741 append(dst, "normalScale");
742 break;
743 case STATE_INTERNAL:
744 append(dst, "(internal)");
745 break;
746 case STATE_PT_SCALE:
747 append(dst, "PTscale");
748 break;
749 case STATE_PT_BIAS:
750 append(dst, "PTbias");
751 break;
752 case STATE_PCM_SCALE:
753 append(dst, "PCMscale");
754 break;
755 case STATE_PCM_BIAS:
756 append(dst, "PCMbias");
757 break;
758 case STATE_SHADOW_AMBIENT:
759 append(dst, "ShadowAmbient");
760 break;
761 default:
762 ;
763 }
764 }
765
766 static void
767 append_face(char *dst, GLint face)
768 {
769 if (face == 0)
770 append(dst, "front.");
771 else
772 append(dst, "back.");
773 }
774
775 static void
776 append_index(char *dst, GLint index)
777 {
778 char s[20];
779 _mesa_sprintf(s, "[%d]", index);
780 append(dst, s);
781 }
782
783 /**
784 * Make a string from the given state vector.
785 * For example, return "state.matrix.texture[2].inverse".
786 * Use _mesa_free() to deallocate the string.
787 */
788 const char *
789 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
790 {
791 char str[1000] = "";
792 char tmp[30];
793
794 append(str, "state.");
795 append_token(str, (gl_state_index) state[0]);
796
797 switch (state[0]) {
798 case STATE_MATERIAL:
799 append_face(str, state[1]);
800 append_token(str, (gl_state_index) state[2]);
801 break;
802 case STATE_LIGHT:
803 append_index(str, state[1]); /* light number [i]. */
804 append_token(str, (gl_state_index) state[2]); /* coefficients */
805 break;
806 case STATE_LIGHTMODEL_AMBIENT:
807 append(str, "lightmodel.ambient");
808 break;
809 case STATE_LIGHTMODEL_SCENECOLOR:
810 if (state[1] == 0) {
811 append(str, "lightmodel.front.scenecolor");
812 }
813 else {
814 append(str, "lightmodel.back.scenecolor");
815 }
816 break;
817 case STATE_LIGHTPROD:
818 append_index(str, state[1]); /* light number [i]. */
819 append_face(str, state[2]);
820 append_token(str, (gl_state_index) state[3]);
821 break;
822 case STATE_TEXGEN:
823 append_index(str, state[1]); /* tex unit [i] */
824 append_token(str, (gl_state_index) state[2]); /* plane coef */
825 break;
826 case STATE_TEXENV_COLOR:
827 append_index(str, state[1]); /* tex unit [i] */
828 append(str, "color");
829 break;
830 case STATE_CLIPPLANE:
831 append_index(str, state[1]); /* plane [i] */
832 append(str, ".plane");
833 break;
834 case STATE_MODELVIEW_MATRIX:
835 case STATE_PROJECTION_MATRIX:
836 case STATE_MVP_MATRIX:
837 case STATE_TEXTURE_MATRIX:
838 case STATE_PROGRAM_MATRIX:
839 case STATE_COLOR_MATRIX:
840 {
841 /* state[0] = modelview, projection, texture, etc. */
842 /* state[1] = which texture matrix or program matrix */
843 /* state[2] = first row to fetch */
844 /* state[3] = last row to fetch */
845 /* state[4] = transpose, inverse or invtrans */
846 const gl_state_index mat = (gl_state_index) state[0];
847 const GLuint index = (GLuint) state[1];
848 const GLuint firstRow = (GLuint) state[2];
849 const GLuint lastRow = (GLuint) state[3];
850 const gl_state_index modifier = (gl_state_index) state[4];
851 if (index ||
852 mat == STATE_TEXTURE_MATRIX ||
853 mat == STATE_PROGRAM_MATRIX)
854 append_index(str, index);
855 if (modifier)
856 append_token(str, modifier);
857 if (firstRow == lastRow)
858 _mesa_sprintf(tmp, ".row[%d]", firstRow);
859 else
860 _mesa_sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
861 append(str, tmp);
862 }
863 break;
864 case STATE_POINT_SIZE:
865 break;
866 case STATE_POINT_ATTENUATION:
867 break;
868 case STATE_FOG_PARAMS:
869 break;
870 case STATE_FOG_COLOR:
871 break;
872 case STATE_DEPTH_RANGE:
873 break;
874 case STATE_FRAGMENT_PROGRAM:
875 case STATE_VERTEX_PROGRAM:
876 /* state[1] = {STATE_ENV, STATE_LOCAL} */
877 /* state[2] = parameter index */
878 append_token(str, (gl_state_index) state[1]);
879 append_index(str, state[2]);
880 break;
881 case STATE_INTERNAL:
882 break;
883 default:
884 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
885 break;
886 }
887
888 return _mesa_strdup(str);
889 }
890
891
892 /**
893 * Loop over all the parameters in a parameter list. If the parameter
894 * is a GL state reference, look up the current value of that state
895 * variable and put it into the parameter's Value[4] array.
896 * This would be called at glBegin time when using a fragment program.
897 */
898 void
899 _mesa_load_state_parameters(GLcontext *ctx,
900 struct gl_program_parameter_list *paramList)
901 {
902 GLuint i;
903
904 if (!paramList)
905 return;
906
907 /*assert(ctx->Driver.NeedFlush == 0);*/
908
909 for (i = 0; i < paramList->NumParameters; i++) {
910 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
911 _mesa_fetch_state(ctx,
912 (gl_state_index *) paramList->Parameters[i].StateIndexes,
913 paramList->ParameterValues[i]);
914 }
915 }
916 }
917
918
919 /**
920 * Copy the 16 elements of a matrix into four consecutive program
921 * registers starting at 'pos'.
922 */
923 static void
924 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
925 {
926 GLuint i;
927 for (i = 0; i < 4; i++) {
928 registers[pos + i][0] = mat[0 + i];
929 registers[pos + i][1] = mat[4 + i];
930 registers[pos + i][2] = mat[8 + i];
931 registers[pos + i][3] = mat[12 + i];
932 }
933 }
934
935
936 /**
937 * As above, but transpose the matrix.
938 */
939 static void
940 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
941 const GLfloat mat[16])
942 {
943 MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
944 }
945
946
947 /**
948 * Load current vertex program's parameter registers with tracked
949 * matrices (if NV program). This only needs to be done per
950 * glBegin/glEnd, not per-vertex.
951 */
952 void
953 _mesa_load_tracked_matrices(GLcontext *ctx)
954 {
955 GLuint i;
956
957 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
958 /* point 'mat' at source matrix */
959 GLmatrix *mat;
960 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
961 mat = ctx->ModelviewMatrixStack.Top;
962 }
963 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
964 mat = ctx->ProjectionMatrixStack.Top;
965 }
966 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
967 mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
968 }
969 else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
970 mat = ctx->ColorMatrixStack.Top;
971 }
972 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
973 /* XXX verify the combined matrix is up to date */
974 mat = &ctx->_ModelProjectMatrix;
975 }
976 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
977 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
978 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
979 ASSERT(n < MAX_PROGRAM_MATRICES);
980 mat = ctx->ProgramMatrixStack[n].Top;
981 }
982 else {
983 /* no matrix is tracked, but we leave the register values as-is */
984 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
985 continue;
986 }
987
988 /* load the matrix values into sequential registers */
989 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
990 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
991 }
992 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
993 _math_matrix_analyse(mat); /* update the inverse */
994 ASSERT(!_math_matrix_is_dirty(mat));
995 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
996 }
997 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
998 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
999 }
1000 else {
1001 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1002 == GL_INVERSE_TRANSPOSE_NV);
1003 _math_matrix_analyse(mat); /* update the inverse */
1004 ASSERT(!_math_matrix_is_dirty(mat));
1005 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1006 }
1007 }
1008 }