mesa: clean up formatting and use 'return' instead of 'break' consistantly
[mesa.git] / src / mesa / shader / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/hash.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/mtypes.h"
38 #include "prog_statevars.h"
39 #include "prog_parameter.h"
40
41
42 /**
43 * Use the list of tokens in the state[] array to find global GL state
44 * and return it in <value>. Usually, four values are returned in <value>
45 * but matrix queries may return as many as 16 values.
46 * This function is used for ARB vertex/fragment programs.
47 * The program parser will produce the state[] values.
48 */
49 static void
50 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
51 GLfloat *value)
52 {
53 switch (state[0]) {
54 case STATE_MATERIAL:
55 {
56 /* state[1] is either 0=front or 1=back side */
57 const GLuint face = (GLuint) state[1];
58 const struct gl_material *mat = &ctx->Light.Material;
59 ASSERT(face == 0 || face == 1);
60 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
61 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
62 /* XXX we could get rid of this switch entirely with a little
63 * work in arbprogparse.c's parse_state_single_item().
64 */
65 /* state[2] is the material attribute */
66 switch (state[2]) {
67 case STATE_AMBIENT:
68 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
69 return;
70 case STATE_DIFFUSE:
71 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
72 return;
73 case STATE_SPECULAR:
74 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
75 return;
76 case STATE_EMISSION:
77 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
78 return;
79 case STATE_SHININESS:
80 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
81 value[1] = 0.0F;
82 value[2] = 0.0F;
83 value[3] = 1.0F;
84 return;
85 default:
86 _mesa_problem(ctx, "Invalid material state in fetch_state");
87 return;
88 }
89 }
90 case STATE_LIGHT:
91 {
92 /* state[1] is the light number */
93 const GLuint ln = (GLuint) state[1];
94 /* state[2] is the light attribute */
95 switch (state[2]) {
96 case STATE_AMBIENT:
97 COPY_4V(value, ctx->Light.Light[ln].Ambient);
98 return;
99 case STATE_DIFFUSE:
100 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
101 return;
102 case STATE_SPECULAR:
103 COPY_4V(value, ctx->Light.Light[ln].Specular);
104 return;
105 case STATE_POSITION:
106 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
107 return;
108 case STATE_ATTENUATION:
109 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
110 value[1] = ctx->Light.Light[ln].LinearAttenuation;
111 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
112 value[3] = ctx->Light.Light[ln].SpotExponent;
113 return;
114 case STATE_SPOT_DIRECTION:
115 COPY_3V(value, ctx->Light.Light[ln].EyeDirection);
116 value[3] = ctx->Light.Light[ln]._CosCutoff;
117 return;
118 case STATE_SPOT_CUTOFF:
119 value[0] = ctx->Light.Light[ln].SpotCutoff;
120 return;
121 case STATE_HALF_VECTOR:
122 {
123 static const GLfloat eye_z[] = {0, 0, 1};
124 GLfloat p[3];
125 /* Compute infinite half angle vector:
126 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
127 * light.EyePosition.w should be 0 for infinite lights.
128 */
129 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
130 NORMALIZE_3FV(p);
131 ADD_3V(value, p, eye_z);
132 NORMALIZE_3FV(value);
133 value[3] = 1.0;
134 }
135 return;
136 default:
137 _mesa_problem(ctx, "Invalid light state in fetch_state");
138 return;
139 }
140 }
141 case STATE_LIGHTMODEL_AMBIENT:
142 COPY_4V(value, ctx->Light.Model.Ambient);
143 return;
144 case STATE_LIGHTMODEL_SCENECOLOR:
145 if (state[1] == 0) {
146 /* front */
147 GLint i;
148 for (i = 0; i < 3; i++) {
149 value[i] = ctx->Light.Model.Ambient[i]
150 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
151 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
152 }
153 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
154 }
155 else {
156 /* back */
157 GLint i;
158 for (i = 0; i < 3; i++) {
159 value[i] = ctx->Light.Model.Ambient[i]
160 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
161 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
162 }
163 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
164 }
165 return;
166 case STATE_LIGHTPROD:
167 {
168 const GLuint ln = (GLuint) state[1];
169 const GLuint face = (GLuint) state[2];
170 GLint i;
171 ASSERT(face == 0 || face == 1);
172 switch (state[3]) {
173 case STATE_AMBIENT:
174 for (i = 0; i < 3; i++) {
175 value[i] = ctx->Light.Light[ln].Ambient[i] *
176 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
177 }
178 /* [3] = material alpha */
179 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
180 return;
181 case STATE_DIFFUSE:
182 for (i = 0; i < 3; i++) {
183 value[i] = ctx->Light.Light[ln].Diffuse[i] *
184 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
185 }
186 /* [3] = material alpha */
187 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
188 return;
189 case STATE_SPECULAR:
190 for (i = 0; i < 3; i++) {
191 value[i] = ctx->Light.Light[ln].Specular[i] *
192 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
193 }
194 /* [3] = material alpha */
195 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
196 return;
197 default:
198 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
199 return;
200 }
201 }
202 case STATE_TEXGEN:
203 {
204 /* state[1] is the texture unit */
205 const GLuint unit = (GLuint) state[1];
206 /* state[2] is the texgen attribute */
207 switch (state[2]) {
208 case STATE_TEXGEN_EYE_S:
209 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
210 return;
211 case STATE_TEXGEN_EYE_T:
212 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
213 return;
214 case STATE_TEXGEN_EYE_R:
215 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
216 return;
217 case STATE_TEXGEN_EYE_Q:
218 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
219 return;
220 case STATE_TEXGEN_OBJECT_S:
221 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
222 return;
223 case STATE_TEXGEN_OBJECT_T:
224 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
225 return;
226 case STATE_TEXGEN_OBJECT_R:
227 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
228 return;
229 case STATE_TEXGEN_OBJECT_Q:
230 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
231 return;
232 default:
233 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
234 return;
235 }
236 }
237 case STATE_TEXENV_COLOR:
238 {
239 /* state[1] is the texture unit */
240 const GLuint unit = (GLuint) state[1];
241 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
242 }
243 return;
244 case STATE_FOG_COLOR:
245 COPY_4V(value, ctx->Fog.Color);
246 return;
247 case STATE_FOG_PARAMS:
248 value[0] = ctx->Fog.Density;
249 value[1] = ctx->Fog.Start;
250 value[2] = ctx->Fog.End;
251 value[3] = (ctx->Fog.End == ctx->Fog.Start)
252 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
253 return;
254 case STATE_CLIPPLANE:
255 {
256 const GLuint plane = (GLuint) state[1];
257 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
258 }
259 return;
260 case STATE_POINT_SIZE:
261 value[0] = ctx->Point.Size;
262 value[1] = ctx->Point.MinSize;
263 value[2] = ctx->Point.MaxSize;
264 value[3] = ctx->Point.Threshold;
265 return;
266 case STATE_POINT_ATTENUATION:
267 value[0] = ctx->Point.Params[0];
268 value[1] = ctx->Point.Params[1];
269 value[2] = ctx->Point.Params[2];
270 value[3] = 1.0F;
271 return;
272 case STATE_MODELVIEW_MATRIX:
273 case STATE_PROJECTION_MATRIX:
274 case STATE_MVP_MATRIX:
275 case STATE_TEXTURE_MATRIX:
276 case STATE_PROGRAM_MATRIX:
277 case STATE_COLOR_MATRIX:
278 {
279 /* state[0] = modelview, projection, texture, etc. */
280 /* state[1] = which texture matrix or program matrix */
281 /* state[2] = first row to fetch */
282 /* state[3] = last row to fetch */
283 /* state[4] = transpose, inverse or invtrans */
284 const GLmatrix *matrix;
285 const gl_state_index mat = state[0];
286 const GLuint index = (GLuint) state[1];
287 const GLuint firstRow = (GLuint) state[2];
288 const GLuint lastRow = (GLuint) state[3];
289 const gl_state_index modifier = state[4];
290 const GLfloat *m;
291 GLuint row, i;
292 ASSERT(firstRow >= 0);
293 ASSERT(firstRow < 4);
294 ASSERT(lastRow >= 0);
295 ASSERT(lastRow < 4);
296 if (mat == STATE_MODELVIEW_MATRIX) {
297 matrix = ctx->ModelviewMatrixStack.Top;
298 }
299 else if (mat == STATE_PROJECTION_MATRIX) {
300 matrix = ctx->ProjectionMatrixStack.Top;
301 }
302 else if (mat == STATE_MVP_MATRIX) {
303 matrix = &ctx->_ModelProjectMatrix;
304 }
305 else if (mat == STATE_TEXTURE_MATRIX) {
306 matrix = ctx->TextureMatrixStack[index].Top;
307 }
308 else if (mat == STATE_PROGRAM_MATRIX) {
309 matrix = ctx->ProgramMatrixStack[index].Top;
310 }
311 else if (mat == STATE_COLOR_MATRIX) {
312 matrix = ctx->ColorMatrixStack.Top;
313 }
314 else {
315 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
316 return;
317 }
318 if (modifier == STATE_MATRIX_INVERSE ||
319 modifier == STATE_MATRIX_INVTRANS) {
320 /* Be sure inverse is up to date:
321 */
322 _math_matrix_alloc_inv( (GLmatrix *) matrix );
323 _math_matrix_analyse( (GLmatrix*) matrix );
324 m = matrix->inv;
325 }
326 else {
327 m = matrix->m;
328 }
329 if (modifier == STATE_MATRIX_TRANSPOSE ||
330 modifier == STATE_MATRIX_INVTRANS) {
331 for (i = 0, row = firstRow; row <= lastRow; row++) {
332 value[i++] = m[row * 4 + 0];
333 value[i++] = m[row * 4 + 1];
334 value[i++] = m[row * 4 + 2];
335 value[i++] = m[row * 4 + 3];
336 }
337 }
338 else {
339 for (i = 0, row = firstRow; row <= lastRow; row++) {
340 value[i++] = m[row + 0];
341 value[i++] = m[row + 4];
342 value[i++] = m[row + 8];
343 value[i++] = m[row + 12];
344 }
345 }
346 }
347 return;
348 case STATE_DEPTH_RANGE:
349 value[0] = ctx->Viewport.Near; /* near */
350 value[1] = ctx->Viewport.Far; /* far */
351 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
352 value[3] = 1.0;
353 return;
354 case STATE_FRAGMENT_PROGRAM:
355 {
356 /* state[1] = {STATE_ENV, STATE_LOCAL} */
357 /* state[2] = parameter index */
358 const int idx = (int) state[2];
359 switch (state[1]) {
360 case STATE_ENV:
361 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
362 return;
363 case STATE_LOCAL:
364 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
365 return;
366 default:
367 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
368 return;
369 }
370 }
371 return;
372
373 case STATE_VERTEX_PROGRAM:
374 {
375 /* state[1] = {STATE_ENV, STATE_LOCAL} */
376 /* state[2] = parameter index */
377 const int idx = (int) state[2];
378 switch (state[1]) {
379 case STATE_ENV:
380 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
381 return;
382 case STATE_LOCAL:
383 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
384 return;
385 default:
386 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
387 return;
388 }
389 }
390 return;
391
392 case STATE_NORMAL_SCALE:
393 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
394 return;
395
396 case STATE_INTERNAL:
397 switch (state[1]) {
398 case STATE_CURRENT_ATTRIB:
399 {
400 const GLuint idx = (GLuint) state[2];
401 COPY_4V(value, ctx->Current.Attrib[idx]);
402 }
403 return;
404
405 case STATE_NORMAL_SCALE:
406 ASSIGN_4V(value,
407 ctx->_ModelViewInvScale,
408 ctx->_ModelViewInvScale,
409 ctx->_ModelViewInvScale,
410 1);
411 return;
412
413 case STATE_TEXRECT_SCALE:
414 /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
415 * Used to convert unnormalized texcoords to normalized texcoords.
416 */
417 {
418 const int unit = (int) state[2];
419 const struct gl_texture_object *texObj
420 = ctx->Texture.Unit[unit]._Current;
421 if (texObj) {
422 struct gl_texture_image *texImage = texObj->Image[0][0];
423 ASSIGN_4V(value,
424 (GLfloat) (1.0 / texImage->Width),
425 (GLfloat) (1.0 / texImage->Height),
426 0.0f, 1.0f);
427 }
428 }
429 return;
430
431 case STATE_FOG_PARAMS_OPTIMIZED:
432 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
433 * might be more expensive than EX2 on some hw, plus it needs
434 * another constant (e) anyway. Linear fog can now be done with a
435 * single MAD.
436 * linear: fogcoord * -1/(end-start) + end/(end-start)
437 * exp: 2^-(density/ln(2) * fogcoord)
438 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
439 */
440 value[0] = (ctx->Fog.End == ctx->Fog.Start)
441 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
442 value[1] = ctx->Fog.End * -value[0];
443 value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
444 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
445 return;
446
447 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
448 {
449 /* here, state[2] is the light number */
450 /* pre-normalize spot dir */
451 const GLuint ln = (GLuint) state[2];
452 COPY_3V(value, ctx->Light.Light[ln]._NormDirection);
453 value[3] = ctx->Light.Light[ln]._CosCutoff;
454 }
455 return;
456
457 case STATE_LIGHT_POSITION:
458 {
459 const GLuint ln = (GLuint) state[2];
460 COPY_4V(value, ctx->Light.Light[ln]._Position);
461 }
462 return;
463
464 case STATE_LIGHT_POSITION_NORMALIZED:
465 {
466 const GLuint ln = (GLuint) state[2];
467 COPY_4V(value, ctx->Light.Light[ln]._Position);
468 NORMALIZE_3FV( value );
469 }
470 return;
471
472 case STATE_LIGHT_HALF_VECTOR:
473 {
474 const GLuint ln = (GLuint) state[2];
475 GLfloat p[3];
476 /* Compute infinite half angle vector:
477 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
478 * light.EyePosition.w should be 0 for infinite lights.
479 */
480 COPY_3V(p, ctx->Light.Light[ln]._Position);
481 NORMALIZE_3FV(p);
482 ADD_3V(value, p, ctx->_EyeZDir);
483 NORMALIZE_3FV(value);
484 value[3] = 1.0;
485 }
486 return;
487
488 case STATE_PT_SCALE:
489 value[0] = ctx->Pixel.RedScale;
490 value[1] = ctx->Pixel.GreenScale;
491 value[2] = ctx->Pixel.BlueScale;
492 value[3] = ctx->Pixel.AlphaScale;
493 return;
494
495 case STATE_PT_BIAS:
496 value[0] = ctx->Pixel.RedBias;
497 value[1] = ctx->Pixel.GreenBias;
498 value[2] = ctx->Pixel.BlueBias;
499 value[3] = ctx->Pixel.AlphaBias;
500 return;
501
502 case STATE_PCM_SCALE:
503 COPY_4V(value, ctx->Pixel.PostColorMatrixScale);
504 return;
505
506 case STATE_PCM_BIAS:
507 COPY_4V(value, ctx->Pixel.PostColorMatrixBias);
508 return;
509
510 case STATE_SHADOW_AMBIENT:
511 {
512 const int unit = (int) state[2];
513 const struct gl_texture_object *texObj
514 = ctx->Texture.Unit[unit]._Current;
515 if (texObj) {
516 value[0] =
517 value[1] =
518 value[2] =
519 value[3] = texObj->CompareFailValue;
520 }
521 }
522 return;
523
524 case STATE_FB_SIZE:
525 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
526 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
527 value[2] = 0.0F;
528 value[3] = 0.0F;
529 return;
530
531 case STATE_ROT_MATRIX_0:
532 {
533 const int unit = (int) state[2];
534 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
535 value[0] = rotMat22[0];
536 value[1] = rotMat22[2];
537 value[2] = 0.0;
538 value[3] = 0.0;
539 }
540 return;
541
542 case STATE_ROT_MATRIX_1:
543 {
544 const int unit = (int) state[2];
545 GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
546 value[0] = rotMat22[1];
547 value[1] = rotMat22[3];
548 value[2] = 0.0;
549 value[3] = 0.0;
550 }
551 return;
552
553 /* XXX: make sure new tokens added here are also handled in the
554 * _mesa_program_state_flags() switch, below.
555 */
556 default:
557 /* Unknown state indexes are silently ignored here.
558 * Drivers may do something special.
559 */
560 return;
561 }
562 return;
563
564 default:
565 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
566 return;
567 }
568 }
569
570
571 /**
572 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
573 * indicate that the given context state may have changed.
574 * The bitmask is used during validation to determine if we need to update
575 * vertex/fragment program parameters (like "state.material.color") when
576 * some GL state has changed.
577 */
578 GLbitfield
579 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
580 {
581 switch (state[0]) {
582 case STATE_MATERIAL:
583 case STATE_LIGHT:
584 case STATE_LIGHTMODEL_AMBIENT:
585 case STATE_LIGHTMODEL_SCENECOLOR:
586 case STATE_LIGHTPROD:
587 return _NEW_LIGHT;
588
589 case STATE_TEXGEN:
590 case STATE_TEXENV_COLOR:
591 return _NEW_TEXTURE;
592
593 case STATE_FOG_COLOR:
594 case STATE_FOG_PARAMS:
595 return _NEW_FOG;
596
597 case STATE_CLIPPLANE:
598 return _NEW_TRANSFORM;
599
600 case STATE_POINT_SIZE:
601 case STATE_POINT_ATTENUATION:
602 return _NEW_POINT;
603
604 case STATE_MODELVIEW_MATRIX:
605 return _NEW_MODELVIEW;
606 case STATE_PROJECTION_MATRIX:
607 return _NEW_PROJECTION;
608 case STATE_MVP_MATRIX:
609 return _NEW_MODELVIEW | _NEW_PROJECTION;
610 case STATE_TEXTURE_MATRIX:
611 return _NEW_TEXTURE_MATRIX;
612 case STATE_PROGRAM_MATRIX:
613 return _NEW_TRACK_MATRIX;
614 case STATE_COLOR_MATRIX:
615 return _NEW_COLOR_MATRIX;
616
617 case STATE_DEPTH_RANGE:
618 return _NEW_VIEWPORT;
619
620 case STATE_FRAGMENT_PROGRAM:
621 case STATE_VERTEX_PROGRAM:
622 return _NEW_PROGRAM;
623
624 case STATE_NORMAL_SCALE:
625 return _NEW_MODELVIEW;
626
627 case STATE_INTERNAL:
628 switch (state[1]) {
629 case STATE_CURRENT_ATTRIB:
630 return _NEW_CURRENT_ATTRIB;
631
632 case STATE_NORMAL_SCALE:
633 return _NEW_MODELVIEW;
634
635 case STATE_TEXRECT_SCALE:
636 case STATE_SHADOW_AMBIENT:
637 case STATE_ROT_MATRIX_0:
638 case STATE_ROT_MATRIX_1:
639 return _NEW_TEXTURE;
640 case STATE_FOG_PARAMS_OPTIMIZED:
641 return _NEW_FOG;
642 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
643 case STATE_LIGHT_POSITION:
644 case STATE_LIGHT_POSITION_NORMALIZED:
645 case STATE_LIGHT_HALF_VECTOR:
646 return _NEW_LIGHT;
647
648 case STATE_PT_SCALE:
649 case STATE_PT_BIAS:
650 case STATE_PCM_SCALE:
651 case STATE_PCM_BIAS:
652 return _NEW_PIXEL;
653
654 case STATE_FB_SIZE:
655 return _NEW_BUFFERS;
656
657 default:
658 /* unknown state indexes are silently ignored and
659 * no flag set, since it is handled by the driver.
660 */
661 return 0;
662 }
663
664 default:
665 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
666 return 0;
667 }
668 }
669
670
671 static void
672 append(char *dst, const char *src)
673 {
674 while (*dst)
675 dst++;
676 while (*src)
677 *dst++ = *src++;
678 *dst = 0;
679 }
680
681
682 /**
683 * Convert token 'k' to a string, append it onto 'dst' string.
684 */
685 static void
686 append_token(char *dst, gl_state_index k)
687 {
688 switch (k) {
689 case STATE_MATERIAL:
690 append(dst, "material");
691 break;
692 case STATE_LIGHT:
693 append(dst, "light");
694 break;
695 case STATE_LIGHTMODEL_AMBIENT:
696 append(dst, "lightmodel.ambient");
697 break;
698 case STATE_LIGHTMODEL_SCENECOLOR:
699 break;
700 case STATE_LIGHTPROD:
701 append(dst, "lightprod");
702 break;
703 case STATE_TEXGEN:
704 append(dst, "texgen");
705 break;
706 case STATE_FOG_COLOR:
707 append(dst, "fog.color");
708 break;
709 case STATE_FOG_PARAMS:
710 append(dst, "fog.params");
711 break;
712 case STATE_CLIPPLANE:
713 append(dst, "clip");
714 break;
715 case STATE_POINT_SIZE:
716 append(dst, "point.size");
717 break;
718 case STATE_POINT_ATTENUATION:
719 append(dst, "point.attenuation");
720 break;
721 case STATE_MODELVIEW_MATRIX:
722 append(dst, "matrix.modelview");
723 break;
724 case STATE_PROJECTION_MATRIX:
725 append(dst, "matrix.projection");
726 break;
727 case STATE_MVP_MATRIX:
728 append(dst, "matrix.mvp");
729 break;
730 case STATE_TEXTURE_MATRIX:
731 append(dst, "matrix.texture");
732 break;
733 case STATE_PROGRAM_MATRIX:
734 append(dst, "matrix.program");
735 break;
736 case STATE_COLOR_MATRIX:
737 append(dst, "matrix.color");
738 break;
739 case STATE_MATRIX_INVERSE:
740 append(dst, ".inverse");
741 break;
742 case STATE_MATRIX_TRANSPOSE:
743 append(dst, ".transpose");
744 break;
745 case STATE_MATRIX_INVTRANS:
746 append(dst, ".invtrans");
747 break;
748 case STATE_AMBIENT:
749 append(dst, ".ambient");
750 break;
751 case STATE_DIFFUSE:
752 append(dst, ".diffuse");
753 break;
754 case STATE_SPECULAR:
755 append(dst, ".specular");
756 break;
757 case STATE_EMISSION:
758 append(dst, ".emission");
759 break;
760 case STATE_SHININESS:
761 append(dst, "lshininess");
762 break;
763 case STATE_HALF_VECTOR:
764 append(dst, ".half");
765 break;
766 case STATE_POSITION:
767 append(dst, ".position");
768 break;
769 case STATE_ATTENUATION:
770 append(dst, ".attenuation");
771 break;
772 case STATE_SPOT_DIRECTION:
773 append(dst, ".spot.direction");
774 break;
775 case STATE_SPOT_CUTOFF:
776 append(dst, ".spot.cutoff");
777 break;
778 case STATE_TEXGEN_EYE_S:
779 append(dst, ".eye.s");
780 break;
781 case STATE_TEXGEN_EYE_T:
782 append(dst, ".eye.t");
783 break;
784 case STATE_TEXGEN_EYE_R:
785 append(dst, ".eye.r");
786 break;
787 case STATE_TEXGEN_EYE_Q:
788 append(dst, ".eye.q");
789 break;
790 case STATE_TEXGEN_OBJECT_S:
791 append(dst, ".object.s");
792 break;
793 case STATE_TEXGEN_OBJECT_T:
794 append(dst, ".object.t");
795 break;
796 case STATE_TEXGEN_OBJECT_R:
797 append(dst, ".object.r");
798 break;
799 case STATE_TEXGEN_OBJECT_Q:
800 append(dst, ".object.q");
801 break;
802 case STATE_TEXENV_COLOR:
803 append(dst, "texenv");
804 break;
805 case STATE_DEPTH_RANGE:
806 append(dst, "depth.range");
807 break;
808 case STATE_VERTEX_PROGRAM:
809 case STATE_FRAGMENT_PROGRAM:
810 break;
811 case STATE_ENV:
812 append(dst, "env");
813 break;
814 case STATE_LOCAL:
815 append(dst, "local");
816 break;
817 /* BEGIN internal state vars */
818 case STATE_INTERNAL:
819 append(dst, "(internal)");
820 break;
821 case STATE_NORMAL_SCALE:
822 append(dst, "normalScale");
823 break;
824 case STATE_TEXRECT_SCALE:
825 append(dst, "texrectScale");
826 break;
827 case STATE_FOG_PARAMS_OPTIMIZED:
828 append(dst, "fogParamsOptimized");
829 break;
830 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
831 append(dst, "lightSpotDirNormalized");
832 break;
833 case STATE_LIGHT_POSITION:
834 append(dst, "lightPosition");
835 break;
836 case STATE_LIGHT_POSITION_NORMALIZED:
837 append(dst, "light.position.normalized");
838 break;
839 case STATE_LIGHT_HALF_VECTOR:
840 append(dst, "lightHalfVector");
841 break;
842 case STATE_PT_SCALE:
843 append(dst, "PTscale");
844 break;
845 case STATE_PT_BIAS:
846 append(dst, "PTbias");
847 break;
848 case STATE_PCM_SCALE:
849 append(dst, "PCMscale");
850 break;
851 case STATE_PCM_BIAS:
852 append(dst, "PCMbias");
853 break;
854 case STATE_SHADOW_AMBIENT:
855 append(dst, "CompareFailValue");
856 break;
857 case STATE_FB_SIZE:
858 append(dst, "FbSize");
859 break;
860 case STATE_ROT_MATRIX_0:
861 append(dst, "rotMatrixRow0");
862 break;
863 case STATE_ROT_MATRIX_1:
864 append(dst, "rotMatrixRow1");
865 break;
866 default:
867 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
868 append(dst, "driverState");
869 }
870 }
871
872 static void
873 append_face(char *dst, GLint face)
874 {
875 if (face == 0)
876 append(dst, "front.");
877 else
878 append(dst, "back.");
879 }
880
881 static void
882 append_index(char *dst, GLint index)
883 {
884 char s[20];
885 _mesa_sprintf(s, "[%d]", index);
886 append(dst, s);
887 }
888
889 /**
890 * Make a string from the given state vector.
891 * For example, return "state.matrix.texture[2].inverse".
892 * Use _mesa_free() to deallocate the string.
893 */
894 char *
895 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
896 {
897 char str[1000] = "";
898 char tmp[30];
899
900 append(str, "state.");
901 append_token(str, state[0]);
902
903 switch (state[0]) {
904 case STATE_MATERIAL:
905 append_face(str, state[1]);
906 append_token(str, state[2]);
907 break;
908 case STATE_LIGHT:
909 append_index(str, state[1]); /* light number [i]. */
910 append_token(str, state[2]); /* coefficients */
911 break;
912 case STATE_LIGHTMODEL_AMBIENT:
913 append(str, "lightmodel.ambient");
914 break;
915 case STATE_LIGHTMODEL_SCENECOLOR:
916 if (state[1] == 0) {
917 append(str, "lightmodel.front.scenecolor");
918 }
919 else {
920 append(str, "lightmodel.back.scenecolor");
921 }
922 break;
923 case STATE_LIGHTPROD:
924 append_index(str, state[1]); /* light number [i]. */
925 append_face(str, state[2]);
926 append_token(str, state[3]);
927 break;
928 case STATE_TEXGEN:
929 append_index(str, state[1]); /* tex unit [i] */
930 append_token(str, state[2]); /* plane coef */
931 break;
932 case STATE_TEXENV_COLOR:
933 append_index(str, state[1]); /* tex unit [i] */
934 append(str, "color");
935 break;
936 case STATE_CLIPPLANE:
937 append_index(str, state[1]); /* plane [i] */
938 append(str, ".plane");
939 break;
940 case STATE_MODELVIEW_MATRIX:
941 case STATE_PROJECTION_MATRIX:
942 case STATE_MVP_MATRIX:
943 case STATE_TEXTURE_MATRIX:
944 case STATE_PROGRAM_MATRIX:
945 case STATE_COLOR_MATRIX:
946 {
947 /* state[0] = modelview, projection, texture, etc. */
948 /* state[1] = which texture matrix or program matrix */
949 /* state[2] = first row to fetch */
950 /* state[3] = last row to fetch */
951 /* state[4] = transpose, inverse or invtrans */
952 const gl_state_index mat = state[0];
953 const GLuint index = (GLuint) state[1];
954 const GLuint firstRow = (GLuint) state[2];
955 const GLuint lastRow = (GLuint) state[3];
956 const gl_state_index modifier = state[4];
957 if (index ||
958 mat == STATE_TEXTURE_MATRIX ||
959 mat == STATE_PROGRAM_MATRIX)
960 append_index(str, index);
961 if (modifier)
962 append_token(str, modifier);
963 if (firstRow == lastRow)
964 _mesa_sprintf(tmp, ".row[%d]", firstRow);
965 else
966 _mesa_sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
967 append(str, tmp);
968 }
969 break;
970 case STATE_POINT_SIZE:
971 break;
972 case STATE_POINT_ATTENUATION:
973 break;
974 case STATE_FOG_PARAMS:
975 break;
976 case STATE_FOG_COLOR:
977 break;
978 case STATE_DEPTH_RANGE:
979 break;
980 case STATE_FRAGMENT_PROGRAM:
981 case STATE_VERTEX_PROGRAM:
982 /* state[1] = {STATE_ENV, STATE_LOCAL} */
983 /* state[2] = parameter index */
984 append_token(str, state[1]);
985 append_index(str, state[2]);
986 break;
987 case STATE_INTERNAL:
988 append_token(str, state[1]);
989 break;
990 default:
991 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
992 break;
993 }
994
995 return _mesa_strdup(str);
996 }
997
998
999 /**
1000 * Loop over all the parameters in a parameter list. If the parameter
1001 * is a GL state reference, look up the current value of that state
1002 * variable and put it into the parameter's Value[4] array.
1003 * This would be called at glBegin time when using a fragment program.
1004 */
1005 void
1006 _mesa_load_state_parameters(GLcontext *ctx,
1007 struct gl_program_parameter_list *paramList)
1008 {
1009 GLuint i;
1010
1011 if (!paramList)
1012 return;
1013
1014 /*assert(ctx->Driver.NeedFlush == 0);*/
1015
1016 for (i = 0; i < paramList->NumParameters; i++) {
1017 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1018 _mesa_fetch_state(ctx,
1019 (gl_state_index *) paramList->Parameters[i].StateIndexes,
1020 paramList->ParameterValues[i]);
1021 }
1022 }
1023 }
1024
1025
1026 /**
1027 * Copy the 16 elements of a matrix into four consecutive program
1028 * registers starting at 'pos'.
1029 */
1030 static void
1031 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
1032 {
1033 GLuint i;
1034 for (i = 0; i < 4; i++) {
1035 registers[pos + i][0] = mat[0 + i];
1036 registers[pos + i][1] = mat[4 + i];
1037 registers[pos + i][2] = mat[8 + i];
1038 registers[pos + i][3] = mat[12 + i];
1039 }
1040 }
1041
1042
1043 /**
1044 * As above, but transpose the matrix.
1045 */
1046 static void
1047 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
1048 const GLfloat mat[16])
1049 {
1050 MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
1051 }
1052
1053
1054 /**
1055 * Load current vertex program's parameter registers with tracked
1056 * matrices (if NV program). This only needs to be done per
1057 * glBegin/glEnd, not per-vertex.
1058 */
1059 void
1060 _mesa_load_tracked_matrices(GLcontext *ctx)
1061 {
1062 GLuint i;
1063
1064 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
1065 /* point 'mat' at source matrix */
1066 GLmatrix *mat;
1067 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
1068 mat = ctx->ModelviewMatrixStack.Top;
1069 }
1070 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
1071 mat = ctx->ProjectionMatrixStack.Top;
1072 }
1073 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
1074 mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
1075 }
1076 else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
1077 mat = ctx->ColorMatrixStack.Top;
1078 }
1079 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
1080 /* XXX verify the combined matrix is up to date */
1081 mat = &ctx->_ModelProjectMatrix;
1082 }
1083 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
1084 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
1085 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
1086 ASSERT(n < MAX_PROGRAM_MATRICES);
1087 mat = ctx->ProgramMatrixStack[n].Top;
1088 }
1089 else {
1090 /* no matrix is tracked, but we leave the register values as-is */
1091 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
1092 continue;
1093 }
1094
1095 /* load the matrix values into sequential registers */
1096 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
1097 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1098 }
1099 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
1100 _math_matrix_analyse(mat); /* update the inverse */
1101 ASSERT(!_math_matrix_is_dirty(mat));
1102 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1103 }
1104 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
1105 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1106 }
1107 else {
1108 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1109 == GL_INVERSE_TRANSPOSE_NV);
1110 _math_matrix_analyse(mat); /* update the inverse */
1111 ASSERT(!_math_matrix_is_dirty(mat));
1112 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1113 }
1114 }
1115 }