Merge commit 'origin/master' into HEAD
[mesa.git] / src / mesa / shader / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/hash.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/mtypes.h"
38 #include "prog_statevars.h"
39 #include "prog_parameter.h"
40
41
42 /**
43 * Use the list of tokens in the state[] array to find global GL state
44 * and return it in <value>. Usually, four values are returned in <value>
45 * but matrix queries may return as many as 16 values.
46 * This function is used for ARB vertex/fragment programs.
47 * The program parser will produce the state[] values.
48 */
49 static void
50 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
51 GLfloat *value)
52 {
53 switch (state[0]) {
54 case STATE_MATERIAL:
55 {
56 /* state[1] is either 0=front or 1=back side */
57 const GLuint face = (GLuint) state[1];
58 const struct gl_material *mat = &ctx->Light.Material;
59 ASSERT(face == 0 || face == 1);
60 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
61 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
62 /* XXX we could get rid of this switch entirely with a little
63 * work in arbprogparse.c's parse_state_single_item().
64 */
65 /* state[2] is the material attribute */
66 switch (state[2]) {
67 case STATE_AMBIENT:
68 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
69 return;
70 case STATE_DIFFUSE:
71 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
72 return;
73 case STATE_SPECULAR:
74 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
75 return;
76 case STATE_EMISSION:
77 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
78 return;
79 case STATE_SHININESS:
80 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
81 value[1] = 0.0F;
82 value[2] = 0.0F;
83 value[3] = 1.0F;
84 return;
85 default:
86 _mesa_problem(ctx, "Invalid material state in fetch_state");
87 return;
88 }
89 }
90 case STATE_LIGHT:
91 {
92 /* state[1] is the light number */
93 const GLuint ln = (GLuint) state[1];
94 /* state[2] is the light attribute */
95 switch (state[2]) {
96 case STATE_AMBIENT:
97 COPY_4V(value, ctx->Light.Light[ln].Ambient);
98 return;
99 case STATE_DIFFUSE:
100 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
101 return;
102 case STATE_SPECULAR:
103 COPY_4V(value, ctx->Light.Light[ln].Specular);
104 return;
105 case STATE_POSITION:
106 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
107 return;
108 case STATE_ATTENUATION:
109 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
110 value[1] = ctx->Light.Light[ln].LinearAttenuation;
111 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
112 value[3] = ctx->Light.Light[ln].SpotExponent;
113 return;
114 case STATE_SPOT_DIRECTION:
115 COPY_3V(value, ctx->Light.Light[ln].EyeDirection);
116 value[3] = ctx->Light.Light[ln]._CosCutoff;
117 return;
118 case STATE_SPOT_CUTOFF:
119 value[0] = ctx->Light.Light[ln].SpotCutoff;
120 return;
121 case STATE_HALF_VECTOR:
122 {
123 static const GLfloat eye_z[] = {0, 0, 1};
124 GLfloat p[3];
125 /* Compute infinite half angle vector:
126 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
127 * light.EyePosition.w should be 0 for infinite lights.
128 */
129 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
130 NORMALIZE_3FV(p);
131 ADD_3V(value, p, eye_z);
132 NORMALIZE_3FV(value);
133 value[3] = 1.0;
134 }
135 return;
136 default:
137 _mesa_problem(ctx, "Invalid light state in fetch_state");
138 return;
139 }
140 }
141 case STATE_LIGHTMODEL_AMBIENT:
142 COPY_4V(value, ctx->Light.Model.Ambient);
143 return;
144 case STATE_LIGHTMODEL_SCENECOLOR:
145 if (state[1] == 0) {
146 /* front */
147 GLint i;
148 for (i = 0; i < 3; i++) {
149 value[i] = ctx->Light.Model.Ambient[i]
150 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
151 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
152 }
153 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
154 }
155 else {
156 /* back */
157 GLint i;
158 for (i = 0; i < 3; i++) {
159 value[i] = ctx->Light.Model.Ambient[i]
160 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
161 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
162 }
163 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
164 }
165 return;
166 case STATE_LIGHTPROD:
167 {
168 const GLuint ln = (GLuint) state[1];
169 const GLuint face = (GLuint) state[2];
170 GLint i;
171 ASSERT(face == 0 || face == 1);
172 switch (state[3]) {
173 case STATE_AMBIENT:
174 for (i = 0; i < 3; i++) {
175 value[i] = ctx->Light.Light[ln].Ambient[i] *
176 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
177 }
178 /* [3] = material alpha */
179 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
180 return;
181 case STATE_DIFFUSE:
182 for (i = 0; i < 3; i++) {
183 value[i] = ctx->Light.Light[ln].Diffuse[i] *
184 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
185 }
186 /* [3] = material alpha */
187 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
188 return;
189 case STATE_SPECULAR:
190 for (i = 0; i < 3; i++) {
191 value[i] = ctx->Light.Light[ln].Specular[i] *
192 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
193 }
194 /* [3] = material alpha */
195 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
196 return;
197 default:
198 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
199 return;
200 }
201 }
202 case STATE_TEXGEN:
203 {
204 /* state[1] is the texture unit */
205 const GLuint unit = (GLuint) state[1];
206 /* state[2] is the texgen attribute */
207 switch (state[2]) {
208 case STATE_TEXGEN_EYE_S:
209 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneS);
210 return;
211 case STATE_TEXGEN_EYE_T:
212 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneT);
213 return;
214 case STATE_TEXGEN_EYE_R:
215 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneR);
216 return;
217 case STATE_TEXGEN_EYE_Q:
218 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneQ);
219 return;
220 case STATE_TEXGEN_OBJECT_S:
221 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneS);
222 return;
223 case STATE_TEXGEN_OBJECT_T:
224 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneT);
225 return;
226 case STATE_TEXGEN_OBJECT_R:
227 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneR);
228 return;
229 case STATE_TEXGEN_OBJECT_Q:
230 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneQ);
231 return;
232 default:
233 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
234 return;
235 }
236 }
237 case STATE_TEXENV_COLOR:
238 {
239 /* state[1] is the texture unit */
240 const GLuint unit = (GLuint) state[1];
241 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
242 }
243 return;
244 case STATE_FOG_COLOR:
245 COPY_4V(value, ctx->Fog.Color);
246 return;
247 case STATE_FOG_PARAMS:
248 value[0] = ctx->Fog.Density;
249 value[1] = ctx->Fog.Start;
250 value[2] = ctx->Fog.End;
251 value[3] = (ctx->Fog.End == ctx->Fog.Start)
252 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
253 return;
254 case STATE_CLIPPLANE:
255 {
256 const GLuint plane = (GLuint) state[1];
257 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
258 }
259 return;
260 case STATE_POINT_SIZE:
261 value[0] = ctx->Point.Size;
262 value[1] = ctx->Point.MinSize;
263 value[2] = ctx->Point.MaxSize;
264 value[3] = ctx->Point.Threshold;
265 return;
266 case STATE_POINT_ATTENUATION:
267 value[0] = ctx->Point.Params[0];
268 value[1] = ctx->Point.Params[1];
269 value[2] = ctx->Point.Params[2];
270 value[3] = 1.0F;
271 return;
272 case STATE_MODELVIEW_MATRIX:
273 case STATE_PROJECTION_MATRIX:
274 case STATE_MVP_MATRIX:
275 case STATE_TEXTURE_MATRIX:
276 case STATE_PROGRAM_MATRIX:
277 case STATE_COLOR_MATRIX:
278 {
279 /* state[0] = modelview, projection, texture, etc. */
280 /* state[1] = which texture matrix or program matrix */
281 /* state[2] = first row to fetch */
282 /* state[3] = last row to fetch */
283 /* state[4] = transpose, inverse or invtrans */
284 const GLmatrix *matrix;
285 const gl_state_index mat = state[0];
286 const GLuint index = (GLuint) state[1];
287 const GLuint firstRow = (GLuint) state[2];
288 const GLuint lastRow = (GLuint) state[3];
289 const gl_state_index modifier = state[4];
290 const GLfloat *m;
291 GLuint row, i;
292 ASSERT(firstRow >= 0);
293 ASSERT(firstRow < 4);
294 ASSERT(lastRow >= 0);
295 ASSERT(lastRow < 4);
296 if (mat == STATE_MODELVIEW_MATRIX) {
297 matrix = ctx->ModelviewMatrixStack.Top;
298 }
299 else if (mat == STATE_PROJECTION_MATRIX) {
300 matrix = ctx->ProjectionMatrixStack.Top;
301 }
302 else if (mat == STATE_MVP_MATRIX) {
303 matrix = &ctx->_ModelProjectMatrix;
304 }
305 else if (mat == STATE_TEXTURE_MATRIX) {
306 matrix = ctx->TextureMatrixStack[index].Top;
307 }
308 else if (mat == STATE_PROGRAM_MATRIX) {
309 matrix = ctx->ProgramMatrixStack[index].Top;
310 }
311 else if (mat == STATE_COLOR_MATRIX) {
312 matrix = ctx->ColorMatrixStack.Top;
313 }
314 else {
315 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
316 return;
317 }
318 if (modifier == STATE_MATRIX_INVERSE ||
319 modifier == STATE_MATRIX_INVTRANS) {
320 /* Be sure inverse is up to date:
321 */
322 _math_matrix_alloc_inv( (GLmatrix *) matrix );
323 _math_matrix_analyse( (GLmatrix*) matrix );
324 m = matrix->inv;
325 }
326 else {
327 m = matrix->m;
328 }
329 if (modifier == STATE_MATRIX_TRANSPOSE ||
330 modifier == STATE_MATRIX_INVTRANS) {
331 for (i = 0, row = firstRow; row <= lastRow; row++) {
332 value[i++] = m[row * 4 + 0];
333 value[i++] = m[row * 4 + 1];
334 value[i++] = m[row * 4 + 2];
335 value[i++] = m[row * 4 + 3];
336 }
337 }
338 else {
339 for (i = 0, row = firstRow; row <= lastRow; row++) {
340 value[i++] = m[row + 0];
341 value[i++] = m[row + 4];
342 value[i++] = m[row + 8];
343 value[i++] = m[row + 12];
344 }
345 }
346 }
347 return;
348 case STATE_DEPTH_RANGE:
349 value[0] = ctx->Viewport.Near; /* near */
350 value[1] = ctx->Viewport.Far; /* far */
351 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
352 value[3] = 1.0;
353 return;
354 case STATE_FRAGMENT_PROGRAM:
355 {
356 /* state[1] = {STATE_ENV, STATE_LOCAL} */
357 /* state[2] = parameter index */
358 const int idx = (int) state[2];
359 switch (state[1]) {
360 case STATE_ENV:
361 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
362 break;
363 case STATE_LOCAL:
364 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
365 break;
366 default:
367 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
368 return;
369 }
370 }
371 return;
372
373 case STATE_VERTEX_PROGRAM:
374 {
375 /* state[1] = {STATE_ENV, STATE_LOCAL} */
376 /* state[2] = parameter index */
377 const int idx = (int) state[2];
378 switch (state[1]) {
379 case STATE_ENV:
380 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
381 break;
382 case STATE_LOCAL:
383 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
384 break;
385 default:
386 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
387 return;
388 }
389 }
390 return;
391
392 case STATE_NORMAL_SCALE:
393 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
394 return;
395
396 case STATE_INTERNAL:
397 switch (state[1]) {
398 case STATE_NORMAL_SCALE:
399 ASSIGN_4V(value,
400 ctx->_ModelViewInvScale,
401 ctx->_ModelViewInvScale,
402 ctx->_ModelViewInvScale,
403 1);
404 return;
405 case STATE_TEXRECT_SCALE:
406 {
407 const int unit = (int) state[2];
408 const struct gl_texture_object *texObj
409 = ctx->Texture.Unit[unit]._Current;
410 if (texObj) {
411 struct gl_texture_image *texImage = texObj->Image[0][0];
412 ASSIGN_4V(value, (GLfloat) (1.0 / texImage->Width),
413 (GLfloat)(1.0 / texImage->Height),
414 0.0f, 1.0f);
415 }
416 }
417 return;
418 case STATE_FOG_PARAMS_OPTIMIZED:
419 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
420 * might be more expensive than EX2 on some hw, plus it needs
421 * another constant (e) anyway. Linear fog can now be done with a
422 * single MAD.
423 * linear: fogcoord * -1/(end-start) + end/(end-start)
424 * exp: 2^-(density/ln(2) * fogcoord)
425 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
426 */
427 value[0] = (ctx->Fog.End == ctx->Fog.Start)
428 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
429 value[1] = ctx->Fog.End * -value[0];
430 value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
431 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
432 return;
433
434 case STATE_LIGHT_SPOT_DIR_NORMALIZED: {
435 /* here, state[2] is the light number */
436 /* pre-normalize spot dir */
437 const GLuint ln = (GLuint) state[2];
438 COPY_3V(value, ctx->Light.Light[ln]._NormDirection);
439 value[3] = ctx->Light.Light[ln]._CosCutoff;
440 return;
441 }
442
443 case STATE_LIGHT_POSITION: {
444 const GLuint ln = (GLuint) state[2];
445 COPY_4V(value, ctx->Light.Light[ln]._Position);
446 return;
447 }
448
449 case STATE_LIGHT_POSITION_NORMALIZED: {
450 const GLuint ln = (GLuint) state[2];
451 COPY_4V(value, ctx->Light.Light[ln]._Position);
452 NORMALIZE_3FV( value );
453 return;
454 }
455
456 case STATE_LIGHT_HALF_VECTOR: {
457 const GLuint ln = (GLuint) state[2];
458 GLfloat p[3];
459 /* Compute infinite half angle vector:
460 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
461 * light.EyePosition.w should be 0 for infinite lights.
462 */
463 COPY_3V(p, ctx->Light.Light[ln]._Position);
464 NORMALIZE_3FV(p);
465 ADD_3V(value, p, ctx->_EyeZDir);
466 NORMALIZE_3FV(value);
467 value[3] = 1.0;
468 return;
469 }
470
471
472 case STATE_PT_SCALE:
473 value[0] = ctx->Pixel.RedScale;
474 value[1] = ctx->Pixel.GreenScale;
475 value[2] = ctx->Pixel.BlueScale;
476 value[3] = ctx->Pixel.AlphaScale;
477 break;
478 case STATE_PT_BIAS:
479 value[0] = ctx->Pixel.RedBias;
480 value[1] = ctx->Pixel.GreenBias;
481 value[2] = ctx->Pixel.BlueBias;
482 value[3] = ctx->Pixel.AlphaBias;
483 break;
484 case STATE_PCM_SCALE:
485 COPY_4V(value, ctx->Pixel.PostColorMatrixScale);
486 break;
487 case STATE_PCM_BIAS:
488 COPY_4V(value, ctx->Pixel.PostColorMatrixBias);
489 break;
490 case STATE_SHADOW_AMBIENT:
491 {
492 const int unit = (int) state[2];
493 const struct gl_texture_object *texObj
494 = ctx->Texture.Unit[unit]._Current;
495 if (texObj) {
496 value[0] = texObj->ShadowAmbient;
497 value[1] = texObj->ShadowAmbient;
498 value[2] = texObj->ShadowAmbient;
499 value[3] = texObj->ShadowAmbient;
500 }
501 }
502 return;
503
504 default:
505 /* unknown state indexes are silently ignored
506 * should be handled by the driver.
507 */
508 return;
509 }
510 return;
511
512 default:
513 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
514 return;
515 }
516 }
517
518
519 /**
520 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
521 * indicate that the given context state may have changed.
522 * The bitmask is used during validation to determine if we need to update
523 * vertex/fragment program parameters (like "state.material.color") when
524 * some GL state has changed.
525 */
526 GLbitfield
527 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
528 {
529 switch (state[0]) {
530 case STATE_MATERIAL:
531 case STATE_LIGHT:
532 case STATE_LIGHTMODEL_AMBIENT:
533 case STATE_LIGHTMODEL_SCENECOLOR:
534 case STATE_LIGHTPROD:
535 return _NEW_LIGHT;
536
537 case STATE_TEXGEN:
538 case STATE_TEXENV_COLOR:
539 return _NEW_TEXTURE;
540
541 case STATE_FOG_COLOR:
542 case STATE_FOG_PARAMS:
543 return _NEW_FOG;
544
545 case STATE_CLIPPLANE:
546 return _NEW_TRANSFORM;
547
548 case STATE_POINT_SIZE:
549 case STATE_POINT_ATTENUATION:
550 return _NEW_POINT;
551
552 case STATE_MODELVIEW_MATRIX:
553 return _NEW_MODELVIEW;
554 case STATE_PROJECTION_MATRIX:
555 return _NEW_PROJECTION;
556 case STATE_MVP_MATRIX:
557 return _NEW_MODELVIEW | _NEW_PROJECTION;
558 case STATE_TEXTURE_MATRIX:
559 return _NEW_TEXTURE_MATRIX;
560 case STATE_PROGRAM_MATRIX:
561 return _NEW_TRACK_MATRIX;
562 case STATE_COLOR_MATRIX:
563 return _NEW_COLOR_MATRIX;
564
565 case STATE_DEPTH_RANGE:
566 return _NEW_VIEWPORT;
567
568 case STATE_FRAGMENT_PROGRAM:
569 case STATE_VERTEX_PROGRAM:
570 return _NEW_PROGRAM;
571
572 case STATE_NORMAL_SCALE:
573 return _NEW_MODELVIEW;
574
575 case STATE_INTERNAL:
576 switch (state[1]) {
577 case STATE_TEXRECT_SCALE:
578 case STATE_SHADOW_AMBIENT:
579 return _NEW_TEXTURE;
580 case STATE_FOG_PARAMS_OPTIMIZED:
581 return _NEW_FOG;
582 default:
583 /* unknown state indexes are silently ignored and
584 * no flag set, since it is handled by the driver.
585 */
586 return 0;
587 }
588
589 default:
590 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
591 return 0;
592 }
593 }
594
595
596 static void
597 append(char *dst, const char *src)
598 {
599 while (*dst)
600 dst++;
601 while (*src)
602 *dst++ = *src++;
603 *dst = 0;
604 }
605
606
607 static void
608 append_token(char *dst, gl_state_index k)
609 {
610 switch (k) {
611 case STATE_MATERIAL:
612 append(dst, "material");
613 break;
614 case STATE_LIGHT:
615 append(dst, "light");
616 break;
617 case STATE_LIGHTMODEL_AMBIENT:
618 append(dst, "lightmodel.ambient");
619 break;
620 case STATE_LIGHTMODEL_SCENECOLOR:
621 break;
622 case STATE_LIGHTPROD:
623 append(dst, "lightprod");
624 break;
625 case STATE_TEXGEN:
626 append(dst, "texgen");
627 break;
628 case STATE_FOG_COLOR:
629 append(dst, "fog.color");
630 break;
631 case STATE_FOG_PARAMS:
632 append(dst, "fog.params");
633 break;
634 case STATE_CLIPPLANE:
635 append(dst, "clip");
636 break;
637 case STATE_POINT_SIZE:
638 append(dst, "point.size");
639 break;
640 case STATE_POINT_ATTENUATION:
641 append(dst, "point.attenuation");
642 break;
643 case STATE_MODELVIEW_MATRIX:
644 append(dst, "matrix.modelview");
645 break;
646 case STATE_PROJECTION_MATRIX:
647 append(dst, "matrix.projection");
648 break;
649 case STATE_MVP_MATRIX:
650 append(dst, "matrix.mvp");
651 break;
652 case STATE_TEXTURE_MATRIX:
653 append(dst, "matrix.texture");
654 break;
655 case STATE_PROGRAM_MATRIX:
656 append(dst, "matrix.program");
657 break;
658 case STATE_COLOR_MATRIX:
659 append(dst, "matrix.color");
660 break;
661 case STATE_MATRIX_INVERSE:
662 append(dst, ".inverse");
663 break;
664 case STATE_MATRIX_TRANSPOSE:
665 append(dst, ".transpose");
666 break;
667 case STATE_MATRIX_INVTRANS:
668 append(dst, ".invtrans");
669 break;
670 case STATE_AMBIENT:
671 append(dst, ".ambient");
672 break;
673 case STATE_DIFFUSE:
674 append(dst, ".diffuse");
675 break;
676 case STATE_SPECULAR:
677 append(dst, ".specular");
678 break;
679 case STATE_EMISSION:
680 append(dst, ".emission");
681 break;
682 case STATE_SHININESS:
683 append(dst, "lshininess");
684 break;
685 case STATE_HALF_VECTOR:
686 append(dst, ".half");
687 break;
688 case STATE_POSITION:
689 append(dst, ".position");
690 break;
691 case STATE_ATTENUATION:
692 append(dst, ".attenuation");
693 break;
694 case STATE_SPOT_DIRECTION:
695 append(dst, ".spot.direction");
696 break;
697 case STATE_SPOT_CUTOFF:
698 append(dst, ".spot.cutoff");
699 break;
700 case STATE_TEXGEN_EYE_S:
701 append(dst, "eye.s");
702 break;
703 case STATE_TEXGEN_EYE_T:
704 append(dst, "eye.t");
705 break;
706 case STATE_TEXGEN_EYE_R:
707 append(dst, "eye.r");
708 break;
709 case STATE_TEXGEN_EYE_Q:
710 append(dst, "eye.q");
711 break;
712 case STATE_TEXGEN_OBJECT_S:
713 append(dst, "object.s");
714 break;
715 case STATE_TEXGEN_OBJECT_T:
716 append(dst, "object.t");
717 break;
718 case STATE_TEXGEN_OBJECT_R:
719 append(dst, "object.r");
720 break;
721 case STATE_TEXGEN_OBJECT_Q:
722 append(dst, "object.q");
723 break;
724 case STATE_TEXENV_COLOR:
725 append(dst, "texenv");
726 break;
727 case STATE_DEPTH_RANGE:
728 append(dst, "depth.range");
729 break;
730 case STATE_VERTEX_PROGRAM:
731 case STATE_FRAGMENT_PROGRAM:
732 break;
733 case STATE_ENV:
734 append(dst, "env");
735 break;
736 case STATE_LOCAL:
737 append(dst, "local");
738 break;
739 case STATE_NORMAL_SCALE:
740 append(dst, "normalScale");
741 break;
742 case STATE_INTERNAL:
743 append(dst, "(internal)");
744 break;
745 case STATE_PT_SCALE:
746 append(dst, "PTscale");
747 break;
748 case STATE_PT_BIAS:
749 append(dst, "PTbias");
750 break;
751 case STATE_PCM_SCALE:
752 append(dst, "PCMscale");
753 break;
754 case STATE_PCM_BIAS:
755 append(dst, "PCMbias");
756 break;
757 case STATE_SHADOW_AMBIENT:
758 append(dst, "ShadowAmbient");
759 break;
760 default:
761 ;
762 }
763 }
764
765 static void
766 append_face(char *dst, GLint face)
767 {
768 if (face == 0)
769 append(dst, "front.");
770 else
771 append(dst, "back.");
772 }
773
774 static void
775 append_index(char *dst, GLint index)
776 {
777 char s[20];
778 _mesa_sprintf(s, "[%d]", index);
779 append(dst, s);
780 }
781
782 /**
783 * Make a string from the given state vector.
784 * For example, return "state.matrix.texture[2].inverse".
785 * Use _mesa_free() to deallocate the string.
786 */
787 char *
788 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
789 {
790 char str[1000] = "";
791 char tmp[30];
792
793 append(str, "state.");
794 append_token(str, (gl_state_index) state[0]);
795
796 switch (state[0]) {
797 case STATE_MATERIAL:
798 append_face(str, state[1]);
799 append_token(str, (gl_state_index) state[2]);
800 break;
801 case STATE_LIGHT:
802 append_index(str, state[1]); /* light number [i]. */
803 append_token(str, (gl_state_index) state[2]); /* coefficients */
804 break;
805 case STATE_LIGHTMODEL_AMBIENT:
806 append(str, "lightmodel.ambient");
807 break;
808 case STATE_LIGHTMODEL_SCENECOLOR:
809 if (state[1] == 0) {
810 append(str, "lightmodel.front.scenecolor");
811 }
812 else {
813 append(str, "lightmodel.back.scenecolor");
814 }
815 break;
816 case STATE_LIGHTPROD:
817 append_index(str, state[1]); /* light number [i]. */
818 append_face(str, state[2]);
819 append_token(str, (gl_state_index) state[3]);
820 break;
821 case STATE_TEXGEN:
822 append_index(str, state[1]); /* tex unit [i] */
823 append_token(str, (gl_state_index) state[2]); /* plane coef */
824 break;
825 case STATE_TEXENV_COLOR:
826 append_index(str, state[1]); /* tex unit [i] */
827 append(str, "color");
828 break;
829 case STATE_CLIPPLANE:
830 append_index(str, state[1]); /* plane [i] */
831 append(str, ".plane");
832 break;
833 case STATE_MODELVIEW_MATRIX:
834 case STATE_PROJECTION_MATRIX:
835 case STATE_MVP_MATRIX:
836 case STATE_TEXTURE_MATRIX:
837 case STATE_PROGRAM_MATRIX:
838 case STATE_COLOR_MATRIX:
839 {
840 /* state[0] = modelview, projection, texture, etc. */
841 /* state[1] = which texture matrix or program matrix */
842 /* state[2] = first row to fetch */
843 /* state[3] = last row to fetch */
844 /* state[4] = transpose, inverse or invtrans */
845 const gl_state_index mat = (gl_state_index) state[0];
846 const GLuint index = (GLuint) state[1];
847 const GLuint firstRow = (GLuint) state[2];
848 const GLuint lastRow = (GLuint) state[3];
849 const gl_state_index modifier = (gl_state_index) state[4];
850 if (index ||
851 mat == STATE_TEXTURE_MATRIX ||
852 mat == STATE_PROGRAM_MATRIX)
853 append_index(str, index);
854 if (modifier)
855 append_token(str, modifier);
856 if (firstRow == lastRow)
857 _mesa_sprintf(tmp, ".row[%d]", firstRow);
858 else
859 _mesa_sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
860 append(str, tmp);
861 }
862 break;
863 case STATE_POINT_SIZE:
864 break;
865 case STATE_POINT_ATTENUATION:
866 break;
867 case STATE_FOG_PARAMS:
868 break;
869 case STATE_FOG_COLOR:
870 break;
871 case STATE_DEPTH_RANGE:
872 break;
873 case STATE_FRAGMENT_PROGRAM:
874 case STATE_VERTEX_PROGRAM:
875 /* state[1] = {STATE_ENV, STATE_LOCAL} */
876 /* state[2] = parameter index */
877 append_token(str, (gl_state_index) state[1]);
878 append_index(str, state[2]);
879 break;
880 case STATE_INTERNAL:
881 break;
882 default:
883 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
884 break;
885 }
886
887 return _mesa_strdup(str);
888 }
889
890
891 /**
892 * Loop over all the parameters in a parameter list. If the parameter
893 * is a GL state reference, look up the current value of that state
894 * variable and put it into the parameter's Value[4] array.
895 * This would be called at glBegin time when using a fragment program.
896 */
897 void
898 _mesa_load_state_parameters(GLcontext *ctx,
899 struct gl_program_parameter_list *paramList)
900 {
901 GLuint i;
902
903 if (!paramList)
904 return;
905
906 /*assert(ctx->Driver.NeedFlush == 0);*/
907
908 for (i = 0; i < paramList->NumParameters; i++) {
909 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
910 _mesa_fetch_state(ctx,
911 (gl_state_index *) paramList->Parameters[i].StateIndexes,
912 paramList->ParameterValues[i]);
913 }
914 }
915 }
916
917
918 /**
919 * Copy the 16 elements of a matrix into four consecutive program
920 * registers starting at 'pos'.
921 */
922 static void
923 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
924 {
925 GLuint i;
926 for (i = 0; i < 4; i++) {
927 registers[pos + i][0] = mat[0 + i];
928 registers[pos + i][1] = mat[4 + i];
929 registers[pos + i][2] = mat[8 + i];
930 registers[pos + i][3] = mat[12 + i];
931 }
932 }
933
934
935 /**
936 * As above, but transpose the matrix.
937 */
938 static void
939 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
940 const GLfloat mat[16])
941 {
942 MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
943 }
944
945
946 /**
947 * Load current vertex program's parameter registers with tracked
948 * matrices (if NV program). This only needs to be done per
949 * glBegin/glEnd, not per-vertex.
950 */
951 void
952 _mesa_load_tracked_matrices(GLcontext *ctx)
953 {
954 GLuint i;
955
956 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
957 /* point 'mat' at source matrix */
958 GLmatrix *mat;
959 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
960 mat = ctx->ModelviewMatrixStack.Top;
961 }
962 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
963 mat = ctx->ProjectionMatrixStack.Top;
964 }
965 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
966 mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
967 }
968 else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
969 mat = ctx->ColorMatrixStack.Top;
970 }
971 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
972 /* XXX verify the combined matrix is up to date */
973 mat = &ctx->_ModelProjectMatrix;
974 }
975 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
976 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
977 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
978 ASSERT(n < MAX_PROGRAM_MATRICES);
979 mat = ctx->ProgramMatrixStack[n].Top;
980 }
981 else {
982 /* no matrix is tracked, but we leave the register values as-is */
983 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
984 continue;
985 }
986
987 /* load the matrix values into sequential registers */
988 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
989 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
990 }
991 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
992 _math_matrix_analyse(mat); /* update the inverse */
993 ASSERT(!_math_matrix_is_dirty(mat));
994 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
995 }
996 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
997 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
998 }
999 else {
1000 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1001 == GL_INVERSE_TRANSPOSE_NV);
1002 _math_matrix_analyse(mat); /* update the inverse */
1003 ASSERT(!_math_matrix_is_dirty(mat));
1004 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1005 }
1006 }
1007 }