mesa: no longer need Writemask field in GLSL IR nodes
[mesa.git] / src / mesa / shader / slang / slang_codegen.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file slang_codegen.c
27 * Generate IR tree from AST.
28 * \author Brian Paul
29 */
30
31
32 /***
33 *** NOTES:
34 *** The new_() functions return a new instance of a simple IR node.
35 *** The gen_() functions generate larger IR trees from the simple nodes.
36 ***/
37
38
39
40 #include "main/imports.h"
41 #include "main/macros.h"
42 #include "main/mtypes.h"
43 #include "shader/program.h"
44 #include "shader/prog_instruction.h"
45 #include "shader/prog_parameter.h"
46 #include "shader/prog_print.h"
47 #include "shader/prog_statevars.h"
48 #include "slang_typeinfo.h"
49 #include "slang_codegen.h"
50 #include "slang_compile.h"
51 #include "slang_label.h"
52 #include "slang_mem.h"
53 #include "slang_simplify.h"
54 #include "slang_emit.h"
55 #include "slang_vartable.h"
56 #include "slang_ir.h"
57 #include "slang_print.h"
58
59
60 static slang_ir_node *
61 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper);
62
63
64 static GLboolean
65 is_sampler_type(const slang_fully_specified_type *t)
66 {
67 switch (t->specifier.type) {
68 case SLANG_SPEC_SAMPLER1D:
69 case SLANG_SPEC_SAMPLER2D:
70 case SLANG_SPEC_SAMPLER3D:
71 case SLANG_SPEC_SAMPLERCUBE:
72 case SLANG_SPEC_SAMPLER1DSHADOW:
73 case SLANG_SPEC_SAMPLER2DSHADOW:
74 case SLANG_SPEC_SAMPLER2DRECT:
75 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
76 return GL_TRUE;
77 default:
78 return GL_FALSE;
79 }
80 }
81
82
83 /**
84 * Return the offset (in floats or ints) of the named field within
85 * the given struct. Return -1 if field not found.
86 * If field is NULL, return the size of the struct instead.
87 */
88 static GLint
89 _slang_field_offset(const slang_type_specifier *spec, slang_atom field)
90 {
91 GLint offset = 0;
92 GLuint i;
93 for (i = 0; i < spec->_struct->fields->num_variables; i++) {
94 const slang_variable *v = spec->_struct->fields->variables[i];
95 const GLuint sz = _slang_sizeof_type_specifier(&v->type.specifier);
96 if (sz > 1) {
97 /* types larger than 1 float are register (4-float) aligned */
98 offset = (offset + 3) & ~3;
99 }
100 if (field && v->a_name == field) {
101 return offset;
102 }
103 offset += sz;
104 }
105 if (field)
106 return -1; /* field not found */
107 else
108 return offset; /* struct size */
109 }
110
111
112 /**
113 * Return the size (in floats) of the given type specifier.
114 * If the size is greater than 4, the size should be a multiple of 4
115 * so that the correct number of 4-float registers are allocated.
116 * For example, a mat3x2 is size 12 because we want to store the
117 * 3 columns in 3 float[4] registers.
118 */
119 GLuint
120 _slang_sizeof_type_specifier(const slang_type_specifier *spec)
121 {
122 GLuint sz;
123 switch (spec->type) {
124 case SLANG_SPEC_VOID:
125 sz = 0;
126 break;
127 case SLANG_SPEC_BOOL:
128 sz = 1;
129 break;
130 case SLANG_SPEC_BVEC2:
131 sz = 2;
132 break;
133 case SLANG_SPEC_BVEC3:
134 sz = 3;
135 break;
136 case SLANG_SPEC_BVEC4:
137 sz = 4;
138 break;
139 case SLANG_SPEC_INT:
140 sz = 1;
141 break;
142 case SLANG_SPEC_IVEC2:
143 sz = 2;
144 break;
145 case SLANG_SPEC_IVEC3:
146 sz = 3;
147 break;
148 case SLANG_SPEC_IVEC4:
149 sz = 4;
150 break;
151 case SLANG_SPEC_FLOAT:
152 sz = 1;
153 break;
154 case SLANG_SPEC_VEC2:
155 sz = 2;
156 break;
157 case SLANG_SPEC_VEC3:
158 sz = 3;
159 break;
160 case SLANG_SPEC_VEC4:
161 sz = 4;
162 break;
163 case SLANG_SPEC_MAT2:
164 sz = 2 * 4; /* 2 columns (regs) */
165 break;
166 case SLANG_SPEC_MAT3:
167 sz = 3 * 4;
168 break;
169 case SLANG_SPEC_MAT4:
170 sz = 4 * 4;
171 break;
172 case SLANG_SPEC_MAT23:
173 sz = 2 * 4; /* 2 columns (regs) */
174 break;
175 case SLANG_SPEC_MAT32:
176 sz = 3 * 4; /* 3 columns (regs) */
177 break;
178 case SLANG_SPEC_MAT24:
179 sz = 2 * 4;
180 break;
181 case SLANG_SPEC_MAT42:
182 sz = 4 * 4; /* 4 columns (regs) */
183 break;
184 case SLANG_SPEC_MAT34:
185 sz = 3 * 4;
186 break;
187 case SLANG_SPEC_MAT43:
188 sz = 4 * 4; /* 4 columns (regs) */
189 break;
190 case SLANG_SPEC_SAMPLER1D:
191 case SLANG_SPEC_SAMPLER2D:
192 case SLANG_SPEC_SAMPLER3D:
193 case SLANG_SPEC_SAMPLERCUBE:
194 case SLANG_SPEC_SAMPLER1DSHADOW:
195 case SLANG_SPEC_SAMPLER2DSHADOW:
196 case SLANG_SPEC_SAMPLER2DRECT:
197 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
198 sz = 1; /* a sampler is basically just an integer index */
199 break;
200 case SLANG_SPEC_STRUCT:
201 sz = _slang_field_offset(spec, 0); /* special use */
202 if (sz > 4) {
203 sz = (sz + 3) & ~0x3; /* round up to multiple of four */
204 }
205 break;
206 case SLANG_SPEC_ARRAY:
207 sz = _slang_sizeof_type_specifier(spec->_array);
208 break;
209 default:
210 _mesa_problem(NULL, "Unexpected type in _slang_sizeof_type_specifier()");
211 sz = 0;
212 }
213
214 if (sz > 4) {
215 /* if size is > 4, it should be a multiple of four */
216 assert((sz & 0x3) == 0);
217 }
218 return sz;
219 }
220
221
222 /**
223 * Establish the binding between a slang_ir_node and a slang_variable.
224 * Then, allocate/attach a slang_ir_storage object to the IR node if needed.
225 * The IR node must be a IR_VAR or IR_VAR_DECL node.
226 * \param n the IR node
227 * \param var the variable to associate with the IR node
228 */
229 static void
230 _slang_attach_storage(slang_ir_node *n, slang_variable *var)
231 {
232 assert(n);
233 assert(var);
234 assert(n->Opcode == IR_VAR || n->Opcode == IR_VAR_DECL);
235 assert(!n->Var || n->Var == var);
236
237 n->Var = var;
238
239 if (!n->Store) {
240 /* need to setup storage */
241 if (n->Var && n->Var->aux) {
242 /* node storage info = var storage info */
243 n->Store = (slang_ir_storage *) n->Var->aux;
244 }
245 else {
246 /* alloc new storage info */
247 n->Store = _slang_new_ir_storage(PROGRAM_UNDEFINED, -7, -5);
248 #if 0
249 printf("%s var=%s Store=%p Size=%d\n", __FUNCTION__,
250 (char*) var->a_name,
251 (void*) n->Store, n->Store->Size);
252 #endif
253 if (n->Var)
254 n->Var->aux = n->Store;
255 assert(n->Var->aux);
256 }
257 }
258 }
259
260
261 /**
262 * Return the TEXTURE_*_INDEX value that corresponds to a sampler type,
263 * or -1 if the type is not a sampler.
264 */
265 static GLint
266 sampler_to_texture_index(const slang_type_specifier_type type)
267 {
268 switch (type) {
269 case SLANG_SPEC_SAMPLER1D:
270 return TEXTURE_1D_INDEX;
271 case SLANG_SPEC_SAMPLER2D:
272 return TEXTURE_2D_INDEX;
273 case SLANG_SPEC_SAMPLER3D:
274 return TEXTURE_3D_INDEX;
275 case SLANG_SPEC_SAMPLERCUBE:
276 return TEXTURE_CUBE_INDEX;
277 case SLANG_SPEC_SAMPLER1DSHADOW:
278 return TEXTURE_1D_INDEX; /* XXX fix */
279 case SLANG_SPEC_SAMPLER2DSHADOW:
280 return TEXTURE_2D_INDEX; /* XXX fix */
281 case SLANG_SPEC_SAMPLER2DRECT:
282 return TEXTURE_RECT_INDEX;
283 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
284 return TEXTURE_RECT_INDEX; /* XXX fix */
285 default:
286 return -1;
287 }
288 }
289
290
291 #define SWIZZLE_ZWWW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W)
292
293 /**
294 * Return the VERT_ATTRIB_* or FRAG_ATTRIB_* value that corresponds to
295 * a vertex or fragment program input variable. Return -1 if the input
296 * name is invalid.
297 * XXX return size too
298 */
299 static GLint
300 _slang_input_index(const char *name, GLenum target, GLuint *swizzleOut)
301 {
302 struct input_info {
303 const char *Name;
304 GLuint Attrib;
305 GLuint Swizzle;
306 };
307 static const struct input_info vertInputs[] = {
308 { "gl_Vertex", VERT_ATTRIB_POS, SWIZZLE_NOOP },
309 { "gl_Normal", VERT_ATTRIB_NORMAL, SWIZZLE_NOOP },
310 { "gl_Color", VERT_ATTRIB_COLOR0, SWIZZLE_NOOP },
311 { "gl_SecondaryColor", VERT_ATTRIB_COLOR1, SWIZZLE_NOOP },
312 { "gl_FogCoord", VERT_ATTRIB_FOG, SWIZZLE_XXXX },
313 { "gl_MultiTexCoord0", VERT_ATTRIB_TEX0, SWIZZLE_NOOP },
314 { "gl_MultiTexCoord1", VERT_ATTRIB_TEX1, SWIZZLE_NOOP },
315 { "gl_MultiTexCoord2", VERT_ATTRIB_TEX2, SWIZZLE_NOOP },
316 { "gl_MultiTexCoord3", VERT_ATTRIB_TEX3, SWIZZLE_NOOP },
317 { "gl_MultiTexCoord4", VERT_ATTRIB_TEX4, SWIZZLE_NOOP },
318 { "gl_MultiTexCoord5", VERT_ATTRIB_TEX5, SWIZZLE_NOOP },
319 { "gl_MultiTexCoord6", VERT_ATTRIB_TEX6, SWIZZLE_NOOP },
320 { "gl_MultiTexCoord7", VERT_ATTRIB_TEX7, SWIZZLE_NOOP },
321 { NULL, 0, SWIZZLE_NOOP }
322 };
323 static const struct input_info fragInputs[] = {
324 { "gl_FragCoord", FRAG_ATTRIB_WPOS, SWIZZLE_NOOP },
325 { "gl_Color", FRAG_ATTRIB_COL0, SWIZZLE_NOOP },
326 { "gl_SecondaryColor", FRAG_ATTRIB_COL1, SWIZZLE_NOOP },
327 { "gl_TexCoord", FRAG_ATTRIB_TEX0, SWIZZLE_NOOP },
328 /* note: we're packing several quantities into the fogcoord vector */
329 { "gl_FogFragCoord", FRAG_ATTRIB_FOGC, SWIZZLE_XXXX },
330 { "gl_FrontFacing", FRAG_ATTRIB_FOGC, SWIZZLE_YYYY }, /*XXX*/
331 { "gl_PointCoord", FRAG_ATTRIB_FOGC, SWIZZLE_ZWWW },
332 { NULL, 0, SWIZZLE_NOOP }
333 };
334 GLuint i;
335 const struct input_info *inputs
336 = (target == GL_VERTEX_PROGRAM_ARB) ? vertInputs : fragInputs;
337
338 ASSERT(MAX_TEXTURE_UNITS == 8); /* if this fails, fix vertInputs above */
339
340 for (i = 0; inputs[i].Name; i++) {
341 if (strcmp(inputs[i].Name, name) == 0) {
342 /* found */
343 *swizzleOut = inputs[i].Swizzle;
344 return inputs[i].Attrib;
345 }
346 }
347 return -1;
348 }
349
350
351 /**
352 * Return the VERT_RESULT_* or FRAG_RESULT_* value that corresponds to
353 * a vertex or fragment program output variable. Return -1 for an invalid
354 * output name.
355 */
356 static GLint
357 _slang_output_index(const char *name, GLenum target)
358 {
359 struct output_info {
360 const char *Name;
361 GLuint Attrib;
362 };
363 static const struct output_info vertOutputs[] = {
364 { "gl_Position", VERT_RESULT_HPOS },
365 { "gl_FrontColor", VERT_RESULT_COL0 },
366 { "gl_BackColor", VERT_RESULT_BFC0 },
367 { "gl_FrontSecondaryColor", VERT_RESULT_COL1 },
368 { "gl_BackSecondaryColor", VERT_RESULT_BFC1 },
369 { "gl_TexCoord", VERT_RESULT_TEX0 },
370 { "gl_FogFragCoord", VERT_RESULT_FOGC },
371 { "gl_PointSize", VERT_RESULT_PSIZ },
372 { NULL, 0 }
373 };
374 static const struct output_info fragOutputs[] = {
375 { "gl_FragColor", FRAG_RESULT_COLR },
376 { "gl_FragDepth", FRAG_RESULT_DEPR },
377 { "gl_FragData", FRAG_RESULT_DATA0 },
378 { NULL, 0 }
379 };
380 GLuint i;
381 const struct output_info *outputs
382 = (target == GL_VERTEX_PROGRAM_ARB) ? vertOutputs : fragOutputs;
383
384 for (i = 0; outputs[i].Name; i++) {
385 if (strcmp(outputs[i].Name, name) == 0) {
386 /* found */
387 return outputs[i].Attrib;
388 }
389 }
390 return -1;
391 }
392
393
394
395 /**********************************************************************/
396
397
398 /**
399 * Map "_asm foo" to IR_FOO, etc.
400 */
401 typedef struct
402 {
403 const char *Name;
404 slang_ir_opcode Opcode;
405 GLuint HaveRetValue, NumParams;
406 } slang_asm_info;
407
408
409 static slang_asm_info AsmInfo[] = {
410 /* vec4 binary op */
411 { "vec4_add", IR_ADD, 1, 2 },
412 { "vec4_subtract", IR_SUB, 1, 2 },
413 { "vec4_multiply", IR_MUL, 1, 2 },
414 { "vec4_dot", IR_DOT4, 1, 2 },
415 { "vec3_dot", IR_DOT3, 1, 2 },
416 { "vec3_cross", IR_CROSS, 1, 2 },
417 { "vec4_lrp", IR_LRP, 1, 3 },
418 { "vec4_min", IR_MIN, 1, 2 },
419 { "vec4_max", IR_MAX, 1, 2 },
420 { "vec4_clamp", IR_CLAMP, 1, 3 },
421 { "vec4_seq", IR_SEQUAL, 1, 2 },
422 { "vec4_sne", IR_SNEQUAL, 1, 2 },
423 { "vec4_sge", IR_SGE, 1, 2 },
424 { "vec4_sgt", IR_SGT, 1, 2 },
425 { "vec4_sle", IR_SLE, 1, 2 },
426 { "vec4_slt", IR_SLT, 1, 2 },
427 /* vec4 unary */
428 { "vec4_move", IR_MOVE, 1, 1 },
429 { "vec4_floor", IR_FLOOR, 1, 1 },
430 { "vec4_frac", IR_FRAC, 1, 1 },
431 { "vec4_abs", IR_ABS, 1, 1 },
432 { "vec4_negate", IR_NEG, 1, 1 },
433 { "vec4_ddx", IR_DDX, 1, 1 },
434 { "vec4_ddy", IR_DDY, 1, 1 },
435 /* float binary op */
436 { "float_power", IR_POW, 1, 2 },
437 /* texture / sampler */
438 { "vec4_tex1d", IR_TEX, 1, 2 },
439 { "vec4_texb1d", IR_TEXB, 1, 2 }, /* 1d w/ bias */
440 { "vec4_texp1d", IR_TEXP, 1, 2 }, /* 1d w/ projection */
441 { "vec4_tex2d", IR_TEX, 1, 2 },
442 { "vec4_texb2d", IR_TEXB, 1, 2 }, /* 2d w/ bias */
443 { "vec4_texp2d", IR_TEXP, 1, 2 }, /* 2d w/ projection */
444 { "vec4_tex3d", IR_TEX, 1, 2 },
445 { "vec4_texb3d", IR_TEXB, 1, 2 }, /* 3d w/ bias */
446 { "vec4_texp3d", IR_TEXP, 1, 2 }, /* 3d w/ projection */
447 { "vec4_texcube", IR_TEX, 1, 2 }, /* cubemap */
448 { "vec4_tex_rect", IR_TEX, 1, 2 }, /* rectangle */
449 { "vec4_texp_rect", IR_TEX, 1, 2 },/* rectangle w/ projection */
450
451 /* unary op */
452 { "ivec4_to_vec4", IR_I_TO_F, 1, 1 }, /* int[4] to float[4] */
453 { "vec4_to_ivec4", IR_F_TO_I, 1, 1 }, /* float[4] to int[4] */
454 { "float_exp", IR_EXP, 1, 1 },
455 { "float_exp2", IR_EXP2, 1, 1 },
456 { "float_log2", IR_LOG2, 1, 1 },
457 { "float_rsq", IR_RSQ, 1, 1 },
458 { "float_rcp", IR_RCP, 1, 1 },
459 { "float_sine", IR_SIN, 1, 1 },
460 { "float_cosine", IR_COS, 1, 1 },
461 { "float_noise1", IR_NOISE1, 1, 1},
462 { "float_noise2", IR_NOISE2, 1, 1},
463 { "float_noise3", IR_NOISE3, 1, 1},
464 { "float_noise4", IR_NOISE4, 1, 1},
465
466 { NULL, IR_NOP, 0, 0 }
467 };
468
469
470 static slang_ir_node *
471 new_node3(slang_ir_opcode op,
472 slang_ir_node *c0, slang_ir_node *c1, slang_ir_node *c2)
473 {
474 slang_ir_node *n = (slang_ir_node *) _slang_alloc(sizeof(slang_ir_node));
475 if (n) {
476 n->Opcode = op;
477 n->Children[0] = c0;
478 n->Children[1] = c1;
479 n->Children[2] = c2;
480 n->InstLocation = -1;
481 }
482 return n;
483 }
484
485 static slang_ir_node *
486 new_node2(slang_ir_opcode op, slang_ir_node *c0, slang_ir_node *c1)
487 {
488 return new_node3(op, c0, c1, NULL);
489 }
490
491 static slang_ir_node *
492 new_node1(slang_ir_opcode op, slang_ir_node *c0)
493 {
494 return new_node3(op, c0, NULL, NULL);
495 }
496
497 static slang_ir_node *
498 new_node0(slang_ir_opcode op)
499 {
500 return new_node3(op, NULL, NULL, NULL);
501 }
502
503
504 /**
505 * Create sequence of two nodes.
506 */
507 static slang_ir_node *
508 new_seq(slang_ir_node *left, slang_ir_node *right)
509 {
510 if (!left)
511 return right;
512 if (!right)
513 return left;
514 return new_node2(IR_SEQ, left, right);
515 }
516
517 static slang_ir_node *
518 new_label(slang_label *label)
519 {
520 slang_ir_node *n = new_node0(IR_LABEL);
521 assert(label);
522 if (n)
523 n->Label = label;
524 return n;
525 }
526
527 static slang_ir_node *
528 new_float_literal(const float v[4], GLuint size)
529 {
530 slang_ir_node *n = new_node0(IR_FLOAT);
531 assert(size <= 4);
532 COPY_4V(n->Value, v);
533 /* allocate a storage object, but compute actual location (Index) later */
534 n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
535 return n;
536 }
537
538
539 static slang_ir_node *
540 new_not(slang_ir_node *n)
541 {
542 return new_node1(IR_NOT, n);
543 }
544
545
546 /**
547 * Non-inlined function call.
548 */
549 static slang_ir_node *
550 new_function_call(slang_ir_node *code, slang_label *name)
551 {
552 slang_ir_node *n = new_node1(IR_CALL, code);
553 assert(name);
554 if (n)
555 n->Label = name;
556 return n;
557 }
558
559
560 /**
561 * Unconditional jump.
562 */
563 static slang_ir_node *
564 new_return(slang_label *dest)
565 {
566 slang_ir_node *n = new_node0(IR_RETURN);
567 assert(dest);
568 if (n)
569 n->Label = dest;
570 return n;
571 }
572
573
574 static slang_ir_node *
575 new_loop(slang_ir_node *body)
576 {
577 return new_node1(IR_LOOP, body);
578 }
579
580
581 static slang_ir_node *
582 new_break(slang_ir_node *loopNode)
583 {
584 slang_ir_node *n = new_node0(IR_BREAK);
585 assert(loopNode);
586 assert(loopNode->Opcode == IR_LOOP);
587 if (n) {
588 /* insert this node at head of linked list */
589 n->List = loopNode->List;
590 loopNode->List = n;
591 }
592 return n;
593 }
594
595
596 /**
597 * Make new IR_BREAK_IF_TRUE.
598 */
599 static slang_ir_node *
600 new_break_if_true(slang_ir_node *loopNode, slang_ir_node *cond)
601 {
602 slang_ir_node *n;
603 assert(loopNode);
604 assert(loopNode->Opcode == IR_LOOP);
605 n = new_node1(IR_BREAK_IF_TRUE, cond);
606 if (n) {
607 /* insert this node at head of linked list */
608 n->List = loopNode->List;
609 loopNode->List = n;
610 }
611 return n;
612 }
613
614
615 /**
616 * Make new IR_CONT_IF_TRUE node.
617 */
618 static slang_ir_node *
619 new_cont_if_true(slang_ir_node *loopNode, slang_ir_node *cond)
620 {
621 slang_ir_node *n;
622 assert(loopNode);
623 assert(loopNode->Opcode == IR_LOOP);
624 n = new_node1(IR_CONT_IF_TRUE, cond);
625 if (n) {
626 /* insert this node at head of linked list */
627 n->List = loopNode->List;
628 loopNode->List = n;
629 }
630 return n;
631 }
632
633
634 static slang_ir_node *
635 new_cond(slang_ir_node *n)
636 {
637 slang_ir_node *c = new_node1(IR_COND, n);
638 return c;
639 }
640
641
642 static slang_ir_node *
643 new_if(slang_ir_node *cond, slang_ir_node *ifPart, slang_ir_node *elsePart)
644 {
645 return new_node3(IR_IF, cond, ifPart, elsePart);
646 }
647
648
649 /**
650 * New IR_VAR node - a reference to a previously declared variable.
651 */
652 static slang_ir_node *
653 new_var(slang_assemble_ctx *A, slang_operation *oper, slang_atom name)
654 {
655 slang_ir_node *n;
656 slang_variable *var = _slang_locate_variable(oper->locals, name, GL_TRUE);
657 if (!var)
658 return NULL;
659
660 assert(var->declared);
661
662 assert(!oper->var || oper->var == var);
663
664 n = new_node0(IR_VAR);
665 if (n) {
666 _slang_attach_storage(n, var);
667 /*
668 printf("new_var %s store=%p\n", (char*)name, (void*) n->Store);
669 */
670 }
671 return n;
672 }
673
674
675 /**
676 * Check if the given function is really just a wrapper for a
677 * basic assembly instruction.
678 */
679 static GLboolean
680 slang_is_asm_function(const slang_function *fun)
681 {
682 if (fun->body->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE &&
683 fun->body->num_children == 1 &&
684 fun->body->children[0].type == SLANG_OPER_ASM) {
685 return GL_TRUE;
686 }
687 return GL_FALSE;
688 }
689
690
691 static GLboolean
692 _slang_is_noop(const slang_operation *oper)
693 {
694 if (!oper ||
695 oper->type == SLANG_OPER_VOID ||
696 (oper->num_children == 1 && oper->children[0].type == SLANG_OPER_VOID))
697 return GL_TRUE;
698 else
699 return GL_FALSE;
700 }
701
702
703 /**
704 * Recursively search tree for a node of the given type.
705 */
706 static slang_operation *
707 _slang_find_node_type(slang_operation *oper, slang_operation_type type)
708 {
709 GLuint i;
710 if (oper->type == type)
711 return oper;
712 for (i = 0; i < oper->num_children; i++) {
713 slang_operation *p = _slang_find_node_type(&oper->children[i], type);
714 if (p)
715 return p;
716 }
717 return NULL;
718 }
719
720
721 /**
722 * Count the number of operations of the given time rooted at 'oper'.
723 */
724 static GLuint
725 _slang_count_node_type(slang_operation *oper, slang_operation_type type)
726 {
727 GLuint i, count = 0;
728 if (oper->type == type) {
729 return 1;
730 }
731 for (i = 0; i < oper->num_children; i++) {
732 count += _slang_count_node_type(&oper->children[i], type);
733 }
734 return count;
735 }
736
737
738 /**
739 * Check if the 'return' statement found under 'oper' is a "tail return"
740 * that can be no-op'd. For example:
741 *
742 * void func(void)
743 * {
744 * .. do something ..
745 * return; // this is a no-op
746 * }
747 *
748 * This is used when determining if a function can be inlined. If the
749 * 'return' is not the last statement, we can't inline the function since
750 * we still need the semantic behaviour of the 'return' but we don't want
751 * to accidentally return from the _calling_ function. We'd need to use an
752 * unconditional branch, but we don't have such a GPU instruction (not
753 * always, at least).
754 */
755 static GLboolean
756 _slang_is_tail_return(const slang_operation *oper)
757 {
758 GLuint k = oper->num_children;
759
760 while (k > 0) {
761 const slang_operation *last = &oper->children[k - 1];
762 if (last->type == SLANG_OPER_RETURN)
763 return GL_TRUE;
764 else if (last->type == SLANG_OPER_IDENTIFIER ||
765 last->type == SLANG_OPER_LABEL)
766 k--; /* try prev child */
767 else if (last->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
768 last->type == SLANG_OPER_BLOCK_NEW_SCOPE)
769 /* try sub-children */
770 return _slang_is_tail_return(last);
771 else
772 break;
773 }
774
775 return GL_FALSE;
776 }
777
778
779 static void
780 slang_resolve_variable(slang_operation *oper)
781 {
782 if (oper->type == SLANG_OPER_IDENTIFIER && !oper->var) {
783 oper->var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
784 }
785 }
786
787
788 /**
789 * Replace particular variables (SLANG_OPER_IDENTIFIER) with new expressions.
790 */
791 static void
792 slang_substitute(slang_assemble_ctx *A, slang_operation *oper,
793 GLuint substCount, slang_variable **substOld,
794 slang_operation **substNew, GLboolean isLHS)
795 {
796 switch (oper->type) {
797 case SLANG_OPER_VARIABLE_DECL:
798 {
799 slang_variable *v = _slang_locate_variable(oper->locals,
800 oper->a_id, GL_TRUE);
801 assert(v);
802 if (v->initializer && oper->num_children == 0) {
803 /* set child of oper to copy of initializer */
804 oper->num_children = 1;
805 oper->children = slang_operation_new(1);
806 slang_operation_copy(&oper->children[0], v->initializer);
807 }
808 if (oper->num_children == 1) {
809 /* the initializer */
810 slang_substitute(A, &oper->children[0], substCount,
811 substOld, substNew, GL_FALSE);
812 }
813 }
814 break;
815 case SLANG_OPER_IDENTIFIER:
816 assert(oper->num_children == 0);
817 if (1/**!isLHS XXX FIX */) {
818 slang_atom id = oper->a_id;
819 slang_variable *v;
820 GLuint i;
821 v = _slang_locate_variable(oper->locals, id, GL_TRUE);
822 if (!v) {
823 _mesa_problem(NULL, "var %s not found!\n", (char *) oper->a_id);
824 return;
825 }
826
827 /* look for a substitution */
828 for (i = 0; i < substCount; i++) {
829 if (v == substOld[i]) {
830 /* OK, replace this SLANG_OPER_IDENTIFIER with a new expr */
831 #if 0 /* DEBUG only */
832 if (substNew[i]->type == SLANG_OPER_IDENTIFIER) {
833 assert(substNew[i]->var);
834 assert(substNew[i]->var->a_name);
835 printf("Substitute %s with %s in id node %p\n",
836 (char*)v->a_name, (char*) substNew[i]->var->a_name,
837 (void*) oper);
838 }
839 else {
840 printf("Substitute %s with %f in id node %p\n",
841 (char*)v->a_name, substNew[i]->literal[0],
842 (void*) oper);
843 }
844 #endif
845 slang_operation_copy(oper, substNew[i]);
846 break;
847 }
848 }
849 }
850 break;
851
852 case SLANG_OPER_RETURN:
853 /* do return replacement here too */
854 assert(oper->num_children == 0 || oper->num_children == 1);
855 if (oper->num_children == 1 && !_slang_is_noop(&oper->children[0])) {
856 /* replace:
857 * return expr;
858 * with:
859 * __retVal = expr;
860 * return;
861 * then do substitutions on the assignment.
862 */
863 slang_operation *blockOper, *assignOper, *returnOper;
864
865 /* check if function actually has a return type */
866 assert(A->CurFunction);
867 if (A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
868 slang_info_log_error(A->log, "illegal return expression");
869 return;
870 }
871
872 blockOper = slang_operation_new(1);
873 blockOper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
874 blockOper->num_children = 2;
875 blockOper->locals->outer_scope = oper->locals->outer_scope;
876 blockOper->children = slang_operation_new(2);
877 assignOper = blockOper->children + 0;
878 returnOper = blockOper->children + 1;
879
880 assignOper->type = SLANG_OPER_ASSIGN;
881 assignOper->num_children = 2;
882 assignOper->locals->outer_scope = blockOper->locals;
883 assignOper->children = slang_operation_new(2);
884 assignOper->children[0].type = SLANG_OPER_IDENTIFIER;
885 assignOper->children[0].a_id = slang_atom_pool_atom(A->atoms, "__retVal");
886 assignOper->children[0].locals->outer_scope = assignOper->locals;
887
888 slang_operation_copy(&assignOper->children[1],
889 &oper->children[0]);
890
891 returnOper->type = SLANG_OPER_RETURN; /* return w/ no value */
892 assert(returnOper->num_children == 0);
893
894 /* do substitutions on the "__retVal = expr" sub-tree */
895 slang_substitute(A, assignOper,
896 substCount, substOld, substNew, GL_FALSE);
897
898 /* install new code */
899 slang_operation_copy(oper, blockOper);
900 slang_operation_destruct(blockOper);
901 }
902 else {
903 /* check if return value was expected */
904 assert(A->CurFunction);
905 if (A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
906 slang_info_log_error(A->log, "return statement requires an expression");
907 return;
908 }
909 }
910 break;
911
912 case SLANG_OPER_ASSIGN:
913 case SLANG_OPER_SUBSCRIPT:
914 /* special case:
915 * child[0] can't have substitutions but child[1] can.
916 */
917 slang_substitute(A, &oper->children[0],
918 substCount, substOld, substNew, GL_TRUE);
919 slang_substitute(A, &oper->children[1],
920 substCount, substOld, substNew, GL_FALSE);
921 break;
922 case SLANG_OPER_FIELD:
923 /* XXX NEW - test */
924 slang_substitute(A, &oper->children[0],
925 substCount, substOld, substNew, GL_TRUE);
926 break;
927 default:
928 {
929 GLuint i;
930 for (i = 0; i < oper->num_children; i++)
931 slang_substitute(A, &oper->children[i],
932 substCount, substOld, substNew, GL_FALSE);
933 }
934 }
935 }
936
937
938 /**
939 * Produce inline code for a call to an assembly instruction.
940 * This is typically used to compile a call to a built-in function like this:
941 *
942 * vec4 mix(const vec4 x, const vec4 y, const vec4 a)
943 * {
944 * __asm vec4_lrp __retVal, a, y, x;
945 * }
946 *
947 *
948 * A call to
949 * r = mix(p1, p2, p3);
950 *
951 * Becomes:
952 *
953 * mov
954 * / \
955 * r vec4_lrp
956 * / | \
957 * p3 p2 p1
958 *
959 * We basically translate a SLANG_OPER_CALL into a SLANG_OPER_ASM.
960 */
961 static slang_operation *
962 slang_inline_asm_function(slang_assemble_ctx *A,
963 slang_function *fun, slang_operation *oper)
964 {
965 const GLuint numArgs = oper->num_children;
966 GLuint i;
967 slang_operation *inlined;
968 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
969 slang_variable **substOld;
970 slang_operation **substNew;
971
972 ASSERT(slang_is_asm_function(fun));
973 ASSERT(fun->param_count == numArgs + haveRetValue);
974
975 /*
976 printf("Inline %s as %s\n",
977 (char*) fun->header.a_name,
978 (char*) fun->body->children[0].a_id);
979 */
980
981 /*
982 * We'll substitute formal params with actual args in the asm call.
983 */
984 substOld = (slang_variable **)
985 _slang_alloc(numArgs * sizeof(slang_variable *));
986 substNew = (slang_operation **)
987 _slang_alloc(numArgs * sizeof(slang_operation *));
988 for (i = 0; i < numArgs; i++) {
989 substOld[i] = fun->parameters->variables[i];
990 substNew[i] = oper->children + i;
991 }
992
993 /* make a copy of the code to inline */
994 inlined = slang_operation_new(1);
995 slang_operation_copy(inlined, &fun->body->children[0]);
996 if (haveRetValue) {
997 /* get rid of the __retVal child */
998 inlined->num_children--;
999 for (i = 0; i < inlined->num_children; i++) {
1000 inlined->children[i] = inlined->children[i + 1];
1001 }
1002 }
1003
1004 /* now do formal->actual substitutions */
1005 slang_substitute(A, inlined, numArgs, substOld, substNew, GL_FALSE);
1006
1007 _slang_free(substOld);
1008 _slang_free(substNew);
1009
1010 #if 0
1011 printf("+++++++++++++ inlined asm function %s +++++++++++++\n",
1012 (char *) fun->header.a_name);
1013 slang_print_tree(inlined, 3);
1014 printf("+++++++++++++++++++++++++++++++++++++++++++++++++++\n");
1015 #endif
1016
1017 return inlined;
1018 }
1019
1020
1021 /**
1022 * Inline the given function call operation.
1023 * Return a new slang_operation that corresponds to the inlined code.
1024 */
1025 static slang_operation *
1026 slang_inline_function_call(slang_assemble_ctx * A, slang_function *fun,
1027 slang_operation *oper, slang_operation *returnOper)
1028 {
1029 typedef enum {
1030 SUBST = 1,
1031 COPY_IN,
1032 COPY_OUT
1033 } ParamMode;
1034 ParamMode *paramMode;
1035 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
1036 const GLuint numArgs = oper->num_children;
1037 const GLuint totalArgs = numArgs + haveRetValue;
1038 slang_operation *args = oper->children;
1039 slang_operation *inlined, *top;
1040 slang_variable **substOld;
1041 slang_operation **substNew;
1042 GLuint substCount, numCopyIn, i;
1043 slang_function *prevFunction;
1044 slang_variable_scope *newScope = NULL;
1045
1046 /* save / push */
1047 prevFunction = A->CurFunction;
1048 A->CurFunction = fun;
1049
1050 /*assert(oper->type == SLANG_OPER_CALL); (or (matrix) multiply, etc) */
1051 assert(fun->param_count == totalArgs);
1052
1053 /* allocate temporary arrays */
1054 paramMode = (ParamMode *)
1055 _slang_alloc(totalArgs * sizeof(ParamMode));
1056 substOld = (slang_variable **)
1057 _slang_alloc(totalArgs * sizeof(slang_variable *));
1058 substNew = (slang_operation **)
1059 _slang_alloc(totalArgs * sizeof(slang_operation *));
1060
1061 #if 0
1062 printf("\nInline call to %s (total vars=%d nparams=%d)\n",
1063 (char *) fun->header.a_name,
1064 fun->parameters->num_variables, numArgs);
1065 #endif
1066
1067 if (haveRetValue && !returnOper) {
1068 /* Create 3-child comma sequence for inlined code:
1069 * child[0]: declare __resultTmp
1070 * child[1]: inlined function body
1071 * child[2]: __resultTmp
1072 */
1073 slang_operation *commaSeq;
1074 slang_operation *declOper = NULL;
1075 slang_variable *resultVar;
1076
1077 commaSeq = slang_operation_new(1);
1078 commaSeq->type = SLANG_OPER_SEQUENCE;
1079 assert(commaSeq->locals);
1080 commaSeq->locals->outer_scope = oper->locals->outer_scope;
1081 commaSeq->num_children = 3;
1082 commaSeq->children = slang_operation_new(3);
1083 /* allocate the return var */
1084 resultVar = slang_variable_scope_grow(commaSeq->locals);
1085 /*
1086 printf("Alloc __resultTmp in scope %p for retval of calling %s\n",
1087 (void*)commaSeq->locals, (char *) fun->header.a_name);
1088 */
1089
1090 resultVar->a_name = slang_atom_pool_atom(A->atoms, "__resultTmp");
1091 resultVar->type = fun->header.type; /* XXX copy? */
1092 resultVar->isTemp = GL_TRUE;
1093
1094 /* child[0] = __resultTmp declaration */
1095 declOper = &commaSeq->children[0];
1096 declOper->type = SLANG_OPER_VARIABLE_DECL;
1097 declOper->a_id = resultVar->a_name;
1098 declOper->locals->outer_scope = commaSeq->locals;
1099
1100 /* child[1] = function body */
1101 inlined = &commaSeq->children[1];
1102 inlined->locals->outer_scope = commaSeq->locals;
1103
1104 /* child[2] = __resultTmp reference */
1105 returnOper = &commaSeq->children[2];
1106 returnOper->type = SLANG_OPER_IDENTIFIER;
1107 returnOper->a_id = resultVar->a_name;
1108 returnOper->locals->outer_scope = commaSeq->locals;
1109
1110 top = commaSeq;
1111 }
1112 else {
1113 top = inlined = slang_operation_new(1);
1114 /* XXXX this may be inappropriate!!!! */
1115 inlined->locals->outer_scope = oper->locals->outer_scope;
1116 }
1117
1118
1119 assert(inlined->locals);
1120
1121 /* Examine the parameters, look for inout/out params, look for possible
1122 * substitutions, etc:
1123 * param type behaviour
1124 * in copy actual to local
1125 * const in substitute param with actual
1126 * out copy out
1127 */
1128 substCount = 0;
1129 for (i = 0; i < totalArgs; i++) {
1130 slang_variable *p = fun->parameters->variables[i];
1131 /*
1132 printf("Param %d: %s %s \n", i,
1133 slang_type_qual_string(p->type.qualifier),
1134 (char *) p->a_name);
1135 */
1136 if (p->type.qualifier == SLANG_QUAL_INOUT ||
1137 p->type.qualifier == SLANG_QUAL_OUT) {
1138 /* an output param */
1139 slang_operation *arg;
1140 if (i < numArgs)
1141 arg = &args[i];
1142 else
1143 arg = returnOper;
1144 paramMode[i] = SUBST;
1145
1146 if (arg->type == SLANG_OPER_IDENTIFIER)
1147 slang_resolve_variable(arg);
1148
1149 /* replace parameter 'p' with argument 'arg' */
1150 substOld[substCount] = p;
1151 substNew[substCount] = arg; /* will get copied */
1152 substCount++;
1153 }
1154 else if (p->type.qualifier == SLANG_QUAL_CONST) {
1155 /* a constant input param */
1156 if (args[i].type == SLANG_OPER_IDENTIFIER ||
1157 args[i].type == SLANG_OPER_LITERAL_FLOAT) {
1158 /* replace all occurances of this parameter variable with the
1159 * actual argument variable or a literal.
1160 */
1161 paramMode[i] = SUBST;
1162 slang_resolve_variable(&args[i]);
1163 substOld[substCount] = p;
1164 substNew[substCount] = &args[i]; /* will get copied */
1165 substCount++;
1166 }
1167 else {
1168 paramMode[i] = COPY_IN;
1169 }
1170 }
1171 else {
1172 paramMode[i] = COPY_IN;
1173 }
1174 assert(paramMode[i]);
1175 }
1176
1177 /* actual code inlining: */
1178 slang_operation_copy(inlined, fun->body);
1179
1180 /*** XXX review this */
1181 assert(inlined->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
1182 inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE);
1183 inlined->type = SLANG_OPER_BLOCK_NEW_SCOPE;
1184
1185 #if 0
1186 printf("======================= orig body code ======================\n");
1187 printf("=== params scope = %p\n", (void*) fun->parameters);
1188 slang_print_tree(fun->body, 8);
1189 printf("======================= copied code =========================\n");
1190 slang_print_tree(inlined, 8);
1191 #endif
1192
1193 /* do parameter substitution in inlined code: */
1194 slang_substitute(A, inlined, substCount, substOld, substNew, GL_FALSE);
1195
1196 #if 0
1197 printf("======================= subst code ==========================\n");
1198 slang_print_tree(inlined, 8);
1199 printf("=============================================================\n");
1200 #endif
1201
1202 /* New prolog statements: (inserted before the inlined code)
1203 * Copy the 'in' arguments.
1204 */
1205 numCopyIn = 0;
1206 for (i = 0; i < numArgs; i++) {
1207 if (paramMode[i] == COPY_IN) {
1208 slang_variable *p = fun->parameters->variables[i];
1209 /* declare parameter 'p' */
1210 slang_operation *decl = slang_operation_insert(&inlined->num_children,
1211 &inlined->children,
1212 numCopyIn);
1213
1214 decl->type = SLANG_OPER_VARIABLE_DECL;
1215 assert(decl->locals);
1216 decl->locals->outer_scope = inlined->locals;
1217 decl->a_id = p->a_name;
1218 decl->num_children = 1;
1219 decl->children = slang_operation_new(1);
1220
1221 /* child[0] is the var's initializer */
1222 slang_operation_copy(&decl->children[0], args + i);
1223
1224 /* add parameter 'p' to the local variable scope here */
1225 {
1226 slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
1227 pCopy->type = p->type;
1228 pCopy->a_name = p->a_name;
1229 pCopy->array_len = p->array_len;
1230 }
1231
1232 newScope = inlined->locals;
1233 numCopyIn++;
1234 }
1235 }
1236
1237 /* Now add copies of the function's local vars to the new variable scope */
1238 for (i = totalArgs; i < fun->parameters->num_variables; i++) {
1239 slang_variable *p = fun->parameters->variables[i];
1240 slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
1241 pCopy->type = p->type;
1242 pCopy->a_name = p->a_name;
1243 pCopy->array_len = p->array_len;
1244 }
1245
1246
1247 /* New epilog statements:
1248 * 1. Create end of function label to jump to from return statements.
1249 * 2. Copy the 'out' parameter vars
1250 */
1251 {
1252 slang_operation *lab = slang_operation_insert(&inlined->num_children,
1253 &inlined->children,
1254 inlined->num_children);
1255 lab->type = SLANG_OPER_LABEL;
1256 lab->label = A->curFuncEndLabel;
1257 }
1258
1259 for (i = 0; i < totalArgs; i++) {
1260 if (paramMode[i] == COPY_OUT) {
1261 const slang_variable *p = fun->parameters->variables[i];
1262 /* actualCallVar = outParam */
1263 /*if (i > 0 || !haveRetValue)*/
1264 slang_operation *ass = slang_operation_insert(&inlined->num_children,
1265 &inlined->children,
1266 inlined->num_children);
1267 ass->type = SLANG_OPER_ASSIGN;
1268 ass->num_children = 2;
1269 ass->locals->outer_scope = inlined->locals;
1270 ass->children = slang_operation_new(2);
1271 ass->children[0] = args[i]; /*XXX copy */
1272 ass->children[1].type = SLANG_OPER_IDENTIFIER;
1273 ass->children[1].a_id = p->a_name;
1274 ass->children[1].locals->outer_scope = ass->locals;
1275 }
1276 }
1277
1278 _slang_free(paramMode);
1279 _slang_free(substOld);
1280 _slang_free(substNew);
1281
1282 /* Update scoping to use the new local vars instead of the
1283 * original function's vars. This is especially important
1284 * for nested inlining.
1285 */
1286 if (newScope)
1287 slang_replace_scope(inlined, fun->parameters, newScope);
1288
1289 #if 0
1290 printf("Done Inline call to %s (total vars=%d nparams=%d)\n\n",
1291 (char *) fun->header.a_name,
1292 fun->parameters->num_variables, numArgs);
1293 slang_print_tree(top, 0);
1294 #endif
1295
1296 /* pop */
1297 A->CurFunction = prevFunction;
1298
1299 return top;
1300 }
1301
1302
1303 static slang_ir_node *
1304 _slang_gen_function_call(slang_assemble_ctx *A, slang_function *fun,
1305 slang_operation *oper, slang_operation *dest)
1306 {
1307 slang_ir_node *n;
1308 slang_operation *inlined;
1309 slang_label *prevFuncEndLabel;
1310 char name[200];
1311
1312 prevFuncEndLabel = A->curFuncEndLabel;
1313 sprintf(name, "__endOfFunc_%s_", (char *) fun->header.a_name);
1314 A->curFuncEndLabel = _slang_label_new(name);
1315 assert(A->curFuncEndLabel);
1316
1317 if (slang_is_asm_function(fun) && !dest) {
1318 /* assemble assembly function - tree style */
1319 inlined = slang_inline_asm_function(A, fun, oper);
1320 }
1321 else {
1322 /* non-assembly function */
1323 /* We always generate an "inline-able" block of code here.
1324 * We may either:
1325 * 1. insert the inline code
1326 * 2. Generate a call to the "inline" code as a subroutine
1327 */
1328
1329
1330 slang_operation *ret = NULL;
1331
1332 inlined = slang_inline_function_call(A, fun, oper, dest);
1333 if (!inlined)
1334 return NULL;
1335
1336 ret = _slang_find_node_type(inlined, SLANG_OPER_RETURN);
1337 if (ret) {
1338 /* check if this is a "tail" return */
1339 if (_slang_count_node_type(inlined, SLANG_OPER_RETURN) == 1 &&
1340 _slang_is_tail_return(inlined)) {
1341 /* The only RETURN is the last stmt in the function, no-op it
1342 * and inline the function body.
1343 */
1344 ret->type = SLANG_OPER_NONE;
1345 }
1346 else {
1347 slang_operation *callOper;
1348 /* The function we're calling has one or more 'return' statements.
1349 * So, we can't truly inline this function because we need to
1350 * implement 'return' with RET (and CAL).
1351 * Nevertheless, we performed "inlining" to make a new instance
1352 * of the function body to deal with static register allocation.
1353 *
1354 * XXX check if there's one 'return' and if it's the very last
1355 * statement in the function - we can optimize that case.
1356 */
1357 assert(inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
1358 inlined->type == SLANG_OPER_SEQUENCE);
1359
1360 if (_slang_function_has_return_value(fun) && !dest) {
1361 assert(inlined->children[0].type == SLANG_OPER_VARIABLE_DECL);
1362 assert(inlined->children[2].type == SLANG_OPER_IDENTIFIER);
1363 callOper = &inlined->children[1];
1364 }
1365 else {
1366 callOper = inlined;
1367 }
1368 callOper->type = SLANG_OPER_NON_INLINED_CALL;
1369 callOper->fun = fun;
1370 callOper->label = _slang_label_new_unique((char*) fun->header.a_name);
1371 }
1372 }
1373 }
1374
1375 if (!inlined)
1376 return NULL;
1377
1378 /* Replace the function call with the inlined block (or new CALL stmt) */
1379 slang_operation_destruct(oper);
1380 *oper = *inlined;
1381 _slang_free(inlined);
1382
1383 #if 0
1384 assert(inlined->locals);
1385 printf("*** Inlined code for call to %s:\n",
1386 (char*) fun->header.a_name);
1387 slang_print_tree(oper, 10);
1388 printf("\n");
1389 #endif
1390
1391 n = _slang_gen_operation(A, oper);
1392
1393 /*_slang_label_delete(A->curFuncEndLabel);*/
1394 A->curFuncEndLabel = prevFuncEndLabel;
1395
1396 return n;
1397 }
1398
1399
1400 static slang_asm_info *
1401 slang_find_asm_info(const char *name)
1402 {
1403 GLuint i;
1404 for (i = 0; AsmInfo[i].Name; i++) {
1405 if (_mesa_strcmp(AsmInfo[i].Name, name) == 0) {
1406 return AsmInfo + i;
1407 }
1408 }
1409 return NULL;
1410 }
1411
1412
1413 /**
1414 * Return the default swizzle mask for accessing a variable of the
1415 * given size (in floats). If size = 1, comp is used to identify
1416 * which component [0..3] of the register holds the variable.
1417 */
1418 static GLuint
1419 _slang_var_swizzle(GLint size, GLint comp)
1420 {
1421 switch (size) {
1422 case 1:
1423 return MAKE_SWIZZLE4(comp, comp, comp, comp);
1424 case 2:
1425 return MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_NIL, SWIZZLE_NIL);
1426 case 3:
1427 return MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_NIL);
1428 default:
1429 return SWIZZLE_XYZW;
1430 }
1431 }
1432
1433
1434 /**
1435 * Some write-masked assignments are simple, but others are hard.
1436 * Simple example:
1437 * vec3 v;
1438 * v.xy = vec2(a, b);
1439 * Hard example:
1440 * vec3 v;
1441 * v.zy = vec2(a, b);
1442 * this gets transformed/swizzled into:
1443 * v.zy = vec2(a, b).*yx* (* = don't care)
1444 * This function helps to determine simple vs. non-simple.
1445 */
1446 static GLboolean
1447 _slang_simple_writemask(GLuint writemask, GLuint swizzle)
1448 {
1449 switch (writemask) {
1450 case WRITEMASK_X:
1451 return GET_SWZ(swizzle, 0) == SWIZZLE_X;
1452 case WRITEMASK_Y:
1453 return GET_SWZ(swizzle, 1) == SWIZZLE_Y;
1454 case WRITEMASK_Z:
1455 return GET_SWZ(swizzle, 2) == SWIZZLE_Z;
1456 case WRITEMASK_W:
1457 return GET_SWZ(swizzle, 3) == SWIZZLE_W;
1458 case WRITEMASK_XY:
1459 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
1460 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y);
1461 case WRITEMASK_XYZ:
1462 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
1463 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y)
1464 && (GET_SWZ(swizzle, 2) == SWIZZLE_Z);
1465 case WRITEMASK_XYZW:
1466 return swizzle == SWIZZLE_NOOP;
1467 default:
1468 return GL_FALSE;
1469 }
1470 }
1471
1472
1473 /**
1474 * Convert the given swizzle into a writemask. In some cases this
1475 * is trivial, in other cases, we'll need to also swizzle the right
1476 * hand side to put components in the right places.
1477 * \param swizzle the incoming swizzle
1478 * \param writemaskOut returns the writemask
1479 * \param swizzleOut swizzle to apply to the right-hand-side
1480 * \return GL_FALSE for simple writemasks, GL_TRUE for non-simple
1481 */
1482 static GLboolean
1483 swizzle_to_writemask(slang_assemble_ctx *A, GLuint swizzle,
1484 GLuint *writemaskOut, GLuint *swizzleOut)
1485 {
1486 GLuint mask = 0x0, newSwizzle[4];
1487 GLint i, size;
1488
1489 /* make new dst writemask, compute size */
1490 for (i = 0; i < 4; i++) {
1491 const GLuint swz = GET_SWZ(swizzle, i);
1492 if (swz == SWIZZLE_NIL) {
1493 /* end */
1494 break;
1495 }
1496 assert(swz >= 0 && swz <= 3);
1497
1498 if (swizzle != SWIZZLE_XXXX &&
1499 swizzle != SWIZZLE_YYYY &&
1500 swizzle != SWIZZLE_ZZZZ &&
1501 swizzle != SWIZZLE_WWWW &&
1502 (mask & (1 << swz))) {
1503 /* a channel can't be specified twice (ex: ".xyyz") */
1504 slang_info_log_error(A->log, "Invalid writemask '%s'",
1505 _mesa_swizzle_string(swizzle, 0, 0));
1506 return GL_FALSE;
1507 }
1508
1509 mask |= (1 << swz);
1510 }
1511 assert(mask <= 0xf);
1512 size = i; /* number of components in mask/swizzle */
1513
1514 *writemaskOut = mask;
1515
1516 /* make new src swizzle, by inversion */
1517 for (i = 0; i < 4; i++) {
1518 newSwizzle[i] = i; /*identity*/
1519 }
1520 for (i = 0; i < size; i++) {
1521 const GLuint swz = GET_SWZ(swizzle, i);
1522 newSwizzle[swz] = i;
1523 }
1524 *swizzleOut = MAKE_SWIZZLE4(newSwizzle[0],
1525 newSwizzle[1],
1526 newSwizzle[2],
1527 newSwizzle[3]);
1528
1529 if (_slang_simple_writemask(mask, *swizzleOut)) {
1530 if (size >= 1)
1531 assert(GET_SWZ(*swizzleOut, 0) == SWIZZLE_X);
1532 if (size >= 2)
1533 assert(GET_SWZ(*swizzleOut, 1) == SWIZZLE_Y);
1534 if (size >= 3)
1535 assert(GET_SWZ(*swizzleOut, 2) == SWIZZLE_Z);
1536 if (size >= 4)
1537 assert(GET_SWZ(*swizzleOut, 3) == SWIZZLE_W);
1538 return GL_TRUE;
1539 }
1540 else
1541 return GL_FALSE;
1542 }
1543
1544
1545 /**
1546 * Recursively traverse 'oper' to produce a swizzle mask in the event
1547 * of any vector subscripts and swizzle suffixes.
1548 * Ex: for "vec4 v", "v[2].x" resolves to v.z
1549 */
1550 static GLuint
1551 resolve_swizzle(const slang_operation *oper)
1552 {
1553 if (oper->type == SLANG_OPER_FIELD) {
1554 /* writemask from .xyzw suffix */
1555 slang_swizzle swz;
1556 if (_slang_is_swizzle((char*) oper->a_id, 4, &swz)) {
1557 GLuint swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
1558 swz.swizzle[1],
1559 swz.swizzle[2],
1560 swz.swizzle[3]);
1561 GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
1562 GLuint s = _slang_swizzle_swizzle(child_swizzle, swizzle);
1563 return s;
1564 }
1565 else
1566 return SWIZZLE_XYZW;
1567 }
1568 else if (oper->type == SLANG_OPER_SUBSCRIPT &&
1569 oper->children[1].type == SLANG_OPER_LITERAL_INT) {
1570 /* writemask from [index] */
1571 GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
1572 GLuint i = (GLuint) oper->children[1].literal[0];
1573 GLuint swizzle;
1574 GLuint s;
1575 switch (i) {
1576 case 0:
1577 swizzle = SWIZZLE_XXXX;
1578 break;
1579 case 1:
1580 swizzle = SWIZZLE_YYYY;
1581 break;
1582 case 2:
1583 swizzle = SWIZZLE_ZZZZ;
1584 break;
1585 case 3:
1586 swizzle = SWIZZLE_WWWW;
1587 break;
1588 default:
1589 swizzle = SWIZZLE_XYZW;
1590 }
1591 s = _slang_swizzle_swizzle(child_swizzle, swizzle);
1592 return s;
1593 }
1594 else {
1595 return SWIZZLE_XYZW;
1596 }
1597 }
1598
1599
1600 /**
1601 * Recursively descend through swizzle nodes to find the node's storage info.
1602 */
1603 static slang_ir_storage *
1604 get_store(const slang_ir_node *n)
1605 {
1606 if (n->Opcode == IR_SWIZZLE) {
1607 return get_store(n->Children[0]);
1608 }
1609 return n->Store;
1610 }
1611
1612
1613
1614 /**
1615 * Generate IR tree for an asm instruction/operation such as:
1616 * __asm vec4_dot __retVal.x, v1, v2;
1617 */
1618 static slang_ir_node *
1619 _slang_gen_asm(slang_assemble_ctx *A, slang_operation *oper,
1620 slang_operation *dest)
1621 {
1622 const slang_asm_info *info;
1623 slang_ir_node *kids[3], *n;
1624 GLuint j, firstOperand;
1625
1626 assert(oper->type == SLANG_OPER_ASM);
1627
1628 info = slang_find_asm_info((char *) oper->a_id);
1629 if (!info) {
1630 _mesa_problem(NULL, "undefined __asm function %s\n",
1631 (char *) oper->a_id);
1632 assert(info);
1633 }
1634 assert(info->NumParams <= 3);
1635
1636 if (info->NumParams == oper->num_children) {
1637 /* Storage for result is not specified.
1638 * Children[0], [1], [2] are the operands.
1639 */
1640 firstOperand = 0;
1641 }
1642 else {
1643 /* Storage for result (child[0]) is specified.
1644 * Children[1], [2], [3] are the operands.
1645 */
1646 firstOperand = 1;
1647 }
1648
1649 /* assemble child(ren) */
1650 kids[0] = kids[1] = kids[2] = NULL;
1651 for (j = 0; j < info->NumParams; j++) {
1652 kids[j] = _slang_gen_operation(A, &oper->children[firstOperand + j]);
1653 if (!kids[j])
1654 return NULL;
1655 }
1656
1657 n = new_node3(info->Opcode, kids[0], kids[1], kids[2]);
1658
1659 if (firstOperand) {
1660 /* Setup n->Store to be a particular location. Otherwise, storage
1661 * for the result (a temporary) will be allocated later.
1662 */
1663 slang_operation *dest_oper;
1664 slang_ir_node *n0;
1665
1666 dest_oper = &oper->children[0];
1667
1668 n0 = _slang_gen_operation(A, dest_oper);
1669 if (!n0)
1670 return NULL;
1671
1672 assert(!n->Store);
1673 n->Store = n0->Store;
1674
1675 assert(n->Store->File != PROGRAM_UNDEFINED || n->Store->Parent);
1676
1677 _slang_free(n0);
1678 }
1679
1680 return n;
1681 }
1682
1683
1684 static void
1685 print_funcs(struct slang_function_scope_ *scope, const char *name)
1686 {
1687 GLuint i;
1688 for (i = 0; i < scope->num_functions; i++) {
1689 slang_function *f = &scope->functions[i];
1690 if (!name || strcmp(name, (char*) f->header.a_name) == 0)
1691 printf(" %s (%d args)\n", name, f->param_count);
1692
1693 }
1694 if (scope->outer_scope)
1695 print_funcs(scope->outer_scope, name);
1696 }
1697
1698
1699 /**
1700 * Find a function of the given name, taking 'numArgs' arguments.
1701 * This is the function we'll try to call when there is no exact match
1702 * between function parameters and call arguments.
1703 *
1704 * XXX we should really create a list of candidate functions and try
1705 * all of them...
1706 */
1707 static slang_function *
1708 _slang_find_function_by_argc(slang_function_scope *scope,
1709 const char *name, int numArgs)
1710 {
1711 while (scope) {
1712 GLuint i;
1713 for (i = 0; i < scope->num_functions; i++) {
1714 slang_function *f = &scope->functions[i];
1715 if (strcmp(name, (char*) f->header.a_name) == 0) {
1716 int haveRetValue = _slang_function_has_return_value(f);
1717 if (numArgs == f->param_count - haveRetValue)
1718 return f;
1719 }
1720 }
1721 scope = scope->outer_scope;
1722 }
1723
1724 return NULL;
1725 }
1726
1727
1728 static slang_function *
1729 _slang_find_function_by_max_argc(slang_function_scope *scope,
1730 const char *name)
1731 {
1732 slang_function *maxFunc = NULL;
1733 GLuint maxArgs = 0;
1734
1735 while (scope) {
1736 GLuint i;
1737 for (i = 0; i < scope->num_functions; i++) {
1738 slang_function *f = &scope->functions[i];
1739 if (strcmp(name, (char*) f->header.a_name) == 0) {
1740 if (f->param_count > maxArgs) {
1741 maxArgs = f->param_count;
1742 maxFunc = f;
1743 }
1744 }
1745 }
1746 scope = scope->outer_scope;
1747 }
1748
1749 return maxFunc;
1750 }
1751
1752
1753 /**
1754 * Generate a new slang_function which is a constructor for a user-defined
1755 * struct type.
1756 */
1757 static slang_function *
1758 _slang_make_constructor(slang_assemble_ctx *A, slang_struct *str)
1759 {
1760 const GLint numFields = str->fields->num_variables;
1761
1762 slang_function *fun = (slang_function *) _mesa_malloc(sizeof(slang_function));
1763 if (!fun)
1764 return NULL;
1765
1766 slang_function_construct(fun);
1767
1768 /* function header (name, return type) */
1769 fun->kind = SLANG_FUNC_CONSTRUCTOR;
1770 fun->header.a_name = str->a_name;
1771 fun->header.type.qualifier = SLANG_QUAL_NONE;
1772 fun->header.type.specifier.type = SLANG_SPEC_STRUCT;
1773 fun->header.type.specifier._struct = str;
1774
1775 /* function parameters (= struct's fields) */
1776 {
1777 GLint i;
1778 for (i = 0; i < numFields; i++) {
1779 /*
1780 printf("Field %d: %s\n", i, (char*) str->fields->variables[i]->a_name);
1781 */
1782 slang_variable *p = slang_variable_scope_grow(fun->parameters);
1783 *p = *str->fields->variables[i]; /* copy the type */
1784 p->type.qualifier = SLANG_QUAL_CONST;
1785 }
1786 fun->param_count = fun->parameters->num_variables;
1787 }
1788
1789 /* Add __retVal to params */
1790 {
1791 slang_variable *p = slang_variable_scope_grow(fun->parameters);
1792 slang_atom a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
1793 assert(a_retVal);
1794 p->a_name = a_retVal;
1795 p->type = fun->header.type;
1796 p->type.qualifier = SLANG_QUAL_OUT;
1797 fun->param_count++;
1798 }
1799
1800 /* function body is:
1801 * block:
1802 * declare T;
1803 * T.f1 = p1;
1804 * T.f2 = p2;
1805 * ...
1806 * T.fn = pn;
1807 * return T;
1808 */
1809 {
1810 slang_variable_scope *scope;
1811 slang_variable *var;
1812 GLint i;
1813
1814 fun->body = slang_operation_new(1);
1815 fun->body->type = SLANG_OPER_BLOCK_NEW_SCOPE;
1816 fun->body->num_children = numFields + 2;
1817 fun->body->children = slang_operation_new(numFields + 2);
1818
1819 scope = fun->body->locals;
1820 scope->outer_scope = fun->parameters;
1821
1822 /* create local var 't' */
1823 var = slang_variable_scope_grow(scope);
1824 var->a_name = slang_atom_pool_atom(A->atoms, "t");
1825 var->type = fun->header.type;
1826
1827 /* declare t */
1828 {
1829 slang_operation *decl;
1830
1831 decl = &fun->body->children[0];
1832 decl->type = SLANG_OPER_VARIABLE_DECL;
1833 decl->locals = _slang_variable_scope_new(scope);
1834 decl->a_id = var->a_name;
1835 }
1836
1837 /* assign params to fields of t */
1838 for (i = 0; i < numFields; i++) {
1839 slang_operation *assign = &fun->body->children[1 + i];
1840
1841 assign->type = SLANG_OPER_ASSIGN;
1842 assign->locals = _slang_variable_scope_new(scope);
1843 assign->num_children = 2;
1844 assign->children = slang_operation_new(2);
1845
1846 {
1847 slang_operation *lhs = &assign->children[0];
1848
1849 lhs->type = SLANG_OPER_FIELD;
1850 lhs->locals = _slang_variable_scope_new(scope);
1851 lhs->num_children = 1;
1852 lhs->children = slang_operation_new(1);
1853 lhs->a_id = str->fields->variables[i]->a_name;
1854
1855 lhs->children[0].type = SLANG_OPER_IDENTIFIER;
1856 lhs->children[0].a_id = var->a_name;
1857 lhs->children[0].locals = _slang_variable_scope_new(scope);
1858
1859 #if 0
1860 lhs->children[1].num_children = 1;
1861 lhs->children[1].children = slang_operation_new(1);
1862 lhs->children[1].children[0].type = SLANG_OPER_IDENTIFIER;
1863 lhs->children[1].children[0].a_id = str->fields->variables[i]->a_name;
1864 lhs->children[1].children->locals = _slang_variable_scope_new(scope);
1865 #endif
1866 }
1867
1868 {
1869 slang_operation *rhs = &assign->children[1];
1870
1871 rhs->type = SLANG_OPER_IDENTIFIER;
1872 rhs->locals = _slang_variable_scope_new(scope);
1873 rhs->a_id = str->fields->variables[i]->a_name;
1874 }
1875 }
1876
1877 /* return t; */
1878 {
1879 slang_operation *ret = &fun->body->children[numFields + 1];
1880
1881 ret->type = SLANG_OPER_RETURN;
1882 ret->locals = _slang_variable_scope_new(scope);
1883 ret->num_children = 1;
1884 ret->children = slang_operation_new(1);
1885 ret->children[0].type = SLANG_OPER_IDENTIFIER;
1886 ret->children[0].a_id = var->a_name;
1887 ret->children[0].locals = _slang_variable_scope_new(scope);
1888
1889 }
1890 }
1891 /*
1892 slang_print_function(fun, 1);
1893 */
1894 return fun;
1895 }
1896
1897
1898 /**
1899 * Find/create a function (constructor) for the given structure name.
1900 */
1901 static slang_function *
1902 _slang_locate_struct_constructor(slang_assemble_ctx *A, const char *name)
1903 {
1904 unsigned int i;
1905 for (i = 0; i < A->space.structs->num_structs; i++) {
1906 slang_struct *str = &A->space.structs->structs[i];
1907 if (strcmp(name, (const char *) str->a_name) == 0) {
1908 /* found a structure type that matches the function name */
1909 if (!str->constructor) {
1910 /* create the constructor function now */
1911 str->constructor = _slang_make_constructor(A, str);
1912 }
1913 return str->constructor;
1914 }
1915 }
1916 return NULL;
1917 }
1918
1919
1920
1921 static GLboolean
1922 _slang_is_vec_mat_type(const char *name)
1923 {
1924 static const char *vecmat_types[] = {
1925 "float", "int", "bool",
1926 "vec2", "vec3", "vec4",
1927 "ivec2", "ivec3", "ivec4",
1928 "bvec2", "bvec3", "bvec4",
1929 "mat2", "mat3", "mat4",
1930 "mat2x3", "mat2x4", "mat3x2", "mat3x4", "mat4x2", "mat4x3",
1931 NULL
1932 };
1933 int i;
1934 for (i = 0; vecmat_types[i]; i++)
1935 if (_mesa_strcmp(name, vecmat_types[i]) == 0)
1936 return GL_TRUE;
1937 return GL_FALSE;
1938 }
1939
1940
1941 /**
1942 * Assemble a function call, given a particular function name.
1943 * \param name the function's name (operators like '*' are possible).
1944 */
1945 static slang_ir_node *
1946 _slang_gen_function_call_name(slang_assemble_ctx *A, const char *name,
1947 slang_operation *oper, slang_operation *dest)
1948 {
1949 slang_operation *params = oper->children;
1950 const GLuint param_count = oper->num_children;
1951 slang_atom atom;
1952 slang_function *fun;
1953 GLboolean error;
1954 slang_ir_node *n;
1955
1956 atom = slang_atom_pool_atom(A->atoms, name);
1957 if (atom == SLANG_ATOM_NULL)
1958 return NULL;
1959
1960 /*
1961 * First, try to find function by name and exact argument type matching.
1962 */
1963 fun = _slang_locate_function(A->space.funcs, atom, params, param_count,
1964 &A->space, A->atoms, A->log, &error);
1965
1966 if (error) {
1967 slang_info_log_error(A->log,
1968 "Function '%s' not found (check argument types)",
1969 name);
1970 return NULL;
1971 }
1972
1973 if (!fun) {
1974 /* Next, try locating a constructor function for a user-defined type */
1975 fun = _slang_locate_struct_constructor(A, name);
1976 }
1977
1978 /*
1979 * At this point, some heuristics are used to try to find a function
1980 * that matches the calling signature by means of casting or "unrolling"
1981 * of constructors.
1982 */
1983
1984 if (!fun && _slang_is_vec_mat_type(name)) {
1985 /* Next, if this call looks like a vec() or mat() constructor call,
1986 * try "unwinding" the args to satisfy a constructor.
1987 */
1988 fun = _slang_find_function_by_max_argc(A->space.funcs, name);
1989 if (fun) {
1990 if (!_slang_adapt_call(oper, fun, &A->space, A->atoms, A->log)) {
1991 slang_info_log_error(A->log,
1992 "Function '%s' not found (check argument types)",
1993 name);
1994 return NULL;
1995 }
1996 }
1997 }
1998
1999 if (!fun && _slang_is_vec_mat_type(name)) {
2000 /* Next, try casting args to the types of the formal parameters */
2001 int numArgs = oper->num_children;
2002 fun = _slang_find_function_by_argc(A->space.funcs, name, numArgs);
2003 if (!fun || !_slang_cast_func_params(oper, fun, &A->space, A->atoms, A->log)) {
2004 slang_info_log_error(A->log,
2005 "Function '%s' not found (check argument types)",
2006 name);
2007 return NULL;
2008 }
2009 assert(fun);
2010 }
2011
2012 if (!fun) {
2013 slang_info_log_error(A->log,
2014 "Function '%s' not found (check argument types)",
2015 name);
2016 return NULL;
2017 }
2018
2019 n = _slang_gen_function_call(A, fun, oper, dest);
2020
2021 if (n && !n->Store && !dest
2022 && fun->header.type.specifier.type != SLANG_SPEC_VOID) {
2023 /* setup n->Store for the result of the function call */
2024 GLint size = _slang_sizeof_type_specifier(&fun->header.type.specifier);
2025 n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, size);
2026 /*printf("Alloc storage for function result, size %d \n", size);*/
2027 }
2028
2029 return n;
2030 }
2031
2032
2033 static GLboolean
2034 _slang_is_constant_cond(const slang_operation *oper, GLboolean *value)
2035 {
2036 if (oper->type == SLANG_OPER_LITERAL_FLOAT ||
2037 oper->type == SLANG_OPER_LITERAL_INT ||
2038 oper->type == SLANG_OPER_LITERAL_BOOL) {
2039 if (oper->literal[0])
2040 *value = GL_TRUE;
2041 else
2042 *value = GL_FALSE;
2043 return GL_TRUE;
2044 }
2045 else if (oper->type == SLANG_OPER_EXPRESSION &&
2046 oper->num_children == 1) {
2047 return _slang_is_constant_cond(&oper->children[0], value);
2048 }
2049 return GL_FALSE;
2050 }
2051
2052
2053 /**
2054 * Test if an operation is a scalar or boolean.
2055 */
2056 static GLboolean
2057 _slang_is_scalar_or_boolean(slang_assemble_ctx *A, slang_operation *oper)
2058 {
2059 slang_typeinfo type;
2060 GLint size;
2061
2062 slang_typeinfo_construct(&type);
2063 _slang_typeof_operation(A, oper, &type);
2064 size = _slang_sizeof_type_specifier(&type.spec);
2065 slang_typeinfo_destruct(&type);
2066 return size == 1;
2067 }
2068
2069
2070 /**
2071 * Test if an operation is boolean.
2072 */
2073 static GLboolean
2074 _slang_is_boolean(slang_assemble_ctx *A, slang_operation *oper)
2075 {
2076 slang_typeinfo type;
2077 GLboolean isBool;
2078
2079 slang_typeinfo_construct(&type);
2080 _slang_typeof_operation(A, oper, &type);
2081 isBool = (type.spec.type == SLANG_SPEC_BOOL);
2082 slang_typeinfo_destruct(&type);
2083 return isBool;
2084 }
2085
2086
2087 /**
2088 * Generate loop code using high-level IR_LOOP instruction
2089 */
2090 static slang_ir_node *
2091 _slang_gen_while(slang_assemble_ctx * A, const slang_operation *oper)
2092 {
2093 /*
2094 * LOOP:
2095 * BREAK if !expr (child[0])
2096 * body code (child[1])
2097 */
2098 slang_ir_node *prevLoop, *loop, *breakIf, *body;
2099 GLboolean isConst, constTrue;
2100
2101 /* type-check expression */
2102 if (!_slang_is_boolean(A, &oper->children[0])) {
2103 slang_info_log_error(A->log, "scalar/boolean expression expected for 'while'");
2104 return NULL;
2105 }
2106
2107 /* Check if loop condition is a constant */
2108 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
2109
2110 if (isConst && !constTrue) {
2111 /* loop is never executed! */
2112 return new_node0(IR_NOP);
2113 }
2114
2115 loop = new_loop(NULL);
2116
2117 /* save old, push new loop */
2118 prevLoop = A->CurLoop;
2119 A->CurLoop = loop;
2120
2121 if (isConst && constTrue) {
2122 /* while(nonzero constant), no conditional break */
2123 breakIf = NULL;
2124 }
2125 else {
2126 slang_ir_node *cond
2127 = new_cond(new_not(_slang_gen_operation(A, &oper->children[0])));
2128 breakIf = new_break_if_true(A->CurLoop, cond);
2129 }
2130 body = _slang_gen_operation(A, &oper->children[1]);
2131 loop->Children[0] = new_seq(breakIf, body);
2132
2133 /* Do infinite loop detection */
2134 /* loop->List is head of linked list of break/continue nodes */
2135 if (!loop->List && isConst && constTrue) {
2136 /* infinite loop detected */
2137 A->CurLoop = prevLoop; /* clean-up */
2138 slang_info_log_error(A->log, "Infinite loop detected!");
2139 return NULL;
2140 }
2141
2142 /* pop loop, restore prev */
2143 A->CurLoop = prevLoop;
2144
2145 return loop;
2146 }
2147
2148
2149 /**
2150 * Generate IR tree for a do-while loop using high-level LOOP, IF instructions.
2151 */
2152 static slang_ir_node *
2153 _slang_gen_do(slang_assemble_ctx * A, const slang_operation *oper)
2154 {
2155 /*
2156 * LOOP:
2157 * body code (child[0])
2158 * tail code:
2159 * BREAK if !expr (child[1])
2160 */
2161 slang_ir_node *prevLoop, *loop;
2162 GLboolean isConst, constTrue;
2163
2164 /* type-check expression */
2165 if (!_slang_is_boolean(A, &oper->children[1])) {
2166 slang_info_log_error(A->log, "scalar/boolean expression expected for 'do/while'");
2167 return NULL;
2168 }
2169
2170 loop = new_loop(NULL);
2171
2172 /* save old, push new loop */
2173 prevLoop = A->CurLoop;
2174 A->CurLoop = loop;
2175
2176 /* loop body: */
2177 loop->Children[0] = _slang_gen_operation(A, &oper->children[0]);
2178
2179 /* Check if loop condition is a constant */
2180 isConst = _slang_is_constant_cond(&oper->children[1], &constTrue);
2181 if (isConst && constTrue) {
2182 /* do { } while(1) ==> no conditional break */
2183 loop->Children[1] = NULL; /* no tail code */
2184 }
2185 else {
2186 slang_ir_node *cond
2187 = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
2188 loop->Children[1] = new_break_if_true(A->CurLoop, cond);
2189 }
2190
2191 /* XXX we should do infinite loop detection, as above */
2192
2193 /* pop loop, restore prev */
2194 A->CurLoop = prevLoop;
2195
2196 return loop;
2197 }
2198
2199
2200 /**
2201 * Generate for-loop using high-level IR_LOOP instruction.
2202 */
2203 static slang_ir_node *
2204 _slang_gen_for(slang_assemble_ctx * A, const slang_operation *oper)
2205 {
2206 /*
2207 * init code (child[0])
2208 * LOOP:
2209 * BREAK if !expr (child[1])
2210 * body code (child[3])
2211 * tail code:
2212 * incr code (child[2]) // XXX continue here
2213 */
2214 slang_ir_node *prevLoop, *loop, *cond, *breakIf, *body, *init, *incr;
2215
2216 init = _slang_gen_operation(A, &oper->children[0]);
2217 loop = new_loop(NULL);
2218
2219 /* save old, push new loop */
2220 prevLoop = A->CurLoop;
2221 A->CurLoop = loop;
2222
2223 cond = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
2224 breakIf = new_break_if_true(A->CurLoop, cond);
2225 body = _slang_gen_operation(A, &oper->children[3]);
2226 incr = _slang_gen_operation(A, &oper->children[2]);
2227
2228 loop->Children[0] = new_seq(breakIf, body);
2229 loop->Children[1] = incr; /* tail code */
2230
2231 /* pop loop, restore prev */
2232 A->CurLoop = prevLoop;
2233
2234 return new_seq(init, loop);
2235 }
2236
2237
2238 static slang_ir_node *
2239 _slang_gen_continue(slang_assemble_ctx * A, const slang_operation *oper)
2240 {
2241 slang_ir_node *n, *loopNode;
2242 assert(oper->type == SLANG_OPER_CONTINUE);
2243 loopNode = A->CurLoop;
2244 assert(loopNode);
2245 assert(loopNode->Opcode == IR_LOOP);
2246 n = new_node0(IR_CONT);
2247 if (n) {
2248 n->Parent = loopNode;
2249 /* insert this node at head of linked list */
2250 n->List = loopNode->List;
2251 loopNode->List = n;
2252 }
2253 return n;
2254 }
2255
2256
2257 /**
2258 * Determine if the given operation is of a specific type.
2259 */
2260 static GLboolean
2261 is_operation_type(const slang_operation *oper, slang_operation_type type)
2262 {
2263 if (oper->type == type)
2264 return GL_TRUE;
2265 else if ((oper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
2266 oper->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) &&
2267 oper->num_children == 1)
2268 return is_operation_type(&oper->children[0], type);
2269 else
2270 return GL_FALSE;
2271 }
2272
2273
2274 /**
2275 * Generate IR tree for an if/then/else conditional using high-level
2276 * IR_IF instruction.
2277 */
2278 static slang_ir_node *
2279 _slang_gen_if(slang_assemble_ctx * A, const slang_operation *oper)
2280 {
2281 /*
2282 * eval expr (child[0])
2283 * IF expr THEN
2284 * if-body code
2285 * ELSE
2286 * else-body code
2287 * ENDIF
2288 */
2289 const GLboolean haveElseClause = !_slang_is_noop(&oper->children[2]);
2290 slang_ir_node *ifNode, *cond, *ifBody, *elseBody;
2291 GLboolean isConst, constTrue;
2292
2293 /* type-check expression */
2294 if (!_slang_is_boolean(A, &oper->children[0])) {
2295 slang_info_log_error(A->log, "boolean expression expected for 'if'");
2296 return NULL;
2297 }
2298
2299 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2300 slang_info_log_error(A->log, "scalar/boolean expression expected for 'if'");
2301 return NULL;
2302 }
2303
2304 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
2305 if (isConst) {
2306 if (constTrue) {
2307 /* if (true) ... */
2308 return _slang_gen_operation(A, &oper->children[1]);
2309 }
2310 else {
2311 /* if (false) ... */
2312 return _slang_gen_operation(A, &oper->children[2]);
2313 }
2314 }
2315
2316 cond = _slang_gen_operation(A, &oper->children[0]);
2317 cond = new_cond(cond);
2318
2319 if (is_operation_type(&oper->children[1], SLANG_OPER_BREAK)
2320 && !haveElseClause) {
2321 /* Special case: generate a conditional break */
2322 ifBody = new_break_if_true(A->CurLoop, cond);
2323 return ifBody;
2324 }
2325 else if (is_operation_type(&oper->children[1], SLANG_OPER_CONTINUE)
2326 && !haveElseClause) {
2327 /* Special case: generate a conditional break */
2328 ifBody = new_cont_if_true(A->CurLoop, cond);
2329 return ifBody;
2330 }
2331 else {
2332 /* general case */
2333 ifBody = _slang_gen_operation(A, &oper->children[1]);
2334 if (haveElseClause)
2335 elseBody = _slang_gen_operation(A, &oper->children[2]);
2336 else
2337 elseBody = NULL;
2338 ifNode = new_if(cond, ifBody, elseBody);
2339 return ifNode;
2340 }
2341 }
2342
2343
2344
2345 static slang_ir_node *
2346 _slang_gen_not(slang_assemble_ctx * A, const slang_operation *oper)
2347 {
2348 slang_ir_node *n;
2349
2350 assert(oper->type == SLANG_OPER_NOT);
2351
2352 /* type-check expression */
2353 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2354 slang_info_log_error(A->log,
2355 "scalar/boolean expression expected for '!'");
2356 return NULL;
2357 }
2358
2359 n = _slang_gen_operation(A, &oper->children[0]);
2360 if (n)
2361 return new_not(n);
2362 else
2363 return NULL;
2364 }
2365
2366
2367 static slang_ir_node *
2368 _slang_gen_xor(slang_assemble_ctx * A, const slang_operation *oper)
2369 {
2370 slang_ir_node *n1, *n2;
2371
2372 assert(oper->type == SLANG_OPER_LOGICALXOR);
2373
2374 if (!_slang_is_scalar_or_boolean(A, &oper->children[0]) ||
2375 !_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2376 slang_info_log_error(A->log,
2377 "scalar/boolean expressions expected for '^^'");
2378 return NULL;
2379 }
2380
2381 n1 = _slang_gen_operation(A, &oper->children[0]);
2382 if (!n1)
2383 return NULL;
2384 n2 = _slang_gen_operation(A, &oper->children[1]);
2385 if (!n2)
2386 return NULL;
2387 return new_node2(IR_NOTEQUAL, n1, n2);
2388 }
2389
2390
2391 /**
2392 * Generate IR node for storage of a temporary of given size.
2393 */
2394 static slang_ir_node *
2395 _slang_gen_temporary(GLint size)
2396 {
2397 slang_ir_storage *store;
2398 slang_ir_node *n = NULL;
2399
2400 store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -2, size);
2401 if (store) {
2402 n = new_node0(IR_VAR_DECL);
2403 if (n) {
2404 n->Store = store;
2405 }
2406 else {
2407 _slang_free(store);
2408 }
2409 }
2410 return n;
2411 }
2412
2413
2414 /**
2415 * Generate IR node for allocating/declaring a variable.
2416 */
2417 static slang_ir_node *
2418 _slang_gen_var_decl(slang_assemble_ctx *A, slang_variable *var)
2419 {
2420 slang_ir_node *n;
2421
2422 /*assert(!var->declared);*/
2423 var->declared = GL_TRUE;
2424
2425 n = new_node0(IR_VAR_DECL);
2426 if (n) {
2427 _slang_attach_storage(n, var);
2428 assert(var->aux);
2429 assert(n->Store == var->aux);
2430 assert(n->Store);
2431 assert(n->Store->Index < 0);
2432
2433 if (is_sampler_type(&var->type)) {
2434 n->Store->File = PROGRAM_SAMPLER;
2435 }
2436 else {
2437 n->Store->File = PROGRAM_TEMPORARY;
2438 }
2439
2440 n->Store->Size = _slang_sizeof_type_specifier(&n->Var->type.specifier);
2441
2442 if (n->Store->Size <= 0) {
2443 slang_info_log_error(A->log, "invalid declaration for '%s'",
2444 (char*) var->a_name);
2445 return NULL;
2446 }
2447 #if 0
2448 printf("%s var %p %s store=%p index=%d size=%d\n",
2449 __FUNCTION__, (void *) var, (char *) var->a_name,
2450 (void *) n->Store, n->Store->Index, n->Store->Size);
2451 #endif
2452
2453 if (var->array_len > 0) {
2454 /* this is an array */
2455 /* cannot be const-qualified */
2456 if (var->type.qualifier == SLANG_QUAL_CONST) {
2457 slang_info_log_error(A->log, "array '%s' cannot be const",
2458 (char*) var->a_name);
2459 return NULL;
2460 }
2461 else {
2462 /* round up element size to mult of 4 */
2463 GLint sz = (n->Store->Size + 3) & ~3;
2464 /* mult by array size */
2465 sz *= var->array_len;
2466 n->Store->Size = sz;
2467 }
2468 }
2469
2470 assert(n->Store->Size > 0);
2471
2472 /* setup default swizzle for storing the variable */
2473 switch (n->Store->Size) {
2474 case 2:
2475 n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
2476 SWIZZLE_NIL, SWIZZLE_NIL);
2477 break;
2478 case 3:
2479 n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
2480 SWIZZLE_Z, SWIZZLE_NIL);
2481 break;
2482 default:
2483 /* Note that float-sized vars may be allocated in any x/y/z/w
2484 * slot, but that won't be determined until code emit time.
2485 */
2486 n->Store->Swizzle = SWIZZLE_NOOP;
2487 }
2488 }
2489 return n;
2490 }
2491
2492
2493 /**
2494 * Generate code for a selection expression: b ? x : y
2495 * XXX In some cases we could implement a selection expression
2496 * with an LRP instruction (use the boolean as the interpolant).
2497 * Otherwise, we use an IF/ELSE/ENDIF construct.
2498 */
2499 static slang_ir_node *
2500 _slang_gen_select(slang_assemble_ctx *A, slang_operation *oper)
2501 {
2502 slang_ir_node *cond, *ifNode, *trueExpr, *falseExpr, *trueNode, *falseNode;
2503 slang_ir_node *tmpDecl, *tmpVar, *tree;
2504 slang_typeinfo type0, type1, type2;
2505 int size, isBool, isEqual;
2506
2507 assert(oper->type == SLANG_OPER_SELECT);
2508 assert(oper->num_children == 3);
2509
2510 /* type of children[0] must be boolean */
2511 slang_typeinfo_construct(&type0);
2512 _slang_typeof_operation(A, &oper->children[0], &type0);
2513 isBool = (type0.spec.type == SLANG_SPEC_BOOL);
2514 slang_typeinfo_destruct(&type0);
2515 if (!isBool) {
2516 slang_info_log_error(A->log, "selector type is not boolean");
2517 return NULL;
2518 }
2519
2520 slang_typeinfo_construct(&type1);
2521 slang_typeinfo_construct(&type2);
2522 _slang_typeof_operation(A, &oper->children[1], &type1);
2523 _slang_typeof_operation(A, &oper->children[2], &type2);
2524 isEqual = slang_type_specifier_equal(&type1.spec, &type2.spec);
2525 slang_typeinfo_destruct(&type1);
2526 slang_typeinfo_destruct(&type2);
2527 if (!isEqual) {
2528 slang_info_log_error(A->log, "incompatible types for ?: operator");
2529 return NULL;
2530 }
2531
2532 /* size of x or y's type */
2533 size = _slang_sizeof_type_specifier(&type1.spec);
2534 assert(size > 0);
2535
2536 /* temporary var */
2537 tmpDecl = _slang_gen_temporary(size);
2538
2539 /* the condition (child 0) */
2540 cond = _slang_gen_operation(A, &oper->children[0]);
2541 cond = new_cond(cond);
2542
2543 /* if-true body (child 1) */
2544 tmpVar = new_node0(IR_VAR);
2545 tmpVar->Store = tmpDecl->Store;
2546 trueExpr = _slang_gen_operation(A, &oper->children[1]);
2547 trueNode = new_node2(IR_COPY, tmpVar, trueExpr);
2548
2549 /* if-false body (child 2) */
2550 tmpVar = new_node0(IR_VAR);
2551 tmpVar->Store = tmpDecl->Store;
2552 falseExpr = _slang_gen_operation(A, &oper->children[2]);
2553 falseNode = new_node2(IR_COPY, tmpVar, falseExpr);
2554
2555 ifNode = new_if(cond, trueNode, falseNode);
2556
2557 /* tmp var value */
2558 tmpVar = new_node0(IR_VAR);
2559 tmpVar->Store = tmpDecl->Store;
2560
2561 tree = new_seq(ifNode, tmpVar);
2562 tree = new_seq(tmpDecl, tree);
2563
2564 /*_slang_print_ir_tree(tree, 10);*/
2565 return tree;
2566 }
2567
2568
2569 /**
2570 * Generate code for &&.
2571 */
2572 static slang_ir_node *
2573 _slang_gen_logical_and(slang_assemble_ctx *A, slang_operation *oper)
2574 {
2575 /* rewrite "a && b" as "a ? b : false" */
2576 slang_operation *select;
2577 slang_ir_node *n;
2578
2579 select = slang_operation_new(1);
2580 select->type = SLANG_OPER_SELECT;
2581 select->num_children = 3;
2582 select->children = slang_operation_new(3);
2583
2584 slang_operation_copy(&select->children[0], &oper->children[0]);
2585 slang_operation_copy(&select->children[1], &oper->children[1]);
2586 select->children[2].type = SLANG_OPER_LITERAL_BOOL;
2587 ASSIGN_4V(select->children[2].literal, 0, 0, 0, 0); /* false */
2588 select->children[2].literal_size = 1;
2589
2590 n = _slang_gen_select(A, select);
2591 return n;
2592 }
2593
2594
2595 /**
2596 * Generate code for ||.
2597 */
2598 static slang_ir_node *
2599 _slang_gen_logical_or(slang_assemble_ctx *A, slang_operation *oper)
2600 {
2601 /* rewrite "a || b" as "a ? true : b" */
2602 slang_operation *select;
2603 slang_ir_node *n;
2604
2605 select = slang_operation_new(1);
2606 select->type = SLANG_OPER_SELECT;
2607 select->num_children = 3;
2608 select->children = slang_operation_new(3);
2609
2610 slang_operation_copy(&select->children[0], &oper->children[0]);
2611 select->children[1].type = SLANG_OPER_LITERAL_BOOL;
2612 ASSIGN_4V(select->children[1].literal, 1, 1, 1, 1); /* true */
2613 select->children[1].literal_size = 1;
2614 slang_operation_copy(&select->children[2], &oper->children[1]);
2615
2616 n = _slang_gen_select(A, select);
2617 return n;
2618 }
2619
2620
2621 /**
2622 * Generate IR tree for a return statement.
2623 */
2624 static slang_ir_node *
2625 _slang_gen_return(slang_assemble_ctx * A, slang_operation *oper)
2626 {
2627 const GLboolean haveReturnValue
2628 = (oper->num_children == 1 && oper->children[0].type != SLANG_OPER_VOID);
2629
2630 /* error checking */
2631 assert(A->CurFunction);
2632 if (haveReturnValue &&
2633 A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
2634 slang_info_log_error(A->log, "illegal return expression");
2635 return NULL;
2636 }
2637 else if (!haveReturnValue &&
2638 A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
2639 slang_info_log_error(A->log, "return statement requires an expression");
2640 return NULL;
2641 }
2642
2643 if (!haveReturnValue) {
2644 return new_return(A->curFuncEndLabel);
2645 }
2646 else {
2647 /*
2648 * Convert from:
2649 * return expr;
2650 * To:
2651 * __retVal = expr;
2652 * return; // goto __endOfFunction
2653 */
2654 slang_operation *assign;
2655 slang_atom a_retVal;
2656 slang_ir_node *n;
2657
2658 a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
2659 assert(a_retVal);
2660
2661 #if 1 /* DEBUG */
2662 {
2663 slang_variable *v
2664 = _slang_locate_variable(oper->locals, a_retVal, GL_TRUE);
2665 if (!v) {
2666 /* trying to return a value in a void-valued function */
2667 return NULL;
2668 }
2669 }
2670 #endif
2671
2672 assign = slang_operation_new(1);
2673 assign->type = SLANG_OPER_ASSIGN;
2674 assign->num_children = 2;
2675 assign->children = slang_operation_new(2);
2676 /* lhs (__retVal) */
2677 assign->children[0].type = SLANG_OPER_IDENTIFIER;
2678 assign->children[0].a_id = a_retVal;
2679 assign->children[0].locals->outer_scope = assign->locals;
2680 /* rhs (expr) */
2681 /* XXX we might be able to avoid this copy someday */
2682 slang_operation_copy(&assign->children[1], &oper->children[0]);
2683
2684 /* assemble the new code */
2685 n = new_seq(_slang_gen_operation(A, assign),
2686 new_return(A->curFuncEndLabel));
2687
2688 slang_operation_delete(assign);
2689 return n;
2690 }
2691 }
2692
2693
2694 /**
2695 * Determine if the given operation/expression is const-valued.
2696 */
2697 static GLboolean
2698 _slang_is_constant_expr(const slang_operation *oper)
2699 {
2700 slang_variable *var;
2701 GLuint i;
2702
2703 switch (oper->type) {
2704 case SLANG_OPER_IDENTIFIER:
2705 var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
2706 if (var && var->type.qualifier == SLANG_QUAL_CONST)
2707 return GL_TRUE;
2708 return GL_FALSE;
2709 default:
2710 for (i = 0; i < oper->num_children; i++) {
2711 if (!_slang_is_constant_expr(&oper->children[i]))
2712 return GL_FALSE;
2713 }
2714 return GL_TRUE;
2715 }
2716 }
2717
2718
2719 /**
2720 * Check if an assignment of type t1 to t0 is legal.
2721 * XXX more cases needed.
2722 */
2723 static GLboolean
2724 _slang_assignment_compatible(slang_assemble_ctx *A,
2725 slang_operation *op0,
2726 slang_operation *op1)
2727 {
2728 slang_typeinfo t0, t1;
2729 GLuint sz0, sz1;
2730
2731 if (op0->type == SLANG_OPER_POSTINCREMENT ||
2732 op0->type == SLANG_OPER_POSTDECREMENT) {
2733 return GL_FALSE;
2734 }
2735
2736 slang_typeinfo_construct(&t0);
2737 _slang_typeof_operation(A, op0, &t0);
2738
2739 slang_typeinfo_construct(&t1);
2740 _slang_typeof_operation(A, op1, &t1);
2741
2742 sz0 = _slang_sizeof_type_specifier(&t0.spec);
2743 sz1 = _slang_sizeof_type_specifier(&t1.spec);
2744
2745 #if 1
2746 if (sz0 != sz1) {
2747 /*printf("assignment size mismatch %u vs %u\n", sz0, sz1);*/
2748 return GL_FALSE;
2749 }
2750 #endif
2751
2752 if (t0.spec.type == SLANG_SPEC_STRUCT &&
2753 t1.spec.type == SLANG_SPEC_STRUCT &&
2754 t0.spec._struct->a_name != t1.spec._struct->a_name)
2755 return GL_FALSE;
2756
2757 if (t0.spec.type == SLANG_SPEC_FLOAT &&
2758 t1.spec.type == SLANG_SPEC_BOOL)
2759 return GL_FALSE;
2760
2761 #if 0 /* not used just yet - causes problems elsewhere */
2762 if (t0.spec.type == SLANG_SPEC_INT &&
2763 t1.spec.type == SLANG_SPEC_FLOAT)
2764 return GL_FALSE;
2765 #endif
2766
2767 if (t0.spec.type == SLANG_SPEC_BOOL &&
2768 t1.spec.type == SLANG_SPEC_FLOAT)
2769 return GL_FALSE;
2770
2771 if (t0.spec.type == SLANG_SPEC_BOOL &&
2772 t1.spec.type == SLANG_SPEC_INT)
2773 return GL_FALSE;
2774
2775 return GL_TRUE;
2776 }
2777
2778
2779
2780 /**
2781 * Generate IR tree for a variable declaration.
2782 */
2783 static slang_ir_node *
2784 _slang_gen_declaration(slang_assemble_ctx *A, slang_operation *oper)
2785 {
2786 slang_ir_node *n;
2787 slang_ir_node *varDecl;
2788 slang_variable *v;
2789 const char *varName = (char *) oper->a_id;
2790 slang_operation *initializer;
2791
2792 assert(oper->type == SLANG_OPER_VARIABLE_DECL);
2793 assert(oper->num_children <= 1);
2794
2795 v = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
2796 if (!v)
2797 return NULL; /* "shouldn't happen" */
2798
2799 if (v->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
2800 v->type.qualifier == SLANG_QUAL_VARYING ||
2801 v->type.qualifier == SLANG_QUAL_UNIFORM) {
2802 /* can't declare attribute/uniform vars inside functions */
2803 slang_info_log_error(A->log,
2804 "local variable '%s' cannot be an attribute/uniform/varying",
2805 varName);
2806 return NULL;
2807 }
2808
2809 #if 0
2810 if (v->declared) {
2811 slang_info_log_error(A->log, "variable '%s' redeclared", varName);
2812 return NULL;
2813 }
2814 #endif
2815
2816 varDecl = _slang_gen_var_decl(A, v);
2817 if (!varDecl)
2818 return NULL;
2819
2820 /* check if the var has an initializer */
2821 if (oper->num_children > 0) {
2822 assert(oper->num_children == 1);
2823 initializer = &oper->children[0];
2824 }
2825 else if (v->initializer) {
2826 initializer = v->initializer;
2827 }
2828 else {
2829 initializer = NULL;
2830 }
2831
2832 if (v->type.qualifier == SLANG_QUAL_CONST && !initializer) {
2833 slang_info_log_error(A->log,
2834 "const-qualified variable '%s' requires initializer",
2835 varName);
2836 return NULL;
2837 }
2838
2839
2840 if (initializer) {
2841 slang_ir_node *var, *init;
2842
2843 /* type check/compare var and initializer */
2844 if (!_slang_assignment_compatible(A, oper, initializer)) {
2845 slang_info_log_error(A->log, "incompatible types in assignment");
2846 return NULL;
2847 }
2848
2849 var = new_var(A, oper, oper->a_id);
2850 if (!var) {
2851 slang_info_log_error(A->log, "undefined variable '%s'", varName);
2852 return NULL;
2853 }
2854
2855 if (v->type.qualifier == SLANG_QUAL_CONST) {
2856 /* if the variable is const, the initializer must be a const
2857 * expression as well.
2858 */
2859 #if 0
2860 if (!_slang_is_constant_expr(initializer)) {
2861 slang_info_log_error(A->log,
2862 "initializer for %s not constant", varName);
2863 return NULL;
2864 }
2865 #endif
2866 }
2867
2868 _slang_simplify(initializer, &A->space, A->atoms);
2869
2870 init = _slang_gen_operation(A, initializer);
2871 if (!init)
2872 return NULL;
2873
2874 /*assert(init->Store);*/
2875
2876 /* XXX remove this when type checking is added above */
2877 if (init->Store && var->Store->Size != init->Store->Size) {
2878 slang_info_log_error(A->log, "invalid assignment (wrong types)");
2879 return NULL;
2880 }
2881
2882 n = new_node2(IR_COPY, var, init);
2883 n = new_seq(varDecl, n);
2884 }
2885 else {
2886 n = varDecl;
2887 }
2888
2889 return n;
2890 }
2891
2892
2893 /**
2894 * Generate IR tree for a variable (such as in an expression).
2895 */
2896 static slang_ir_node *
2897 _slang_gen_variable(slang_assemble_ctx * A, slang_operation *oper)
2898 {
2899 /* If there's a variable associated with this oper (from inlining)
2900 * use it. Otherwise, use the oper's var id.
2901 */
2902 slang_atom aVar = oper->var ? oper->var->a_name : oper->a_id;
2903 slang_ir_node *n = new_var(A, oper, aVar);
2904 if (!n) {
2905 slang_info_log_error(A->log, "undefined variable '%s'", (char *) aVar);
2906 return NULL;
2907 }
2908 return n;
2909 }
2910
2911
2912
2913 /**
2914 * Return the number of components actually named by the swizzle.
2915 * Recall that swizzles may have undefined/don't-care values.
2916 */
2917 static GLuint
2918 swizzle_size(GLuint swizzle)
2919 {
2920 GLuint size = 0, i;
2921 for (i = 0; i < 4; i++) {
2922 GLuint swz = GET_SWZ(swizzle, i);
2923 size += (swz >= 0 && swz <= 3);
2924 }
2925 return size;
2926 }
2927
2928
2929 static slang_ir_node *
2930 _slang_gen_swizzle(slang_ir_node *child, GLuint swizzle)
2931 {
2932 slang_ir_node *n = new_node1(IR_SWIZZLE, child);
2933 assert(child);
2934 if (n) {
2935 assert(!n->Store);
2936 n->Store = _slang_new_ir_storage_relative(0,
2937 swizzle_size(swizzle),
2938 child->Store);
2939 n->Store->Swizzle = swizzle;
2940 }
2941 return n;
2942 }
2943
2944
2945 static GLboolean
2946 is_store_writable(const slang_assemble_ctx *A, const slang_ir_storage *store)
2947 {
2948 while (store->Parent)
2949 store = store->Parent;
2950
2951 if (!(store->File == PROGRAM_OUTPUT ||
2952 store->File == PROGRAM_TEMPORARY ||
2953 (store->File == PROGRAM_VARYING &&
2954 A->program->Target == GL_VERTEX_PROGRAM_ARB))) {
2955 return GL_FALSE;
2956 }
2957 else {
2958 return GL_TRUE;
2959 }
2960 }
2961
2962
2963 /**
2964 * Generate IR tree for an assignment (=).
2965 */
2966 static slang_ir_node *
2967 _slang_gen_assignment(slang_assemble_ctx * A, slang_operation *oper)
2968 {
2969 if (oper->children[0].type == SLANG_OPER_IDENTIFIER) {
2970 /* Check that var is writeable */
2971 slang_variable *var
2972 = _slang_locate_variable(oper->children[0].locals,
2973 oper->children[0].a_id, GL_TRUE);
2974 if (!var) {
2975 slang_info_log_error(A->log, "undefined variable '%s'",
2976 (char *) oper->children[0].a_id);
2977 return NULL;
2978 }
2979 if (var->type.qualifier == SLANG_QUAL_CONST ||
2980 var->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
2981 var->type.qualifier == SLANG_QUAL_UNIFORM ||
2982 (var->type.qualifier == SLANG_QUAL_VARYING &&
2983 A->program->Target == GL_FRAGMENT_PROGRAM_ARB)) {
2984 slang_info_log_error(A->log,
2985 "illegal assignment to read-only variable '%s'",
2986 (char *) oper->children[0].a_id);
2987 return NULL;
2988 }
2989 }
2990
2991 if (oper->children[0].type == SLANG_OPER_IDENTIFIER &&
2992 oper->children[1].type == SLANG_OPER_CALL) {
2993 /* Special case of: x = f(a, b)
2994 * Replace with f(a, b, x) (where x == hidden __retVal out param)
2995 *
2996 * XXX this could be even more effective if we could accomodate
2997 * cases such as "v.x = f();" - would help with typical vertex
2998 * transformation.
2999 */
3000 slang_ir_node *n;
3001 n = _slang_gen_function_call_name(A,
3002 (const char *) oper->children[1].a_id,
3003 &oper->children[1], &oper->children[0]);
3004 return n;
3005 }
3006 else {
3007 slang_ir_node *n, *lhs, *rhs;
3008
3009 /* lhs and rhs type checking */
3010 if (!_slang_assignment_compatible(A,
3011 &oper->children[0],
3012 &oper->children[1])) {
3013 slang_info_log_error(A->log, "incompatible types in assignment");
3014 return NULL;
3015 }
3016
3017 lhs = _slang_gen_operation(A, &oper->children[0]);
3018 if (!lhs) {
3019 return NULL;
3020 }
3021
3022 if (!lhs->Store) {
3023 slang_info_log_error(A->log,
3024 "invalid left hand side for assignment");
3025 return NULL;
3026 }
3027
3028 /* check that lhs is writable */
3029 if (!is_store_writable(A, lhs->Store)) {
3030 slang_info_log_error(A->log,
3031 "illegal assignment to read-only l-value");
3032 return NULL;
3033 }
3034
3035 rhs = _slang_gen_operation(A, &oper->children[1]);
3036 if (lhs && rhs) {
3037 /* convert lhs swizzle into writemask */
3038 GLuint writemask, newSwizzle;
3039 if (!swizzle_to_writemask(A, lhs->Store->Swizzle,
3040 &writemask, &newSwizzle)) {
3041 /* Non-simple writemask, need to swizzle right hand side in
3042 * order to put components into the right place.
3043 */
3044 rhs = _slang_gen_swizzle(rhs, newSwizzle);
3045 }
3046 n = new_node2(IR_COPY, lhs, rhs);
3047 return n;
3048 }
3049 else {
3050 return NULL;
3051 }
3052 }
3053 }
3054
3055
3056 /**
3057 * Generate IR tree for referencing a field in a struct (or basic vector type)
3058 */
3059 static slang_ir_node *
3060 _slang_gen_struct_field(slang_assemble_ctx * A, slang_operation *oper)
3061 {
3062 slang_typeinfo ti;
3063
3064 /* type of struct */
3065 slang_typeinfo_construct(&ti);
3066 _slang_typeof_operation(A, &oper->children[0], &ti);
3067
3068 if (_slang_type_is_vector(ti.spec.type)) {
3069 /* the field should be a swizzle */
3070 const GLuint rows = _slang_type_dim(ti.spec.type);
3071 slang_swizzle swz;
3072 slang_ir_node *n;
3073 GLuint swizzle;
3074 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
3075 slang_info_log_error(A->log, "Bad swizzle");
3076 return NULL;
3077 }
3078 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
3079 swz.swizzle[1],
3080 swz.swizzle[2],
3081 swz.swizzle[3]);
3082
3083 n = _slang_gen_operation(A, &oper->children[0]);
3084 /* create new parent node with swizzle */
3085 if (n)
3086 n = _slang_gen_swizzle(n, swizzle);
3087 return n;
3088 }
3089 else if ( ti.spec.type == SLANG_SPEC_FLOAT
3090 || ti.spec.type == SLANG_SPEC_INT
3091 || ti.spec.type == SLANG_SPEC_BOOL) {
3092 const GLuint rows = 1;
3093 slang_swizzle swz;
3094 slang_ir_node *n;
3095 GLuint swizzle;
3096 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
3097 slang_info_log_error(A->log, "Bad swizzle");
3098 }
3099 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
3100 swz.swizzle[1],
3101 swz.swizzle[2],
3102 swz.swizzle[3]);
3103 n = _slang_gen_operation(A, &oper->children[0]);
3104 /* create new parent node with swizzle */
3105 n = _slang_gen_swizzle(n, swizzle);
3106 return n;
3107 }
3108 else {
3109 /* the field is a structure member (base.field) */
3110 /* oper->children[0] is the base */
3111 /* oper->a_id is the field name */
3112 slang_ir_node *base, *n;
3113 slang_typeinfo field_ti;
3114 GLint fieldSize, fieldOffset = -1, swz;
3115
3116 /* type of field */
3117 slang_typeinfo_construct(&field_ti);
3118 _slang_typeof_operation(A, oper, &field_ti);
3119
3120 fieldSize = _slang_sizeof_type_specifier(&field_ti.spec);
3121 if (fieldSize > 0)
3122 fieldOffset = _slang_field_offset(&ti.spec, oper->a_id);
3123
3124 if (fieldSize == 0 || fieldOffset < 0) {
3125 const char *structName;
3126 if (ti.spec._struct)
3127 structName = (char *) ti.spec._struct->a_name;
3128 else
3129 structName = "unknown";
3130 slang_info_log_error(A->log,
3131 "\"%s\" is not a member of struct \"%s\"",
3132 (char *) oper->a_id, structName);
3133 return NULL;
3134 }
3135 assert(fieldSize >= 0);
3136
3137 base = _slang_gen_operation(A, &oper->children[0]);
3138 if (!base) {
3139 /* error msg should have already been logged */
3140 return NULL;
3141 }
3142
3143 n = new_node1(IR_FIELD, base);
3144 if (!n)
3145 return NULL;
3146
3147
3148 /* setup the storage info for this node */
3149 swz = fieldOffset % 4;
3150
3151 n->Field = (char *) oper->a_id;
3152 n->Store = _slang_new_ir_storage_relative(fieldOffset / 4,
3153 fieldSize,
3154 base->Store);
3155 if (fieldSize == 1)
3156 n->Store->Swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
3157 else if (fieldSize == 2)
3158 n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
3159 SWIZZLE_NIL, SWIZZLE_NIL);
3160 else if (fieldSize == 3)
3161 n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
3162 SWIZZLE_Z, SWIZZLE_NIL);
3163
3164 return n;
3165 }
3166 }
3167
3168
3169 /**
3170 * Gen code for array indexing.
3171 */
3172 static slang_ir_node *
3173 _slang_gen_array_element(slang_assemble_ctx * A, slang_operation *oper)
3174 {
3175 slang_typeinfo array_ti;
3176
3177 /* get array's type info */
3178 slang_typeinfo_construct(&array_ti);
3179 _slang_typeof_operation(A, &oper->children[0], &array_ti);
3180
3181 if (_slang_type_is_vector(array_ti.spec.type)) {
3182 /* indexing a simple vector type: "vec4 v; v[0]=p;" */
3183 /* translate the index into a swizzle/writemask: "v.x=p" */
3184 const GLuint max = _slang_type_dim(array_ti.spec.type);
3185 GLint index;
3186 slang_ir_node *n;
3187
3188 index = (GLint) oper->children[1].literal[0];
3189 if (oper->children[1].type != SLANG_OPER_LITERAL_INT ||
3190 index >= (GLint) max) {
3191 slang_info_log_error(A->log, "Invalid array index for vector type");
3192 return NULL;
3193 }
3194
3195 n = _slang_gen_operation(A, &oper->children[0]);
3196 if (n) {
3197 /* use swizzle to access the element */
3198 GLuint swizzle = MAKE_SWIZZLE4(SWIZZLE_X + index,
3199 SWIZZLE_NIL,
3200 SWIZZLE_NIL,
3201 SWIZZLE_NIL);
3202 n = _slang_gen_swizzle(n, swizzle);
3203 }
3204 assert(n->Store);
3205 return n;
3206 }
3207 else {
3208 /* conventional array */
3209 slang_typeinfo elem_ti;
3210 slang_ir_node *elem, *array, *index;
3211 GLint elemSize, arrayLen;
3212
3213 /* size of array element */
3214 slang_typeinfo_construct(&elem_ti);
3215 _slang_typeof_operation(A, oper, &elem_ti);
3216 elemSize = _slang_sizeof_type_specifier(&elem_ti.spec);
3217
3218 if (_slang_type_is_matrix(array_ti.spec.type))
3219 arrayLen = _slang_type_dim(array_ti.spec.type);
3220 else
3221 arrayLen = array_ti.array_len;
3222
3223 slang_typeinfo_destruct(&array_ti);
3224 slang_typeinfo_destruct(&elem_ti);
3225
3226 if (elemSize <= 0) {
3227 /* unknown var or type */
3228 slang_info_log_error(A->log, "Undefined variable or type");
3229 return NULL;
3230 }
3231
3232 array = _slang_gen_operation(A, &oper->children[0]);
3233 index = _slang_gen_operation(A, &oper->children[1]);
3234 if (array && index) {
3235 /* bounds check */
3236 GLint constIndex = -1;
3237 if (index->Opcode == IR_FLOAT) {
3238 constIndex = (int) index->Value[0];
3239 if (constIndex < 0 || constIndex >= arrayLen) {
3240 slang_info_log_error(A->log,
3241 "Array index out of bounds (index=%d size=%d)",
3242 constIndex, arrayLen);
3243 _slang_free_ir_tree(array);
3244 _slang_free_ir_tree(index);
3245 return NULL;
3246 }
3247 }
3248
3249 if (!array->Store) {
3250 slang_info_log_error(A->log, "Invalid array");
3251 return NULL;
3252 }
3253
3254 elem = new_node2(IR_ELEMENT, array, index);
3255 elem->Store = _slang_new_ir_storage_relative(constIndex,
3256 elemSize,
3257 array->Store);
3258
3259 assert(elem->Store->Parent);
3260 /* XXX try to do some array bounds checking here */
3261 return elem;
3262 }
3263 else {
3264 _slang_free_ir_tree(array);
3265 _slang_free_ir_tree(index);
3266 return NULL;
3267 }
3268 }
3269 }
3270
3271
3272 static slang_ir_node *
3273 _slang_gen_compare(slang_assemble_ctx *A, slang_operation *oper,
3274 slang_ir_opcode opcode)
3275 {
3276 slang_typeinfo t0, t1;
3277 slang_ir_node *n;
3278
3279 slang_typeinfo_construct(&t0);
3280 _slang_typeof_operation(A, &oper->children[0], &t0);
3281
3282 slang_typeinfo_construct(&t1);
3283 _slang_typeof_operation(A, &oper->children[0], &t1);
3284
3285 if (t0.spec.type == SLANG_SPEC_ARRAY ||
3286 t1.spec.type == SLANG_SPEC_ARRAY) {
3287 slang_info_log_error(A->log, "Illegal array comparison");
3288 return NULL;
3289 }
3290
3291 if (oper->type != SLANG_OPER_EQUAL &&
3292 oper->type != SLANG_OPER_NOTEQUAL) {
3293 /* <, <=, >, >= can only be used with scalars */
3294 if ((t0.spec.type != SLANG_SPEC_INT &&
3295 t0.spec.type != SLANG_SPEC_FLOAT) ||
3296 (t1.spec.type != SLANG_SPEC_INT &&
3297 t1.spec.type != SLANG_SPEC_FLOAT)) {
3298 slang_info_log_error(A->log, "Incompatible type(s) for inequality operator");
3299 return NULL;
3300 }
3301 }
3302
3303 n = new_node2(opcode,
3304 _slang_gen_operation(A, &oper->children[0]),
3305 _slang_gen_operation(A, &oper->children[1]));
3306
3307 /* result is a bool (size 1) */
3308 n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, 1);
3309
3310 return n;
3311 }
3312
3313
3314 #if 0
3315 static void
3316 print_vars(slang_variable_scope *s)
3317 {
3318 int i;
3319 printf("vars: ");
3320 for (i = 0; i < s->num_variables; i++) {
3321 printf("%s %d, \n",
3322 (char*) s->variables[i]->a_name,
3323 s->variables[i]->declared);
3324 }
3325
3326 printf("\n");
3327 }
3328 #endif
3329
3330
3331 #if 0
3332 static void
3333 _slang_undeclare_vars(slang_variable_scope *locals)
3334 {
3335 if (locals->num_variables > 0) {
3336 int i;
3337 for (i = 0; i < locals->num_variables; i++) {
3338 slang_variable *v = locals->variables[i];
3339 printf("undeclare %s at %p\n", (char*) v->a_name, v);
3340 v->declared = GL_FALSE;
3341 }
3342 }
3343 }
3344 #endif
3345
3346
3347 /**
3348 * Generate IR tree for a slang_operation (AST node)
3349 */
3350 static slang_ir_node *
3351 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper)
3352 {
3353 switch (oper->type) {
3354 case SLANG_OPER_BLOCK_NEW_SCOPE:
3355 {
3356 slang_ir_node *n;
3357
3358 _slang_push_var_table(A->vartable);
3359
3360 oper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE; /* temp change */
3361 n = _slang_gen_operation(A, oper);
3362 oper->type = SLANG_OPER_BLOCK_NEW_SCOPE; /* restore */
3363
3364 _slang_pop_var_table(A->vartable);
3365
3366 /*_slang_undeclare_vars(oper->locals);*/
3367 /*print_vars(oper->locals);*/
3368
3369 if (n)
3370 n = new_node1(IR_SCOPE, n);
3371 return n;
3372 }
3373 break;
3374
3375 case SLANG_OPER_BLOCK_NO_NEW_SCOPE:
3376 /* list of operations */
3377 if (oper->num_children > 0)
3378 {
3379 slang_ir_node *n, *tree = NULL;
3380 GLuint i;
3381
3382 for (i = 0; i < oper->num_children; i++) {
3383 n = _slang_gen_operation(A, &oper->children[i]);
3384 if (!n) {
3385 _slang_free_ir_tree(tree);
3386 return NULL; /* error must have occured */
3387 }
3388 tree = new_seq(tree, n);
3389 }
3390
3391 return tree;
3392 }
3393 else {
3394 return new_node0(IR_NOP);
3395 }
3396
3397 case SLANG_OPER_EXPRESSION:
3398 return _slang_gen_operation(A, &oper->children[0]);
3399
3400 case SLANG_OPER_FOR:
3401 return _slang_gen_for(A, oper);
3402 case SLANG_OPER_DO:
3403 return _slang_gen_do(A, oper);
3404 case SLANG_OPER_WHILE:
3405 return _slang_gen_while(A, oper);
3406 case SLANG_OPER_BREAK:
3407 if (!A->CurLoop) {
3408 slang_info_log_error(A->log, "'break' not in loop");
3409 return NULL;
3410 }
3411 return new_break(A->CurLoop);
3412 case SLANG_OPER_CONTINUE:
3413 if (!A->CurLoop) {
3414 slang_info_log_error(A->log, "'continue' not in loop");
3415 return NULL;
3416 }
3417 return _slang_gen_continue(A, oper);
3418 case SLANG_OPER_DISCARD:
3419 return new_node0(IR_KILL);
3420
3421 case SLANG_OPER_EQUAL:
3422 return _slang_gen_compare(A, oper, IR_EQUAL);
3423 case SLANG_OPER_NOTEQUAL:
3424 return _slang_gen_compare(A, oper, IR_NOTEQUAL);
3425 case SLANG_OPER_GREATER:
3426 return _slang_gen_compare(A, oper, IR_SGT);
3427 case SLANG_OPER_LESS:
3428 return _slang_gen_compare(A, oper, IR_SLT);
3429 case SLANG_OPER_GREATEREQUAL:
3430 return _slang_gen_compare(A, oper, IR_SGE);
3431 case SLANG_OPER_LESSEQUAL:
3432 return _slang_gen_compare(A, oper, IR_SLE);
3433 case SLANG_OPER_ADD:
3434 {
3435 slang_ir_node *n;
3436 assert(oper->num_children == 2);
3437 n = _slang_gen_function_call_name(A, "+", oper, NULL);
3438 return n;
3439 }
3440 case SLANG_OPER_SUBTRACT:
3441 {
3442 slang_ir_node *n;
3443 assert(oper->num_children == 2);
3444 n = _slang_gen_function_call_name(A, "-", oper, NULL);
3445 return n;
3446 }
3447 case SLANG_OPER_MULTIPLY:
3448 {
3449 slang_ir_node *n;
3450 assert(oper->num_children == 2);
3451 n = _slang_gen_function_call_name(A, "*", oper, NULL);
3452 return n;
3453 }
3454 case SLANG_OPER_DIVIDE:
3455 {
3456 slang_ir_node *n;
3457 assert(oper->num_children == 2);
3458 n = _slang_gen_function_call_name(A, "/", oper, NULL);
3459 return n;
3460 }
3461 case SLANG_OPER_MINUS:
3462 {
3463 slang_ir_node *n;
3464 assert(oper->num_children == 1);
3465 n = _slang_gen_function_call_name(A, "-", oper, NULL);
3466 return n;
3467 }
3468 case SLANG_OPER_PLUS:
3469 /* +expr --> do nothing */
3470 return _slang_gen_operation(A, &oper->children[0]);
3471 case SLANG_OPER_VARIABLE_DECL:
3472 return _slang_gen_declaration(A, oper);
3473 case SLANG_OPER_ASSIGN:
3474 return _slang_gen_assignment(A, oper);
3475 case SLANG_OPER_ADDASSIGN:
3476 {
3477 slang_ir_node *n;
3478 assert(oper->num_children == 2);
3479 n = _slang_gen_function_call_name(A, "+=", oper, NULL);
3480 return n;
3481 }
3482 case SLANG_OPER_SUBASSIGN:
3483 {
3484 slang_ir_node *n;
3485 assert(oper->num_children == 2);
3486 n = _slang_gen_function_call_name(A, "-=", oper, NULL);
3487 return n;
3488 }
3489 break;
3490 case SLANG_OPER_MULASSIGN:
3491 {
3492 slang_ir_node *n;
3493 assert(oper->num_children == 2);
3494 n = _slang_gen_function_call_name(A, "*=", oper, NULL);
3495 return n;
3496 }
3497 case SLANG_OPER_DIVASSIGN:
3498 {
3499 slang_ir_node *n;
3500 assert(oper->num_children == 2);
3501 n = _slang_gen_function_call_name(A, "/=", oper, NULL);
3502 return n;
3503 }
3504 case SLANG_OPER_LOGICALAND:
3505 {
3506 slang_ir_node *n;
3507 assert(oper->num_children == 2);
3508 n = _slang_gen_logical_and(A, oper);
3509 return n;
3510 }
3511 case SLANG_OPER_LOGICALOR:
3512 {
3513 slang_ir_node *n;
3514 assert(oper->num_children == 2);
3515 n = _slang_gen_logical_or(A, oper);
3516 return n;
3517 }
3518 case SLANG_OPER_LOGICALXOR:
3519 return _slang_gen_xor(A, oper);
3520 case SLANG_OPER_NOT:
3521 return _slang_gen_not(A, oper);
3522 case SLANG_OPER_SELECT: /* b ? x : y */
3523 {
3524 slang_ir_node *n;
3525 assert(oper->num_children == 3);
3526 n = _slang_gen_select(A, oper);
3527 return n;
3528 }
3529
3530 case SLANG_OPER_ASM:
3531 return _slang_gen_asm(A, oper, NULL);
3532 case SLANG_OPER_CALL:
3533 return _slang_gen_function_call_name(A, (const char *) oper->a_id,
3534 oper, NULL);
3535 case SLANG_OPER_RETURN:
3536 return _slang_gen_return(A, oper);
3537 case SLANG_OPER_LABEL:
3538 return new_label(oper->label);
3539 case SLANG_OPER_IDENTIFIER:
3540 return _slang_gen_variable(A, oper);
3541 case SLANG_OPER_IF:
3542 return _slang_gen_if(A, oper);
3543 case SLANG_OPER_FIELD:
3544 return _slang_gen_struct_field(A, oper);
3545 case SLANG_OPER_SUBSCRIPT:
3546 return _slang_gen_array_element(A, oper);
3547 case SLANG_OPER_LITERAL_FLOAT:
3548 /* fall-through */
3549 case SLANG_OPER_LITERAL_INT:
3550 /* fall-through */
3551 case SLANG_OPER_LITERAL_BOOL:
3552 return new_float_literal(oper->literal, oper->literal_size);
3553
3554 case SLANG_OPER_POSTINCREMENT: /* var++ */
3555 {
3556 slang_ir_node *n;
3557 assert(oper->num_children == 1);
3558 n = _slang_gen_function_call_name(A, "__postIncr", oper, NULL);
3559 return n;
3560 }
3561 case SLANG_OPER_POSTDECREMENT: /* var-- */
3562 {
3563 slang_ir_node *n;
3564 assert(oper->num_children == 1);
3565 n = _slang_gen_function_call_name(A, "__postDecr", oper, NULL);
3566 return n;
3567 }
3568 case SLANG_OPER_PREINCREMENT: /* ++var */
3569 {
3570 slang_ir_node *n;
3571 assert(oper->num_children == 1);
3572 n = _slang_gen_function_call_name(A, "++", oper, NULL);
3573 return n;
3574 }
3575 case SLANG_OPER_PREDECREMENT: /* --var */
3576 {
3577 slang_ir_node *n;
3578 assert(oper->num_children == 1);
3579 n = _slang_gen_function_call_name(A, "--", oper, NULL);
3580 return n;
3581 }
3582
3583 case SLANG_OPER_NON_INLINED_CALL:
3584 case SLANG_OPER_SEQUENCE:
3585 {
3586 slang_ir_node *tree = NULL;
3587 GLuint i;
3588 for (i = 0; i < oper->num_children; i++) {
3589 slang_ir_node *n = _slang_gen_operation(A, &oper->children[i]);
3590 tree = new_seq(tree, n);
3591 if (n)
3592 tree->Store = n->Store;
3593 }
3594 if (oper->type == SLANG_OPER_NON_INLINED_CALL) {
3595 tree = new_function_call(tree, oper->label);
3596 }
3597 return tree;
3598 }
3599
3600 case SLANG_OPER_NONE:
3601 case SLANG_OPER_VOID:
3602 /* returning NULL here would generate an error */
3603 return new_node0(IR_NOP);
3604
3605 default:
3606 _mesa_problem(NULL, "bad node type %d in _slang_gen_operation",
3607 oper->type);
3608 return new_node0(IR_NOP);
3609 }
3610
3611 return NULL;
3612 }
3613
3614
3615 /**
3616 * Compute total size of array give size of element, number of elements.
3617 */
3618 static GLint
3619 array_size(GLint baseSize, GLint arrayLen)
3620 {
3621 GLint total;
3622 if (arrayLen > 1) {
3623 /* round up base type to multiple of 4 */
3624 total = ((baseSize + 3) & ~0x3) * MAX2(arrayLen, 1);
3625 }
3626 else {
3627 total = baseSize;
3628 }
3629 return total;
3630 }
3631
3632
3633 /**
3634 * Called by compiler when a global variable has been parsed/compiled.
3635 * Here we examine the variable's type to determine what kind of register
3636 * storage will be used.
3637 *
3638 * A uniform such as "gl_Position" will become the register specification
3639 * (PROGRAM_OUTPUT, VERT_RESULT_HPOS). Or, uniform "gl_FogFragCoord"
3640 * will be (PROGRAM_INPUT, FRAG_ATTRIB_FOGC).
3641 *
3642 * Samplers are interesting. For "uniform sampler2D tex;" we'll specify
3643 * (PROGRAM_SAMPLER, index) where index is resolved at link-time to an
3644 * actual texture unit (as specified by the user calling glUniform1i()).
3645 */
3646 GLboolean
3647 _slang_codegen_global_variable(slang_assemble_ctx *A, slang_variable *var,
3648 slang_unit_type type)
3649 {
3650 struct gl_program *prog = A->program;
3651 const char *varName = (char *) var->a_name;
3652 GLboolean success = GL_TRUE;
3653 slang_ir_storage *store = NULL;
3654 int dbg = 0;
3655 const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
3656 const GLint texIndex = sampler_to_texture_index(var->type.specifier.type);
3657 const GLint size = _slang_sizeof_type_specifier(&var->type.specifier);
3658
3659 if (texIndex != -1) {
3660 /* This is a texture sampler variable...
3661 * store->File = PROGRAM_SAMPLER
3662 * store->Index = sampler number (0..7, typically)
3663 * store->Size = texture type index (1D, 2D, 3D, cube, etc)
3664 */
3665 if (var->initializer) {
3666 slang_info_log_error(A->log, "illegal assignment to '%s'", varName);
3667 return GL_FALSE;
3668 }
3669 #if FEATURE_es2_glsl /* XXX should use FEATURE_texture_rect */
3670 /* disallow rect samplers */
3671 if (var->type.specifier.type == SLANG_SPEC_SAMPLER2DRECT ||
3672 var->type.specifier.type == SLANG_SPEC_SAMPLER2DRECTSHADOW) {
3673 slang_info_log_error(A->log, "invalid sampler type for '%s'", varName);
3674 return GL_FALSE;
3675 }
3676 #endif
3677 {
3678 GLint sampNum = _mesa_add_sampler(prog->Parameters, varName, datatype);
3679 store = _slang_new_ir_storage(PROGRAM_SAMPLER, sampNum, texIndex);
3680 }
3681 if (dbg) printf("SAMPLER ");
3682 }
3683 else if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
3684 /* Uniform variable */
3685 const GLint totalSize = array_size(size, var->array_len);
3686 const GLuint swizzle = _slang_var_swizzle(totalSize, 0);
3687
3688 if (prog) {
3689 /* user-defined uniform */
3690 if (datatype == GL_NONE) {
3691 if (var->type.specifier.type == SLANG_SPEC_STRUCT) {
3692 /* temporary work-around */
3693 GLenum datatype = GL_FLOAT;
3694 GLint uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
3695 totalSize, datatype, NULL);
3696 store = _slang_new_ir_storage_swz(PROGRAM_UNIFORM, uniformLoc,
3697 totalSize, swizzle);
3698
3699 /* XXX what we need to do is unroll the struct into its
3700 * basic types, creating a uniform variable for each.
3701 * For example:
3702 * struct foo {
3703 * vec3 a;
3704 * vec4 b;
3705 * };
3706 * uniform foo f;
3707 *
3708 * Should produce uniforms:
3709 * "f.a" (GL_FLOAT_VEC3)
3710 * "f.b" (GL_FLOAT_VEC4)
3711 */
3712
3713 if (var->initializer) {
3714 slang_info_log_error(A->log,
3715 "unsupported initializer for uniform '%s'", varName);
3716 return GL_FALSE;
3717 }
3718 }
3719 else {
3720 slang_info_log_error(A->log,
3721 "invalid datatype for uniform variable %s",
3722 varName);
3723 return GL_FALSE;
3724 }
3725 }
3726 else {
3727 GLint uniformLoc;
3728 const GLfloat *initialValues = NULL;
3729 if (var->initializer) {
3730 _slang_simplify(var->initializer, &A->space, A->atoms);
3731 if (var->initializer->type == SLANG_OPER_LITERAL_FLOAT ||
3732 var->initializer->type == SLANG_OPER_LITERAL_INT) {
3733 /* simple float/vector initializer */
3734 initialValues = var->initializer->literal;
3735 }
3736 else {
3737 /* complex initializer */
3738 slang_info_log_error(A->log,
3739 "unsupported initializer for uniform '%s'", varName);
3740 return GL_FALSE;
3741 }
3742 }
3743
3744 uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
3745 totalSize, datatype, initialValues);
3746 store = _slang_new_ir_storage_swz(PROGRAM_UNIFORM, uniformLoc,
3747 totalSize, swizzle);
3748 }
3749 }
3750 else {
3751 /* pre-defined uniform, like gl_ModelviewMatrix */
3752 /* We know it's a uniform, but don't allocate storage unless
3753 * it's really used.
3754 */
3755 store = _slang_new_ir_storage_swz(PROGRAM_STATE_VAR, -1,
3756 totalSize, swizzle);
3757 }
3758 if (dbg) printf("UNIFORM (sz %d) ", totalSize);
3759 }
3760 else if (var->type.qualifier == SLANG_QUAL_VARYING) {
3761 const GLint totalSize = array_size(size, var->array_len);
3762
3763 /* varyings must be float, vec or mat */
3764 if (!_slang_type_is_float_vec_mat(var->type.specifier.type) &&
3765 var->type.specifier.type != SLANG_SPEC_ARRAY) {
3766 slang_info_log_error(A->log,
3767 "varying '%s' must be float/vector/matrix",
3768 varName);
3769 return GL_FALSE;
3770 }
3771
3772 if (var->initializer) {
3773 slang_info_log_error(A->log, "illegal initializer for varying '%s'",
3774 varName);
3775 return GL_FALSE;
3776 }
3777
3778 if (prog) {
3779 /* user-defined varying */
3780 GLint varyingLoc = _mesa_add_varying(prog->Varying, varName, totalSize);
3781 GLuint swizzle = _slang_var_swizzle(size, 0);
3782 store = _slang_new_ir_storage_swz(PROGRAM_VARYING, varyingLoc,
3783 totalSize, swizzle);
3784 }
3785 else {
3786 /* pre-defined varying, like gl_Color or gl_TexCoord */
3787 if (type == SLANG_UNIT_FRAGMENT_BUILTIN) {
3788 /* fragment program input */
3789 GLuint swizzle;
3790 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
3791 &swizzle);
3792 assert(index >= 0);
3793 assert(index < FRAG_ATTRIB_MAX);
3794 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index,
3795 size, swizzle);
3796 }
3797 else {
3798 /* vertex program output */
3799 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
3800 GLuint swizzle = _slang_var_swizzle(size, 0);
3801 assert(index >= 0);
3802 assert(index < VERT_RESULT_MAX);
3803 assert(type == SLANG_UNIT_VERTEX_BUILTIN);
3804 store = _slang_new_ir_storage_swz(PROGRAM_OUTPUT, index,
3805 size, swizzle);
3806 }
3807 if (dbg) printf("V/F ");
3808 }
3809 if (dbg) printf("VARYING ");
3810 }
3811 else if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE) {
3812 GLuint swizzle;
3813 GLint index;
3814 /* attributes must be float, vec or mat */
3815 if (!_slang_type_is_float_vec_mat(var->type.specifier.type)) {
3816 slang_info_log_error(A->log,
3817 "attribute '%s' must be float/vector/matrix",
3818 varName);
3819 return GL_FALSE;
3820 }
3821
3822 if (prog) {
3823 /* user-defined vertex attribute */
3824 const GLint attr = -1; /* unknown */
3825 swizzle = _slang_var_swizzle(size, 0);
3826 index = _mesa_add_attribute(prog->Attributes, varName,
3827 size, datatype, attr);
3828 assert(index >= 0);
3829 index = VERT_ATTRIB_GENERIC0 + index;
3830 }
3831 else {
3832 /* pre-defined vertex attrib */
3833 index = _slang_input_index(varName, GL_VERTEX_PROGRAM_ARB, &swizzle);
3834 assert(index >= 0);
3835 }
3836 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
3837 if (dbg) printf("ATTRIB ");
3838 }
3839 else if (var->type.qualifier == SLANG_QUAL_FIXEDINPUT) {
3840 GLuint swizzle = SWIZZLE_XYZW; /* silence compiler warning */
3841 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
3842 &swizzle);
3843 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
3844 if (dbg) printf("INPUT ");
3845 }
3846 else if (var->type.qualifier == SLANG_QUAL_FIXEDOUTPUT) {
3847 if (type == SLANG_UNIT_VERTEX_BUILTIN) {
3848 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
3849 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
3850 }
3851 else {
3852 GLint index = _slang_output_index(varName, GL_FRAGMENT_PROGRAM_ARB);
3853 GLint specialSize = 4; /* treat all fragment outputs as float[4] */
3854 assert(type == SLANG_UNIT_FRAGMENT_BUILTIN);
3855 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, specialSize);
3856 }
3857 if (dbg) printf("OUTPUT ");
3858 }
3859 else if (var->type.qualifier == SLANG_QUAL_CONST && !prog) {
3860 /* pre-defined global constant, like gl_MaxLights */
3861 store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
3862 if (dbg) printf("CONST ");
3863 }
3864 else {
3865 /* ordinary variable (may be const) */
3866 slang_ir_node *n;
3867
3868 /* IR node to declare the variable */
3869 n = _slang_gen_var_decl(A, var);
3870
3871 /* IR code for the var's initializer, if present */
3872 if (var->initializer) {
3873 slang_ir_node *lhs, *rhs, *init;
3874
3875 /* Generate IR_COPY instruction to initialize the variable */
3876 lhs = new_node0(IR_VAR);
3877 lhs->Var = var;
3878 lhs->Store = n->Store;
3879
3880 /* constant folding, etc */
3881 _slang_simplify(var->initializer, &A->space, A->atoms);
3882
3883 rhs = _slang_gen_operation(A, var->initializer);
3884 assert(rhs);
3885 init = new_node2(IR_COPY, lhs, rhs);
3886 n = new_seq(n, init);
3887 }
3888
3889 success = _slang_emit_code(n, A->vartable, A->program, GL_FALSE, A->log);
3890
3891 _slang_free_ir_tree(n);
3892 }
3893
3894 if (dbg) printf("GLOBAL VAR %s idx %d\n", (char*) var->a_name,
3895 store ? store->Index : -2);
3896
3897 if (store)
3898 var->aux = store; /* save var's storage info */
3899
3900 var->declared = GL_TRUE;
3901
3902 return success;
3903 }
3904
3905
3906 /**
3907 * Produce an IR tree from a function AST (fun->body).
3908 * Then call the code emitter to convert the IR tree into gl_program
3909 * instructions.
3910 */
3911 GLboolean
3912 _slang_codegen_function(slang_assemble_ctx * A, slang_function * fun)
3913 {
3914 slang_ir_node *n;
3915 GLboolean success = GL_TRUE;
3916
3917 if (_mesa_strcmp((char *) fun->header.a_name, "main") != 0) {
3918 /* we only really generate code for main, all other functions get
3919 * inlined or codegen'd upon an actual call.
3920 */
3921 #if 0
3922 /* do some basic error checking though */
3923 if (fun->header.type.specifier.type != SLANG_SPEC_VOID) {
3924 /* check that non-void functions actually return something */
3925 slang_operation *op
3926 = _slang_find_node_type(fun->body, SLANG_OPER_RETURN);
3927 if (!op) {
3928 slang_info_log_error(A->log,
3929 "function \"%s\" has no return statement",
3930 (char *) fun->header.a_name);
3931 printf(
3932 "function \"%s\" has no return statement\n",
3933 (char *) fun->header.a_name);
3934 return GL_FALSE;
3935 }
3936 }
3937 #endif
3938 return GL_TRUE; /* not an error */
3939 }
3940
3941 #if 0
3942 printf("\n*********** codegen_function %s\n", (char *) fun->header.a_name);
3943 slang_print_function(fun, 1);
3944 #endif
3945
3946 /* should have been allocated earlier: */
3947 assert(A->program->Parameters );
3948 assert(A->program->Varying);
3949 assert(A->vartable);
3950 A->CurLoop = NULL;
3951 A->CurFunction = fun;
3952
3953 /* fold constant expressions, etc. */
3954 _slang_simplify(fun->body, &A->space, A->atoms);
3955
3956 #if 0
3957 printf("\n*********** simplified %s\n", (char *) fun->header.a_name);
3958 slang_print_function(fun, 1);
3959 #endif
3960
3961 /* Create an end-of-function label */
3962 A->curFuncEndLabel = _slang_label_new("__endOfFunc__main");
3963
3964 /* push new vartable scope */
3965 _slang_push_var_table(A->vartable);
3966
3967 /* Generate IR tree for the function body code */
3968 n = _slang_gen_operation(A, fun->body);
3969 if (n)
3970 n = new_node1(IR_SCOPE, n);
3971
3972 /* pop vartable, restore previous */
3973 _slang_pop_var_table(A->vartable);
3974
3975 if (!n) {
3976 /* XXX record error */
3977 return GL_FALSE;
3978 }
3979
3980 /* append an end-of-function-label to IR tree */
3981 n = new_seq(n, new_label(A->curFuncEndLabel));
3982
3983 /*_slang_label_delete(A->curFuncEndLabel);*/
3984 A->curFuncEndLabel = NULL;
3985
3986 #if 0
3987 printf("************* New AST for %s *****\n", (char*)fun->header.a_name);
3988 slang_print_function(fun, 1);
3989 #endif
3990 #if 0
3991 printf("************* IR for %s *******\n", (char*)fun->header.a_name);
3992 _slang_print_ir_tree(n, 0);
3993 #endif
3994 #if 0
3995 printf("************* End codegen function ************\n\n");
3996 #endif
3997
3998 /* Emit program instructions */
3999 success = _slang_emit_code(n, A->vartable, A->program, GL_TRUE, A->log);
4000 _slang_free_ir_tree(n);
4001
4002 /* free codegen context */
4003 /*
4004 _mesa_free(A->codegen);
4005 */
4006
4007 return success;
4008 }
4009