mesa: simplify some glsl variable declaration code
[mesa.git] / src / mesa / shader / slang / slang_codegen.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file slang_codegen.c
27 * Generate IR tree from AST.
28 * \author Brian Paul
29 */
30
31
32 /***
33 *** NOTES:
34 *** The new_() functions return a new instance of a simple IR node.
35 *** The gen_() functions generate larger IR trees from the simple nodes.
36 ***/
37
38
39
40 #include "main/imports.h"
41 #include "main/macros.h"
42 #include "main/mtypes.h"
43 #include "shader/program.h"
44 #include "shader/prog_instruction.h"
45 #include "shader/prog_parameter.h"
46 #include "shader/prog_print.h"
47 #include "shader/prog_statevars.h"
48 #include "slang_typeinfo.h"
49 #include "slang_codegen.h"
50 #include "slang_compile.h"
51 #include "slang_label.h"
52 #include "slang_mem.h"
53 #include "slang_simplify.h"
54 #include "slang_emit.h"
55 #include "slang_vartable.h"
56 #include "slang_ir.h"
57 #include "slang_print.h"
58
59
60 static slang_ir_node *
61 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper);
62
63
64 static GLboolean
65 is_sampler_type(const slang_fully_specified_type *t)
66 {
67 switch (t->specifier.type) {
68 case SLANG_SPEC_SAMPLER1D:
69 case SLANG_SPEC_SAMPLER2D:
70 case SLANG_SPEC_SAMPLER3D:
71 case SLANG_SPEC_SAMPLERCUBE:
72 case SLANG_SPEC_SAMPLER1DSHADOW:
73 case SLANG_SPEC_SAMPLER2DSHADOW:
74 case SLANG_SPEC_SAMPLER2DRECT:
75 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
76 return GL_TRUE;
77 default:
78 return GL_FALSE;
79 }
80 }
81
82
83 /**
84 * Return the offset (in floats or ints) of the named field within
85 * the given struct. Return -1 if field not found.
86 * If field is NULL, return the size of the struct instead.
87 */
88 static GLint
89 _slang_field_offset(const slang_type_specifier *spec, slang_atom field)
90 {
91 GLint offset = 0;
92 GLuint i;
93 for (i = 0; i < spec->_struct->fields->num_variables; i++) {
94 const slang_variable *v = spec->_struct->fields->variables[i];
95 const GLuint sz = _slang_sizeof_type_specifier(&v->type.specifier);
96 if (sz > 1) {
97 /* types larger than 1 float are register (4-float) aligned */
98 offset = (offset + 3) & ~3;
99 }
100 if (field && v->a_name == field) {
101 return offset;
102 }
103 offset += sz;
104 }
105 if (field)
106 return -1; /* field not found */
107 else
108 return offset; /* struct size */
109 }
110
111
112 /**
113 * Return the size (in floats) of the given type specifier.
114 * If the size is greater than 4, the size should be a multiple of 4
115 * so that the correct number of 4-float registers are allocated.
116 * For example, a mat3x2 is size 12 because we want to store the
117 * 3 columns in 3 float[4] registers.
118 */
119 GLuint
120 _slang_sizeof_type_specifier(const slang_type_specifier *spec)
121 {
122 GLuint sz;
123 switch (spec->type) {
124 case SLANG_SPEC_VOID:
125 sz = 0;
126 break;
127 case SLANG_SPEC_BOOL:
128 sz = 1;
129 break;
130 case SLANG_SPEC_BVEC2:
131 sz = 2;
132 break;
133 case SLANG_SPEC_BVEC3:
134 sz = 3;
135 break;
136 case SLANG_SPEC_BVEC4:
137 sz = 4;
138 break;
139 case SLANG_SPEC_INT:
140 sz = 1;
141 break;
142 case SLANG_SPEC_IVEC2:
143 sz = 2;
144 break;
145 case SLANG_SPEC_IVEC3:
146 sz = 3;
147 break;
148 case SLANG_SPEC_IVEC4:
149 sz = 4;
150 break;
151 case SLANG_SPEC_FLOAT:
152 sz = 1;
153 break;
154 case SLANG_SPEC_VEC2:
155 sz = 2;
156 break;
157 case SLANG_SPEC_VEC3:
158 sz = 3;
159 break;
160 case SLANG_SPEC_VEC4:
161 sz = 4;
162 break;
163 case SLANG_SPEC_MAT2:
164 sz = 2 * 4; /* 2 columns (regs) */
165 break;
166 case SLANG_SPEC_MAT3:
167 sz = 3 * 4;
168 break;
169 case SLANG_SPEC_MAT4:
170 sz = 4 * 4;
171 break;
172 case SLANG_SPEC_MAT23:
173 sz = 2 * 4; /* 2 columns (regs) */
174 break;
175 case SLANG_SPEC_MAT32:
176 sz = 3 * 4; /* 3 columns (regs) */
177 break;
178 case SLANG_SPEC_MAT24:
179 sz = 2 * 4;
180 break;
181 case SLANG_SPEC_MAT42:
182 sz = 4 * 4; /* 4 columns (regs) */
183 break;
184 case SLANG_SPEC_MAT34:
185 sz = 3 * 4;
186 break;
187 case SLANG_SPEC_MAT43:
188 sz = 4 * 4; /* 4 columns (regs) */
189 break;
190 case SLANG_SPEC_SAMPLER1D:
191 case SLANG_SPEC_SAMPLER2D:
192 case SLANG_SPEC_SAMPLER3D:
193 case SLANG_SPEC_SAMPLERCUBE:
194 case SLANG_SPEC_SAMPLER1DSHADOW:
195 case SLANG_SPEC_SAMPLER2DSHADOW:
196 case SLANG_SPEC_SAMPLER2DRECT:
197 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
198 sz = 1; /* a sampler is basically just an integer index */
199 break;
200 case SLANG_SPEC_STRUCT:
201 sz = _slang_field_offset(spec, 0); /* special use */
202 if (sz > 4) {
203 sz = (sz + 3) & ~0x3; /* round up to multiple of four */
204 }
205 break;
206 case SLANG_SPEC_ARRAY:
207 sz = _slang_sizeof_type_specifier(spec->_array);
208 break;
209 default:
210 _mesa_problem(NULL, "Unexpected type in _slang_sizeof_type_specifier()");
211 sz = 0;
212 }
213
214 if (sz > 4) {
215 /* if size is > 4, it should be a multiple of four */
216 assert((sz & 0x3) == 0);
217 }
218 return sz;
219 }
220
221
222 /**
223 * Establish the binding between a slang_ir_node and a slang_variable.
224 * Then, allocate/attach a slang_ir_storage object to the IR node if needed.
225 * The IR node must be a IR_VAR or IR_VAR_DECL node.
226 * \param n the IR node
227 * \param var the variable to associate with the IR node
228 */
229 static void
230 _slang_attach_storage(slang_ir_node *n, slang_variable *var)
231 {
232 assert(n);
233 assert(var);
234 assert(n->Opcode == IR_VAR || n->Opcode == IR_VAR_DECL);
235 assert(!n->Var || n->Var == var);
236
237 n->Var = var;
238
239 if (!n->Store) {
240 /* need to setup storage */
241 if (n->Var && n->Var->store) {
242 /* node storage info = var storage info */
243 n->Store = n->Var->store;
244 }
245 else {
246 /* alloc new storage info */
247 n->Store = _slang_new_ir_storage(PROGRAM_UNDEFINED, -7, -5);
248 #if 0
249 printf("%s var=%s Store=%p Size=%d\n", __FUNCTION__,
250 (char*) var->a_name,
251 (void*) n->Store, n->Store->Size);
252 #endif
253 if (n->Var)
254 n->Var->store = n->Store;
255 assert(n->Var->store);
256 }
257 }
258 }
259
260
261 /**
262 * Return the TEXTURE_*_INDEX value that corresponds to a sampler type,
263 * or -1 if the type is not a sampler.
264 */
265 static GLint
266 sampler_to_texture_index(const slang_type_specifier_type type)
267 {
268 switch (type) {
269 case SLANG_SPEC_SAMPLER1D:
270 return TEXTURE_1D_INDEX;
271 case SLANG_SPEC_SAMPLER2D:
272 return TEXTURE_2D_INDEX;
273 case SLANG_SPEC_SAMPLER3D:
274 return TEXTURE_3D_INDEX;
275 case SLANG_SPEC_SAMPLERCUBE:
276 return TEXTURE_CUBE_INDEX;
277 case SLANG_SPEC_SAMPLER1DSHADOW:
278 return TEXTURE_1D_INDEX; /* XXX fix */
279 case SLANG_SPEC_SAMPLER2DSHADOW:
280 return TEXTURE_2D_INDEX; /* XXX fix */
281 case SLANG_SPEC_SAMPLER2DRECT:
282 return TEXTURE_RECT_INDEX;
283 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
284 return TEXTURE_RECT_INDEX; /* XXX fix */
285 default:
286 return -1;
287 }
288 }
289
290
291 #define SWIZZLE_ZWWW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W)
292
293 /**
294 * Return the VERT_ATTRIB_* or FRAG_ATTRIB_* value that corresponds to
295 * a vertex or fragment program input variable. Return -1 if the input
296 * name is invalid.
297 * XXX return size too
298 */
299 static GLint
300 _slang_input_index(const char *name, GLenum target, GLuint *swizzleOut)
301 {
302 struct input_info {
303 const char *Name;
304 GLuint Attrib;
305 GLuint Swizzle;
306 };
307 static const struct input_info vertInputs[] = {
308 { "gl_Vertex", VERT_ATTRIB_POS, SWIZZLE_NOOP },
309 { "gl_Normal", VERT_ATTRIB_NORMAL, SWIZZLE_NOOP },
310 { "gl_Color", VERT_ATTRIB_COLOR0, SWIZZLE_NOOP },
311 { "gl_SecondaryColor", VERT_ATTRIB_COLOR1, SWIZZLE_NOOP },
312 { "gl_FogCoord", VERT_ATTRIB_FOG, SWIZZLE_XXXX },
313 { "gl_MultiTexCoord0", VERT_ATTRIB_TEX0, SWIZZLE_NOOP },
314 { "gl_MultiTexCoord1", VERT_ATTRIB_TEX1, SWIZZLE_NOOP },
315 { "gl_MultiTexCoord2", VERT_ATTRIB_TEX2, SWIZZLE_NOOP },
316 { "gl_MultiTexCoord3", VERT_ATTRIB_TEX3, SWIZZLE_NOOP },
317 { "gl_MultiTexCoord4", VERT_ATTRIB_TEX4, SWIZZLE_NOOP },
318 { "gl_MultiTexCoord5", VERT_ATTRIB_TEX5, SWIZZLE_NOOP },
319 { "gl_MultiTexCoord6", VERT_ATTRIB_TEX6, SWIZZLE_NOOP },
320 { "gl_MultiTexCoord7", VERT_ATTRIB_TEX7, SWIZZLE_NOOP },
321 { NULL, 0, SWIZZLE_NOOP }
322 };
323 static const struct input_info fragInputs[] = {
324 { "gl_FragCoord", FRAG_ATTRIB_WPOS, SWIZZLE_NOOP },
325 { "gl_Color", FRAG_ATTRIB_COL0, SWIZZLE_NOOP },
326 { "gl_SecondaryColor", FRAG_ATTRIB_COL1, SWIZZLE_NOOP },
327 { "gl_TexCoord", FRAG_ATTRIB_TEX0, SWIZZLE_NOOP },
328 /* note: we're packing several quantities into the fogcoord vector */
329 { "gl_FogFragCoord", FRAG_ATTRIB_FOGC, SWIZZLE_XXXX },
330 { "gl_FrontFacing", FRAG_ATTRIB_FOGC, SWIZZLE_YYYY }, /*XXX*/
331 { "gl_PointCoord", FRAG_ATTRIB_FOGC, SWIZZLE_ZWWW },
332 { NULL, 0, SWIZZLE_NOOP }
333 };
334 GLuint i;
335 const struct input_info *inputs
336 = (target == GL_VERTEX_PROGRAM_ARB) ? vertInputs : fragInputs;
337
338 ASSERT(MAX_TEXTURE_UNITS == 8); /* if this fails, fix vertInputs above */
339
340 for (i = 0; inputs[i].Name; i++) {
341 if (strcmp(inputs[i].Name, name) == 0) {
342 /* found */
343 *swizzleOut = inputs[i].Swizzle;
344 return inputs[i].Attrib;
345 }
346 }
347 return -1;
348 }
349
350
351 /**
352 * Return the VERT_RESULT_* or FRAG_RESULT_* value that corresponds to
353 * a vertex or fragment program output variable. Return -1 for an invalid
354 * output name.
355 */
356 static GLint
357 _slang_output_index(const char *name, GLenum target)
358 {
359 struct output_info {
360 const char *Name;
361 GLuint Attrib;
362 };
363 static const struct output_info vertOutputs[] = {
364 { "gl_Position", VERT_RESULT_HPOS },
365 { "gl_FrontColor", VERT_RESULT_COL0 },
366 { "gl_BackColor", VERT_RESULT_BFC0 },
367 { "gl_FrontSecondaryColor", VERT_RESULT_COL1 },
368 { "gl_BackSecondaryColor", VERT_RESULT_BFC1 },
369 { "gl_TexCoord", VERT_RESULT_TEX0 },
370 { "gl_FogFragCoord", VERT_RESULT_FOGC },
371 { "gl_PointSize", VERT_RESULT_PSIZ },
372 { NULL, 0 }
373 };
374 static const struct output_info fragOutputs[] = {
375 { "gl_FragColor", FRAG_RESULT_COLR },
376 { "gl_FragDepth", FRAG_RESULT_DEPR },
377 { "gl_FragData", FRAG_RESULT_DATA0 },
378 { NULL, 0 }
379 };
380 GLuint i;
381 const struct output_info *outputs
382 = (target == GL_VERTEX_PROGRAM_ARB) ? vertOutputs : fragOutputs;
383
384 for (i = 0; outputs[i].Name; i++) {
385 if (strcmp(outputs[i].Name, name) == 0) {
386 /* found */
387 return outputs[i].Attrib;
388 }
389 }
390 return -1;
391 }
392
393
394
395 /**********************************************************************/
396
397
398 /**
399 * Map "_asm foo" to IR_FOO, etc.
400 */
401 typedef struct
402 {
403 const char *Name;
404 slang_ir_opcode Opcode;
405 GLuint HaveRetValue, NumParams;
406 } slang_asm_info;
407
408
409 static slang_asm_info AsmInfo[] = {
410 /* vec4 binary op */
411 { "vec4_add", IR_ADD, 1, 2 },
412 { "vec4_subtract", IR_SUB, 1, 2 },
413 { "vec4_multiply", IR_MUL, 1, 2 },
414 { "vec4_dot", IR_DOT4, 1, 2 },
415 { "vec3_dot", IR_DOT3, 1, 2 },
416 { "vec2_dot", IR_DOT2, 1, 2 },
417 { "vec3_nrm", IR_NRM3, 1, 1 },
418 { "vec4_nrm", IR_NRM4, 1, 1 },
419 { "vec3_cross", IR_CROSS, 1, 2 },
420 { "vec4_lrp", IR_LRP, 1, 3 },
421 { "vec4_min", IR_MIN, 1, 2 },
422 { "vec4_max", IR_MAX, 1, 2 },
423 { "vec4_clamp", IR_CLAMP, 1, 3 },
424 { "vec4_seq", IR_SEQUAL, 1, 2 },
425 { "vec4_sne", IR_SNEQUAL, 1, 2 },
426 { "vec4_sge", IR_SGE, 1, 2 },
427 { "vec4_sgt", IR_SGT, 1, 2 },
428 { "vec4_sle", IR_SLE, 1, 2 },
429 { "vec4_slt", IR_SLT, 1, 2 },
430 /* vec4 unary */
431 { "vec4_move", IR_MOVE, 1, 1 },
432 { "vec4_floor", IR_FLOOR, 1, 1 },
433 { "vec4_frac", IR_FRAC, 1, 1 },
434 { "vec4_abs", IR_ABS, 1, 1 },
435 { "vec4_negate", IR_NEG, 1, 1 },
436 { "vec4_ddx", IR_DDX, 1, 1 },
437 { "vec4_ddy", IR_DDY, 1, 1 },
438 /* float binary op */
439 { "float_power", IR_POW, 1, 2 },
440 /* texture / sampler */
441 { "vec4_tex1d", IR_TEX, 1, 2 },
442 { "vec4_texb1d", IR_TEXB, 1, 2 }, /* 1d w/ bias */
443 { "vec4_texp1d", IR_TEXP, 1, 2 }, /* 1d w/ projection */
444 { "vec4_tex2d", IR_TEX, 1, 2 },
445 { "vec4_texb2d", IR_TEXB, 1, 2 }, /* 2d w/ bias */
446 { "vec4_texp2d", IR_TEXP, 1, 2 }, /* 2d w/ projection */
447 { "vec4_tex3d", IR_TEX, 1, 2 },
448 { "vec4_texb3d", IR_TEXB, 1, 2 }, /* 3d w/ bias */
449 { "vec4_texp3d", IR_TEXP, 1, 2 }, /* 3d w/ projection */
450 { "vec4_texcube", IR_TEX, 1, 2 }, /* cubemap */
451 { "vec4_tex_rect", IR_TEX, 1, 2 }, /* rectangle */
452 { "vec4_texp_rect", IR_TEX, 1, 2 },/* rectangle w/ projection */
453
454 /* unary op */
455 { "ivec4_to_vec4", IR_I_TO_F, 1, 1 }, /* int[4] to float[4] */
456 { "vec4_to_ivec4", IR_F_TO_I, 1, 1 }, /* float[4] to int[4] */
457 { "float_exp", IR_EXP, 1, 1 },
458 { "float_exp2", IR_EXP2, 1, 1 },
459 { "float_log2", IR_LOG2, 1, 1 },
460 { "float_rsq", IR_RSQ, 1, 1 },
461 { "float_rcp", IR_RCP, 1, 1 },
462 { "float_sine", IR_SIN, 1, 1 },
463 { "float_cosine", IR_COS, 1, 1 },
464 { "float_noise1", IR_NOISE1, 1, 1},
465 { "float_noise2", IR_NOISE2, 1, 1},
466 { "float_noise3", IR_NOISE3, 1, 1},
467 { "float_noise4", IR_NOISE4, 1, 1},
468
469 { NULL, IR_NOP, 0, 0 }
470 };
471
472
473 static slang_ir_node *
474 new_node3(slang_ir_opcode op,
475 slang_ir_node *c0, slang_ir_node *c1, slang_ir_node *c2)
476 {
477 slang_ir_node *n = (slang_ir_node *) _slang_alloc(sizeof(slang_ir_node));
478 if (n) {
479 n->Opcode = op;
480 n->Children[0] = c0;
481 n->Children[1] = c1;
482 n->Children[2] = c2;
483 n->InstLocation = -1;
484 }
485 return n;
486 }
487
488 static slang_ir_node *
489 new_node2(slang_ir_opcode op, slang_ir_node *c0, slang_ir_node *c1)
490 {
491 return new_node3(op, c0, c1, NULL);
492 }
493
494 static slang_ir_node *
495 new_node1(slang_ir_opcode op, slang_ir_node *c0)
496 {
497 return new_node3(op, c0, NULL, NULL);
498 }
499
500 static slang_ir_node *
501 new_node0(slang_ir_opcode op)
502 {
503 return new_node3(op, NULL, NULL, NULL);
504 }
505
506
507 /**
508 * Create sequence of two nodes.
509 */
510 static slang_ir_node *
511 new_seq(slang_ir_node *left, slang_ir_node *right)
512 {
513 if (!left)
514 return right;
515 if (!right)
516 return left;
517 return new_node2(IR_SEQ, left, right);
518 }
519
520 static slang_ir_node *
521 new_label(slang_label *label)
522 {
523 slang_ir_node *n = new_node0(IR_LABEL);
524 assert(label);
525 if (n)
526 n->Label = label;
527 return n;
528 }
529
530 static slang_ir_node *
531 new_float_literal(const float v[4], GLuint size)
532 {
533 slang_ir_node *n = new_node0(IR_FLOAT);
534 assert(size <= 4);
535 COPY_4V(n->Value, v);
536 /* allocate a storage object, but compute actual location (Index) later */
537 n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
538 return n;
539 }
540
541
542 static slang_ir_node *
543 new_not(slang_ir_node *n)
544 {
545 return new_node1(IR_NOT, n);
546 }
547
548
549 /**
550 * Non-inlined function call.
551 */
552 static slang_ir_node *
553 new_function_call(slang_ir_node *code, slang_label *name)
554 {
555 slang_ir_node *n = new_node1(IR_CALL, code);
556 assert(name);
557 if (n)
558 n->Label = name;
559 return n;
560 }
561
562
563 /**
564 * Unconditional jump.
565 */
566 static slang_ir_node *
567 new_return(slang_label *dest)
568 {
569 slang_ir_node *n = new_node0(IR_RETURN);
570 assert(dest);
571 if (n)
572 n->Label = dest;
573 return n;
574 }
575
576
577 static slang_ir_node *
578 new_loop(slang_ir_node *body)
579 {
580 return new_node1(IR_LOOP, body);
581 }
582
583
584 static slang_ir_node *
585 new_break(slang_ir_node *loopNode)
586 {
587 slang_ir_node *n = new_node0(IR_BREAK);
588 assert(loopNode);
589 assert(loopNode->Opcode == IR_LOOP);
590 if (n) {
591 /* insert this node at head of linked list */
592 n->List = loopNode->List;
593 loopNode->List = n;
594 }
595 return n;
596 }
597
598
599 /**
600 * Make new IR_BREAK_IF_TRUE.
601 */
602 static slang_ir_node *
603 new_break_if_true(slang_ir_node *loopNode, slang_ir_node *cond)
604 {
605 slang_ir_node *n;
606 assert(loopNode);
607 assert(loopNode->Opcode == IR_LOOP);
608 n = new_node1(IR_BREAK_IF_TRUE, cond);
609 if (n) {
610 /* insert this node at head of linked list */
611 n->List = loopNode->List;
612 loopNode->List = n;
613 }
614 return n;
615 }
616
617
618 /**
619 * Make new IR_CONT_IF_TRUE node.
620 */
621 static slang_ir_node *
622 new_cont_if_true(slang_ir_node *loopNode, slang_ir_node *cond)
623 {
624 slang_ir_node *n;
625 assert(loopNode);
626 assert(loopNode->Opcode == IR_LOOP);
627 n = new_node1(IR_CONT_IF_TRUE, cond);
628 if (n) {
629 /* insert this node at head of linked list */
630 n->List = loopNode->List;
631 loopNode->List = n;
632 }
633 return n;
634 }
635
636
637 static slang_ir_node *
638 new_cond(slang_ir_node *n)
639 {
640 slang_ir_node *c = new_node1(IR_COND, n);
641 return c;
642 }
643
644
645 static slang_ir_node *
646 new_if(slang_ir_node *cond, slang_ir_node *ifPart, slang_ir_node *elsePart)
647 {
648 return new_node3(IR_IF, cond, ifPart, elsePart);
649 }
650
651
652 /**
653 * New IR_VAR node - a reference to a previously declared variable.
654 */
655 static slang_ir_node *
656 new_var(slang_assemble_ctx *A, slang_variable *var)
657 {
658 slang_ir_node *n;
659 if (!var)
660 return NULL;
661
662 assert(var->declared);
663
664 n = new_node0(IR_VAR);
665 if (n) {
666 _slang_attach_storage(n, var);
667 /*
668 printf("new_var %s store=%p\n", (char*)name, (void*) n->Store);
669 */
670 }
671 return n;
672 }
673
674
675 /**
676 * Check if the given function is really just a wrapper for a
677 * basic assembly instruction.
678 */
679 static GLboolean
680 slang_is_asm_function(const slang_function *fun)
681 {
682 if (fun->body->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE &&
683 fun->body->num_children == 1 &&
684 fun->body->children[0].type == SLANG_OPER_ASM) {
685 return GL_TRUE;
686 }
687 return GL_FALSE;
688 }
689
690
691 static GLboolean
692 _slang_is_noop(const slang_operation *oper)
693 {
694 if (!oper ||
695 oper->type == SLANG_OPER_VOID ||
696 (oper->num_children == 1 && oper->children[0].type == SLANG_OPER_VOID))
697 return GL_TRUE;
698 else
699 return GL_FALSE;
700 }
701
702
703 /**
704 * Recursively search tree for a node of the given type.
705 */
706 static slang_operation *
707 _slang_find_node_type(slang_operation *oper, slang_operation_type type)
708 {
709 GLuint i;
710 if (oper->type == type)
711 return oper;
712 for (i = 0; i < oper->num_children; i++) {
713 slang_operation *p = _slang_find_node_type(&oper->children[i], type);
714 if (p)
715 return p;
716 }
717 return NULL;
718 }
719
720
721 /**
722 * Count the number of operations of the given time rooted at 'oper'.
723 */
724 static GLuint
725 _slang_count_node_type(slang_operation *oper, slang_operation_type type)
726 {
727 GLuint i, count = 0;
728 if (oper->type == type) {
729 return 1;
730 }
731 for (i = 0; i < oper->num_children; i++) {
732 count += _slang_count_node_type(&oper->children[i], type);
733 }
734 return count;
735 }
736
737
738 /**
739 * Check if the 'return' statement found under 'oper' is a "tail return"
740 * that can be no-op'd. For example:
741 *
742 * void func(void)
743 * {
744 * .. do something ..
745 * return; // this is a no-op
746 * }
747 *
748 * This is used when determining if a function can be inlined. If the
749 * 'return' is not the last statement, we can't inline the function since
750 * we still need the semantic behaviour of the 'return' but we don't want
751 * to accidentally return from the _calling_ function. We'd need to use an
752 * unconditional branch, but we don't have such a GPU instruction (not
753 * always, at least).
754 */
755 static GLboolean
756 _slang_is_tail_return(const slang_operation *oper)
757 {
758 GLuint k = oper->num_children;
759
760 while (k > 0) {
761 const slang_operation *last = &oper->children[k - 1];
762 if (last->type == SLANG_OPER_RETURN)
763 return GL_TRUE;
764 else if (last->type == SLANG_OPER_IDENTIFIER ||
765 last->type == SLANG_OPER_LABEL)
766 k--; /* try prev child */
767 else if (last->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
768 last->type == SLANG_OPER_BLOCK_NEW_SCOPE)
769 /* try sub-children */
770 return _slang_is_tail_return(last);
771 else
772 break;
773 }
774
775 return GL_FALSE;
776 }
777
778
779 static void
780 slang_resolve_variable(slang_operation *oper)
781 {
782 if (oper->type == SLANG_OPER_IDENTIFIER && !oper->var) {
783 oper->var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
784 }
785 }
786
787
788 /**
789 * Replace particular variables (SLANG_OPER_IDENTIFIER) with new expressions.
790 */
791 static void
792 slang_substitute(slang_assemble_ctx *A, slang_operation *oper,
793 GLuint substCount, slang_variable **substOld,
794 slang_operation **substNew, GLboolean isLHS)
795 {
796 switch (oper->type) {
797 case SLANG_OPER_VARIABLE_DECL:
798 {
799 slang_variable *v = _slang_locate_variable(oper->locals,
800 oper->a_id, GL_TRUE);
801 assert(v);
802 if (v->initializer && oper->num_children == 0) {
803 /* set child of oper to copy of initializer */
804 oper->num_children = 1;
805 oper->children = slang_operation_new(1);
806 slang_operation_copy(&oper->children[0], v->initializer);
807 }
808 if (oper->num_children == 1) {
809 /* the initializer */
810 slang_substitute(A, &oper->children[0], substCount,
811 substOld, substNew, GL_FALSE);
812 }
813 }
814 break;
815 case SLANG_OPER_IDENTIFIER:
816 assert(oper->num_children == 0);
817 if (1/**!isLHS XXX FIX */) {
818 slang_atom id = oper->a_id;
819 slang_variable *v;
820 GLuint i;
821 v = _slang_locate_variable(oper->locals, id, GL_TRUE);
822 if (!v) {
823 _mesa_problem(NULL, "var %s not found!\n", (char *) oper->a_id);
824 return;
825 }
826
827 /* look for a substitution */
828 for (i = 0; i < substCount; i++) {
829 if (v == substOld[i]) {
830 /* OK, replace this SLANG_OPER_IDENTIFIER with a new expr */
831 #if 0 /* DEBUG only */
832 if (substNew[i]->type == SLANG_OPER_IDENTIFIER) {
833 assert(substNew[i]->var);
834 assert(substNew[i]->var->a_name);
835 printf("Substitute %s with %s in id node %p\n",
836 (char*)v->a_name, (char*) substNew[i]->var->a_name,
837 (void*) oper);
838 }
839 else {
840 printf("Substitute %s with %f in id node %p\n",
841 (char*)v->a_name, substNew[i]->literal[0],
842 (void*) oper);
843 }
844 #endif
845 slang_operation_copy(oper, substNew[i]);
846 break;
847 }
848 }
849 }
850 break;
851
852 case SLANG_OPER_RETURN:
853 /* do return replacement here too */
854 assert(oper->num_children == 0 || oper->num_children == 1);
855 if (oper->num_children == 1 && !_slang_is_noop(&oper->children[0])) {
856 /* replace:
857 * return expr;
858 * with:
859 * __retVal = expr;
860 * return;
861 * then do substitutions on the assignment.
862 */
863 slang_operation *blockOper, *assignOper, *returnOper;
864
865 /* check if function actually has a return type */
866 assert(A->CurFunction);
867 if (A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
868 slang_info_log_error(A->log, "illegal return expression");
869 return;
870 }
871
872 blockOper = slang_operation_new(1);
873 blockOper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
874 blockOper->num_children = 2;
875 blockOper->locals->outer_scope = oper->locals->outer_scope;
876 blockOper->children = slang_operation_new(2);
877 assignOper = blockOper->children + 0;
878 returnOper = blockOper->children + 1;
879
880 assignOper->type = SLANG_OPER_ASSIGN;
881 assignOper->num_children = 2;
882 assignOper->locals->outer_scope = blockOper->locals;
883 assignOper->children = slang_operation_new(2);
884 assignOper->children[0].type = SLANG_OPER_IDENTIFIER;
885 assignOper->children[0].a_id = slang_atom_pool_atom(A->atoms, "__retVal");
886 assignOper->children[0].locals->outer_scope = assignOper->locals;
887
888 slang_operation_copy(&assignOper->children[1],
889 &oper->children[0]);
890
891 returnOper->type = SLANG_OPER_RETURN; /* return w/ no value */
892 assert(returnOper->num_children == 0);
893
894 /* do substitutions on the "__retVal = expr" sub-tree */
895 slang_substitute(A, assignOper,
896 substCount, substOld, substNew, GL_FALSE);
897
898 /* install new code */
899 slang_operation_copy(oper, blockOper);
900 slang_operation_destruct(blockOper);
901 }
902 else {
903 /* check if return value was expected */
904 assert(A->CurFunction);
905 if (A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
906 slang_info_log_error(A->log, "return statement requires an expression");
907 return;
908 }
909 }
910 break;
911
912 case SLANG_OPER_ASSIGN:
913 case SLANG_OPER_SUBSCRIPT:
914 /* special case:
915 * child[0] can't have substitutions but child[1] can.
916 */
917 slang_substitute(A, &oper->children[0],
918 substCount, substOld, substNew, GL_TRUE);
919 slang_substitute(A, &oper->children[1],
920 substCount, substOld, substNew, GL_FALSE);
921 break;
922 case SLANG_OPER_FIELD:
923 /* XXX NEW - test */
924 slang_substitute(A, &oper->children[0],
925 substCount, substOld, substNew, GL_TRUE);
926 break;
927 default:
928 {
929 GLuint i;
930 for (i = 0; i < oper->num_children; i++)
931 slang_substitute(A, &oper->children[i],
932 substCount, substOld, substNew, GL_FALSE);
933 }
934 }
935 }
936
937
938 /**
939 * Produce inline code for a call to an assembly instruction.
940 * This is typically used to compile a call to a built-in function like this:
941 *
942 * vec4 mix(const vec4 x, const vec4 y, const vec4 a)
943 * {
944 * __asm vec4_lrp __retVal, a, y, x;
945 * }
946 *
947 *
948 * A call to
949 * r = mix(p1, p2, p3);
950 *
951 * Becomes:
952 *
953 * mov
954 * / \
955 * r vec4_lrp
956 * / | \
957 * p3 p2 p1
958 *
959 * We basically translate a SLANG_OPER_CALL into a SLANG_OPER_ASM.
960 */
961 static slang_operation *
962 slang_inline_asm_function(slang_assemble_ctx *A,
963 slang_function *fun, slang_operation *oper)
964 {
965 const GLuint numArgs = oper->num_children;
966 GLuint i;
967 slang_operation *inlined;
968 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
969 slang_variable **substOld;
970 slang_operation **substNew;
971
972 ASSERT(slang_is_asm_function(fun));
973 ASSERT(fun->param_count == numArgs + haveRetValue);
974
975 /*
976 printf("Inline %s as %s\n",
977 (char*) fun->header.a_name,
978 (char*) fun->body->children[0].a_id);
979 */
980
981 /*
982 * We'll substitute formal params with actual args in the asm call.
983 */
984 substOld = (slang_variable **)
985 _slang_alloc(numArgs * sizeof(slang_variable *));
986 substNew = (slang_operation **)
987 _slang_alloc(numArgs * sizeof(slang_operation *));
988 for (i = 0; i < numArgs; i++) {
989 substOld[i] = fun->parameters->variables[i];
990 substNew[i] = oper->children + i;
991 }
992
993 /* make a copy of the code to inline */
994 inlined = slang_operation_new(1);
995 slang_operation_copy(inlined, &fun->body->children[0]);
996 if (haveRetValue) {
997 /* get rid of the __retVal child */
998 inlined->num_children--;
999 for (i = 0; i < inlined->num_children; i++) {
1000 inlined->children[i] = inlined->children[i + 1];
1001 }
1002 }
1003
1004 /* now do formal->actual substitutions */
1005 slang_substitute(A, inlined, numArgs, substOld, substNew, GL_FALSE);
1006
1007 _slang_free(substOld);
1008 _slang_free(substNew);
1009
1010 #if 0
1011 printf("+++++++++++++ inlined asm function %s +++++++++++++\n",
1012 (char *) fun->header.a_name);
1013 slang_print_tree(inlined, 3);
1014 printf("+++++++++++++++++++++++++++++++++++++++++++++++++++\n");
1015 #endif
1016
1017 return inlined;
1018 }
1019
1020
1021 /**
1022 * Inline the given function call operation.
1023 * Return a new slang_operation that corresponds to the inlined code.
1024 */
1025 static slang_operation *
1026 slang_inline_function_call(slang_assemble_ctx * A, slang_function *fun,
1027 slang_operation *oper, slang_operation *returnOper)
1028 {
1029 typedef enum {
1030 SUBST = 1,
1031 COPY_IN,
1032 COPY_OUT
1033 } ParamMode;
1034 ParamMode *paramMode;
1035 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
1036 const GLuint numArgs = oper->num_children;
1037 const GLuint totalArgs = numArgs + haveRetValue;
1038 slang_operation *args = oper->children;
1039 slang_operation *inlined, *top;
1040 slang_variable **substOld;
1041 slang_operation **substNew;
1042 GLuint substCount, numCopyIn, i;
1043 slang_function *prevFunction;
1044 slang_variable_scope *newScope = NULL;
1045
1046 /* save / push */
1047 prevFunction = A->CurFunction;
1048 A->CurFunction = fun;
1049
1050 /*assert(oper->type == SLANG_OPER_CALL); (or (matrix) multiply, etc) */
1051 assert(fun->param_count == totalArgs);
1052
1053 /* allocate temporary arrays */
1054 paramMode = (ParamMode *)
1055 _slang_alloc(totalArgs * sizeof(ParamMode));
1056 substOld = (slang_variable **)
1057 _slang_alloc(totalArgs * sizeof(slang_variable *));
1058 substNew = (slang_operation **)
1059 _slang_alloc(totalArgs * sizeof(slang_operation *));
1060
1061 #if 0
1062 printf("\nInline call to %s (total vars=%d nparams=%d)\n",
1063 (char *) fun->header.a_name,
1064 fun->parameters->num_variables, numArgs);
1065 #endif
1066
1067 if (haveRetValue && !returnOper) {
1068 /* Create 3-child comma sequence for inlined code:
1069 * child[0]: declare __resultTmp
1070 * child[1]: inlined function body
1071 * child[2]: __resultTmp
1072 */
1073 slang_operation *commaSeq;
1074 slang_operation *declOper = NULL;
1075 slang_variable *resultVar;
1076
1077 commaSeq = slang_operation_new(1);
1078 commaSeq->type = SLANG_OPER_SEQUENCE;
1079 assert(commaSeq->locals);
1080 commaSeq->locals->outer_scope = oper->locals->outer_scope;
1081 commaSeq->num_children = 3;
1082 commaSeq->children = slang_operation_new(3);
1083 /* allocate the return var */
1084 resultVar = slang_variable_scope_grow(commaSeq->locals);
1085 /*
1086 printf("Alloc __resultTmp in scope %p for retval of calling %s\n",
1087 (void*)commaSeq->locals, (char *) fun->header.a_name);
1088 */
1089
1090 resultVar->a_name = slang_atom_pool_atom(A->atoms, "__resultTmp");
1091 resultVar->type = fun->header.type; /* XXX copy? */
1092 resultVar->isTemp = GL_TRUE;
1093
1094 /* child[0] = __resultTmp declaration */
1095 declOper = &commaSeq->children[0];
1096 declOper->type = SLANG_OPER_VARIABLE_DECL;
1097 declOper->a_id = resultVar->a_name;
1098 declOper->locals->outer_scope = commaSeq->locals;
1099
1100 /* child[1] = function body */
1101 inlined = &commaSeq->children[1];
1102 inlined->locals->outer_scope = commaSeq->locals;
1103
1104 /* child[2] = __resultTmp reference */
1105 returnOper = &commaSeq->children[2];
1106 returnOper->type = SLANG_OPER_IDENTIFIER;
1107 returnOper->a_id = resultVar->a_name;
1108 returnOper->locals->outer_scope = commaSeq->locals;
1109
1110 top = commaSeq;
1111 }
1112 else {
1113 top = inlined = slang_operation_new(1);
1114 /* XXXX this may be inappropriate!!!! */
1115 inlined->locals->outer_scope = oper->locals->outer_scope;
1116 }
1117
1118
1119 assert(inlined->locals);
1120
1121 /* Examine the parameters, look for inout/out params, look for possible
1122 * substitutions, etc:
1123 * param type behaviour
1124 * in copy actual to local
1125 * const in substitute param with actual
1126 * out copy out
1127 */
1128 substCount = 0;
1129 for (i = 0; i < totalArgs; i++) {
1130 slang_variable *p = fun->parameters->variables[i];
1131 /*
1132 printf("Param %d: %s %s \n", i,
1133 slang_type_qual_string(p->type.qualifier),
1134 (char *) p->a_name);
1135 */
1136 if (p->type.qualifier == SLANG_QUAL_INOUT ||
1137 p->type.qualifier == SLANG_QUAL_OUT) {
1138 /* an output param */
1139 slang_operation *arg;
1140 if (i < numArgs)
1141 arg = &args[i];
1142 else
1143 arg = returnOper;
1144 paramMode[i] = SUBST;
1145
1146 if (arg->type == SLANG_OPER_IDENTIFIER)
1147 slang_resolve_variable(arg);
1148
1149 /* replace parameter 'p' with argument 'arg' */
1150 substOld[substCount] = p;
1151 substNew[substCount] = arg; /* will get copied */
1152 substCount++;
1153 }
1154 else if (p->type.qualifier == SLANG_QUAL_CONST) {
1155 /* a constant input param */
1156 if (args[i].type == SLANG_OPER_IDENTIFIER ||
1157 args[i].type == SLANG_OPER_LITERAL_FLOAT) {
1158 /* replace all occurances of this parameter variable with the
1159 * actual argument variable or a literal.
1160 */
1161 paramMode[i] = SUBST;
1162 slang_resolve_variable(&args[i]);
1163 substOld[substCount] = p;
1164 substNew[substCount] = &args[i]; /* will get copied */
1165 substCount++;
1166 }
1167 else {
1168 paramMode[i] = COPY_IN;
1169 }
1170 }
1171 else {
1172 paramMode[i] = COPY_IN;
1173 }
1174 assert(paramMode[i]);
1175 }
1176
1177 /* actual code inlining: */
1178 slang_operation_copy(inlined, fun->body);
1179
1180 /*** XXX review this */
1181 assert(inlined->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
1182 inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE);
1183 inlined->type = SLANG_OPER_BLOCK_NEW_SCOPE;
1184
1185 #if 0
1186 printf("======================= orig body code ======================\n");
1187 printf("=== params scope = %p\n", (void*) fun->parameters);
1188 slang_print_tree(fun->body, 8);
1189 printf("======================= copied code =========================\n");
1190 slang_print_tree(inlined, 8);
1191 #endif
1192
1193 /* do parameter substitution in inlined code: */
1194 slang_substitute(A, inlined, substCount, substOld, substNew, GL_FALSE);
1195
1196 #if 0
1197 printf("======================= subst code ==========================\n");
1198 slang_print_tree(inlined, 8);
1199 printf("=============================================================\n");
1200 #endif
1201
1202 /* New prolog statements: (inserted before the inlined code)
1203 * Copy the 'in' arguments.
1204 */
1205 numCopyIn = 0;
1206 for (i = 0; i < numArgs; i++) {
1207 if (paramMode[i] == COPY_IN) {
1208 slang_variable *p = fun->parameters->variables[i];
1209 /* declare parameter 'p' */
1210 slang_operation *decl = slang_operation_insert(&inlined->num_children,
1211 &inlined->children,
1212 numCopyIn);
1213
1214 decl->type = SLANG_OPER_VARIABLE_DECL;
1215 assert(decl->locals);
1216 decl->locals->outer_scope = inlined->locals;
1217 decl->a_id = p->a_name;
1218 decl->num_children = 1;
1219 decl->children = slang_operation_new(1);
1220
1221 /* child[0] is the var's initializer */
1222 slang_operation_copy(&decl->children[0], args + i);
1223
1224 /* add parameter 'p' to the local variable scope here */
1225 {
1226 slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
1227 pCopy->type = p->type;
1228 pCopy->a_name = p->a_name;
1229 pCopy->array_len = p->array_len;
1230 }
1231
1232 newScope = inlined->locals;
1233 numCopyIn++;
1234 }
1235 }
1236
1237 /* Now add copies of the function's local vars to the new variable scope */
1238 for (i = totalArgs; i < fun->parameters->num_variables; i++) {
1239 slang_variable *p = fun->parameters->variables[i];
1240 slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
1241 pCopy->type = p->type;
1242 pCopy->a_name = p->a_name;
1243 pCopy->array_len = p->array_len;
1244 }
1245
1246
1247 /* New epilog statements:
1248 * 1. Create end of function label to jump to from return statements.
1249 * 2. Copy the 'out' parameter vars
1250 */
1251 {
1252 slang_operation *lab = slang_operation_insert(&inlined->num_children,
1253 &inlined->children,
1254 inlined->num_children);
1255 lab->type = SLANG_OPER_LABEL;
1256 lab->label = A->curFuncEndLabel;
1257 }
1258
1259 for (i = 0; i < totalArgs; i++) {
1260 if (paramMode[i] == COPY_OUT) {
1261 const slang_variable *p = fun->parameters->variables[i];
1262 /* actualCallVar = outParam */
1263 /*if (i > 0 || !haveRetValue)*/
1264 slang_operation *ass = slang_operation_insert(&inlined->num_children,
1265 &inlined->children,
1266 inlined->num_children);
1267 ass->type = SLANG_OPER_ASSIGN;
1268 ass->num_children = 2;
1269 ass->locals->outer_scope = inlined->locals;
1270 ass->children = slang_operation_new(2);
1271 ass->children[0] = args[i]; /*XXX copy */
1272 ass->children[1].type = SLANG_OPER_IDENTIFIER;
1273 ass->children[1].a_id = p->a_name;
1274 ass->children[1].locals->outer_scope = ass->locals;
1275 }
1276 }
1277
1278 _slang_free(paramMode);
1279 _slang_free(substOld);
1280 _slang_free(substNew);
1281
1282 /* Update scoping to use the new local vars instead of the
1283 * original function's vars. This is especially important
1284 * for nested inlining.
1285 */
1286 if (newScope)
1287 slang_replace_scope(inlined, fun->parameters, newScope);
1288
1289 #if 0
1290 printf("Done Inline call to %s (total vars=%d nparams=%d)\n\n",
1291 (char *) fun->header.a_name,
1292 fun->parameters->num_variables, numArgs);
1293 slang_print_tree(top, 0);
1294 #endif
1295
1296 /* pop */
1297 A->CurFunction = prevFunction;
1298
1299 return top;
1300 }
1301
1302
1303 static slang_ir_node *
1304 _slang_gen_function_call(slang_assemble_ctx *A, slang_function *fun,
1305 slang_operation *oper, slang_operation *dest)
1306 {
1307 slang_ir_node *n;
1308 slang_operation *inlined;
1309 slang_label *prevFuncEndLabel;
1310 char name[200];
1311
1312 prevFuncEndLabel = A->curFuncEndLabel;
1313 sprintf(name, "__endOfFunc_%s_", (char *) fun->header.a_name);
1314 A->curFuncEndLabel = _slang_label_new(name);
1315 assert(A->curFuncEndLabel);
1316
1317 if (slang_is_asm_function(fun) && !dest) {
1318 /* assemble assembly function - tree style */
1319 inlined = slang_inline_asm_function(A, fun, oper);
1320 }
1321 else {
1322 /* non-assembly function */
1323 /* We always generate an "inline-able" block of code here.
1324 * We may either:
1325 * 1. insert the inline code
1326 * 2. Generate a call to the "inline" code as a subroutine
1327 */
1328
1329
1330 slang_operation *ret = NULL;
1331
1332 inlined = slang_inline_function_call(A, fun, oper, dest);
1333 if (!inlined)
1334 return NULL;
1335
1336 ret = _slang_find_node_type(inlined, SLANG_OPER_RETURN);
1337 if (ret) {
1338 /* check if this is a "tail" return */
1339 if (_slang_count_node_type(inlined, SLANG_OPER_RETURN) == 1 &&
1340 _slang_is_tail_return(inlined)) {
1341 /* The only RETURN is the last stmt in the function, no-op it
1342 * and inline the function body.
1343 */
1344 ret->type = SLANG_OPER_NONE;
1345 }
1346 else {
1347 slang_operation *callOper;
1348 /* The function we're calling has one or more 'return' statements.
1349 * So, we can't truly inline this function because we need to
1350 * implement 'return' with RET (and CAL).
1351 * Nevertheless, we performed "inlining" to make a new instance
1352 * of the function body to deal with static register allocation.
1353 *
1354 * XXX check if there's one 'return' and if it's the very last
1355 * statement in the function - we can optimize that case.
1356 */
1357 assert(inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
1358 inlined->type == SLANG_OPER_SEQUENCE);
1359
1360 if (_slang_function_has_return_value(fun) && !dest) {
1361 assert(inlined->children[0].type == SLANG_OPER_VARIABLE_DECL);
1362 assert(inlined->children[2].type == SLANG_OPER_IDENTIFIER);
1363 callOper = &inlined->children[1];
1364 }
1365 else {
1366 callOper = inlined;
1367 }
1368 callOper->type = SLANG_OPER_NON_INLINED_CALL;
1369 callOper->fun = fun;
1370 callOper->label = _slang_label_new_unique((char*) fun->header.a_name);
1371 }
1372 }
1373 }
1374
1375 if (!inlined)
1376 return NULL;
1377
1378 /* Replace the function call with the inlined block (or new CALL stmt) */
1379 slang_operation_destruct(oper);
1380 *oper = *inlined;
1381 _slang_free(inlined);
1382
1383 #if 0
1384 assert(inlined->locals);
1385 printf("*** Inlined code for call to %s:\n",
1386 (char*) fun->header.a_name);
1387 slang_print_tree(oper, 10);
1388 printf("\n");
1389 #endif
1390
1391 n = _slang_gen_operation(A, oper);
1392
1393 /*_slang_label_delete(A->curFuncEndLabel);*/
1394 A->curFuncEndLabel = prevFuncEndLabel;
1395
1396 return n;
1397 }
1398
1399
1400 static slang_asm_info *
1401 slang_find_asm_info(const char *name)
1402 {
1403 GLuint i;
1404 for (i = 0; AsmInfo[i].Name; i++) {
1405 if (_mesa_strcmp(AsmInfo[i].Name, name) == 0) {
1406 return AsmInfo + i;
1407 }
1408 }
1409 return NULL;
1410 }
1411
1412
1413 /**
1414 * Return the default swizzle mask for accessing a variable of the
1415 * given size (in floats). If size = 1, comp is used to identify
1416 * which component [0..3] of the register holds the variable.
1417 */
1418 static GLuint
1419 _slang_var_swizzle(GLint size, GLint comp)
1420 {
1421 switch (size) {
1422 case 1:
1423 return MAKE_SWIZZLE4(comp, comp, comp, comp);
1424 case 2:
1425 return MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_NIL, SWIZZLE_NIL);
1426 case 3:
1427 return MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_NIL);
1428 default:
1429 return SWIZZLE_XYZW;
1430 }
1431 }
1432
1433
1434 /**
1435 * Some write-masked assignments are simple, but others are hard.
1436 * Simple example:
1437 * vec3 v;
1438 * v.xy = vec2(a, b);
1439 * Hard example:
1440 * vec3 v;
1441 * v.zy = vec2(a, b);
1442 * this gets transformed/swizzled into:
1443 * v.zy = vec2(a, b).*yx* (* = don't care)
1444 * This function helps to determine simple vs. non-simple.
1445 */
1446 static GLboolean
1447 _slang_simple_writemask(GLuint writemask, GLuint swizzle)
1448 {
1449 switch (writemask) {
1450 case WRITEMASK_X:
1451 return GET_SWZ(swizzle, 0) == SWIZZLE_X;
1452 case WRITEMASK_Y:
1453 return GET_SWZ(swizzle, 1) == SWIZZLE_Y;
1454 case WRITEMASK_Z:
1455 return GET_SWZ(swizzle, 2) == SWIZZLE_Z;
1456 case WRITEMASK_W:
1457 return GET_SWZ(swizzle, 3) == SWIZZLE_W;
1458 case WRITEMASK_XY:
1459 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
1460 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y);
1461 case WRITEMASK_XYZ:
1462 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
1463 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y)
1464 && (GET_SWZ(swizzle, 2) == SWIZZLE_Z);
1465 case WRITEMASK_XYZW:
1466 return swizzle == SWIZZLE_NOOP;
1467 default:
1468 return GL_FALSE;
1469 }
1470 }
1471
1472
1473 /**
1474 * Convert the given swizzle into a writemask. In some cases this
1475 * is trivial, in other cases, we'll need to also swizzle the right
1476 * hand side to put components in the right places.
1477 * See comment above for more info.
1478 * XXX this function could be simplified and should probably be renamed.
1479 * \param swizzle the incoming swizzle
1480 * \param writemaskOut returns the writemask
1481 * \param swizzleOut swizzle to apply to the right-hand-side
1482 * \return GL_FALSE for simple writemasks, GL_TRUE for non-simple
1483 */
1484 static GLboolean
1485 swizzle_to_writemask(slang_assemble_ctx *A, GLuint swizzle,
1486 GLuint *writemaskOut, GLuint *swizzleOut)
1487 {
1488 GLuint mask = 0x0, newSwizzle[4];
1489 GLint i, size;
1490
1491 /* make new dst writemask, compute size */
1492 for (i = 0; i < 4; i++) {
1493 const GLuint swz = GET_SWZ(swizzle, i);
1494 if (swz == SWIZZLE_NIL) {
1495 /* end */
1496 break;
1497 }
1498 assert(swz >= 0 && swz <= 3);
1499
1500 if (swizzle != SWIZZLE_XXXX &&
1501 swizzle != SWIZZLE_YYYY &&
1502 swizzle != SWIZZLE_ZZZZ &&
1503 swizzle != SWIZZLE_WWWW &&
1504 (mask & (1 << swz))) {
1505 /* a channel can't be specified twice (ex: ".xyyz") */
1506 slang_info_log_error(A->log, "Invalid writemask '%s'",
1507 _mesa_swizzle_string(swizzle, 0, 0));
1508 return GL_FALSE;
1509 }
1510
1511 mask |= (1 << swz);
1512 }
1513 assert(mask <= 0xf);
1514 size = i; /* number of components in mask/swizzle */
1515
1516 *writemaskOut = mask;
1517
1518 /* make new src swizzle, by inversion */
1519 for (i = 0; i < 4; i++) {
1520 newSwizzle[i] = i; /*identity*/
1521 }
1522 for (i = 0; i < size; i++) {
1523 const GLuint swz = GET_SWZ(swizzle, i);
1524 newSwizzle[swz] = i;
1525 }
1526 *swizzleOut = MAKE_SWIZZLE4(newSwizzle[0],
1527 newSwizzle[1],
1528 newSwizzle[2],
1529 newSwizzle[3]);
1530
1531 if (_slang_simple_writemask(mask, *swizzleOut)) {
1532 if (size >= 1)
1533 assert(GET_SWZ(*swizzleOut, 0) == SWIZZLE_X);
1534 if (size >= 2)
1535 assert(GET_SWZ(*swizzleOut, 1) == SWIZZLE_Y);
1536 if (size >= 3)
1537 assert(GET_SWZ(*swizzleOut, 2) == SWIZZLE_Z);
1538 if (size >= 4)
1539 assert(GET_SWZ(*swizzleOut, 3) == SWIZZLE_W);
1540 return GL_TRUE;
1541 }
1542 else
1543 return GL_FALSE;
1544 }
1545
1546
1547 /**
1548 * Recursively traverse 'oper' to produce a swizzle mask in the event
1549 * of any vector subscripts and swizzle suffixes.
1550 * Ex: for "vec4 v", "v[2].x" resolves to v.z
1551 */
1552 static GLuint
1553 resolve_swizzle(const slang_operation *oper)
1554 {
1555 if (oper->type == SLANG_OPER_FIELD) {
1556 /* writemask from .xyzw suffix */
1557 slang_swizzle swz;
1558 if (_slang_is_swizzle((char*) oper->a_id, 4, &swz)) {
1559 GLuint swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
1560 swz.swizzle[1],
1561 swz.swizzle[2],
1562 swz.swizzle[3]);
1563 GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
1564 GLuint s = _slang_swizzle_swizzle(child_swizzle, swizzle);
1565 return s;
1566 }
1567 else
1568 return SWIZZLE_XYZW;
1569 }
1570 else if (oper->type == SLANG_OPER_SUBSCRIPT &&
1571 oper->children[1].type == SLANG_OPER_LITERAL_INT) {
1572 /* writemask from [index] */
1573 GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
1574 GLuint i = (GLuint) oper->children[1].literal[0];
1575 GLuint swizzle;
1576 GLuint s;
1577 switch (i) {
1578 case 0:
1579 swizzle = SWIZZLE_XXXX;
1580 break;
1581 case 1:
1582 swizzle = SWIZZLE_YYYY;
1583 break;
1584 case 2:
1585 swizzle = SWIZZLE_ZZZZ;
1586 break;
1587 case 3:
1588 swizzle = SWIZZLE_WWWW;
1589 break;
1590 default:
1591 swizzle = SWIZZLE_XYZW;
1592 }
1593 s = _slang_swizzle_swizzle(child_swizzle, swizzle);
1594 return s;
1595 }
1596 else {
1597 return SWIZZLE_XYZW;
1598 }
1599 }
1600
1601
1602 /**
1603 * Recursively descend through swizzle nodes to find the node's storage info.
1604 */
1605 static slang_ir_storage *
1606 get_store(const slang_ir_node *n)
1607 {
1608 if (n->Opcode == IR_SWIZZLE) {
1609 return get_store(n->Children[0]);
1610 }
1611 return n->Store;
1612 }
1613
1614
1615
1616 /**
1617 * Generate IR tree for an asm instruction/operation such as:
1618 * __asm vec4_dot __retVal.x, v1, v2;
1619 */
1620 static slang_ir_node *
1621 _slang_gen_asm(slang_assemble_ctx *A, slang_operation *oper,
1622 slang_operation *dest)
1623 {
1624 const slang_asm_info *info;
1625 slang_ir_node *kids[3], *n;
1626 GLuint j, firstOperand;
1627
1628 assert(oper->type == SLANG_OPER_ASM);
1629
1630 info = slang_find_asm_info((char *) oper->a_id);
1631 if (!info) {
1632 _mesa_problem(NULL, "undefined __asm function %s\n",
1633 (char *) oper->a_id);
1634 assert(info);
1635 }
1636 assert(info->NumParams <= 3);
1637
1638 if (info->NumParams == oper->num_children) {
1639 /* Storage for result is not specified.
1640 * Children[0], [1], [2] are the operands.
1641 */
1642 firstOperand = 0;
1643 }
1644 else {
1645 /* Storage for result (child[0]) is specified.
1646 * Children[1], [2], [3] are the operands.
1647 */
1648 firstOperand = 1;
1649 }
1650
1651 /* assemble child(ren) */
1652 kids[0] = kids[1] = kids[2] = NULL;
1653 for (j = 0; j < info->NumParams; j++) {
1654 kids[j] = _slang_gen_operation(A, &oper->children[firstOperand + j]);
1655 if (!kids[j])
1656 return NULL;
1657 }
1658
1659 n = new_node3(info->Opcode, kids[0], kids[1], kids[2]);
1660
1661 if (firstOperand) {
1662 /* Setup n->Store to be a particular location. Otherwise, storage
1663 * for the result (a temporary) will be allocated later.
1664 */
1665 slang_operation *dest_oper;
1666 slang_ir_node *n0;
1667
1668 dest_oper = &oper->children[0];
1669
1670 n0 = _slang_gen_operation(A, dest_oper);
1671 if (!n0)
1672 return NULL;
1673
1674 assert(!n->Store);
1675 n->Store = n0->Store;
1676
1677 assert(n->Store->File != PROGRAM_UNDEFINED || n->Store->Parent);
1678
1679 _slang_free(n0);
1680 }
1681
1682 return n;
1683 }
1684
1685
1686 static void
1687 print_funcs(struct slang_function_scope_ *scope, const char *name)
1688 {
1689 GLuint i;
1690 for (i = 0; i < scope->num_functions; i++) {
1691 slang_function *f = &scope->functions[i];
1692 if (!name || strcmp(name, (char*) f->header.a_name) == 0)
1693 printf(" %s (%d args)\n", name, f->param_count);
1694
1695 }
1696 if (scope->outer_scope)
1697 print_funcs(scope->outer_scope, name);
1698 }
1699
1700
1701 /**
1702 * Find a function of the given name, taking 'numArgs' arguments.
1703 * This is the function we'll try to call when there is no exact match
1704 * between function parameters and call arguments.
1705 *
1706 * XXX we should really create a list of candidate functions and try
1707 * all of them...
1708 */
1709 static slang_function *
1710 _slang_find_function_by_argc(slang_function_scope *scope,
1711 const char *name, int numArgs)
1712 {
1713 while (scope) {
1714 GLuint i;
1715 for (i = 0; i < scope->num_functions; i++) {
1716 slang_function *f = &scope->functions[i];
1717 if (strcmp(name, (char*) f->header.a_name) == 0) {
1718 int haveRetValue = _slang_function_has_return_value(f);
1719 if (numArgs == f->param_count - haveRetValue)
1720 return f;
1721 }
1722 }
1723 scope = scope->outer_scope;
1724 }
1725
1726 return NULL;
1727 }
1728
1729
1730 static slang_function *
1731 _slang_find_function_by_max_argc(slang_function_scope *scope,
1732 const char *name)
1733 {
1734 slang_function *maxFunc = NULL;
1735 GLuint maxArgs = 0;
1736
1737 while (scope) {
1738 GLuint i;
1739 for (i = 0; i < scope->num_functions; i++) {
1740 slang_function *f = &scope->functions[i];
1741 if (strcmp(name, (char*) f->header.a_name) == 0) {
1742 if (f->param_count > maxArgs) {
1743 maxArgs = f->param_count;
1744 maxFunc = f;
1745 }
1746 }
1747 }
1748 scope = scope->outer_scope;
1749 }
1750
1751 return maxFunc;
1752 }
1753
1754
1755 /**
1756 * Generate a new slang_function which is a constructor for a user-defined
1757 * struct type.
1758 */
1759 static slang_function *
1760 _slang_make_constructor(slang_assemble_ctx *A, slang_struct *str)
1761 {
1762 const GLint numFields = str->fields->num_variables;
1763
1764 slang_function *fun = (slang_function *) _mesa_malloc(sizeof(slang_function));
1765 if (!fun)
1766 return NULL;
1767
1768 slang_function_construct(fun);
1769
1770 /* function header (name, return type) */
1771 fun->kind = SLANG_FUNC_CONSTRUCTOR;
1772 fun->header.a_name = str->a_name;
1773 fun->header.type.qualifier = SLANG_QUAL_NONE;
1774 fun->header.type.specifier.type = SLANG_SPEC_STRUCT;
1775 fun->header.type.specifier._struct = str;
1776
1777 /* function parameters (= struct's fields) */
1778 {
1779 GLint i;
1780 for (i = 0; i < numFields; i++) {
1781 /*
1782 printf("Field %d: %s\n", i, (char*) str->fields->variables[i]->a_name);
1783 */
1784 slang_variable *p = slang_variable_scope_grow(fun->parameters);
1785 *p = *str->fields->variables[i]; /* copy the type */
1786 p->type.qualifier = SLANG_QUAL_CONST;
1787 }
1788 fun->param_count = fun->parameters->num_variables;
1789 }
1790
1791 /* Add __retVal to params */
1792 {
1793 slang_variable *p = slang_variable_scope_grow(fun->parameters);
1794 slang_atom a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
1795 assert(a_retVal);
1796 p->a_name = a_retVal;
1797 p->type = fun->header.type;
1798 p->type.qualifier = SLANG_QUAL_OUT;
1799 fun->param_count++;
1800 }
1801
1802 /* function body is:
1803 * block:
1804 * declare T;
1805 * T.f1 = p1;
1806 * T.f2 = p2;
1807 * ...
1808 * T.fn = pn;
1809 * return T;
1810 */
1811 {
1812 slang_variable_scope *scope;
1813 slang_variable *var;
1814 GLint i;
1815
1816 fun->body = slang_operation_new(1);
1817 fun->body->type = SLANG_OPER_BLOCK_NEW_SCOPE;
1818 fun->body->num_children = numFields + 2;
1819 fun->body->children = slang_operation_new(numFields + 2);
1820
1821 scope = fun->body->locals;
1822 scope->outer_scope = fun->parameters;
1823
1824 /* create local var 't' */
1825 var = slang_variable_scope_grow(scope);
1826 var->a_name = slang_atom_pool_atom(A->atoms, "t");
1827 var->type = fun->header.type;
1828
1829 /* declare t */
1830 {
1831 slang_operation *decl;
1832
1833 decl = &fun->body->children[0];
1834 decl->type = SLANG_OPER_VARIABLE_DECL;
1835 decl->locals = _slang_variable_scope_new(scope);
1836 decl->a_id = var->a_name;
1837 }
1838
1839 /* assign params to fields of t */
1840 for (i = 0; i < numFields; i++) {
1841 slang_operation *assign = &fun->body->children[1 + i];
1842
1843 assign->type = SLANG_OPER_ASSIGN;
1844 assign->locals = _slang_variable_scope_new(scope);
1845 assign->num_children = 2;
1846 assign->children = slang_operation_new(2);
1847
1848 {
1849 slang_operation *lhs = &assign->children[0];
1850
1851 lhs->type = SLANG_OPER_FIELD;
1852 lhs->locals = _slang_variable_scope_new(scope);
1853 lhs->num_children = 1;
1854 lhs->children = slang_operation_new(1);
1855 lhs->a_id = str->fields->variables[i]->a_name;
1856
1857 lhs->children[0].type = SLANG_OPER_IDENTIFIER;
1858 lhs->children[0].a_id = var->a_name;
1859 lhs->children[0].locals = _slang_variable_scope_new(scope);
1860
1861 #if 0
1862 lhs->children[1].num_children = 1;
1863 lhs->children[1].children = slang_operation_new(1);
1864 lhs->children[1].children[0].type = SLANG_OPER_IDENTIFIER;
1865 lhs->children[1].children[0].a_id = str->fields->variables[i]->a_name;
1866 lhs->children[1].children->locals = _slang_variable_scope_new(scope);
1867 #endif
1868 }
1869
1870 {
1871 slang_operation *rhs = &assign->children[1];
1872
1873 rhs->type = SLANG_OPER_IDENTIFIER;
1874 rhs->locals = _slang_variable_scope_new(scope);
1875 rhs->a_id = str->fields->variables[i]->a_name;
1876 }
1877 }
1878
1879 /* return t; */
1880 {
1881 slang_operation *ret = &fun->body->children[numFields + 1];
1882
1883 ret->type = SLANG_OPER_RETURN;
1884 ret->locals = _slang_variable_scope_new(scope);
1885 ret->num_children = 1;
1886 ret->children = slang_operation_new(1);
1887 ret->children[0].type = SLANG_OPER_IDENTIFIER;
1888 ret->children[0].a_id = var->a_name;
1889 ret->children[0].locals = _slang_variable_scope_new(scope);
1890
1891 }
1892 }
1893 /*
1894 slang_print_function(fun, 1);
1895 */
1896 return fun;
1897 }
1898
1899
1900 /**
1901 * Find/create a function (constructor) for the given structure name.
1902 */
1903 static slang_function *
1904 _slang_locate_struct_constructor(slang_assemble_ctx *A, const char *name)
1905 {
1906 unsigned int i;
1907 for (i = 0; i < A->space.structs->num_structs; i++) {
1908 slang_struct *str = &A->space.structs->structs[i];
1909 if (strcmp(name, (const char *) str->a_name) == 0) {
1910 /* found a structure type that matches the function name */
1911 if (!str->constructor) {
1912 /* create the constructor function now */
1913 str->constructor = _slang_make_constructor(A, str);
1914 }
1915 return str->constructor;
1916 }
1917 }
1918 return NULL;
1919 }
1920
1921
1922
1923 static GLboolean
1924 _slang_is_vec_mat_type(const char *name)
1925 {
1926 static const char *vecmat_types[] = {
1927 "float", "int", "bool",
1928 "vec2", "vec3", "vec4",
1929 "ivec2", "ivec3", "ivec4",
1930 "bvec2", "bvec3", "bvec4",
1931 "mat2", "mat3", "mat4",
1932 "mat2x3", "mat2x4", "mat3x2", "mat3x4", "mat4x2", "mat4x3",
1933 NULL
1934 };
1935 int i;
1936 for (i = 0; vecmat_types[i]; i++)
1937 if (_mesa_strcmp(name, vecmat_types[i]) == 0)
1938 return GL_TRUE;
1939 return GL_FALSE;
1940 }
1941
1942
1943 /**
1944 * Assemble a function call, given a particular function name.
1945 * \param name the function's name (operators like '*' are possible).
1946 */
1947 static slang_ir_node *
1948 _slang_gen_function_call_name(slang_assemble_ctx *A, const char *name,
1949 slang_operation *oper, slang_operation *dest)
1950 {
1951 slang_operation *params = oper->children;
1952 const GLuint param_count = oper->num_children;
1953 slang_atom atom;
1954 slang_function *fun;
1955 GLboolean error;
1956 slang_ir_node *n;
1957
1958 atom = slang_atom_pool_atom(A->atoms, name);
1959 if (atom == SLANG_ATOM_NULL)
1960 return NULL;
1961
1962 /*
1963 * First, try to find function by name and exact argument type matching.
1964 */
1965 fun = _slang_locate_function(A->space.funcs, atom, params, param_count,
1966 &A->space, A->atoms, A->log, &error);
1967
1968 if (error) {
1969 slang_info_log_error(A->log,
1970 "Function '%s' not found (check argument types)",
1971 name);
1972 return NULL;
1973 }
1974
1975 if (!fun) {
1976 /* Next, try locating a constructor function for a user-defined type */
1977 fun = _slang_locate_struct_constructor(A, name);
1978 }
1979
1980 /*
1981 * At this point, some heuristics are used to try to find a function
1982 * that matches the calling signature by means of casting or "unrolling"
1983 * of constructors.
1984 */
1985
1986 if (!fun && _slang_is_vec_mat_type(name)) {
1987 /* Next, if this call looks like a vec() or mat() constructor call,
1988 * try "unwinding" the args to satisfy a constructor.
1989 */
1990 fun = _slang_find_function_by_max_argc(A->space.funcs, name);
1991 if (fun) {
1992 if (!_slang_adapt_call(oper, fun, &A->space, A->atoms, A->log)) {
1993 slang_info_log_error(A->log,
1994 "Function '%s' not found (check argument types)",
1995 name);
1996 return NULL;
1997 }
1998 }
1999 }
2000
2001 if (!fun && _slang_is_vec_mat_type(name)) {
2002 /* Next, try casting args to the types of the formal parameters */
2003 int numArgs = oper->num_children;
2004 fun = _slang_find_function_by_argc(A->space.funcs, name, numArgs);
2005 if (!fun || !_slang_cast_func_params(oper, fun, &A->space, A->atoms, A->log)) {
2006 slang_info_log_error(A->log,
2007 "Function '%s' not found (check argument types)",
2008 name);
2009 return NULL;
2010 }
2011 assert(fun);
2012 }
2013
2014 if (!fun) {
2015 slang_info_log_error(A->log,
2016 "Function '%s' not found (check argument types)",
2017 name);
2018 return NULL;
2019 }
2020 if (!fun->body) {
2021 slang_info_log_error(A->log,
2022 "Function '%s' prototyped but not defined. "
2023 "Separate compilation units not supported.",
2024 name);
2025 return NULL;
2026 }
2027
2028 /* type checking to be sure function's return type matches 'dest' type */
2029 if (dest) {
2030 slang_typeinfo t0;
2031
2032 slang_typeinfo_construct(&t0);
2033 _slang_typeof_operation(A, dest, &t0);
2034
2035 if (!slang_type_specifier_equal(&t0.spec, &fun->header.type.specifier)) {
2036 slang_info_log_error(A->log,
2037 "Incompatible type returned by call to '%s'",
2038 name);
2039 return NULL;
2040 }
2041 }
2042
2043 n = _slang_gen_function_call(A, fun, oper, dest);
2044
2045 if (n && !n->Store && !dest
2046 && fun->header.type.specifier.type != SLANG_SPEC_VOID) {
2047 /* setup n->Store for the result of the function call */
2048 GLint size = _slang_sizeof_type_specifier(&fun->header.type.specifier);
2049 n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, size);
2050 /*printf("Alloc storage for function result, size %d \n", size);*/
2051 }
2052
2053 return n;
2054 }
2055
2056
2057 static slang_ir_node *
2058 _slang_gen_method_call(slang_assemble_ctx *A, slang_operation *oper)
2059 {
2060 slang_atom *a_length = slang_atom_pool_atom(A->atoms, "length");
2061 slang_ir_node *n;
2062 slang_variable *var;
2063
2064 /* NOTE: In GLSL 1.20, there's only one kind of method
2065 * call: array.length(). Anything else is an error.
2066 */
2067 if (oper->a_id != a_length) {
2068 slang_info_log_error(A->log,
2069 "Undefined method call '%s'", (char *) oper->a_id);
2070 return NULL;
2071 }
2072
2073 /* length() takes no arguments */
2074 if (oper->num_children > 0) {
2075 slang_info_log_error(A->log, "Invalid arguments to length() method");
2076 return NULL;
2077 }
2078
2079 /* lookup the object/variable */
2080 var = _slang_locate_variable(oper->locals, oper->a_obj, GL_TRUE);
2081 if (!var || var->type.specifier.type != SLANG_SPEC_ARRAY) {
2082 slang_info_log_error(A->log,
2083 "Undefined object '%s'", (char *) oper->a_obj);
2084 return NULL;
2085 }
2086
2087 /* Create a float/literal IR node encoding the array length */
2088 n = new_node0(IR_FLOAT);
2089 if (n) {
2090 n->Value[0] = (float) var->array_len;
2091 n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, 1);
2092 }
2093 return n;
2094 }
2095
2096
2097 static GLboolean
2098 _slang_is_constant_cond(const slang_operation *oper, GLboolean *value)
2099 {
2100 if (oper->type == SLANG_OPER_LITERAL_FLOAT ||
2101 oper->type == SLANG_OPER_LITERAL_INT ||
2102 oper->type == SLANG_OPER_LITERAL_BOOL) {
2103 if (oper->literal[0])
2104 *value = GL_TRUE;
2105 else
2106 *value = GL_FALSE;
2107 return GL_TRUE;
2108 }
2109 else if (oper->type == SLANG_OPER_EXPRESSION &&
2110 oper->num_children == 1) {
2111 return _slang_is_constant_cond(&oper->children[0], value);
2112 }
2113 return GL_FALSE;
2114 }
2115
2116
2117 /**
2118 * Test if an operation is a scalar or boolean.
2119 */
2120 static GLboolean
2121 _slang_is_scalar_or_boolean(slang_assemble_ctx *A, slang_operation *oper)
2122 {
2123 slang_typeinfo type;
2124 GLint size;
2125
2126 slang_typeinfo_construct(&type);
2127 _slang_typeof_operation(A, oper, &type);
2128 size = _slang_sizeof_type_specifier(&type.spec);
2129 slang_typeinfo_destruct(&type);
2130 return size == 1;
2131 }
2132
2133
2134 /**
2135 * Test if an operation is boolean.
2136 */
2137 static GLboolean
2138 _slang_is_boolean(slang_assemble_ctx *A, slang_operation *oper)
2139 {
2140 slang_typeinfo type;
2141 GLboolean isBool;
2142
2143 slang_typeinfo_construct(&type);
2144 _slang_typeof_operation(A, oper, &type);
2145 isBool = (type.spec.type == SLANG_SPEC_BOOL);
2146 slang_typeinfo_destruct(&type);
2147 return isBool;
2148 }
2149
2150
2151 /**
2152 * Generate loop code using high-level IR_LOOP instruction
2153 */
2154 static slang_ir_node *
2155 _slang_gen_while(slang_assemble_ctx * A, const slang_operation *oper)
2156 {
2157 /*
2158 * LOOP:
2159 * BREAK if !expr (child[0])
2160 * body code (child[1])
2161 */
2162 slang_ir_node *prevLoop, *loop, *breakIf, *body;
2163 GLboolean isConst, constTrue;
2164
2165 /* type-check expression */
2166 if (!_slang_is_boolean(A, &oper->children[0])) {
2167 slang_info_log_error(A->log, "scalar/boolean expression expected for 'while'");
2168 return NULL;
2169 }
2170
2171 /* Check if loop condition is a constant */
2172 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
2173
2174 if (isConst && !constTrue) {
2175 /* loop is never executed! */
2176 return new_node0(IR_NOP);
2177 }
2178
2179 loop = new_loop(NULL);
2180
2181 /* save old, push new loop */
2182 prevLoop = A->CurLoop;
2183 A->CurLoop = loop;
2184
2185 if (isConst && constTrue) {
2186 /* while(nonzero constant), no conditional break */
2187 breakIf = NULL;
2188 }
2189 else {
2190 slang_ir_node *cond
2191 = new_cond(new_not(_slang_gen_operation(A, &oper->children[0])));
2192 breakIf = new_break_if_true(A->CurLoop, cond);
2193 }
2194 body = _slang_gen_operation(A, &oper->children[1]);
2195 loop->Children[0] = new_seq(breakIf, body);
2196
2197 /* Do infinite loop detection */
2198 /* loop->List is head of linked list of break/continue nodes */
2199 if (!loop->List && isConst && constTrue) {
2200 /* infinite loop detected */
2201 A->CurLoop = prevLoop; /* clean-up */
2202 slang_info_log_error(A->log, "Infinite loop detected!");
2203 return NULL;
2204 }
2205
2206 /* pop loop, restore prev */
2207 A->CurLoop = prevLoop;
2208
2209 return loop;
2210 }
2211
2212
2213 /**
2214 * Generate IR tree for a do-while loop using high-level LOOP, IF instructions.
2215 */
2216 static slang_ir_node *
2217 _slang_gen_do(slang_assemble_ctx * A, const slang_operation *oper)
2218 {
2219 /*
2220 * LOOP:
2221 * body code (child[0])
2222 * tail code:
2223 * BREAK if !expr (child[1])
2224 */
2225 slang_ir_node *prevLoop, *loop;
2226 GLboolean isConst, constTrue;
2227
2228 /* type-check expression */
2229 if (!_slang_is_boolean(A, &oper->children[1])) {
2230 slang_info_log_error(A->log, "scalar/boolean expression expected for 'do/while'");
2231 return NULL;
2232 }
2233
2234 loop = new_loop(NULL);
2235
2236 /* save old, push new loop */
2237 prevLoop = A->CurLoop;
2238 A->CurLoop = loop;
2239
2240 /* loop body: */
2241 loop->Children[0] = _slang_gen_operation(A, &oper->children[0]);
2242
2243 /* Check if loop condition is a constant */
2244 isConst = _slang_is_constant_cond(&oper->children[1], &constTrue);
2245 if (isConst && constTrue) {
2246 /* do { } while(1) ==> no conditional break */
2247 loop->Children[1] = NULL; /* no tail code */
2248 }
2249 else {
2250 slang_ir_node *cond
2251 = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
2252 loop->Children[1] = new_break_if_true(A->CurLoop, cond);
2253 }
2254
2255 /* XXX we should do infinite loop detection, as above */
2256
2257 /* pop loop, restore prev */
2258 A->CurLoop = prevLoop;
2259
2260 return loop;
2261 }
2262
2263
2264 /**
2265 * Generate for-loop using high-level IR_LOOP instruction.
2266 */
2267 static slang_ir_node *
2268 _slang_gen_for(slang_assemble_ctx * A, const slang_operation *oper)
2269 {
2270 /*
2271 * init code (child[0])
2272 * LOOP:
2273 * BREAK if !expr (child[1])
2274 * body code (child[3])
2275 * tail code:
2276 * incr code (child[2]) // XXX continue here
2277 */
2278 slang_ir_node *prevLoop, *loop, *cond, *breakIf, *body, *init, *incr;
2279
2280 init = _slang_gen_operation(A, &oper->children[0]);
2281 loop = new_loop(NULL);
2282
2283 /* save old, push new loop */
2284 prevLoop = A->CurLoop;
2285 A->CurLoop = loop;
2286
2287 cond = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
2288 breakIf = new_break_if_true(A->CurLoop, cond);
2289 body = _slang_gen_operation(A, &oper->children[3]);
2290 incr = _slang_gen_operation(A, &oper->children[2]);
2291
2292 loop->Children[0] = new_seq(breakIf, body);
2293 loop->Children[1] = incr; /* tail code */
2294
2295 /* pop loop, restore prev */
2296 A->CurLoop = prevLoop;
2297
2298 return new_seq(init, loop);
2299 }
2300
2301
2302 static slang_ir_node *
2303 _slang_gen_continue(slang_assemble_ctx * A, const slang_operation *oper)
2304 {
2305 slang_ir_node *n, *loopNode;
2306 assert(oper->type == SLANG_OPER_CONTINUE);
2307 loopNode = A->CurLoop;
2308 assert(loopNode);
2309 assert(loopNode->Opcode == IR_LOOP);
2310 n = new_node0(IR_CONT);
2311 if (n) {
2312 n->Parent = loopNode;
2313 /* insert this node at head of linked list */
2314 n->List = loopNode->List;
2315 loopNode->List = n;
2316 }
2317 return n;
2318 }
2319
2320
2321 /**
2322 * Determine if the given operation is of a specific type.
2323 */
2324 static GLboolean
2325 is_operation_type(const slang_operation *oper, slang_operation_type type)
2326 {
2327 if (oper->type == type)
2328 return GL_TRUE;
2329 else if ((oper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
2330 oper->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) &&
2331 oper->num_children == 1)
2332 return is_operation_type(&oper->children[0], type);
2333 else
2334 return GL_FALSE;
2335 }
2336
2337
2338 /**
2339 * Generate IR tree for an if/then/else conditional using high-level
2340 * IR_IF instruction.
2341 */
2342 static slang_ir_node *
2343 _slang_gen_if(slang_assemble_ctx * A, const slang_operation *oper)
2344 {
2345 /*
2346 * eval expr (child[0])
2347 * IF expr THEN
2348 * if-body code
2349 * ELSE
2350 * else-body code
2351 * ENDIF
2352 */
2353 const GLboolean haveElseClause = !_slang_is_noop(&oper->children[2]);
2354 slang_ir_node *ifNode, *cond, *ifBody, *elseBody;
2355 GLboolean isConst, constTrue;
2356
2357 /* type-check expression */
2358 if (!_slang_is_boolean(A, &oper->children[0])) {
2359 slang_info_log_error(A->log, "boolean expression expected for 'if'");
2360 return NULL;
2361 }
2362
2363 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2364 slang_info_log_error(A->log, "scalar/boolean expression expected for 'if'");
2365 return NULL;
2366 }
2367
2368 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
2369 if (isConst) {
2370 if (constTrue) {
2371 /* if (true) ... */
2372 return _slang_gen_operation(A, &oper->children[1]);
2373 }
2374 else {
2375 /* if (false) ... */
2376 return _slang_gen_operation(A, &oper->children[2]);
2377 }
2378 }
2379
2380 cond = _slang_gen_operation(A, &oper->children[0]);
2381 cond = new_cond(cond);
2382
2383 if (is_operation_type(&oper->children[1], SLANG_OPER_BREAK)
2384 && !haveElseClause) {
2385 /* Special case: generate a conditional break */
2386 ifBody = new_break_if_true(A->CurLoop, cond);
2387 return ifBody;
2388 }
2389 else if (is_operation_type(&oper->children[1], SLANG_OPER_CONTINUE)
2390 && !haveElseClause) {
2391 /* Special case: generate a conditional break */
2392 ifBody = new_cont_if_true(A->CurLoop, cond);
2393 return ifBody;
2394 }
2395 else {
2396 /* general case */
2397 ifBody = _slang_gen_operation(A, &oper->children[1]);
2398 if (haveElseClause)
2399 elseBody = _slang_gen_operation(A, &oper->children[2]);
2400 else
2401 elseBody = NULL;
2402 ifNode = new_if(cond, ifBody, elseBody);
2403 return ifNode;
2404 }
2405 }
2406
2407
2408
2409 static slang_ir_node *
2410 _slang_gen_not(slang_assemble_ctx * A, const slang_operation *oper)
2411 {
2412 slang_ir_node *n;
2413
2414 assert(oper->type == SLANG_OPER_NOT);
2415
2416 /* type-check expression */
2417 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2418 slang_info_log_error(A->log,
2419 "scalar/boolean expression expected for '!'");
2420 return NULL;
2421 }
2422
2423 n = _slang_gen_operation(A, &oper->children[0]);
2424 if (n)
2425 return new_not(n);
2426 else
2427 return NULL;
2428 }
2429
2430
2431 static slang_ir_node *
2432 _slang_gen_xor(slang_assemble_ctx * A, const slang_operation *oper)
2433 {
2434 slang_ir_node *n1, *n2;
2435
2436 assert(oper->type == SLANG_OPER_LOGICALXOR);
2437
2438 if (!_slang_is_scalar_or_boolean(A, &oper->children[0]) ||
2439 !_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2440 slang_info_log_error(A->log,
2441 "scalar/boolean expressions expected for '^^'");
2442 return NULL;
2443 }
2444
2445 n1 = _slang_gen_operation(A, &oper->children[0]);
2446 if (!n1)
2447 return NULL;
2448 n2 = _slang_gen_operation(A, &oper->children[1]);
2449 if (!n2)
2450 return NULL;
2451 return new_node2(IR_NOTEQUAL, n1, n2);
2452 }
2453
2454
2455 /**
2456 * Generate IR node for storage of a temporary of given size.
2457 */
2458 static slang_ir_node *
2459 _slang_gen_temporary(GLint size)
2460 {
2461 slang_ir_storage *store;
2462 slang_ir_node *n = NULL;
2463
2464 store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -2, size);
2465 if (store) {
2466 n = new_node0(IR_VAR_DECL);
2467 if (n) {
2468 n->Store = store;
2469 }
2470 else {
2471 _slang_free(store);
2472 }
2473 }
2474 return n;
2475 }
2476
2477
2478 /**
2479 * Generate IR node for allocating/declaring a variable.
2480 */
2481 static slang_ir_node *
2482 _slang_gen_var_decl(slang_assemble_ctx *A, slang_variable *var)
2483 {
2484 slang_ir_node *n;
2485
2486 /*assert(!var->declared);*/
2487 var->declared = GL_TRUE;
2488
2489 n = new_node0(IR_VAR_DECL);
2490 if (!n)
2491 return NULL;
2492
2493 _slang_attach_storage(n, var);
2494 assert(var->store);
2495 assert(n->Store == var->store);
2496 assert(n->Store);
2497 assert(n->Store->Index < 0);
2498
2499 if (is_sampler_type(&var->type)) {
2500 n->Store->File = PROGRAM_SAMPLER;
2501 }
2502 else {
2503 n->Store->File = PROGRAM_TEMPORARY;
2504 }
2505
2506 n->Store->Size = _slang_sizeof_type_specifier(&n->Var->type.specifier);
2507
2508 if (n->Store->Size <= 0) {
2509 slang_info_log_error(A->log, "invalid declaration for '%s'",
2510 (char*) var->a_name);
2511 return NULL;
2512 }
2513 #if 0
2514 printf("%s var %p %s store=%p index=%d size=%d\n",
2515 __FUNCTION__, (void *) var, (char *) var->a_name,
2516 (void *) n->Store, n->Store->Index, n->Store->Size);
2517 #endif
2518
2519 if (var->array_len > 0) {
2520 /* this is an array */
2521 /* round up the element size to a multiple of 4 */
2522 GLint sz = (n->Store->Size + 3) & ~3;
2523 /* total size = element size * array length */
2524 sz *= var->array_len;
2525 n->Store->Size = sz;
2526 }
2527
2528 /* setup default swizzle for storing the variable */
2529 /* XXX this may not be needed anymore - remove & test */
2530 switch (n->Store->Size) {
2531 case 2:
2532 n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
2533 SWIZZLE_NIL, SWIZZLE_NIL);
2534 break;
2535 case 3:
2536 n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
2537 SWIZZLE_Z, SWIZZLE_NIL);
2538 break;
2539 default:
2540 /* Note that float-sized vars may be allocated in any x/y/z/w
2541 * slot, but that won't be determined until code emit time.
2542 */
2543 n->Store->Swizzle = SWIZZLE_NOOP;
2544 }
2545
2546 return n;
2547 }
2548
2549
2550 /**
2551 * Generate code for a selection expression: b ? x : y
2552 * XXX In some cases we could implement a selection expression
2553 * with an LRP instruction (use the boolean as the interpolant).
2554 * Otherwise, we use an IF/ELSE/ENDIF construct.
2555 */
2556 static slang_ir_node *
2557 _slang_gen_select(slang_assemble_ctx *A, slang_operation *oper)
2558 {
2559 slang_ir_node *cond, *ifNode, *trueExpr, *falseExpr, *trueNode, *falseNode;
2560 slang_ir_node *tmpDecl, *tmpVar, *tree;
2561 slang_typeinfo type0, type1, type2;
2562 int size, isBool, isEqual;
2563
2564 assert(oper->type == SLANG_OPER_SELECT);
2565 assert(oper->num_children == 3);
2566
2567 /* type of children[0] must be boolean */
2568 slang_typeinfo_construct(&type0);
2569 _slang_typeof_operation(A, &oper->children[0], &type0);
2570 isBool = (type0.spec.type == SLANG_SPEC_BOOL);
2571 slang_typeinfo_destruct(&type0);
2572 if (!isBool) {
2573 slang_info_log_error(A->log, "selector type is not boolean");
2574 return NULL;
2575 }
2576
2577 slang_typeinfo_construct(&type1);
2578 slang_typeinfo_construct(&type2);
2579 _slang_typeof_operation(A, &oper->children[1], &type1);
2580 _slang_typeof_operation(A, &oper->children[2], &type2);
2581 isEqual = slang_type_specifier_equal(&type1.spec, &type2.spec);
2582 slang_typeinfo_destruct(&type1);
2583 slang_typeinfo_destruct(&type2);
2584 if (!isEqual) {
2585 slang_info_log_error(A->log, "incompatible types for ?: operator");
2586 return NULL;
2587 }
2588
2589 /* size of x or y's type */
2590 size = _slang_sizeof_type_specifier(&type1.spec);
2591 assert(size > 0);
2592
2593 /* temporary var */
2594 tmpDecl = _slang_gen_temporary(size);
2595
2596 /* the condition (child 0) */
2597 cond = _slang_gen_operation(A, &oper->children[0]);
2598 cond = new_cond(cond);
2599
2600 /* if-true body (child 1) */
2601 tmpVar = new_node0(IR_VAR);
2602 tmpVar->Store = tmpDecl->Store;
2603 trueExpr = _slang_gen_operation(A, &oper->children[1]);
2604 trueNode = new_node2(IR_COPY, tmpVar, trueExpr);
2605
2606 /* if-false body (child 2) */
2607 tmpVar = new_node0(IR_VAR);
2608 tmpVar->Store = tmpDecl->Store;
2609 falseExpr = _slang_gen_operation(A, &oper->children[2]);
2610 falseNode = new_node2(IR_COPY, tmpVar, falseExpr);
2611
2612 ifNode = new_if(cond, trueNode, falseNode);
2613
2614 /* tmp var value */
2615 tmpVar = new_node0(IR_VAR);
2616 tmpVar->Store = tmpDecl->Store;
2617
2618 tree = new_seq(ifNode, tmpVar);
2619 tree = new_seq(tmpDecl, tree);
2620
2621 /*_slang_print_ir_tree(tree, 10);*/
2622 return tree;
2623 }
2624
2625
2626 /**
2627 * Generate code for &&.
2628 */
2629 static slang_ir_node *
2630 _slang_gen_logical_and(slang_assemble_ctx *A, slang_operation *oper)
2631 {
2632 /* rewrite "a && b" as "a ? b : false" */
2633 slang_operation *select;
2634 slang_ir_node *n;
2635
2636 select = slang_operation_new(1);
2637 select->type = SLANG_OPER_SELECT;
2638 select->num_children = 3;
2639 select->children = slang_operation_new(3);
2640
2641 slang_operation_copy(&select->children[0], &oper->children[0]);
2642 slang_operation_copy(&select->children[1], &oper->children[1]);
2643 select->children[2].type = SLANG_OPER_LITERAL_BOOL;
2644 ASSIGN_4V(select->children[2].literal, 0, 0, 0, 0); /* false */
2645 select->children[2].literal_size = 1;
2646
2647 n = _slang_gen_select(A, select);
2648 return n;
2649 }
2650
2651
2652 /**
2653 * Generate code for ||.
2654 */
2655 static slang_ir_node *
2656 _slang_gen_logical_or(slang_assemble_ctx *A, slang_operation *oper)
2657 {
2658 /* rewrite "a || b" as "a ? true : b" */
2659 slang_operation *select;
2660 slang_ir_node *n;
2661
2662 select = slang_operation_new(1);
2663 select->type = SLANG_OPER_SELECT;
2664 select->num_children = 3;
2665 select->children = slang_operation_new(3);
2666
2667 slang_operation_copy(&select->children[0], &oper->children[0]);
2668 select->children[1].type = SLANG_OPER_LITERAL_BOOL;
2669 ASSIGN_4V(select->children[1].literal, 1, 1, 1, 1); /* true */
2670 select->children[1].literal_size = 1;
2671 slang_operation_copy(&select->children[2], &oper->children[1]);
2672
2673 n = _slang_gen_select(A, select);
2674 return n;
2675 }
2676
2677
2678 /**
2679 * Generate IR tree for a return statement.
2680 */
2681 static slang_ir_node *
2682 _slang_gen_return(slang_assemble_ctx * A, slang_operation *oper)
2683 {
2684 const GLboolean haveReturnValue
2685 = (oper->num_children == 1 && oper->children[0].type != SLANG_OPER_VOID);
2686
2687 /* error checking */
2688 assert(A->CurFunction);
2689 if (haveReturnValue &&
2690 A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
2691 slang_info_log_error(A->log, "illegal return expression");
2692 return NULL;
2693 }
2694 else if (!haveReturnValue &&
2695 A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
2696 slang_info_log_error(A->log, "return statement requires an expression");
2697 return NULL;
2698 }
2699
2700 if (!haveReturnValue) {
2701 return new_return(A->curFuncEndLabel);
2702 }
2703 else {
2704 /*
2705 * Convert from:
2706 * return expr;
2707 * To:
2708 * __retVal = expr;
2709 * return; // goto __endOfFunction
2710 */
2711 slang_operation *assign;
2712 slang_atom a_retVal;
2713 slang_ir_node *n;
2714
2715 a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
2716 assert(a_retVal);
2717
2718 #if 1 /* DEBUG */
2719 {
2720 slang_variable *v
2721 = _slang_locate_variable(oper->locals, a_retVal, GL_TRUE);
2722 if (!v) {
2723 /* trying to return a value in a void-valued function */
2724 return NULL;
2725 }
2726 }
2727 #endif
2728
2729 assign = slang_operation_new(1);
2730 assign->type = SLANG_OPER_ASSIGN;
2731 assign->num_children = 2;
2732 assign->children = slang_operation_new(2);
2733 /* lhs (__retVal) */
2734 assign->children[0].type = SLANG_OPER_IDENTIFIER;
2735 assign->children[0].a_id = a_retVal;
2736 assign->children[0].locals->outer_scope = assign->locals;
2737 /* rhs (expr) */
2738 /* XXX we might be able to avoid this copy someday */
2739 slang_operation_copy(&assign->children[1], &oper->children[0]);
2740
2741 /* assemble the new code */
2742 n = new_seq(_slang_gen_operation(A, assign),
2743 new_return(A->curFuncEndLabel));
2744
2745 slang_operation_delete(assign);
2746 return n;
2747 }
2748 }
2749
2750
2751 /**
2752 * Determine if the given operation/expression is const-valued.
2753 */
2754 static GLboolean
2755 _slang_is_constant_expr(const slang_operation *oper)
2756 {
2757 slang_variable *var;
2758 GLuint i;
2759
2760 switch (oper->type) {
2761 case SLANG_OPER_IDENTIFIER:
2762 var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
2763 if (var && var->type.qualifier == SLANG_QUAL_CONST)
2764 return GL_TRUE;
2765 return GL_FALSE;
2766 default:
2767 for (i = 0; i < oper->num_children; i++) {
2768 if (!_slang_is_constant_expr(&oper->children[i]))
2769 return GL_FALSE;
2770 }
2771 return GL_TRUE;
2772 }
2773 }
2774
2775
2776 /**
2777 * Check if an assignment of type t1 to t0 is legal.
2778 * XXX more cases needed.
2779 */
2780 static GLboolean
2781 _slang_assignment_compatible(slang_assemble_ctx *A,
2782 slang_operation *op0,
2783 slang_operation *op1)
2784 {
2785 slang_typeinfo t0, t1;
2786 GLuint sz0, sz1;
2787
2788 if (op0->type == SLANG_OPER_POSTINCREMENT ||
2789 op0->type == SLANG_OPER_POSTDECREMENT) {
2790 return GL_FALSE;
2791 }
2792
2793 slang_typeinfo_construct(&t0);
2794 _slang_typeof_operation(A, op0, &t0);
2795
2796 slang_typeinfo_construct(&t1);
2797 _slang_typeof_operation(A, op1, &t1);
2798
2799 sz0 = _slang_sizeof_type_specifier(&t0.spec);
2800 sz1 = _slang_sizeof_type_specifier(&t1.spec);
2801
2802 #if 1
2803 if (sz0 != sz1) {
2804 /*printf("assignment size mismatch %u vs %u\n", sz0, sz1);*/
2805 return GL_FALSE;
2806 }
2807 #endif
2808
2809 if (t0.spec.type == SLANG_SPEC_STRUCT &&
2810 t1.spec.type == SLANG_SPEC_STRUCT &&
2811 t0.spec._struct->a_name != t1.spec._struct->a_name)
2812 return GL_FALSE;
2813
2814 if (t0.spec.type == SLANG_SPEC_FLOAT &&
2815 t1.spec.type == SLANG_SPEC_BOOL)
2816 return GL_FALSE;
2817
2818 #if 0 /* not used just yet - causes problems elsewhere */
2819 if (t0.spec.type == SLANG_SPEC_INT &&
2820 t1.spec.type == SLANG_SPEC_FLOAT)
2821 return GL_FALSE;
2822 #endif
2823
2824 if (t0.spec.type == SLANG_SPEC_BOOL &&
2825 t1.spec.type == SLANG_SPEC_FLOAT)
2826 return GL_FALSE;
2827
2828 if (t0.spec.type == SLANG_SPEC_BOOL &&
2829 t1.spec.type == SLANG_SPEC_INT)
2830 return GL_FALSE;
2831
2832 return GL_TRUE;
2833 }
2834
2835
2836
2837 /**
2838 * Generate IR tree for a variable declaration.
2839 */
2840 static slang_ir_node *
2841 _slang_gen_declaration(slang_assemble_ctx *A, slang_operation *oper)
2842 {
2843 slang_ir_node *n;
2844 slang_ir_node *varDecl;
2845 slang_variable *var;
2846 const char *varName = (char *) oper->a_id;
2847 slang_operation *initializer;
2848
2849 assert(oper->type == SLANG_OPER_VARIABLE_DECL);
2850 assert(oper->num_children <= 1);
2851
2852 var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
2853 if (!var)
2854 return NULL; /* "shouldn't happen" */
2855
2856 if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
2857 var->type.qualifier == SLANG_QUAL_VARYING ||
2858 var->type.qualifier == SLANG_QUAL_UNIFORM) {
2859 /* can't declare attribute/uniform vars inside functions */
2860 slang_info_log_error(A->log,
2861 "local variable '%s' cannot be an attribute/uniform/varying",
2862 varName);
2863 return NULL;
2864 }
2865
2866 #if 0
2867 if (v->declared) {
2868 slang_info_log_error(A->log, "variable '%s' redeclared", varName);
2869 return NULL;
2870 }
2871 #endif
2872
2873 varDecl = _slang_gen_var_decl(A, var);
2874 if (!varDecl)
2875 return NULL;
2876
2877 /* check if the var has an initializer */
2878 if (oper->num_children > 0) {
2879 assert(oper->num_children == 1);
2880 initializer = &oper->children[0];
2881 }
2882 else if (var->initializer) {
2883 initializer = var->initializer;
2884 }
2885 else {
2886 initializer = NULL;
2887 }
2888
2889 if (var->type.qualifier == SLANG_QUAL_CONST && !initializer) {
2890 slang_info_log_error(A->log,
2891 "const-qualified variable '%s' requires initializer",
2892 varName);
2893 return NULL;
2894 }
2895
2896
2897 if (initializer) {
2898 slang_ir_node *varRef, *init;
2899
2900 /* type check/compare var and initializer */
2901 if (!_slang_assignment_compatible(A, oper, initializer)) {
2902 slang_info_log_error(A->log, "incompatible types in assignment");
2903 return NULL;
2904 }
2905
2906 varRef = new_var(A, var);
2907 if (!varRef) {
2908 slang_info_log_error(A->log, "undefined variable '%s'", varName);
2909 return NULL;
2910 }
2911
2912 if (var->type.qualifier == SLANG_QUAL_CONST) {
2913 /* if the variable is const, the initializer must be a const
2914 * expression as well.
2915 */
2916 #if 0
2917 if (!_slang_is_constant_expr(initializer)) {
2918 slang_info_log_error(A->log,
2919 "initializer for %s not constant", varName);
2920 return NULL;
2921 }
2922 #endif
2923 }
2924
2925 _slang_simplify(initializer, &A->space, A->atoms);
2926
2927 init = _slang_gen_operation(A, initializer);
2928 if (!init)
2929 return NULL;
2930
2931 /*assert(init->Store);*/
2932
2933 /* XXX remove this when type checking is added above */
2934 if (init->Store && varRef->Store->Size != init->Store->Size) {
2935 slang_info_log_error(A->log, "invalid assignment (wrong types)");
2936 return NULL;
2937 }
2938
2939 n = new_node2(IR_COPY, varRef, init);
2940 n = new_seq(varDecl, n);
2941 }
2942 else {
2943 n = varDecl;
2944 }
2945
2946 return n;
2947 }
2948
2949
2950 /**
2951 * Generate IR tree for a variable (such as in an expression).
2952 */
2953 static slang_ir_node *
2954 _slang_gen_variable(slang_assemble_ctx * A, slang_operation *oper)
2955 {
2956 /* If there's a variable associated with this oper (from inlining)
2957 * use it. Otherwise, use the oper's var id.
2958 */
2959 slang_atom name = oper->var ? oper->var->a_name : oper->a_id;
2960 slang_variable *var = _slang_locate_variable(oper->locals, name, GL_TRUE);
2961 slang_ir_node *n = new_var(A, var);
2962 if (!n) {
2963 slang_info_log_error(A->log, "undefined variable '%s'", (char *) name);
2964 return NULL;
2965 }
2966 return n;
2967 }
2968
2969
2970
2971 /**
2972 * Return the number of components actually named by the swizzle.
2973 * Recall that swizzles may have undefined/don't-care values.
2974 */
2975 static GLuint
2976 swizzle_size(GLuint swizzle)
2977 {
2978 GLuint size = 0, i;
2979 for (i = 0; i < 4; i++) {
2980 GLuint swz = GET_SWZ(swizzle, i);
2981 size += (swz >= 0 && swz <= 3);
2982 }
2983 return size;
2984 }
2985
2986
2987 static slang_ir_node *
2988 _slang_gen_swizzle(slang_ir_node *child, GLuint swizzle)
2989 {
2990 slang_ir_node *n = new_node1(IR_SWIZZLE, child);
2991 assert(child);
2992 if (n) {
2993 assert(!n->Store);
2994 n->Store = _slang_new_ir_storage_relative(0,
2995 swizzle_size(swizzle),
2996 child->Store);
2997 n->Store->Swizzle = swizzle;
2998 }
2999 return n;
3000 }
3001
3002
3003 static GLboolean
3004 is_store_writable(const slang_assemble_ctx *A, const slang_ir_storage *store)
3005 {
3006 while (store->Parent)
3007 store = store->Parent;
3008
3009 if (!(store->File == PROGRAM_OUTPUT ||
3010 store->File == PROGRAM_TEMPORARY ||
3011 (store->File == PROGRAM_VARYING &&
3012 A->program->Target == GL_VERTEX_PROGRAM_ARB))) {
3013 return GL_FALSE;
3014 }
3015 else {
3016 return GL_TRUE;
3017 }
3018 }
3019
3020
3021 /**
3022 * Generate IR tree for an assignment (=).
3023 */
3024 static slang_ir_node *
3025 _slang_gen_assignment(slang_assemble_ctx * A, slang_operation *oper)
3026 {
3027 if (oper->children[0].type == SLANG_OPER_IDENTIFIER) {
3028 /* Check that var is writeable */
3029 slang_variable *var
3030 = _slang_locate_variable(oper->children[0].locals,
3031 oper->children[0].a_id, GL_TRUE);
3032 if (!var) {
3033 slang_info_log_error(A->log, "undefined variable '%s'",
3034 (char *) oper->children[0].a_id);
3035 return NULL;
3036 }
3037 if (var->type.qualifier == SLANG_QUAL_CONST ||
3038 var->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
3039 var->type.qualifier == SLANG_QUAL_UNIFORM ||
3040 (var->type.qualifier == SLANG_QUAL_VARYING &&
3041 A->program->Target == GL_FRAGMENT_PROGRAM_ARB)) {
3042 slang_info_log_error(A->log,
3043 "illegal assignment to read-only variable '%s'",
3044 (char *) oper->children[0].a_id);
3045 return NULL;
3046 }
3047 }
3048
3049 if (oper->children[0].type == SLANG_OPER_IDENTIFIER &&
3050 oper->children[1].type == SLANG_OPER_CALL) {
3051 /* Special case of: x = f(a, b)
3052 * Replace with f(a, b, x) (where x == hidden __retVal out param)
3053 *
3054 * XXX this could be even more effective if we could accomodate
3055 * cases such as "v.x = f();" - would help with typical vertex
3056 * transformation.
3057 */
3058 slang_ir_node *n;
3059 n = _slang_gen_function_call_name(A,
3060 (const char *) oper->children[1].a_id,
3061 &oper->children[1], &oper->children[0]);
3062 return n;
3063 }
3064 else {
3065 slang_ir_node *n, *lhs, *rhs;
3066
3067 /* lhs and rhs type checking */
3068 if (!_slang_assignment_compatible(A,
3069 &oper->children[0],
3070 &oper->children[1])) {
3071 slang_info_log_error(A->log, "incompatible types in assignment");
3072 return NULL;
3073 }
3074
3075 lhs = _slang_gen_operation(A, &oper->children[0]);
3076 if (!lhs) {
3077 return NULL;
3078 }
3079
3080 if (!lhs->Store) {
3081 slang_info_log_error(A->log,
3082 "invalid left hand side for assignment");
3083 return NULL;
3084 }
3085
3086 /* check that lhs is writable */
3087 if (!is_store_writable(A, lhs->Store)) {
3088 slang_info_log_error(A->log,
3089 "illegal assignment to read-only l-value");
3090 return NULL;
3091 }
3092
3093 rhs = _slang_gen_operation(A, &oper->children[1]);
3094 if (lhs && rhs) {
3095 /* convert lhs swizzle into writemask */
3096 GLuint writemask, newSwizzle;
3097 if (!swizzle_to_writemask(A, lhs->Store->Swizzle,
3098 &writemask, &newSwizzle)) {
3099 /* Non-simple writemask, need to swizzle right hand side in
3100 * order to put components into the right place.
3101 */
3102 rhs = _slang_gen_swizzle(rhs, newSwizzle);
3103 }
3104 n = new_node2(IR_COPY, lhs, rhs);
3105 return n;
3106 }
3107 else {
3108 return NULL;
3109 }
3110 }
3111 }
3112
3113
3114 /**
3115 * Generate IR tree for referencing a field in a struct (or basic vector type)
3116 */
3117 static slang_ir_node *
3118 _slang_gen_struct_field(slang_assemble_ctx * A, slang_operation *oper)
3119 {
3120 slang_typeinfo ti;
3121
3122 /* type of struct */
3123 slang_typeinfo_construct(&ti);
3124 _slang_typeof_operation(A, &oper->children[0], &ti);
3125
3126 if (_slang_type_is_vector(ti.spec.type)) {
3127 /* the field should be a swizzle */
3128 const GLuint rows = _slang_type_dim(ti.spec.type);
3129 slang_swizzle swz;
3130 slang_ir_node *n;
3131 GLuint swizzle;
3132 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
3133 slang_info_log_error(A->log, "Bad swizzle");
3134 return NULL;
3135 }
3136 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
3137 swz.swizzle[1],
3138 swz.swizzle[2],
3139 swz.swizzle[3]);
3140
3141 n = _slang_gen_operation(A, &oper->children[0]);
3142 /* create new parent node with swizzle */
3143 if (n)
3144 n = _slang_gen_swizzle(n, swizzle);
3145 return n;
3146 }
3147 else if ( ti.spec.type == SLANG_SPEC_FLOAT
3148 || ti.spec.type == SLANG_SPEC_INT
3149 || ti.spec.type == SLANG_SPEC_BOOL) {
3150 const GLuint rows = 1;
3151 slang_swizzle swz;
3152 slang_ir_node *n;
3153 GLuint swizzle;
3154 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
3155 slang_info_log_error(A->log, "Bad swizzle");
3156 }
3157 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
3158 swz.swizzle[1],
3159 swz.swizzle[2],
3160 swz.swizzle[3]);
3161 n = _slang_gen_operation(A, &oper->children[0]);
3162 /* create new parent node with swizzle */
3163 n = _slang_gen_swizzle(n, swizzle);
3164 return n;
3165 }
3166 else {
3167 /* the field is a structure member (base.field) */
3168 /* oper->children[0] is the base */
3169 /* oper->a_id is the field name */
3170 slang_ir_node *base, *n;
3171 slang_typeinfo field_ti;
3172 GLint fieldSize, fieldOffset = -1;
3173
3174 /* type of field */
3175 slang_typeinfo_construct(&field_ti);
3176 _slang_typeof_operation(A, oper, &field_ti);
3177
3178 fieldSize = _slang_sizeof_type_specifier(&field_ti.spec);
3179 if (fieldSize > 0)
3180 fieldOffset = _slang_field_offset(&ti.spec, oper->a_id);
3181
3182 if (fieldSize == 0 || fieldOffset < 0) {
3183 const char *structName;
3184 if (ti.spec._struct)
3185 structName = (char *) ti.spec._struct->a_name;
3186 else
3187 structName = "unknown";
3188 slang_info_log_error(A->log,
3189 "\"%s\" is not a member of struct \"%s\"",
3190 (char *) oper->a_id, structName);
3191 return NULL;
3192 }
3193 assert(fieldSize >= 0);
3194
3195 base = _slang_gen_operation(A, &oper->children[0]);
3196 if (!base) {
3197 /* error msg should have already been logged */
3198 return NULL;
3199 }
3200
3201 n = new_node1(IR_FIELD, base);
3202 if (!n)
3203 return NULL;
3204
3205 n->Field = (char *) oper->a_id;
3206
3207 /* Store the field's offset in storage->Index */
3208 n->Store = _slang_new_ir_storage(base->Store->File,
3209 fieldOffset,
3210 fieldSize);
3211
3212 return n;
3213 }
3214 }
3215
3216
3217 /**
3218 * Gen code for array indexing.
3219 */
3220 static slang_ir_node *
3221 _slang_gen_array_element(slang_assemble_ctx * A, slang_operation *oper)
3222 {
3223 slang_typeinfo array_ti;
3224
3225 /* get array's type info */
3226 slang_typeinfo_construct(&array_ti);
3227 _slang_typeof_operation(A, &oper->children[0], &array_ti);
3228
3229 if (_slang_type_is_vector(array_ti.spec.type)) {
3230 /* indexing a simple vector type: "vec4 v; v[0]=p;" */
3231 /* translate the index into a swizzle/writemask: "v.x=p" */
3232 const GLuint max = _slang_type_dim(array_ti.spec.type);
3233 GLint index;
3234 slang_ir_node *n;
3235
3236 index = (GLint) oper->children[1].literal[0];
3237 if (oper->children[1].type != SLANG_OPER_LITERAL_INT ||
3238 index >= (GLint) max) {
3239 slang_info_log_error(A->log, "Invalid array index for vector type");
3240 return NULL;
3241 }
3242
3243 n = _slang_gen_operation(A, &oper->children[0]);
3244 if (n) {
3245 /* use swizzle to access the element */
3246 GLuint swizzle = MAKE_SWIZZLE4(SWIZZLE_X + index,
3247 SWIZZLE_NIL,
3248 SWIZZLE_NIL,
3249 SWIZZLE_NIL);
3250 n = _slang_gen_swizzle(n, swizzle);
3251 }
3252 assert(n->Store);
3253 return n;
3254 }
3255 else {
3256 /* conventional array */
3257 slang_typeinfo elem_ti;
3258 slang_ir_node *elem, *array, *index;
3259 GLint elemSize, arrayLen;
3260
3261 /* size of array element */
3262 slang_typeinfo_construct(&elem_ti);
3263 _slang_typeof_operation(A, oper, &elem_ti);
3264 elemSize = _slang_sizeof_type_specifier(&elem_ti.spec);
3265
3266 if (_slang_type_is_matrix(array_ti.spec.type))
3267 arrayLen = _slang_type_dim(array_ti.spec.type);
3268 else
3269 arrayLen = array_ti.array_len;
3270
3271 slang_typeinfo_destruct(&array_ti);
3272 slang_typeinfo_destruct(&elem_ti);
3273
3274 if (elemSize <= 0) {
3275 /* unknown var or type */
3276 slang_info_log_error(A->log, "Undefined variable or type");
3277 return NULL;
3278 }
3279
3280 array = _slang_gen_operation(A, &oper->children[0]);
3281 index = _slang_gen_operation(A, &oper->children[1]);
3282 if (array && index) {
3283 /* bounds check */
3284 GLint constIndex = -1;
3285 if (index->Opcode == IR_FLOAT) {
3286 constIndex = (int) index->Value[0];
3287 if (constIndex < 0 || constIndex >= arrayLen) {
3288 slang_info_log_error(A->log,
3289 "Array index out of bounds (index=%d size=%d)",
3290 constIndex, arrayLen);
3291 _slang_free_ir_tree(array);
3292 _slang_free_ir_tree(index);
3293 return NULL;
3294 }
3295 }
3296
3297 if (!array->Store) {
3298 slang_info_log_error(A->log, "Invalid array");
3299 return NULL;
3300 }
3301
3302 elem = new_node2(IR_ELEMENT, array, index);
3303
3304 /* The storage info here will be updated during code emit */
3305 elem->Store = _slang_new_ir_storage(array->Store->File,
3306 array->Store->Index,
3307 elemSize);
3308
3309 return elem;
3310 }
3311 else {
3312 _slang_free_ir_tree(array);
3313 _slang_free_ir_tree(index);
3314 return NULL;
3315 }
3316 }
3317 }
3318
3319
3320 static slang_ir_node *
3321 _slang_gen_compare(slang_assemble_ctx *A, slang_operation *oper,
3322 slang_ir_opcode opcode)
3323 {
3324 slang_typeinfo t0, t1;
3325 slang_ir_node *n;
3326
3327 slang_typeinfo_construct(&t0);
3328 _slang_typeof_operation(A, &oper->children[0], &t0);
3329
3330 slang_typeinfo_construct(&t1);
3331 _slang_typeof_operation(A, &oper->children[0], &t1);
3332
3333 if (t0.spec.type == SLANG_SPEC_ARRAY ||
3334 t1.spec.type == SLANG_SPEC_ARRAY) {
3335 slang_info_log_error(A->log, "Illegal array comparison");
3336 return NULL;
3337 }
3338
3339 if (oper->type != SLANG_OPER_EQUAL &&
3340 oper->type != SLANG_OPER_NOTEQUAL) {
3341 /* <, <=, >, >= can only be used with scalars */
3342 if ((t0.spec.type != SLANG_SPEC_INT &&
3343 t0.spec.type != SLANG_SPEC_FLOAT) ||
3344 (t1.spec.type != SLANG_SPEC_INT &&
3345 t1.spec.type != SLANG_SPEC_FLOAT)) {
3346 slang_info_log_error(A->log, "Incompatible type(s) for inequality operator");
3347 return NULL;
3348 }
3349 }
3350
3351 n = new_node2(opcode,
3352 _slang_gen_operation(A, &oper->children[0]),
3353 _slang_gen_operation(A, &oper->children[1]));
3354
3355 /* result is a bool (size 1) */
3356 n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, 1);
3357
3358 return n;
3359 }
3360
3361
3362 #if 0
3363 static void
3364 print_vars(slang_variable_scope *s)
3365 {
3366 int i;
3367 printf("vars: ");
3368 for (i = 0; i < s->num_variables; i++) {
3369 printf("%s %d, \n",
3370 (char*) s->variables[i]->a_name,
3371 s->variables[i]->declared);
3372 }
3373
3374 printf("\n");
3375 }
3376 #endif
3377
3378
3379 #if 0
3380 static void
3381 _slang_undeclare_vars(slang_variable_scope *locals)
3382 {
3383 if (locals->num_variables > 0) {
3384 int i;
3385 for (i = 0; i < locals->num_variables; i++) {
3386 slang_variable *v = locals->variables[i];
3387 printf("undeclare %s at %p\n", (char*) v->a_name, v);
3388 v->declared = GL_FALSE;
3389 }
3390 }
3391 }
3392 #endif
3393
3394
3395 /**
3396 * Generate IR tree for a slang_operation (AST node)
3397 */
3398 static slang_ir_node *
3399 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper)
3400 {
3401 switch (oper->type) {
3402 case SLANG_OPER_BLOCK_NEW_SCOPE:
3403 {
3404 slang_ir_node *n;
3405
3406 _slang_push_var_table(A->vartable);
3407
3408 oper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE; /* temp change */
3409 n = _slang_gen_operation(A, oper);
3410 oper->type = SLANG_OPER_BLOCK_NEW_SCOPE; /* restore */
3411
3412 _slang_pop_var_table(A->vartable);
3413
3414 /*_slang_undeclare_vars(oper->locals);*/
3415 /*print_vars(oper->locals);*/
3416
3417 if (n)
3418 n = new_node1(IR_SCOPE, n);
3419 return n;
3420 }
3421 break;
3422
3423 case SLANG_OPER_BLOCK_NO_NEW_SCOPE:
3424 /* list of operations */
3425 if (oper->num_children > 0)
3426 {
3427 slang_ir_node *n, *tree = NULL;
3428 GLuint i;
3429
3430 for (i = 0; i < oper->num_children; i++) {
3431 n = _slang_gen_operation(A, &oper->children[i]);
3432 if (!n) {
3433 _slang_free_ir_tree(tree);
3434 return NULL; /* error must have occured */
3435 }
3436 tree = new_seq(tree, n);
3437 }
3438
3439 return tree;
3440 }
3441 else {
3442 return new_node0(IR_NOP);
3443 }
3444
3445 case SLANG_OPER_EXPRESSION:
3446 return _slang_gen_operation(A, &oper->children[0]);
3447
3448 case SLANG_OPER_FOR:
3449 return _slang_gen_for(A, oper);
3450 case SLANG_OPER_DO:
3451 return _slang_gen_do(A, oper);
3452 case SLANG_OPER_WHILE:
3453 return _slang_gen_while(A, oper);
3454 case SLANG_OPER_BREAK:
3455 if (!A->CurLoop) {
3456 slang_info_log_error(A->log, "'break' not in loop");
3457 return NULL;
3458 }
3459 return new_break(A->CurLoop);
3460 case SLANG_OPER_CONTINUE:
3461 if (!A->CurLoop) {
3462 slang_info_log_error(A->log, "'continue' not in loop");
3463 return NULL;
3464 }
3465 return _slang_gen_continue(A, oper);
3466 case SLANG_OPER_DISCARD:
3467 return new_node0(IR_KILL);
3468
3469 case SLANG_OPER_EQUAL:
3470 return _slang_gen_compare(A, oper, IR_EQUAL);
3471 case SLANG_OPER_NOTEQUAL:
3472 return _slang_gen_compare(A, oper, IR_NOTEQUAL);
3473 case SLANG_OPER_GREATER:
3474 return _slang_gen_compare(A, oper, IR_SGT);
3475 case SLANG_OPER_LESS:
3476 return _slang_gen_compare(A, oper, IR_SLT);
3477 case SLANG_OPER_GREATEREQUAL:
3478 return _slang_gen_compare(A, oper, IR_SGE);
3479 case SLANG_OPER_LESSEQUAL:
3480 return _slang_gen_compare(A, oper, IR_SLE);
3481 case SLANG_OPER_ADD:
3482 {
3483 slang_ir_node *n;
3484 assert(oper->num_children == 2);
3485 n = _slang_gen_function_call_name(A, "+", oper, NULL);
3486 return n;
3487 }
3488 case SLANG_OPER_SUBTRACT:
3489 {
3490 slang_ir_node *n;
3491 assert(oper->num_children == 2);
3492 n = _slang_gen_function_call_name(A, "-", oper, NULL);
3493 return n;
3494 }
3495 case SLANG_OPER_MULTIPLY:
3496 {
3497 slang_ir_node *n;
3498 assert(oper->num_children == 2);
3499 n = _slang_gen_function_call_name(A, "*", oper, NULL);
3500 return n;
3501 }
3502 case SLANG_OPER_DIVIDE:
3503 {
3504 slang_ir_node *n;
3505 assert(oper->num_children == 2);
3506 n = _slang_gen_function_call_name(A, "/", oper, NULL);
3507 return n;
3508 }
3509 case SLANG_OPER_MINUS:
3510 {
3511 slang_ir_node *n;
3512 assert(oper->num_children == 1);
3513 n = _slang_gen_function_call_name(A, "-", oper, NULL);
3514 return n;
3515 }
3516 case SLANG_OPER_PLUS:
3517 /* +expr --> do nothing */
3518 return _slang_gen_operation(A, &oper->children[0]);
3519 case SLANG_OPER_VARIABLE_DECL:
3520 return _slang_gen_declaration(A, oper);
3521 case SLANG_OPER_ASSIGN:
3522 return _slang_gen_assignment(A, oper);
3523 case SLANG_OPER_ADDASSIGN:
3524 {
3525 slang_ir_node *n;
3526 assert(oper->num_children == 2);
3527 n = _slang_gen_function_call_name(A, "+=", oper, NULL);
3528 return n;
3529 }
3530 case SLANG_OPER_SUBASSIGN:
3531 {
3532 slang_ir_node *n;
3533 assert(oper->num_children == 2);
3534 n = _slang_gen_function_call_name(A, "-=", oper, NULL);
3535 return n;
3536 }
3537 break;
3538 case SLANG_OPER_MULASSIGN:
3539 {
3540 slang_ir_node *n;
3541 assert(oper->num_children == 2);
3542 n = _slang_gen_function_call_name(A, "*=", oper, NULL);
3543 return n;
3544 }
3545 case SLANG_OPER_DIVASSIGN:
3546 {
3547 slang_ir_node *n;
3548 assert(oper->num_children == 2);
3549 n = _slang_gen_function_call_name(A, "/=", oper, NULL);
3550 return n;
3551 }
3552 case SLANG_OPER_LOGICALAND:
3553 {
3554 slang_ir_node *n;
3555 assert(oper->num_children == 2);
3556 n = _slang_gen_logical_and(A, oper);
3557 return n;
3558 }
3559 case SLANG_OPER_LOGICALOR:
3560 {
3561 slang_ir_node *n;
3562 assert(oper->num_children == 2);
3563 n = _slang_gen_logical_or(A, oper);
3564 return n;
3565 }
3566 case SLANG_OPER_LOGICALXOR:
3567 return _slang_gen_xor(A, oper);
3568 case SLANG_OPER_NOT:
3569 return _slang_gen_not(A, oper);
3570 case SLANG_OPER_SELECT: /* b ? x : y */
3571 {
3572 slang_ir_node *n;
3573 assert(oper->num_children == 3);
3574 n = _slang_gen_select(A, oper);
3575 return n;
3576 }
3577
3578 case SLANG_OPER_ASM:
3579 return _slang_gen_asm(A, oper, NULL);
3580 case SLANG_OPER_CALL:
3581 return _slang_gen_function_call_name(A, (const char *) oper->a_id,
3582 oper, NULL);
3583 case SLANG_OPER_METHOD:
3584 return _slang_gen_method_call(A, oper);
3585 case SLANG_OPER_RETURN:
3586 return _slang_gen_return(A, oper);
3587 case SLANG_OPER_LABEL:
3588 return new_label(oper->label);
3589 case SLANG_OPER_IDENTIFIER:
3590 return _slang_gen_variable(A, oper);
3591 case SLANG_OPER_IF:
3592 return _slang_gen_if(A, oper);
3593 case SLANG_OPER_FIELD:
3594 return _slang_gen_struct_field(A, oper);
3595 case SLANG_OPER_SUBSCRIPT:
3596 return _slang_gen_array_element(A, oper);
3597 case SLANG_OPER_LITERAL_FLOAT:
3598 /* fall-through */
3599 case SLANG_OPER_LITERAL_INT:
3600 /* fall-through */
3601 case SLANG_OPER_LITERAL_BOOL:
3602 return new_float_literal(oper->literal, oper->literal_size);
3603
3604 case SLANG_OPER_POSTINCREMENT: /* var++ */
3605 {
3606 slang_ir_node *n;
3607 assert(oper->num_children == 1);
3608 n = _slang_gen_function_call_name(A, "__postIncr", oper, NULL);
3609 return n;
3610 }
3611 case SLANG_OPER_POSTDECREMENT: /* var-- */
3612 {
3613 slang_ir_node *n;
3614 assert(oper->num_children == 1);
3615 n = _slang_gen_function_call_name(A, "__postDecr", oper, NULL);
3616 return n;
3617 }
3618 case SLANG_OPER_PREINCREMENT: /* ++var */
3619 {
3620 slang_ir_node *n;
3621 assert(oper->num_children == 1);
3622 n = _slang_gen_function_call_name(A, "++", oper, NULL);
3623 return n;
3624 }
3625 case SLANG_OPER_PREDECREMENT: /* --var */
3626 {
3627 slang_ir_node *n;
3628 assert(oper->num_children == 1);
3629 n = _slang_gen_function_call_name(A, "--", oper, NULL);
3630 return n;
3631 }
3632
3633 case SLANG_OPER_NON_INLINED_CALL:
3634 case SLANG_OPER_SEQUENCE:
3635 {
3636 slang_ir_node *tree = NULL;
3637 GLuint i;
3638 for (i = 0; i < oper->num_children; i++) {
3639 slang_ir_node *n = _slang_gen_operation(A, &oper->children[i]);
3640 tree = new_seq(tree, n);
3641 if (n)
3642 tree->Store = n->Store;
3643 }
3644 if (oper->type == SLANG_OPER_NON_INLINED_CALL) {
3645 tree = new_function_call(tree, oper->label);
3646 }
3647 return tree;
3648 }
3649
3650 case SLANG_OPER_NONE:
3651 case SLANG_OPER_VOID:
3652 /* returning NULL here would generate an error */
3653 return new_node0(IR_NOP);
3654
3655 default:
3656 _mesa_problem(NULL, "bad node type %d in _slang_gen_operation",
3657 oper->type);
3658 return new_node0(IR_NOP);
3659 }
3660
3661 return NULL;
3662 }
3663
3664
3665 /**
3666 * Compute total size of array give size of element, number of elements.
3667 */
3668 static GLint
3669 array_size(GLint baseSize, GLint arrayLen)
3670 {
3671 GLint total;
3672 if (arrayLen > 1) {
3673 /* round up base type to multiple of 4 */
3674 total = ((baseSize + 3) & ~0x3) * MAX2(arrayLen, 1);
3675 }
3676 else {
3677 total = baseSize;
3678 }
3679 return total;
3680 }
3681
3682
3683 /**
3684 * Called by compiler when a global variable has been parsed/compiled.
3685 * Here we examine the variable's type to determine what kind of register
3686 * storage will be used.
3687 *
3688 * A uniform such as "gl_Position" will become the register specification
3689 * (PROGRAM_OUTPUT, VERT_RESULT_HPOS). Or, uniform "gl_FogFragCoord"
3690 * will be (PROGRAM_INPUT, FRAG_ATTRIB_FOGC).
3691 *
3692 * Samplers are interesting. For "uniform sampler2D tex;" we'll specify
3693 * (PROGRAM_SAMPLER, index) where index is resolved at link-time to an
3694 * actual texture unit (as specified by the user calling glUniform1i()).
3695 */
3696 GLboolean
3697 _slang_codegen_global_variable(slang_assemble_ctx *A, slang_variable *var,
3698 slang_unit_type type)
3699 {
3700 struct gl_program *prog = A->program;
3701 const char *varName = (char *) var->a_name;
3702 GLboolean success = GL_TRUE;
3703 slang_ir_storage *store = NULL;
3704 int dbg = 0;
3705 const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
3706 const GLint texIndex = sampler_to_texture_index(var->type.specifier.type);
3707 const GLint size = _slang_sizeof_type_specifier(&var->type.specifier);
3708
3709 if (texIndex != -1) {
3710 /* This is a texture sampler variable...
3711 * store->File = PROGRAM_SAMPLER
3712 * store->Index = sampler number (0..7, typically)
3713 * store->Size = texture type index (1D, 2D, 3D, cube, etc)
3714 */
3715 if (var->initializer) {
3716 slang_info_log_error(A->log, "illegal assignment to '%s'", varName);
3717 return GL_FALSE;
3718 }
3719 #if FEATURE_es2_glsl /* XXX should use FEATURE_texture_rect */
3720 /* disallow rect samplers */
3721 if (var->type.specifier.type == SLANG_SPEC_SAMPLER2DRECT ||
3722 var->type.specifier.type == SLANG_SPEC_SAMPLER2DRECTSHADOW) {
3723 slang_info_log_error(A->log, "invalid sampler type for '%s'", varName);
3724 return GL_FALSE;
3725 }
3726 #endif
3727 {
3728 GLint sampNum = _mesa_add_sampler(prog->Parameters, varName, datatype);
3729 store = _slang_new_ir_storage(PROGRAM_SAMPLER, sampNum, texIndex);
3730 }
3731 if (dbg) printf("SAMPLER ");
3732 }
3733 else if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
3734 /* Uniform variable */
3735 const GLint totalSize = array_size(size, var->array_len);
3736 const GLuint swizzle = _slang_var_swizzle(totalSize, 0);
3737
3738 if (prog) {
3739 /* user-defined uniform */
3740 if (datatype == GL_NONE) {
3741 if (var->type.specifier.type == SLANG_SPEC_STRUCT) {
3742 /* temporary work-around */
3743 GLenum datatype = GL_FLOAT;
3744 GLint uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
3745 totalSize, datatype, NULL);
3746 store = _slang_new_ir_storage_swz(PROGRAM_UNIFORM, uniformLoc,
3747 totalSize, swizzle);
3748
3749 /* XXX what we need to do is unroll the struct into its
3750 * basic types, creating a uniform variable for each.
3751 * For example:
3752 * struct foo {
3753 * vec3 a;
3754 * vec4 b;
3755 * };
3756 * uniform foo f;
3757 *
3758 * Should produce uniforms:
3759 * "f.a" (GL_FLOAT_VEC3)
3760 * "f.b" (GL_FLOAT_VEC4)
3761 */
3762
3763 if (var->initializer) {
3764 slang_info_log_error(A->log,
3765 "unsupported initializer for uniform '%s'", varName);
3766 return GL_FALSE;
3767 }
3768 }
3769 else {
3770 slang_info_log_error(A->log,
3771 "invalid datatype for uniform variable %s",
3772 varName);
3773 return GL_FALSE;
3774 }
3775 }
3776 else {
3777 GLint uniformLoc;
3778 const GLfloat *initialValues = NULL;
3779 if (var->initializer) {
3780 _slang_simplify(var->initializer, &A->space, A->atoms);
3781 if (var->initializer->type == SLANG_OPER_LITERAL_FLOAT ||
3782 var->initializer->type == SLANG_OPER_LITERAL_INT) {
3783 /* simple float/vector initializer */
3784 initialValues = var->initializer->literal;
3785 }
3786 else {
3787 /* complex initializer */
3788 slang_info_log_error(A->log,
3789 "unsupported initializer for uniform '%s'", varName);
3790 return GL_FALSE;
3791 }
3792 }
3793
3794 uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
3795 totalSize, datatype, initialValues);
3796 store = _slang_new_ir_storage_swz(PROGRAM_UNIFORM, uniformLoc,
3797 totalSize, swizzle);
3798 }
3799 }
3800 else {
3801 /* pre-defined uniform, like gl_ModelviewMatrix */
3802 /* We know it's a uniform, but don't allocate storage unless
3803 * it's really used.
3804 */
3805 store = _slang_new_ir_storage_swz(PROGRAM_STATE_VAR, -1,
3806 totalSize, swizzle);
3807 }
3808 if (dbg) printf("UNIFORM (sz %d) ", totalSize);
3809 }
3810 else if (var->type.qualifier == SLANG_QUAL_VARYING) {
3811 const GLint totalSize = array_size(size, var->array_len);
3812
3813 /* varyings must be float, vec or mat */
3814 if (!_slang_type_is_float_vec_mat(var->type.specifier.type) &&
3815 var->type.specifier.type != SLANG_SPEC_ARRAY) {
3816 slang_info_log_error(A->log,
3817 "varying '%s' must be float/vector/matrix",
3818 varName);
3819 return GL_FALSE;
3820 }
3821
3822 if (var->initializer) {
3823 slang_info_log_error(A->log, "illegal initializer for varying '%s'",
3824 varName);
3825 return GL_FALSE;
3826 }
3827
3828 if (prog) {
3829 /* user-defined varying */
3830 GLbitfield flags;
3831 GLint varyingLoc;
3832 GLuint swizzle;
3833
3834 flags = 0x0;
3835 if (var->type.centroid == SLANG_CENTROID)
3836 flags |= PROG_PARAM_BIT_CENTROID;
3837 if (var->type.variant == SLANG_INVARIANT)
3838 flags |= PROG_PARAM_BIT_INVARIANT;
3839
3840 varyingLoc = _mesa_add_varying(prog->Varying, varName,
3841 totalSize, flags);
3842 swizzle = _slang_var_swizzle(size, 0);
3843 store = _slang_new_ir_storage_swz(PROGRAM_VARYING, varyingLoc,
3844 totalSize, swizzle);
3845 }
3846 else {
3847 /* pre-defined varying, like gl_Color or gl_TexCoord */
3848 if (type == SLANG_UNIT_FRAGMENT_BUILTIN) {
3849 /* fragment program input */
3850 GLuint swizzle;
3851 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
3852 &swizzle);
3853 assert(index >= 0);
3854 assert(index < FRAG_ATTRIB_MAX);
3855 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index,
3856 size, swizzle);
3857 }
3858 else {
3859 /* vertex program output */
3860 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
3861 GLuint swizzle = _slang_var_swizzle(size, 0);
3862 assert(index >= 0);
3863 assert(index < VERT_RESULT_MAX);
3864 assert(type == SLANG_UNIT_VERTEX_BUILTIN);
3865 store = _slang_new_ir_storage_swz(PROGRAM_OUTPUT, index,
3866 size, swizzle);
3867 }
3868 if (dbg) printf("V/F ");
3869 }
3870 if (dbg) printf("VARYING ");
3871 }
3872 else if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE) {
3873 GLuint swizzle;
3874 GLint index;
3875 /* attributes must be float, vec or mat */
3876 if (!_slang_type_is_float_vec_mat(var->type.specifier.type)) {
3877 slang_info_log_error(A->log,
3878 "attribute '%s' must be float/vector/matrix",
3879 varName);
3880 return GL_FALSE;
3881 }
3882
3883 if (prog) {
3884 /* user-defined vertex attribute */
3885 const GLint attr = -1; /* unknown */
3886 swizzle = _slang_var_swizzle(size, 0);
3887 index = _mesa_add_attribute(prog->Attributes, varName,
3888 size, datatype, attr);
3889 assert(index >= 0);
3890 index = VERT_ATTRIB_GENERIC0 + index;
3891 }
3892 else {
3893 /* pre-defined vertex attrib */
3894 index = _slang_input_index(varName, GL_VERTEX_PROGRAM_ARB, &swizzle);
3895 assert(index >= 0);
3896 }
3897 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
3898 if (dbg) printf("ATTRIB ");
3899 }
3900 else if (var->type.qualifier == SLANG_QUAL_FIXEDINPUT) {
3901 GLuint swizzle = SWIZZLE_XYZW; /* silence compiler warning */
3902 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
3903 &swizzle);
3904 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
3905 if (dbg) printf("INPUT ");
3906 }
3907 else if (var->type.qualifier == SLANG_QUAL_FIXEDOUTPUT) {
3908 if (type == SLANG_UNIT_VERTEX_BUILTIN) {
3909 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
3910 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
3911 }
3912 else {
3913 GLint index = _slang_output_index(varName, GL_FRAGMENT_PROGRAM_ARB);
3914 GLint specialSize = 4; /* treat all fragment outputs as float[4] */
3915 assert(type == SLANG_UNIT_FRAGMENT_BUILTIN);
3916 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, specialSize);
3917 }
3918 if (dbg) printf("OUTPUT ");
3919 }
3920 else if (var->type.qualifier == SLANG_QUAL_CONST && !prog) {
3921 /* pre-defined global constant, like gl_MaxLights */
3922 store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
3923 if (dbg) printf("CONST ");
3924 }
3925 else {
3926 /* ordinary variable (may be const) */
3927 slang_ir_node *n;
3928
3929 /* IR node to declare the variable */
3930 n = _slang_gen_var_decl(A, var);
3931
3932 /* IR code for the var's initializer, if present */
3933 if (var->initializer) {
3934 slang_ir_node *lhs, *rhs, *init;
3935
3936 /* Generate IR_COPY instruction to initialize the variable */
3937 lhs = new_node0(IR_VAR);
3938 lhs->Var = var;
3939 lhs->Store = n->Store;
3940
3941 /* constant folding, etc */
3942 _slang_simplify(var->initializer, &A->space, A->atoms);
3943
3944 rhs = _slang_gen_operation(A, var->initializer);
3945 assert(rhs);
3946 init = new_node2(IR_COPY, lhs, rhs);
3947 n = new_seq(n, init);
3948 }
3949
3950 success = _slang_emit_code(n, A->vartable, A->program, GL_FALSE, A->log);
3951
3952 _slang_free_ir_tree(n);
3953 }
3954
3955 if (dbg) printf("GLOBAL VAR %s idx %d\n", (char*) var->a_name,
3956 store ? store->Index : -2);
3957
3958 if (store)
3959 var->store = store; /* save var's storage info */
3960
3961 var->declared = GL_TRUE;
3962
3963 return success;
3964 }
3965
3966
3967 /**
3968 * Produce an IR tree from a function AST (fun->body).
3969 * Then call the code emitter to convert the IR tree into gl_program
3970 * instructions.
3971 */
3972 GLboolean
3973 _slang_codegen_function(slang_assemble_ctx * A, slang_function * fun)
3974 {
3975 slang_ir_node *n;
3976 GLboolean success = GL_TRUE;
3977
3978 if (_mesa_strcmp((char *) fun->header.a_name, "main") != 0) {
3979 /* we only really generate code for main, all other functions get
3980 * inlined or codegen'd upon an actual call.
3981 */
3982 #if 0
3983 /* do some basic error checking though */
3984 if (fun->header.type.specifier.type != SLANG_SPEC_VOID) {
3985 /* check that non-void functions actually return something */
3986 slang_operation *op
3987 = _slang_find_node_type(fun->body, SLANG_OPER_RETURN);
3988 if (!op) {
3989 slang_info_log_error(A->log,
3990 "function \"%s\" has no return statement",
3991 (char *) fun->header.a_name);
3992 printf(
3993 "function \"%s\" has no return statement\n",
3994 (char *) fun->header.a_name);
3995 return GL_FALSE;
3996 }
3997 }
3998 #endif
3999 return GL_TRUE; /* not an error */
4000 }
4001
4002 #if 0
4003 printf("\n*********** codegen_function %s\n", (char *) fun->header.a_name);
4004 slang_print_function(fun, 1);
4005 #endif
4006
4007 /* should have been allocated earlier: */
4008 assert(A->program->Parameters );
4009 assert(A->program->Varying);
4010 assert(A->vartable);
4011 A->CurLoop = NULL;
4012 A->CurFunction = fun;
4013
4014 /* fold constant expressions, etc. */
4015 _slang_simplify(fun->body, &A->space, A->atoms);
4016
4017 #if 0
4018 printf("\n*********** simplified %s\n", (char *) fun->header.a_name);
4019 slang_print_function(fun, 1);
4020 #endif
4021
4022 /* Create an end-of-function label */
4023 A->curFuncEndLabel = _slang_label_new("__endOfFunc__main");
4024
4025 /* push new vartable scope */
4026 _slang_push_var_table(A->vartable);
4027
4028 /* Generate IR tree for the function body code */
4029 n = _slang_gen_operation(A, fun->body);
4030 if (n)
4031 n = new_node1(IR_SCOPE, n);
4032
4033 /* pop vartable, restore previous */
4034 _slang_pop_var_table(A->vartable);
4035
4036 if (!n) {
4037 /* XXX record error */
4038 return GL_FALSE;
4039 }
4040
4041 /* append an end-of-function-label to IR tree */
4042 n = new_seq(n, new_label(A->curFuncEndLabel));
4043
4044 /*_slang_label_delete(A->curFuncEndLabel);*/
4045 A->curFuncEndLabel = NULL;
4046
4047 #if 0
4048 printf("************* New AST for %s *****\n", (char*)fun->header.a_name);
4049 slang_print_function(fun, 1);
4050 #endif
4051 #if 0
4052 printf("************* IR for %s *******\n", (char*)fun->header.a_name);
4053 _slang_print_ir_tree(n, 0);
4054 #endif
4055 #if 0
4056 printf("************* End codegen function ************\n\n");
4057 #endif
4058
4059 /* Emit program instructions */
4060 success = _slang_emit_code(n, A->vartable, A->program, GL_TRUE, A->log);
4061 _slang_free_ir_tree(n);
4062
4063 /* free codegen context */
4064 /*
4065 _mesa_free(A->codegen);
4066 */
4067
4068 return success;
4069 }
4070