mesa: add missing type check for function calls
[mesa.git] / src / mesa / shader / slang / slang_codegen.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file slang_codegen.c
27 * Generate IR tree from AST.
28 * \author Brian Paul
29 */
30
31
32 /***
33 *** NOTES:
34 *** The new_() functions return a new instance of a simple IR node.
35 *** The gen_() functions generate larger IR trees from the simple nodes.
36 ***/
37
38
39
40 #include "main/imports.h"
41 #include "main/macros.h"
42 #include "main/mtypes.h"
43 #include "shader/program.h"
44 #include "shader/prog_instruction.h"
45 #include "shader/prog_parameter.h"
46 #include "shader/prog_print.h"
47 #include "shader/prog_statevars.h"
48 #include "slang_typeinfo.h"
49 #include "slang_codegen.h"
50 #include "slang_compile.h"
51 #include "slang_label.h"
52 #include "slang_mem.h"
53 #include "slang_simplify.h"
54 #include "slang_emit.h"
55 #include "slang_vartable.h"
56 #include "slang_ir.h"
57 #include "slang_print.h"
58
59
60 static slang_ir_node *
61 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper);
62
63
64 static GLboolean
65 is_sampler_type(const slang_fully_specified_type *t)
66 {
67 switch (t->specifier.type) {
68 case SLANG_SPEC_SAMPLER1D:
69 case SLANG_SPEC_SAMPLER2D:
70 case SLANG_SPEC_SAMPLER3D:
71 case SLANG_SPEC_SAMPLERCUBE:
72 case SLANG_SPEC_SAMPLER1DSHADOW:
73 case SLANG_SPEC_SAMPLER2DSHADOW:
74 case SLANG_SPEC_SAMPLER2DRECT:
75 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
76 return GL_TRUE;
77 default:
78 return GL_FALSE;
79 }
80 }
81
82
83 /**
84 * Return the offset (in floats or ints) of the named field within
85 * the given struct. Return -1 if field not found.
86 * If field is NULL, return the size of the struct instead.
87 */
88 static GLint
89 _slang_field_offset(const slang_type_specifier *spec, slang_atom field)
90 {
91 GLint offset = 0;
92 GLuint i;
93 for (i = 0; i < spec->_struct->fields->num_variables; i++) {
94 const slang_variable *v = spec->_struct->fields->variables[i];
95 const GLuint sz = _slang_sizeof_type_specifier(&v->type.specifier);
96 if (sz > 1) {
97 /* types larger than 1 float are register (4-float) aligned */
98 offset = (offset + 3) & ~3;
99 }
100 if (field && v->a_name == field) {
101 return offset;
102 }
103 offset += sz;
104 }
105 if (field)
106 return -1; /* field not found */
107 else
108 return offset; /* struct size */
109 }
110
111
112 /**
113 * Return the size (in floats) of the given type specifier.
114 * If the size is greater than 4, the size should be a multiple of 4
115 * so that the correct number of 4-float registers are allocated.
116 * For example, a mat3x2 is size 12 because we want to store the
117 * 3 columns in 3 float[4] registers.
118 */
119 GLuint
120 _slang_sizeof_type_specifier(const slang_type_specifier *spec)
121 {
122 GLuint sz;
123 switch (spec->type) {
124 case SLANG_SPEC_VOID:
125 sz = 0;
126 break;
127 case SLANG_SPEC_BOOL:
128 sz = 1;
129 break;
130 case SLANG_SPEC_BVEC2:
131 sz = 2;
132 break;
133 case SLANG_SPEC_BVEC3:
134 sz = 3;
135 break;
136 case SLANG_SPEC_BVEC4:
137 sz = 4;
138 break;
139 case SLANG_SPEC_INT:
140 sz = 1;
141 break;
142 case SLANG_SPEC_IVEC2:
143 sz = 2;
144 break;
145 case SLANG_SPEC_IVEC3:
146 sz = 3;
147 break;
148 case SLANG_SPEC_IVEC4:
149 sz = 4;
150 break;
151 case SLANG_SPEC_FLOAT:
152 sz = 1;
153 break;
154 case SLANG_SPEC_VEC2:
155 sz = 2;
156 break;
157 case SLANG_SPEC_VEC3:
158 sz = 3;
159 break;
160 case SLANG_SPEC_VEC4:
161 sz = 4;
162 break;
163 case SLANG_SPEC_MAT2:
164 sz = 2 * 4; /* 2 columns (regs) */
165 break;
166 case SLANG_SPEC_MAT3:
167 sz = 3 * 4;
168 break;
169 case SLANG_SPEC_MAT4:
170 sz = 4 * 4;
171 break;
172 case SLANG_SPEC_MAT23:
173 sz = 2 * 4; /* 2 columns (regs) */
174 break;
175 case SLANG_SPEC_MAT32:
176 sz = 3 * 4; /* 3 columns (regs) */
177 break;
178 case SLANG_SPEC_MAT24:
179 sz = 2 * 4;
180 break;
181 case SLANG_SPEC_MAT42:
182 sz = 4 * 4; /* 4 columns (regs) */
183 break;
184 case SLANG_SPEC_MAT34:
185 sz = 3 * 4;
186 break;
187 case SLANG_SPEC_MAT43:
188 sz = 4 * 4; /* 4 columns (regs) */
189 break;
190 case SLANG_SPEC_SAMPLER1D:
191 case SLANG_SPEC_SAMPLER2D:
192 case SLANG_SPEC_SAMPLER3D:
193 case SLANG_SPEC_SAMPLERCUBE:
194 case SLANG_SPEC_SAMPLER1DSHADOW:
195 case SLANG_SPEC_SAMPLER2DSHADOW:
196 case SLANG_SPEC_SAMPLER2DRECT:
197 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
198 sz = 1; /* a sampler is basically just an integer index */
199 break;
200 case SLANG_SPEC_STRUCT:
201 sz = _slang_field_offset(spec, 0); /* special use */
202 if (sz > 4) {
203 sz = (sz + 3) & ~0x3; /* round up to multiple of four */
204 }
205 break;
206 case SLANG_SPEC_ARRAY:
207 sz = _slang_sizeof_type_specifier(spec->_array);
208 break;
209 default:
210 _mesa_problem(NULL, "Unexpected type in _slang_sizeof_type_specifier()");
211 sz = 0;
212 }
213
214 if (sz > 4) {
215 /* if size is > 4, it should be a multiple of four */
216 assert((sz & 0x3) == 0);
217 }
218 return sz;
219 }
220
221
222 /**
223 * Establish the binding between a slang_ir_node and a slang_variable.
224 * Then, allocate/attach a slang_ir_storage object to the IR node if needed.
225 * The IR node must be a IR_VAR or IR_VAR_DECL node.
226 * \param n the IR node
227 * \param var the variable to associate with the IR node
228 */
229 static void
230 _slang_attach_storage(slang_ir_node *n, slang_variable *var)
231 {
232 assert(n);
233 assert(var);
234 assert(n->Opcode == IR_VAR || n->Opcode == IR_VAR_DECL);
235 assert(!n->Var || n->Var == var);
236
237 n->Var = var;
238
239 if (!n->Store) {
240 /* need to setup storage */
241 if (n->Var && n->Var->store) {
242 /* node storage info = var storage info */
243 n->Store = n->Var->store;
244 }
245 else {
246 /* alloc new storage info */
247 n->Store = _slang_new_ir_storage(PROGRAM_UNDEFINED, -7, -5);
248 #if 0
249 printf("%s var=%s Store=%p Size=%d\n", __FUNCTION__,
250 (char*) var->a_name,
251 (void*) n->Store, n->Store->Size);
252 #endif
253 if (n->Var)
254 n->Var->store = n->Store;
255 assert(n->Var->store);
256 }
257 }
258 }
259
260
261 /**
262 * Return the TEXTURE_*_INDEX value that corresponds to a sampler type,
263 * or -1 if the type is not a sampler.
264 */
265 static GLint
266 sampler_to_texture_index(const slang_type_specifier_type type)
267 {
268 switch (type) {
269 case SLANG_SPEC_SAMPLER1D:
270 return TEXTURE_1D_INDEX;
271 case SLANG_SPEC_SAMPLER2D:
272 return TEXTURE_2D_INDEX;
273 case SLANG_SPEC_SAMPLER3D:
274 return TEXTURE_3D_INDEX;
275 case SLANG_SPEC_SAMPLERCUBE:
276 return TEXTURE_CUBE_INDEX;
277 case SLANG_SPEC_SAMPLER1DSHADOW:
278 return TEXTURE_1D_INDEX; /* XXX fix */
279 case SLANG_SPEC_SAMPLER2DSHADOW:
280 return TEXTURE_2D_INDEX; /* XXX fix */
281 case SLANG_SPEC_SAMPLER2DRECT:
282 return TEXTURE_RECT_INDEX;
283 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
284 return TEXTURE_RECT_INDEX; /* XXX fix */
285 default:
286 return -1;
287 }
288 }
289
290
291 #define SWIZZLE_ZWWW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W)
292
293 /**
294 * Return the VERT_ATTRIB_* or FRAG_ATTRIB_* value that corresponds to
295 * a vertex or fragment program input variable. Return -1 if the input
296 * name is invalid.
297 * XXX return size too
298 */
299 static GLint
300 _slang_input_index(const char *name, GLenum target, GLuint *swizzleOut)
301 {
302 struct input_info {
303 const char *Name;
304 GLuint Attrib;
305 GLuint Swizzle;
306 };
307 static const struct input_info vertInputs[] = {
308 { "gl_Vertex", VERT_ATTRIB_POS, SWIZZLE_NOOP },
309 { "gl_Normal", VERT_ATTRIB_NORMAL, SWIZZLE_NOOP },
310 { "gl_Color", VERT_ATTRIB_COLOR0, SWIZZLE_NOOP },
311 { "gl_SecondaryColor", VERT_ATTRIB_COLOR1, SWIZZLE_NOOP },
312 { "gl_FogCoord", VERT_ATTRIB_FOG, SWIZZLE_XXXX },
313 { "gl_MultiTexCoord0", VERT_ATTRIB_TEX0, SWIZZLE_NOOP },
314 { "gl_MultiTexCoord1", VERT_ATTRIB_TEX1, SWIZZLE_NOOP },
315 { "gl_MultiTexCoord2", VERT_ATTRIB_TEX2, SWIZZLE_NOOP },
316 { "gl_MultiTexCoord3", VERT_ATTRIB_TEX3, SWIZZLE_NOOP },
317 { "gl_MultiTexCoord4", VERT_ATTRIB_TEX4, SWIZZLE_NOOP },
318 { "gl_MultiTexCoord5", VERT_ATTRIB_TEX5, SWIZZLE_NOOP },
319 { "gl_MultiTexCoord6", VERT_ATTRIB_TEX6, SWIZZLE_NOOP },
320 { "gl_MultiTexCoord7", VERT_ATTRIB_TEX7, SWIZZLE_NOOP },
321 { NULL, 0, SWIZZLE_NOOP }
322 };
323 static const struct input_info fragInputs[] = {
324 { "gl_FragCoord", FRAG_ATTRIB_WPOS, SWIZZLE_NOOP },
325 { "gl_Color", FRAG_ATTRIB_COL0, SWIZZLE_NOOP },
326 { "gl_SecondaryColor", FRAG_ATTRIB_COL1, SWIZZLE_NOOP },
327 { "gl_TexCoord", FRAG_ATTRIB_TEX0, SWIZZLE_NOOP },
328 /* note: we're packing several quantities into the fogcoord vector */
329 { "gl_FogFragCoord", FRAG_ATTRIB_FOGC, SWIZZLE_XXXX },
330 { "gl_FrontFacing", FRAG_ATTRIB_FOGC, SWIZZLE_YYYY }, /*XXX*/
331 { "gl_PointCoord", FRAG_ATTRIB_FOGC, SWIZZLE_ZWWW },
332 { NULL, 0, SWIZZLE_NOOP }
333 };
334 GLuint i;
335 const struct input_info *inputs
336 = (target == GL_VERTEX_PROGRAM_ARB) ? vertInputs : fragInputs;
337
338 ASSERT(MAX_TEXTURE_UNITS == 8); /* if this fails, fix vertInputs above */
339
340 for (i = 0; inputs[i].Name; i++) {
341 if (strcmp(inputs[i].Name, name) == 0) {
342 /* found */
343 *swizzleOut = inputs[i].Swizzle;
344 return inputs[i].Attrib;
345 }
346 }
347 return -1;
348 }
349
350
351 /**
352 * Return the VERT_RESULT_* or FRAG_RESULT_* value that corresponds to
353 * a vertex or fragment program output variable. Return -1 for an invalid
354 * output name.
355 */
356 static GLint
357 _slang_output_index(const char *name, GLenum target)
358 {
359 struct output_info {
360 const char *Name;
361 GLuint Attrib;
362 };
363 static const struct output_info vertOutputs[] = {
364 { "gl_Position", VERT_RESULT_HPOS },
365 { "gl_FrontColor", VERT_RESULT_COL0 },
366 { "gl_BackColor", VERT_RESULT_BFC0 },
367 { "gl_FrontSecondaryColor", VERT_RESULT_COL1 },
368 { "gl_BackSecondaryColor", VERT_RESULT_BFC1 },
369 { "gl_TexCoord", VERT_RESULT_TEX0 },
370 { "gl_FogFragCoord", VERT_RESULT_FOGC },
371 { "gl_PointSize", VERT_RESULT_PSIZ },
372 { NULL, 0 }
373 };
374 static const struct output_info fragOutputs[] = {
375 { "gl_FragColor", FRAG_RESULT_COLR },
376 { "gl_FragDepth", FRAG_RESULT_DEPR },
377 { "gl_FragData", FRAG_RESULT_DATA0 },
378 { NULL, 0 }
379 };
380 GLuint i;
381 const struct output_info *outputs
382 = (target == GL_VERTEX_PROGRAM_ARB) ? vertOutputs : fragOutputs;
383
384 for (i = 0; outputs[i].Name; i++) {
385 if (strcmp(outputs[i].Name, name) == 0) {
386 /* found */
387 return outputs[i].Attrib;
388 }
389 }
390 return -1;
391 }
392
393
394
395 /**********************************************************************/
396
397
398 /**
399 * Map "_asm foo" to IR_FOO, etc.
400 */
401 typedef struct
402 {
403 const char *Name;
404 slang_ir_opcode Opcode;
405 GLuint HaveRetValue, NumParams;
406 } slang_asm_info;
407
408
409 static slang_asm_info AsmInfo[] = {
410 /* vec4 binary op */
411 { "vec4_add", IR_ADD, 1, 2 },
412 { "vec4_subtract", IR_SUB, 1, 2 },
413 { "vec4_multiply", IR_MUL, 1, 2 },
414 { "vec4_dot", IR_DOT4, 1, 2 },
415 { "vec3_dot", IR_DOT3, 1, 2 },
416 { "vec3_cross", IR_CROSS, 1, 2 },
417 { "vec4_lrp", IR_LRP, 1, 3 },
418 { "vec4_min", IR_MIN, 1, 2 },
419 { "vec4_max", IR_MAX, 1, 2 },
420 { "vec4_clamp", IR_CLAMP, 1, 3 },
421 { "vec4_seq", IR_SEQUAL, 1, 2 },
422 { "vec4_sne", IR_SNEQUAL, 1, 2 },
423 { "vec4_sge", IR_SGE, 1, 2 },
424 { "vec4_sgt", IR_SGT, 1, 2 },
425 { "vec4_sle", IR_SLE, 1, 2 },
426 { "vec4_slt", IR_SLT, 1, 2 },
427 /* vec4 unary */
428 { "vec4_move", IR_MOVE, 1, 1 },
429 { "vec4_floor", IR_FLOOR, 1, 1 },
430 { "vec4_frac", IR_FRAC, 1, 1 },
431 { "vec4_abs", IR_ABS, 1, 1 },
432 { "vec4_negate", IR_NEG, 1, 1 },
433 { "vec4_ddx", IR_DDX, 1, 1 },
434 { "vec4_ddy", IR_DDY, 1, 1 },
435 /* float binary op */
436 { "float_power", IR_POW, 1, 2 },
437 /* texture / sampler */
438 { "vec4_tex1d", IR_TEX, 1, 2 },
439 { "vec4_texb1d", IR_TEXB, 1, 2 }, /* 1d w/ bias */
440 { "vec4_texp1d", IR_TEXP, 1, 2 }, /* 1d w/ projection */
441 { "vec4_tex2d", IR_TEX, 1, 2 },
442 { "vec4_texb2d", IR_TEXB, 1, 2 }, /* 2d w/ bias */
443 { "vec4_texp2d", IR_TEXP, 1, 2 }, /* 2d w/ projection */
444 { "vec4_tex3d", IR_TEX, 1, 2 },
445 { "vec4_texb3d", IR_TEXB, 1, 2 }, /* 3d w/ bias */
446 { "vec4_texp3d", IR_TEXP, 1, 2 }, /* 3d w/ projection */
447 { "vec4_texcube", IR_TEX, 1, 2 }, /* cubemap */
448 { "vec4_tex_rect", IR_TEX, 1, 2 }, /* rectangle */
449 { "vec4_texp_rect", IR_TEX, 1, 2 },/* rectangle w/ projection */
450
451 /* unary op */
452 { "ivec4_to_vec4", IR_I_TO_F, 1, 1 }, /* int[4] to float[4] */
453 { "vec4_to_ivec4", IR_F_TO_I, 1, 1 }, /* float[4] to int[4] */
454 { "float_exp", IR_EXP, 1, 1 },
455 { "float_exp2", IR_EXP2, 1, 1 },
456 { "float_log2", IR_LOG2, 1, 1 },
457 { "float_rsq", IR_RSQ, 1, 1 },
458 { "float_rcp", IR_RCP, 1, 1 },
459 { "float_sine", IR_SIN, 1, 1 },
460 { "float_cosine", IR_COS, 1, 1 },
461 { "float_noise1", IR_NOISE1, 1, 1},
462 { "float_noise2", IR_NOISE2, 1, 1},
463 { "float_noise3", IR_NOISE3, 1, 1},
464 { "float_noise4", IR_NOISE4, 1, 1},
465
466 { NULL, IR_NOP, 0, 0 }
467 };
468
469
470 static slang_ir_node *
471 new_node3(slang_ir_opcode op,
472 slang_ir_node *c0, slang_ir_node *c1, slang_ir_node *c2)
473 {
474 slang_ir_node *n = (slang_ir_node *) _slang_alloc(sizeof(slang_ir_node));
475 if (n) {
476 n->Opcode = op;
477 n->Children[0] = c0;
478 n->Children[1] = c1;
479 n->Children[2] = c2;
480 n->InstLocation = -1;
481 }
482 return n;
483 }
484
485 static slang_ir_node *
486 new_node2(slang_ir_opcode op, slang_ir_node *c0, slang_ir_node *c1)
487 {
488 return new_node3(op, c0, c1, NULL);
489 }
490
491 static slang_ir_node *
492 new_node1(slang_ir_opcode op, slang_ir_node *c0)
493 {
494 return new_node3(op, c0, NULL, NULL);
495 }
496
497 static slang_ir_node *
498 new_node0(slang_ir_opcode op)
499 {
500 return new_node3(op, NULL, NULL, NULL);
501 }
502
503
504 /**
505 * Create sequence of two nodes.
506 */
507 static slang_ir_node *
508 new_seq(slang_ir_node *left, slang_ir_node *right)
509 {
510 if (!left)
511 return right;
512 if (!right)
513 return left;
514 return new_node2(IR_SEQ, left, right);
515 }
516
517 static slang_ir_node *
518 new_label(slang_label *label)
519 {
520 slang_ir_node *n = new_node0(IR_LABEL);
521 assert(label);
522 if (n)
523 n->Label = label;
524 return n;
525 }
526
527 static slang_ir_node *
528 new_float_literal(const float v[4], GLuint size)
529 {
530 slang_ir_node *n = new_node0(IR_FLOAT);
531 assert(size <= 4);
532 COPY_4V(n->Value, v);
533 /* allocate a storage object, but compute actual location (Index) later */
534 n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
535 return n;
536 }
537
538
539 static slang_ir_node *
540 new_not(slang_ir_node *n)
541 {
542 return new_node1(IR_NOT, n);
543 }
544
545
546 /**
547 * Non-inlined function call.
548 */
549 static slang_ir_node *
550 new_function_call(slang_ir_node *code, slang_label *name)
551 {
552 slang_ir_node *n = new_node1(IR_CALL, code);
553 assert(name);
554 if (n)
555 n->Label = name;
556 return n;
557 }
558
559
560 /**
561 * Unconditional jump.
562 */
563 static slang_ir_node *
564 new_return(slang_label *dest)
565 {
566 slang_ir_node *n = new_node0(IR_RETURN);
567 assert(dest);
568 if (n)
569 n->Label = dest;
570 return n;
571 }
572
573
574 static slang_ir_node *
575 new_loop(slang_ir_node *body)
576 {
577 return new_node1(IR_LOOP, body);
578 }
579
580
581 static slang_ir_node *
582 new_break(slang_ir_node *loopNode)
583 {
584 slang_ir_node *n = new_node0(IR_BREAK);
585 assert(loopNode);
586 assert(loopNode->Opcode == IR_LOOP);
587 if (n) {
588 /* insert this node at head of linked list */
589 n->List = loopNode->List;
590 loopNode->List = n;
591 }
592 return n;
593 }
594
595
596 /**
597 * Make new IR_BREAK_IF_TRUE.
598 */
599 static slang_ir_node *
600 new_break_if_true(slang_ir_node *loopNode, slang_ir_node *cond)
601 {
602 slang_ir_node *n;
603 assert(loopNode);
604 assert(loopNode->Opcode == IR_LOOP);
605 n = new_node1(IR_BREAK_IF_TRUE, cond);
606 if (n) {
607 /* insert this node at head of linked list */
608 n->List = loopNode->List;
609 loopNode->List = n;
610 }
611 return n;
612 }
613
614
615 /**
616 * Make new IR_CONT_IF_TRUE node.
617 */
618 static slang_ir_node *
619 new_cont_if_true(slang_ir_node *loopNode, slang_ir_node *cond)
620 {
621 slang_ir_node *n;
622 assert(loopNode);
623 assert(loopNode->Opcode == IR_LOOP);
624 n = new_node1(IR_CONT_IF_TRUE, cond);
625 if (n) {
626 /* insert this node at head of linked list */
627 n->List = loopNode->List;
628 loopNode->List = n;
629 }
630 return n;
631 }
632
633
634 static slang_ir_node *
635 new_cond(slang_ir_node *n)
636 {
637 slang_ir_node *c = new_node1(IR_COND, n);
638 return c;
639 }
640
641
642 static slang_ir_node *
643 new_if(slang_ir_node *cond, slang_ir_node *ifPart, slang_ir_node *elsePart)
644 {
645 return new_node3(IR_IF, cond, ifPart, elsePart);
646 }
647
648
649 /**
650 * New IR_VAR node - a reference to a previously declared variable.
651 */
652 static slang_ir_node *
653 new_var(slang_assemble_ctx *A, slang_operation *oper, slang_atom name)
654 {
655 slang_ir_node *n;
656 slang_variable *var = _slang_locate_variable(oper->locals, name, GL_TRUE);
657 if (!var)
658 return NULL;
659
660 assert(var->declared);
661
662 assert(!oper->var || oper->var == var);
663
664 n = new_node0(IR_VAR);
665 if (n) {
666 _slang_attach_storage(n, var);
667 /*
668 printf("new_var %s store=%p\n", (char*)name, (void*) n->Store);
669 */
670 }
671 return n;
672 }
673
674
675 /**
676 * Check if the given function is really just a wrapper for a
677 * basic assembly instruction.
678 */
679 static GLboolean
680 slang_is_asm_function(const slang_function *fun)
681 {
682 if (fun->body->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE &&
683 fun->body->num_children == 1 &&
684 fun->body->children[0].type == SLANG_OPER_ASM) {
685 return GL_TRUE;
686 }
687 return GL_FALSE;
688 }
689
690
691 static GLboolean
692 _slang_is_noop(const slang_operation *oper)
693 {
694 if (!oper ||
695 oper->type == SLANG_OPER_VOID ||
696 (oper->num_children == 1 && oper->children[0].type == SLANG_OPER_VOID))
697 return GL_TRUE;
698 else
699 return GL_FALSE;
700 }
701
702
703 /**
704 * Recursively search tree for a node of the given type.
705 */
706 static slang_operation *
707 _slang_find_node_type(slang_operation *oper, slang_operation_type type)
708 {
709 GLuint i;
710 if (oper->type == type)
711 return oper;
712 for (i = 0; i < oper->num_children; i++) {
713 slang_operation *p = _slang_find_node_type(&oper->children[i], type);
714 if (p)
715 return p;
716 }
717 return NULL;
718 }
719
720
721 /**
722 * Count the number of operations of the given time rooted at 'oper'.
723 */
724 static GLuint
725 _slang_count_node_type(slang_operation *oper, slang_operation_type type)
726 {
727 GLuint i, count = 0;
728 if (oper->type == type) {
729 return 1;
730 }
731 for (i = 0; i < oper->num_children; i++) {
732 count += _slang_count_node_type(&oper->children[i], type);
733 }
734 return count;
735 }
736
737
738 /**
739 * Check if the 'return' statement found under 'oper' is a "tail return"
740 * that can be no-op'd. For example:
741 *
742 * void func(void)
743 * {
744 * .. do something ..
745 * return; // this is a no-op
746 * }
747 *
748 * This is used when determining if a function can be inlined. If the
749 * 'return' is not the last statement, we can't inline the function since
750 * we still need the semantic behaviour of the 'return' but we don't want
751 * to accidentally return from the _calling_ function. We'd need to use an
752 * unconditional branch, but we don't have such a GPU instruction (not
753 * always, at least).
754 */
755 static GLboolean
756 _slang_is_tail_return(const slang_operation *oper)
757 {
758 GLuint k = oper->num_children;
759
760 while (k > 0) {
761 const slang_operation *last = &oper->children[k - 1];
762 if (last->type == SLANG_OPER_RETURN)
763 return GL_TRUE;
764 else if (last->type == SLANG_OPER_IDENTIFIER ||
765 last->type == SLANG_OPER_LABEL)
766 k--; /* try prev child */
767 else if (last->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
768 last->type == SLANG_OPER_BLOCK_NEW_SCOPE)
769 /* try sub-children */
770 return _slang_is_tail_return(last);
771 else
772 break;
773 }
774
775 return GL_FALSE;
776 }
777
778
779 static void
780 slang_resolve_variable(slang_operation *oper)
781 {
782 if (oper->type == SLANG_OPER_IDENTIFIER && !oper->var) {
783 oper->var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
784 }
785 }
786
787
788 /**
789 * Replace particular variables (SLANG_OPER_IDENTIFIER) with new expressions.
790 */
791 static void
792 slang_substitute(slang_assemble_ctx *A, slang_operation *oper,
793 GLuint substCount, slang_variable **substOld,
794 slang_operation **substNew, GLboolean isLHS)
795 {
796 switch (oper->type) {
797 case SLANG_OPER_VARIABLE_DECL:
798 {
799 slang_variable *v = _slang_locate_variable(oper->locals,
800 oper->a_id, GL_TRUE);
801 assert(v);
802 if (v->initializer && oper->num_children == 0) {
803 /* set child of oper to copy of initializer */
804 oper->num_children = 1;
805 oper->children = slang_operation_new(1);
806 slang_operation_copy(&oper->children[0], v->initializer);
807 }
808 if (oper->num_children == 1) {
809 /* the initializer */
810 slang_substitute(A, &oper->children[0], substCount,
811 substOld, substNew, GL_FALSE);
812 }
813 }
814 break;
815 case SLANG_OPER_IDENTIFIER:
816 assert(oper->num_children == 0);
817 if (1/**!isLHS XXX FIX */) {
818 slang_atom id = oper->a_id;
819 slang_variable *v;
820 GLuint i;
821 v = _slang_locate_variable(oper->locals, id, GL_TRUE);
822 if (!v) {
823 _mesa_problem(NULL, "var %s not found!\n", (char *) oper->a_id);
824 return;
825 }
826
827 /* look for a substitution */
828 for (i = 0; i < substCount; i++) {
829 if (v == substOld[i]) {
830 /* OK, replace this SLANG_OPER_IDENTIFIER with a new expr */
831 #if 0 /* DEBUG only */
832 if (substNew[i]->type == SLANG_OPER_IDENTIFIER) {
833 assert(substNew[i]->var);
834 assert(substNew[i]->var->a_name);
835 printf("Substitute %s with %s in id node %p\n",
836 (char*)v->a_name, (char*) substNew[i]->var->a_name,
837 (void*) oper);
838 }
839 else {
840 printf("Substitute %s with %f in id node %p\n",
841 (char*)v->a_name, substNew[i]->literal[0],
842 (void*) oper);
843 }
844 #endif
845 slang_operation_copy(oper, substNew[i]);
846 break;
847 }
848 }
849 }
850 break;
851
852 case SLANG_OPER_RETURN:
853 /* do return replacement here too */
854 assert(oper->num_children == 0 || oper->num_children == 1);
855 if (oper->num_children == 1 && !_slang_is_noop(&oper->children[0])) {
856 /* replace:
857 * return expr;
858 * with:
859 * __retVal = expr;
860 * return;
861 * then do substitutions on the assignment.
862 */
863 slang_operation *blockOper, *assignOper, *returnOper;
864
865 /* check if function actually has a return type */
866 assert(A->CurFunction);
867 if (A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
868 slang_info_log_error(A->log, "illegal return expression");
869 return;
870 }
871
872 blockOper = slang_operation_new(1);
873 blockOper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
874 blockOper->num_children = 2;
875 blockOper->locals->outer_scope = oper->locals->outer_scope;
876 blockOper->children = slang_operation_new(2);
877 assignOper = blockOper->children + 0;
878 returnOper = blockOper->children + 1;
879
880 assignOper->type = SLANG_OPER_ASSIGN;
881 assignOper->num_children = 2;
882 assignOper->locals->outer_scope = blockOper->locals;
883 assignOper->children = slang_operation_new(2);
884 assignOper->children[0].type = SLANG_OPER_IDENTIFIER;
885 assignOper->children[0].a_id = slang_atom_pool_atom(A->atoms, "__retVal");
886 assignOper->children[0].locals->outer_scope = assignOper->locals;
887
888 slang_operation_copy(&assignOper->children[1],
889 &oper->children[0]);
890
891 returnOper->type = SLANG_OPER_RETURN; /* return w/ no value */
892 assert(returnOper->num_children == 0);
893
894 /* do substitutions on the "__retVal = expr" sub-tree */
895 slang_substitute(A, assignOper,
896 substCount, substOld, substNew, GL_FALSE);
897
898 /* install new code */
899 slang_operation_copy(oper, blockOper);
900 slang_operation_destruct(blockOper);
901 }
902 else {
903 /* check if return value was expected */
904 assert(A->CurFunction);
905 if (A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
906 slang_info_log_error(A->log, "return statement requires an expression");
907 return;
908 }
909 }
910 break;
911
912 case SLANG_OPER_ASSIGN:
913 case SLANG_OPER_SUBSCRIPT:
914 /* special case:
915 * child[0] can't have substitutions but child[1] can.
916 */
917 slang_substitute(A, &oper->children[0],
918 substCount, substOld, substNew, GL_TRUE);
919 slang_substitute(A, &oper->children[1],
920 substCount, substOld, substNew, GL_FALSE);
921 break;
922 case SLANG_OPER_FIELD:
923 /* XXX NEW - test */
924 slang_substitute(A, &oper->children[0],
925 substCount, substOld, substNew, GL_TRUE);
926 break;
927 default:
928 {
929 GLuint i;
930 for (i = 0; i < oper->num_children; i++)
931 slang_substitute(A, &oper->children[i],
932 substCount, substOld, substNew, GL_FALSE);
933 }
934 }
935 }
936
937
938 /**
939 * Produce inline code for a call to an assembly instruction.
940 * This is typically used to compile a call to a built-in function like this:
941 *
942 * vec4 mix(const vec4 x, const vec4 y, const vec4 a)
943 * {
944 * __asm vec4_lrp __retVal, a, y, x;
945 * }
946 *
947 *
948 * A call to
949 * r = mix(p1, p2, p3);
950 *
951 * Becomes:
952 *
953 * mov
954 * / \
955 * r vec4_lrp
956 * / | \
957 * p3 p2 p1
958 *
959 * We basically translate a SLANG_OPER_CALL into a SLANG_OPER_ASM.
960 */
961 static slang_operation *
962 slang_inline_asm_function(slang_assemble_ctx *A,
963 slang_function *fun, slang_operation *oper)
964 {
965 const GLuint numArgs = oper->num_children;
966 GLuint i;
967 slang_operation *inlined;
968 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
969 slang_variable **substOld;
970 slang_operation **substNew;
971
972 ASSERT(slang_is_asm_function(fun));
973 ASSERT(fun->param_count == numArgs + haveRetValue);
974
975 /*
976 printf("Inline %s as %s\n",
977 (char*) fun->header.a_name,
978 (char*) fun->body->children[0].a_id);
979 */
980
981 /*
982 * We'll substitute formal params with actual args in the asm call.
983 */
984 substOld = (slang_variable **)
985 _slang_alloc(numArgs * sizeof(slang_variable *));
986 substNew = (slang_operation **)
987 _slang_alloc(numArgs * sizeof(slang_operation *));
988 for (i = 0; i < numArgs; i++) {
989 substOld[i] = fun->parameters->variables[i];
990 substNew[i] = oper->children + i;
991 }
992
993 /* make a copy of the code to inline */
994 inlined = slang_operation_new(1);
995 slang_operation_copy(inlined, &fun->body->children[0]);
996 if (haveRetValue) {
997 /* get rid of the __retVal child */
998 inlined->num_children--;
999 for (i = 0; i < inlined->num_children; i++) {
1000 inlined->children[i] = inlined->children[i + 1];
1001 }
1002 }
1003
1004 /* now do formal->actual substitutions */
1005 slang_substitute(A, inlined, numArgs, substOld, substNew, GL_FALSE);
1006
1007 _slang_free(substOld);
1008 _slang_free(substNew);
1009
1010 #if 0
1011 printf("+++++++++++++ inlined asm function %s +++++++++++++\n",
1012 (char *) fun->header.a_name);
1013 slang_print_tree(inlined, 3);
1014 printf("+++++++++++++++++++++++++++++++++++++++++++++++++++\n");
1015 #endif
1016
1017 return inlined;
1018 }
1019
1020
1021 /**
1022 * Inline the given function call operation.
1023 * Return a new slang_operation that corresponds to the inlined code.
1024 */
1025 static slang_operation *
1026 slang_inline_function_call(slang_assemble_ctx * A, slang_function *fun,
1027 slang_operation *oper, slang_operation *returnOper)
1028 {
1029 typedef enum {
1030 SUBST = 1,
1031 COPY_IN,
1032 COPY_OUT
1033 } ParamMode;
1034 ParamMode *paramMode;
1035 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
1036 const GLuint numArgs = oper->num_children;
1037 const GLuint totalArgs = numArgs + haveRetValue;
1038 slang_operation *args = oper->children;
1039 slang_operation *inlined, *top;
1040 slang_variable **substOld;
1041 slang_operation **substNew;
1042 GLuint substCount, numCopyIn, i;
1043 slang_function *prevFunction;
1044 slang_variable_scope *newScope = NULL;
1045
1046 /* save / push */
1047 prevFunction = A->CurFunction;
1048 A->CurFunction = fun;
1049
1050 /*assert(oper->type == SLANG_OPER_CALL); (or (matrix) multiply, etc) */
1051 assert(fun->param_count == totalArgs);
1052
1053 /* allocate temporary arrays */
1054 paramMode = (ParamMode *)
1055 _slang_alloc(totalArgs * sizeof(ParamMode));
1056 substOld = (slang_variable **)
1057 _slang_alloc(totalArgs * sizeof(slang_variable *));
1058 substNew = (slang_operation **)
1059 _slang_alloc(totalArgs * sizeof(slang_operation *));
1060
1061 #if 0
1062 printf("\nInline call to %s (total vars=%d nparams=%d)\n",
1063 (char *) fun->header.a_name,
1064 fun->parameters->num_variables, numArgs);
1065 #endif
1066
1067 if (haveRetValue && !returnOper) {
1068 /* Create 3-child comma sequence for inlined code:
1069 * child[0]: declare __resultTmp
1070 * child[1]: inlined function body
1071 * child[2]: __resultTmp
1072 */
1073 slang_operation *commaSeq;
1074 slang_operation *declOper = NULL;
1075 slang_variable *resultVar;
1076
1077 commaSeq = slang_operation_new(1);
1078 commaSeq->type = SLANG_OPER_SEQUENCE;
1079 assert(commaSeq->locals);
1080 commaSeq->locals->outer_scope = oper->locals->outer_scope;
1081 commaSeq->num_children = 3;
1082 commaSeq->children = slang_operation_new(3);
1083 /* allocate the return var */
1084 resultVar = slang_variable_scope_grow(commaSeq->locals);
1085 /*
1086 printf("Alloc __resultTmp in scope %p for retval of calling %s\n",
1087 (void*)commaSeq->locals, (char *) fun->header.a_name);
1088 */
1089
1090 resultVar->a_name = slang_atom_pool_atom(A->atoms, "__resultTmp");
1091 resultVar->type = fun->header.type; /* XXX copy? */
1092 resultVar->isTemp = GL_TRUE;
1093
1094 /* child[0] = __resultTmp declaration */
1095 declOper = &commaSeq->children[0];
1096 declOper->type = SLANG_OPER_VARIABLE_DECL;
1097 declOper->a_id = resultVar->a_name;
1098 declOper->locals->outer_scope = commaSeq->locals;
1099
1100 /* child[1] = function body */
1101 inlined = &commaSeq->children[1];
1102 inlined->locals->outer_scope = commaSeq->locals;
1103
1104 /* child[2] = __resultTmp reference */
1105 returnOper = &commaSeq->children[2];
1106 returnOper->type = SLANG_OPER_IDENTIFIER;
1107 returnOper->a_id = resultVar->a_name;
1108 returnOper->locals->outer_scope = commaSeq->locals;
1109
1110 top = commaSeq;
1111 }
1112 else {
1113 top = inlined = slang_operation_new(1);
1114 /* XXXX this may be inappropriate!!!! */
1115 inlined->locals->outer_scope = oper->locals->outer_scope;
1116 }
1117
1118
1119 assert(inlined->locals);
1120
1121 /* Examine the parameters, look for inout/out params, look for possible
1122 * substitutions, etc:
1123 * param type behaviour
1124 * in copy actual to local
1125 * const in substitute param with actual
1126 * out copy out
1127 */
1128 substCount = 0;
1129 for (i = 0; i < totalArgs; i++) {
1130 slang_variable *p = fun->parameters->variables[i];
1131 /*
1132 printf("Param %d: %s %s \n", i,
1133 slang_type_qual_string(p->type.qualifier),
1134 (char *) p->a_name);
1135 */
1136 if (p->type.qualifier == SLANG_QUAL_INOUT ||
1137 p->type.qualifier == SLANG_QUAL_OUT) {
1138 /* an output param */
1139 slang_operation *arg;
1140 if (i < numArgs)
1141 arg = &args[i];
1142 else
1143 arg = returnOper;
1144 paramMode[i] = SUBST;
1145
1146 if (arg->type == SLANG_OPER_IDENTIFIER)
1147 slang_resolve_variable(arg);
1148
1149 /* replace parameter 'p' with argument 'arg' */
1150 substOld[substCount] = p;
1151 substNew[substCount] = arg; /* will get copied */
1152 substCount++;
1153 }
1154 else if (p->type.qualifier == SLANG_QUAL_CONST) {
1155 /* a constant input param */
1156 if (args[i].type == SLANG_OPER_IDENTIFIER ||
1157 args[i].type == SLANG_OPER_LITERAL_FLOAT) {
1158 /* replace all occurances of this parameter variable with the
1159 * actual argument variable or a literal.
1160 */
1161 paramMode[i] = SUBST;
1162 slang_resolve_variable(&args[i]);
1163 substOld[substCount] = p;
1164 substNew[substCount] = &args[i]; /* will get copied */
1165 substCount++;
1166 }
1167 else {
1168 paramMode[i] = COPY_IN;
1169 }
1170 }
1171 else {
1172 paramMode[i] = COPY_IN;
1173 }
1174 assert(paramMode[i]);
1175 }
1176
1177 /* actual code inlining: */
1178 slang_operation_copy(inlined, fun->body);
1179
1180 /*** XXX review this */
1181 assert(inlined->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
1182 inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE);
1183 inlined->type = SLANG_OPER_BLOCK_NEW_SCOPE;
1184
1185 #if 0
1186 printf("======================= orig body code ======================\n");
1187 printf("=== params scope = %p\n", (void*) fun->parameters);
1188 slang_print_tree(fun->body, 8);
1189 printf("======================= copied code =========================\n");
1190 slang_print_tree(inlined, 8);
1191 #endif
1192
1193 /* do parameter substitution in inlined code: */
1194 slang_substitute(A, inlined, substCount, substOld, substNew, GL_FALSE);
1195
1196 #if 0
1197 printf("======================= subst code ==========================\n");
1198 slang_print_tree(inlined, 8);
1199 printf("=============================================================\n");
1200 #endif
1201
1202 /* New prolog statements: (inserted before the inlined code)
1203 * Copy the 'in' arguments.
1204 */
1205 numCopyIn = 0;
1206 for (i = 0; i < numArgs; i++) {
1207 if (paramMode[i] == COPY_IN) {
1208 slang_variable *p = fun->parameters->variables[i];
1209 /* declare parameter 'p' */
1210 slang_operation *decl = slang_operation_insert(&inlined->num_children,
1211 &inlined->children,
1212 numCopyIn);
1213
1214 decl->type = SLANG_OPER_VARIABLE_DECL;
1215 assert(decl->locals);
1216 decl->locals->outer_scope = inlined->locals;
1217 decl->a_id = p->a_name;
1218 decl->num_children = 1;
1219 decl->children = slang_operation_new(1);
1220
1221 /* child[0] is the var's initializer */
1222 slang_operation_copy(&decl->children[0], args + i);
1223
1224 /* add parameter 'p' to the local variable scope here */
1225 {
1226 slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
1227 pCopy->type = p->type;
1228 pCopy->a_name = p->a_name;
1229 pCopy->array_len = p->array_len;
1230 }
1231
1232 newScope = inlined->locals;
1233 numCopyIn++;
1234 }
1235 }
1236
1237 /* Now add copies of the function's local vars to the new variable scope */
1238 for (i = totalArgs; i < fun->parameters->num_variables; i++) {
1239 slang_variable *p = fun->parameters->variables[i];
1240 slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
1241 pCopy->type = p->type;
1242 pCopy->a_name = p->a_name;
1243 pCopy->array_len = p->array_len;
1244 }
1245
1246
1247 /* New epilog statements:
1248 * 1. Create end of function label to jump to from return statements.
1249 * 2. Copy the 'out' parameter vars
1250 */
1251 {
1252 slang_operation *lab = slang_operation_insert(&inlined->num_children,
1253 &inlined->children,
1254 inlined->num_children);
1255 lab->type = SLANG_OPER_LABEL;
1256 lab->label = A->curFuncEndLabel;
1257 }
1258
1259 for (i = 0; i < totalArgs; i++) {
1260 if (paramMode[i] == COPY_OUT) {
1261 const slang_variable *p = fun->parameters->variables[i];
1262 /* actualCallVar = outParam */
1263 /*if (i > 0 || !haveRetValue)*/
1264 slang_operation *ass = slang_operation_insert(&inlined->num_children,
1265 &inlined->children,
1266 inlined->num_children);
1267 ass->type = SLANG_OPER_ASSIGN;
1268 ass->num_children = 2;
1269 ass->locals->outer_scope = inlined->locals;
1270 ass->children = slang_operation_new(2);
1271 ass->children[0] = args[i]; /*XXX copy */
1272 ass->children[1].type = SLANG_OPER_IDENTIFIER;
1273 ass->children[1].a_id = p->a_name;
1274 ass->children[1].locals->outer_scope = ass->locals;
1275 }
1276 }
1277
1278 _slang_free(paramMode);
1279 _slang_free(substOld);
1280 _slang_free(substNew);
1281
1282 /* Update scoping to use the new local vars instead of the
1283 * original function's vars. This is especially important
1284 * for nested inlining.
1285 */
1286 if (newScope)
1287 slang_replace_scope(inlined, fun->parameters, newScope);
1288
1289 #if 0
1290 printf("Done Inline call to %s (total vars=%d nparams=%d)\n\n",
1291 (char *) fun->header.a_name,
1292 fun->parameters->num_variables, numArgs);
1293 slang_print_tree(top, 0);
1294 #endif
1295
1296 /* pop */
1297 A->CurFunction = prevFunction;
1298
1299 return top;
1300 }
1301
1302
1303 static slang_ir_node *
1304 _slang_gen_function_call(slang_assemble_ctx *A, slang_function *fun,
1305 slang_operation *oper, slang_operation *dest)
1306 {
1307 slang_ir_node *n;
1308 slang_operation *inlined;
1309 slang_label *prevFuncEndLabel;
1310 char name[200];
1311
1312 prevFuncEndLabel = A->curFuncEndLabel;
1313 sprintf(name, "__endOfFunc_%s_", (char *) fun->header.a_name);
1314 A->curFuncEndLabel = _slang_label_new(name);
1315 assert(A->curFuncEndLabel);
1316
1317 if (slang_is_asm_function(fun) && !dest) {
1318 /* assemble assembly function - tree style */
1319 inlined = slang_inline_asm_function(A, fun, oper);
1320 }
1321 else {
1322 /* non-assembly function */
1323 /* We always generate an "inline-able" block of code here.
1324 * We may either:
1325 * 1. insert the inline code
1326 * 2. Generate a call to the "inline" code as a subroutine
1327 */
1328
1329
1330 slang_operation *ret = NULL;
1331
1332 inlined = slang_inline_function_call(A, fun, oper, dest);
1333 if (!inlined)
1334 return NULL;
1335
1336 ret = _slang_find_node_type(inlined, SLANG_OPER_RETURN);
1337 if (ret) {
1338 /* check if this is a "tail" return */
1339 if (_slang_count_node_type(inlined, SLANG_OPER_RETURN) == 1 &&
1340 _slang_is_tail_return(inlined)) {
1341 /* The only RETURN is the last stmt in the function, no-op it
1342 * and inline the function body.
1343 */
1344 ret->type = SLANG_OPER_NONE;
1345 }
1346 else {
1347 slang_operation *callOper;
1348 /* The function we're calling has one or more 'return' statements.
1349 * So, we can't truly inline this function because we need to
1350 * implement 'return' with RET (and CAL).
1351 * Nevertheless, we performed "inlining" to make a new instance
1352 * of the function body to deal with static register allocation.
1353 *
1354 * XXX check if there's one 'return' and if it's the very last
1355 * statement in the function - we can optimize that case.
1356 */
1357 assert(inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
1358 inlined->type == SLANG_OPER_SEQUENCE);
1359
1360 if (_slang_function_has_return_value(fun) && !dest) {
1361 assert(inlined->children[0].type == SLANG_OPER_VARIABLE_DECL);
1362 assert(inlined->children[2].type == SLANG_OPER_IDENTIFIER);
1363 callOper = &inlined->children[1];
1364 }
1365 else {
1366 callOper = inlined;
1367 }
1368 callOper->type = SLANG_OPER_NON_INLINED_CALL;
1369 callOper->fun = fun;
1370 callOper->label = _slang_label_new_unique((char*) fun->header.a_name);
1371 }
1372 }
1373 }
1374
1375 if (!inlined)
1376 return NULL;
1377
1378 /* Replace the function call with the inlined block (or new CALL stmt) */
1379 slang_operation_destruct(oper);
1380 *oper = *inlined;
1381 _slang_free(inlined);
1382
1383 #if 0
1384 assert(inlined->locals);
1385 printf("*** Inlined code for call to %s:\n",
1386 (char*) fun->header.a_name);
1387 slang_print_tree(oper, 10);
1388 printf("\n");
1389 #endif
1390
1391 n = _slang_gen_operation(A, oper);
1392
1393 /*_slang_label_delete(A->curFuncEndLabel);*/
1394 A->curFuncEndLabel = prevFuncEndLabel;
1395
1396 return n;
1397 }
1398
1399
1400 static slang_asm_info *
1401 slang_find_asm_info(const char *name)
1402 {
1403 GLuint i;
1404 for (i = 0; AsmInfo[i].Name; i++) {
1405 if (_mesa_strcmp(AsmInfo[i].Name, name) == 0) {
1406 return AsmInfo + i;
1407 }
1408 }
1409 return NULL;
1410 }
1411
1412
1413 /**
1414 * Return the default swizzle mask for accessing a variable of the
1415 * given size (in floats). If size = 1, comp is used to identify
1416 * which component [0..3] of the register holds the variable.
1417 */
1418 static GLuint
1419 _slang_var_swizzle(GLint size, GLint comp)
1420 {
1421 switch (size) {
1422 case 1:
1423 return MAKE_SWIZZLE4(comp, comp, comp, comp);
1424 case 2:
1425 return MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_NIL, SWIZZLE_NIL);
1426 case 3:
1427 return MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_NIL);
1428 default:
1429 return SWIZZLE_XYZW;
1430 }
1431 }
1432
1433
1434 /**
1435 * Some write-masked assignments are simple, but others are hard.
1436 * Simple example:
1437 * vec3 v;
1438 * v.xy = vec2(a, b);
1439 * Hard example:
1440 * vec3 v;
1441 * v.zy = vec2(a, b);
1442 * this gets transformed/swizzled into:
1443 * v.zy = vec2(a, b).*yx* (* = don't care)
1444 * This function helps to determine simple vs. non-simple.
1445 */
1446 static GLboolean
1447 _slang_simple_writemask(GLuint writemask, GLuint swizzle)
1448 {
1449 switch (writemask) {
1450 case WRITEMASK_X:
1451 return GET_SWZ(swizzle, 0) == SWIZZLE_X;
1452 case WRITEMASK_Y:
1453 return GET_SWZ(swizzle, 1) == SWIZZLE_Y;
1454 case WRITEMASK_Z:
1455 return GET_SWZ(swizzle, 2) == SWIZZLE_Z;
1456 case WRITEMASK_W:
1457 return GET_SWZ(swizzle, 3) == SWIZZLE_W;
1458 case WRITEMASK_XY:
1459 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
1460 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y);
1461 case WRITEMASK_XYZ:
1462 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
1463 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y)
1464 && (GET_SWZ(swizzle, 2) == SWIZZLE_Z);
1465 case WRITEMASK_XYZW:
1466 return swizzle == SWIZZLE_NOOP;
1467 default:
1468 return GL_FALSE;
1469 }
1470 }
1471
1472
1473 /**
1474 * Convert the given swizzle into a writemask. In some cases this
1475 * is trivial, in other cases, we'll need to also swizzle the right
1476 * hand side to put components in the right places.
1477 * See comment above for more info.
1478 * XXX this function could be simplified and should probably be renamed.
1479 * \param swizzle the incoming swizzle
1480 * \param writemaskOut returns the writemask
1481 * \param swizzleOut swizzle to apply to the right-hand-side
1482 * \return GL_FALSE for simple writemasks, GL_TRUE for non-simple
1483 */
1484 static GLboolean
1485 swizzle_to_writemask(slang_assemble_ctx *A, GLuint swizzle,
1486 GLuint *writemaskOut, GLuint *swizzleOut)
1487 {
1488 GLuint mask = 0x0, newSwizzle[4];
1489 GLint i, size;
1490
1491 /* make new dst writemask, compute size */
1492 for (i = 0; i < 4; i++) {
1493 const GLuint swz = GET_SWZ(swizzle, i);
1494 if (swz == SWIZZLE_NIL) {
1495 /* end */
1496 break;
1497 }
1498 assert(swz >= 0 && swz <= 3);
1499
1500 if (swizzle != SWIZZLE_XXXX &&
1501 swizzle != SWIZZLE_YYYY &&
1502 swizzle != SWIZZLE_ZZZZ &&
1503 swizzle != SWIZZLE_WWWW &&
1504 (mask & (1 << swz))) {
1505 /* a channel can't be specified twice (ex: ".xyyz") */
1506 slang_info_log_error(A->log, "Invalid writemask '%s'",
1507 _mesa_swizzle_string(swizzle, 0, 0));
1508 return GL_FALSE;
1509 }
1510
1511 mask |= (1 << swz);
1512 }
1513 assert(mask <= 0xf);
1514 size = i; /* number of components in mask/swizzle */
1515
1516 *writemaskOut = mask;
1517
1518 /* make new src swizzle, by inversion */
1519 for (i = 0; i < 4; i++) {
1520 newSwizzle[i] = i; /*identity*/
1521 }
1522 for (i = 0; i < size; i++) {
1523 const GLuint swz = GET_SWZ(swizzle, i);
1524 newSwizzle[swz] = i;
1525 }
1526 *swizzleOut = MAKE_SWIZZLE4(newSwizzle[0],
1527 newSwizzle[1],
1528 newSwizzle[2],
1529 newSwizzle[3]);
1530
1531 if (_slang_simple_writemask(mask, *swizzleOut)) {
1532 if (size >= 1)
1533 assert(GET_SWZ(*swizzleOut, 0) == SWIZZLE_X);
1534 if (size >= 2)
1535 assert(GET_SWZ(*swizzleOut, 1) == SWIZZLE_Y);
1536 if (size >= 3)
1537 assert(GET_SWZ(*swizzleOut, 2) == SWIZZLE_Z);
1538 if (size >= 4)
1539 assert(GET_SWZ(*swizzleOut, 3) == SWIZZLE_W);
1540 return GL_TRUE;
1541 }
1542 else
1543 return GL_FALSE;
1544 }
1545
1546
1547 /**
1548 * Recursively traverse 'oper' to produce a swizzle mask in the event
1549 * of any vector subscripts and swizzle suffixes.
1550 * Ex: for "vec4 v", "v[2].x" resolves to v.z
1551 */
1552 static GLuint
1553 resolve_swizzle(const slang_operation *oper)
1554 {
1555 if (oper->type == SLANG_OPER_FIELD) {
1556 /* writemask from .xyzw suffix */
1557 slang_swizzle swz;
1558 if (_slang_is_swizzle((char*) oper->a_id, 4, &swz)) {
1559 GLuint swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
1560 swz.swizzle[1],
1561 swz.swizzle[2],
1562 swz.swizzle[3]);
1563 GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
1564 GLuint s = _slang_swizzle_swizzle(child_swizzle, swizzle);
1565 return s;
1566 }
1567 else
1568 return SWIZZLE_XYZW;
1569 }
1570 else if (oper->type == SLANG_OPER_SUBSCRIPT &&
1571 oper->children[1].type == SLANG_OPER_LITERAL_INT) {
1572 /* writemask from [index] */
1573 GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
1574 GLuint i = (GLuint) oper->children[1].literal[0];
1575 GLuint swizzle;
1576 GLuint s;
1577 switch (i) {
1578 case 0:
1579 swizzle = SWIZZLE_XXXX;
1580 break;
1581 case 1:
1582 swizzle = SWIZZLE_YYYY;
1583 break;
1584 case 2:
1585 swizzle = SWIZZLE_ZZZZ;
1586 break;
1587 case 3:
1588 swizzle = SWIZZLE_WWWW;
1589 break;
1590 default:
1591 swizzle = SWIZZLE_XYZW;
1592 }
1593 s = _slang_swizzle_swizzle(child_swizzle, swizzle);
1594 return s;
1595 }
1596 else {
1597 return SWIZZLE_XYZW;
1598 }
1599 }
1600
1601
1602 /**
1603 * Recursively descend through swizzle nodes to find the node's storage info.
1604 */
1605 static slang_ir_storage *
1606 get_store(const slang_ir_node *n)
1607 {
1608 if (n->Opcode == IR_SWIZZLE) {
1609 return get_store(n->Children[0]);
1610 }
1611 return n->Store;
1612 }
1613
1614
1615
1616 /**
1617 * Generate IR tree for an asm instruction/operation such as:
1618 * __asm vec4_dot __retVal.x, v1, v2;
1619 */
1620 static slang_ir_node *
1621 _slang_gen_asm(slang_assemble_ctx *A, slang_operation *oper,
1622 slang_operation *dest)
1623 {
1624 const slang_asm_info *info;
1625 slang_ir_node *kids[3], *n;
1626 GLuint j, firstOperand;
1627
1628 assert(oper->type == SLANG_OPER_ASM);
1629
1630 info = slang_find_asm_info((char *) oper->a_id);
1631 if (!info) {
1632 _mesa_problem(NULL, "undefined __asm function %s\n",
1633 (char *) oper->a_id);
1634 assert(info);
1635 }
1636 assert(info->NumParams <= 3);
1637
1638 if (info->NumParams == oper->num_children) {
1639 /* Storage for result is not specified.
1640 * Children[0], [1], [2] are the operands.
1641 */
1642 firstOperand = 0;
1643 }
1644 else {
1645 /* Storage for result (child[0]) is specified.
1646 * Children[1], [2], [3] are the operands.
1647 */
1648 firstOperand = 1;
1649 }
1650
1651 /* assemble child(ren) */
1652 kids[0] = kids[1] = kids[2] = NULL;
1653 for (j = 0; j < info->NumParams; j++) {
1654 kids[j] = _slang_gen_operation(A, &oper->children[firstOperand + j]);
1655 if (!kids[j])
1656 return NULL;
1657 }
1658
1659 n = new_node3(info->Opcode, kids[0], kids[1], kids[2]);
1660
1661 if (firstOperand) {
1662 /* Setup n->Store to be a particular location. Otherwise, storage
1663 * for the result (a temporary) will be allocated later.
1664 */
1665 slang_operation *dest_oper;
1666 slang_ir_node *n0;
1667
1668 dest_oper = &oper->children[0];
1669
1670 n0 = _slang_gen_operation(A, dest_oper);
1671 if (!n0)
1672 return NULL;
1673
1674 assert(!n->Store);
1675 n->Store = n0->Store;
1676
1677 assert(n->Store->File != PROGRAM_UNDEFINED || n->Store->Parent);
1678
1679 _slang_free(n0);
1680 }
1681
1682 return n;
1683 }
1684
1685
1686 static void
1687 print_funcs(struct slang_function_scope_ *scope, const char *name)
1688 {
1689 GLuint i;
1690 for (i = 0; i < scope->num_functions; i++) {
1691 slang_function *f = &scope->functions[i];
1692 if (!name || strcmp(name, (char*) f->header.a_name) == 0)
1693 printf(" %s (%d args)\n", name, f->param_count);
1694
1695 }
1696 if (scope->outer_scope)
1697 print_funcs(scope->outer_scope, name);
1698 }
1699
1700
1701 /**
1702 * Find a function of the given name, taking 'numArgs' arguments.
1703 * This is the function we'll try to call when there is no exact match
1704 * between function parameters and call arguments.
1705 *
1706 * XXX we should really create a list of candidate functions and try
1707 * all of them...
1708 */
1709 static slang_function *
1710 _slang_find_function_by_argc(slang_function_scope *scope,
1711 const char *name, int numArgs)
1712 {
1713 while (scope) {
1714 GLuint i;
1715 for (i = 0; i < scope->num_functions; i++) {
1716 slang_function *f = &scope->functions[i];
1717 if (strcmp(name, (char*) f->header.a_name) == 0) {
1718 int haveRetValue = _slang_function_has_return_value(f);
1719 if (numArgs == f->param_count - haveRetValue)
1720 return f;
1721 }
1722 }
1723 scope = scope->outer_scope;
1724 }
1725
1726 return NULL;
1727 }
1728
1729
1730 static slang_function *
1731 _slang_find_function_by_max_argc(slang_function_scope *scope,
1732 const char *name)
1733 {
1734 slang_function *maxFunc = NULL;
1735 GLuint maxArgs = 0;
1736
1737 while (scope) {
1738 GLuint i;
1739 for (i = 0; i < scope->num_functions; i++) {
1740 slang_function *f = &scope->functions[i];
1741 if (strcmp(name, (char*) f->header.a_name) == 0) {
1742 if (f->param_count > maxArgs) {
1743 maxArgs = f->param_count;
1744 maxFunc = f;
1745 }
1746 }
1747 }
1748 scope = scope->outer_scope;
1749 }
1750
1751 return maxFunc;
1752 }
1753
1754
1755 /**
1756 * Generate a new slang_function which is a constructor for a user-defined
1757 * struct type.
1758 */
1759 static slang_function *
1760 _slang_make_constructor(slang_assemble_ctx *A, slang_struct *str)
1761 {
1762 const GLint numFields = str->fields->num_variables;
1763
1764 slang_function *fun = (slang_function *) _mesa_malloc(sizeof(slang_function));
1765 if (!fun)
1766 return NULL;
1767
1768 slang_function_construct(fun);
1769
1770 /* function header (name, return type) */
1771 fun->kind = SLANG_FUNC_CONSTRUCTOR;
1772 fun->header.a_name = str->a_name;
1773 fun->header.type.qualifier = SLANG_QUAL_NONE;
1774 fun->header.type.specifier.type = SLANG_SPEC_STRUCT;
1775 fun->header.type.specifier._struct = str;
1776
1777 /* function parameters (= struct's fields) */
1778 {
1779 GLint i;
1780 for (i = 0; i < numFields; i++) {
1781 /*
1782 printf("Field %d: %s\n", i, (char*) str->fields->variables[i]->a_name);
1783 */
1784 slang_variable *p = slang_variable_scope_grow(fun->parameters);
1785 *p = *str->fields->variables[i]; /* copy the type */
1786 p->type.qualifier = SLANG_QUAL_CONST;
1787 }
1788 fun->param_count = fun->parameters->num_variables;
1789 }
1790
1791 /* Add __retVal to params */
1792 {
1793 slang_variable *p = slang_variable_scope_grow(fun->parameters);
1794 slang_atom a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
1795 assert(a_retVal);
1796 p->a_name = a_retVal;
1797 p->type = fun->header.type;
1798 p->type.qualifier = SLANG_QUAL_OUT;
1799 fun->param_count++;
1800 }
1801
1802 /* function body is:
1803 * block:
1804 * declare T;
1805 * T.f1 = p1;
1806 * T.f2 = p2;
1807 * ...
1808 * T.fn = pn;
1809 * return T;
1810 */
1811 {
1812 slang_variable_scope *scope;
1813 slang_variable *var;
1814 GLint i;
1815
1816 fun->body = slang_operation_new(1);
1817 fun->body->type = SLANG_OPER_BLOCK_NEW_SCOPE;
1818 fun->body->num_children = numFields + 2;
1819 fun->body->children = slang_operation_new(numFields + 2);
1820
1821 scope = fun->body->locals;
1822 scope->outer_scope = fun->parameters;
1823
1824 /* create local var 't' */
1825 var = slang_variable_scope_grow(scope);
1826 var->a_name = slang_atom_pool_atom(A->atoms, "t");
1827 var->type = fun->header.type;
1828
1829 /* declare t */
1830 {
1831 slang_operation *decl;
1832
1833 decl = &fun->body->children[0];
1834 decl->type = SLANG_OPER_VARIABLE_DECL;
1835 decl->locals = _slang_variable_scope_new(scope);
1836 decl->a_id = var->a_name;
1837 }
1838
1839 /* assign params to fields of t */
1840 for (i = 0; i < numFields; i++) {
1841 slang_operation *assign = &fun->body->children[1 + i];
1842
1843 assign->type = SLANG_OPER_ASSIGN;
1844 assign->locals = _slang_variable_scope_new(scope);
1845 assign->num_children = 2;
1846 assign->children = slang_operation_new(2);
1847
1848 {
1849 slang_operation *lhs = &assign->children[0];
1850
1851 lhs->type = SLANG_OPER_FIELD;
1852 lhs->locals = _slang_variable_scope_new(scope);
1853 lhs->num_children = 1;
1854 lhs->children = slang_operation_new(1);
1855 lhs->a_id = str->fields->variables[i]->a_name;
1856
1857 lhs->children[0].type = SLANG_OPER_IDENTIFIER;
1858 lhs->children[0].a_id = var->a_name;
1859 lhs->children[0].locals = _slang_variable_scope_new(scope);
1860
1861 #if 0
1862 lhs->children[1].num_children = 1;
1863 lhs->children[1].children = slang_operation_new(1);
1864 lhs->children[1].children[0].type = SLANG_OPER_IDENTIFIER;
1865 lhs->children[1].children[0].a_id = str->fields->variables[i]->a_name;
1866 lhs->children[1].children->locals = _slang_variable_scope_new(scope);
1867 #endif
1868 }
1869
1870 {
1871 slang_operation *rhs = &assign->children[1];
1872
1873 rhs->type = SLANG_OPER_IDENTIFIER;
1874 rhs->locals = _slang_variable_scope_new(scope);
1875 rhs->a_id = str->fields->variables[i]->a_name;
1876 }
1877 }
1878
1879 /* return t; */
1880 {
1881 slang_operation *ret = &fun->body->children[numFields + 1];
1882
1883 ret->type = SLANG_OPER_RETURN;
1884 ret->locals = _slang_variable_scope_new(scope);
1885 ret->num_children = 1;
1886 ret->children = slang_operation_new(1);
1887 ret->children[0].type = SLANG_OPER_IDENTIFIER;
1888 ret->children[0].a_id = var->a_name;
1889 ret->children[0].locals = _slang_variable_scope_new(scope);
1890
1891 }
1892 }
1893 /*
1894 slang_print_function(fun, 1);
1895 */
1896 return fun;
1897 }
1898
1899
1900 /**
1901 * Find/create a function (constructor) for the given structure name.
1902 */
1903 static slang_function *
1904 _slang_locate_struct_constructor(slang_assemble_ctx *A, const char *name)
1905 {
1906 unsigned int i;
1907 for (i = 0; i < A->space.structs->num_structs; i++) {
1908 slang_struct *str = &A->space.structs->structs[i];
1909 if (strcmp(name, (const char *) str->a_name) == 0) {
1910 /* found a structure type that matches the function name */
1911 if (!str->constructor) {
1912 /* create the constructor function now */
1913 str->constructor = _slang_make_constructor(A, str);
1914 }
1915 return str->constructor;
1916 }
1917 }
1918 return NULL;
1919 }
1920
1921
1922
1923 static GLboolean
1924 _slang_is_vec_mat_type(const char *name)
1925 {
1926 static const char *vecmat_types[] = {
1927 "float", "int", "bool",
1928 "vec2", "vec3", "vec4",
1929 "ivec2", "ivec3", "ivec4",
1930 "bvec2", "bvec3", "bvec4",
1931 "mat2", "mat3", "mat4",
1932 "mat2x3", "mat2x4", "mat3x2", "mat3x4", "mat4x2", "mat4x3",
1933 NULL
1934 };
1935 int i;
1936 for (i = 0; vecmat_types[i]; i++)
1937 if (_mesa_strcmp(name, vecmat_types[i]) == 0)
1938 return GL_TRUE;
1939 return GL_FALSE;
1940 }
1941
1942
1943 /**
1944 * Assemble a function call, given a particular function name.
1945 * \param name the function's name (operators like '*' are possible).
1946 */
1947 static slang_ir_node *
1948 _slang_gen_function_call_name(slang_assemble_ctx *A, const char *name,
1949 slang_operation *oper, slang_operation *dest)
1950 {
1951 slang_operation *params = oper->children;
1952 const GLuint param_count = oper->num_children;
1953 slang_atom atom;
1954 slang_function *fun;
1955 GLboolean error;
1956 slang_ir_node *n;
1957
1958 atom = slang_atom_pool_atom(A->atoms, name);
1959 if (atom == SLANG_ATOM_NULL)
1960 return NULL;
1961
1962 /*
1963 * First, try to find function by name and exact argument type matching.
1964 */
1965 fun = _slang_locate_function(A->space.funcs, atom, params, param_count,
1966 &A->space, A->atoms, A->log, &error);
1967
1968 if (error) {
1969 slang_info_log_error(A->log,
1970 "Function '%s' not found (check argument types)",
1971 name);
1972 return NULL;
1973 }
1974
1975 if (!fun) {
1976 /* Next, try locating a constructor function for a user-defined type */
1977 fun = _slang_locate_struct_constructor(A, name);
1978 }
1979
1980 /*
1981 * At this point, some heuristics are used to try to find a function
1982 * that matches the calling signature by means of casting or "unrolling"
1983 * of constructors.
1984 */
1985
1986 if (!fun && _slang_is_vec_mat_type(name)) {
1987 /* Next, if this call looks like a vec() or mat() constructor call,
1988 * try "unwinding" the args to satisfy a constructor.
1989 */
1990 fun = _slang_find_function_by_max_argc(A->space.funcs, name);
1991 if (fun) {
1992 if (!_slang_adapt_call(oper, fun, &A->space, A->atoms, A->log)) {
1993 slang_info_log_error(A->log,
1994 "Function '%s' not found (check argument types)",
1995 name);
1996 return NULL;
1997 }
1998 }
1999 }
2000
2001 if (!fun && _slang_is_vec_mat_type(name)) {
2002 /* Next, try casting args to the types of the formal parameters */
2003 int numArgs = oper->num_children;
2004 fun = _slang_find_function_by_argc(A->space.funcs, name, numArgs);
2005 if (!fun || !_slang_cast_func_params(oper, fun, &A->space, A->atoms, A->log)) {
2006 slang_info_log_error(A->log,
2007 "Function '%s' not found (check argument types)",
2008 name);
2009 return NULL;
2010 }
2011 assert(fun);
2012 }
2013
2014 if (!fun) {
2015 slang_info_log_error(A->log,
2016 "Function '%s' not found (check argument types)",
2017 name);
2018 return NULL;
2019 }
2020 if (!fun->body) {
2021 slang_info_log_error(A->log,
2022 "Function '%s' prototyped but not defined. "
2023 "Separate compilation units not supported.",
2024 name);
2025 return NULL;
2026 }
2027
2028 /* type checking to be sure function's return type matches 'dest' type */
2029 if (dest) {
2030 slang_typeinfo t0;
2031
2032 slang_typeinfo_construct(&t0);
2033 _slang_typeof_operation(A, dest, &t0);
2034
2035 if (!slang_type_specifier_equal(&t0.spec, &fun->header.type.specifier)) {
2036 slang_info_log_error(A->log,
2037 "Incompatible type returned by call to '%s'",
2038 name);
2039 return NULL;
2040 }
2041 }
2042
2043 n = _slang_gen_function_call(A, fun, oper, dest);
2044
2045 if (n && !n->Store && !dest
2046 && fun->header.type.specifier.type != SLANG_SPEC_VOID) {
2047 /* setup n->Store for the result of the function call */
2048 GLint size = _slang_sizeof_type_specifier(&fun->header.type.specifier);
2049 n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, size);
2050 /*printf("Alloc storage for function result, size %d \n", size);*/
2051 }
2052
2053 return n;
2054 }
2055
2056
2057 static slang_ir_node *
2058 _slang_gen_method_call(slang_assemble_ctx *A, slang_operation *oper)
2059 {
2060 slang_atom *a_length = slang_atom_pool_atom(A->atoms, "length");
2061 slang_ir_node *n;
2062 slang_variable *var;
2063
2064 /* NOTE: In GLSL 1.20, there's only one kind of method
2065 * call: array.length(). Anything else is an error.
2066 */
2067 if (oper->a_id != a_length) {
2068 slang_info_log_error(A->log,
2069 "Undefined method call '%s'", (char *) oper->a_id);
2070 return NULL;
2071 }
2072
2073 /* length() takes no arguments */
2074 if (oper->num_children > 0) {
2075 slang_info_log_error(A->log, "Invalid arguments to length() method");
2076 return NULL;
2077 }
2078
2079 /* lookup the object/variable */
2080 var = _slang_locate_variable(oper->locals, oper->a_obj, GL_TRUE);
2081 if (!var || var->type.specifier.type != SLANG_SPEC_ARRAY) {
2082 slang_info_log_error(A->log,
2083 "Undefined object '%s'", (char *) oper->a_obj);
2084 return NULL;
2085 }
2086
2087 /* Create a float/literal IR node encoding the array length */
2088 n = new_node0(IR_FLOAT);
2089 if (n) {
2090 n->Value[0] = (float) var->array_len;
2091 n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, 1);
2092 }
2093 return n;
2094 }
2095
2096
2097 static GLboolean
2098 _slang_is_constant_cond(const slang_operation *oper, GLboolean *value)
2099 {
2100 if (oper->type == SLANG_OPER_LITERAL_FLOAT ||
2101 oper->type == SLANG_OPER_LITERAL_INT ||
2102 oper->type == SLANG_OPER_LITERAL_BOOL) {
2103 if (oper->literal[0])
2104 *value = GL_TRUE;
2105 else
2106 *value = GL_FALSE;
2107 return GL_TRUE;
2108 }
2109 else if (oper->type == SLANG_OPER_EXPRESSION &&
2110 oper->num_children == 1) {
2111 return _slang_is_constant_cond(&oper->children[0], value);
2112 }
2113 return GL_FALSE;
2114 }
2115
2116
2117 /**
2118 * Test if an operation is a scalar or boolean.
2119 */
2120 static GLboolean
2121 _slang_is_scalar_or_boolean(slang_assemble_ctx *A, slang_operation *oper)
2122 {
2123 slang_typeinfo type;
2124 GLint size;
2125
2126 slang_typeinfo_construct(&type);
2127 _slang_typeof_operation(A, oper, &type);
2128 size = _slang_sizeof_type_specifier(&type.spec);
2129 slang_typeinfo_destruct(&type);
2130 return size == 1;
2131 }
2132
2133
2134 /**
2135 * Test if an operation is boolean.
2136 */
2137 static GLboolean
2138 _slang_is_boolean(slang_assemble_ctx *A, slang_operation *oper)
2139 {
2140 slang_typeinfo type;
2141 GLboolean isBool;
2142
2143 slang_typeinfo_construct(&type);
2144 _slang_typeof_operation(A, oper, &type);
2145 isBool = (type.spec.type == SLANG_SPEC_BOOL);
2146 slang_typeinfo_destruct(&type);
2147 return isBool;
2148 }
2149
2150
2151 /**
2152 * Generate loop code using high-level IR_LOOP instruction
2153 */
2154 static slang_ir_node *
2155 _slang_gen_while(slang_assemble_ctx * A, const slang_operation *oper)
2156 {
2157 /*
2158 * LOOP:
2159 * BREAK if !expr (child[0])
2160 * body code (child[1])
2161 */
2162 slang_ir_node *prevLoop, *loop, *breakIf, *body;
2163 GLboolean isConst, constTrue;
2164
2165 /* type-check expression */
2166 if (!_slang_is_boolean(A, &oper->children[0])) {
2167 slang_info_log_error(A->log, "scalar/boolean expression expected for 'while'");
2168 return NULL;
2169 }
2170
2171 /* Check if loop condition is a constant */
2172 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
2173
2174 if (isConst && !constTrue) {
2175 /* loop is never executed! */
2176 return new_node0(IR_NOP);
2177 }
2178
2179 loop = new_loop(NULL);
2180
2181 /* save old, push new loop */
2182 prevLoop = A->CurLoop;
2183 A->CurLoop = loop;
2184
2185 if (isConst && constTrue) {
2186 /* while(nonzero constant), no conditional break */
2187 breakIf = NULL;
2188 }
2189 else {
2190 slang_ir_node *cond
2191 = new_cond(new_not(_slang_gen_operation(A, &oper->children[0])));
2192 breakIf = new_break_if_true(A->CurLoop, cond);
2193 }
2194 body = _slang_gen_operation(A, &oper->children[1]);
2195 loop->Children[0] = new_seq(breakIf, body);
2196
2197 /* Do infinite loop detection */
2198 /* loop->List is head of linked list of break/continue nodes */
2199 if (!loop->List && isConst && constTrue) {
2200 /* infinite loop detected */
2201 A->CurLoop = prevLoop; /* clean-up */
2202 slang_info_log_error(A->log, "Infinite loop detected!");
2203 return NULL;
2204 }
2205
2206 /* pop loop, restore prev */
2207 A->CurLoop = prevLoop;
2208
2209 return loop;
2210 }
2211
2212
2213 /**
2214 * Generate IR tree for a do-while loop using high-level LOOP, IF instructions.
2215 */
2216 static slang_ir_node *
2217 _slang_gen_do(slang_assemble_ctx * A, const slang_operation *oper)
2218 {
2219 /*
2220 * LOOP:
2221 * body code (child[0])
2222 * tail code:
2223 * BREAK if !expr (child[1])
2224 */
2225 slang_ir_node *prevLoop, *loop;
2226 GLboolean isConst, constTrue;
2227
2228 /* type-check expression */
2229 if (!_slang_is_boolean(A, &oper->children[1])) {
2230 slang_info_log_error(A->log, "scalar/boolean expression expected for 'do/while'");
2231 return NULL;
2232 }
2233
2234 loop = new_loop(NULL);
2235
2236 /* save old, push new loop */
2237 prevLoop = A->CurLoop;
2238 A->CurLoop = loop;
2239
2240 /* loop body: */
2241 loop->Children[0] = _slang_gen_operation(A, &oper->children[0]);
2242
2243 /* Check if loop condition is a constant */
2244 isConst = _slang_is_constant_cond(&oper->children[1], &constTrue);
2245 if (isConst && constTrue) {
2246 /* do { } while(1) ==> no conditional break */
2247 loop->Children[1] = NULL; /* no tail code */
2248 }
2249 else {
2250 slang_ir_node *cond
2251 = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
2252 loop->Children[1] = new_break_if_true(A->CurLoop, cond);
2253 }
2254
2255 /* XXX we should do infinite loop detection, as above */
2256
2257 /* pop loop, restore prev */
2258 A->CurLoop = prevLoop;
2259
2260 return loop;
2261 }
2262
2263
2264 /**
2265 * Generate for-loop using high-level IR_LOOP instruction.
2266 */
2267 static slang_ir_node *
2268 _slang_gen_for(slang_assemble_ctx * A, const slang_operation *oper)
2269 {
2270 /*
2271 * init code (child[0])
2272 * LOOP:
2273 * BREAK if !expr (child[1])
2274 * body code (child[3])
2275 * tail code:
2276 * incr code (child[2]) // XXX continue here
2277 */
2278 slang_ir_node *prevLoop, *loop, *cond, *breakIf, *body, *init, *incr;
2279
2280 init = _slang_gen_operation(A, &oper->children[0]);
2281 loop = new_loop(NULL);
2282
2283 /* save old, push new loop */
2284 prevLoop = A->CurLoop;
2285 A->CurLoop = loop;
2286
2287 cond = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
2288 breakIf = new_break_if_true(A->CurLoop, cond);
2289 body = _slang_gen_operation(A, &oper->children[3]);
2290 incr = _slang_gen_operation(A, &oper->children[2]);
2291
2292 loop->Children[0] = new_seq(breakIf, body);
2293 loop->Children[1] = incr; /* tail code */
2294
2295 /* pop loop, restore prev */
2296 A->CurLoop = prevLoop;
2297
2298 return new_seq(init, loop);
2299 }
2300
2301
2302 static slang_ir_node *
2303 _slang_gen_continue(slang_assemble_ctx * A, const slang_operation *oper)
2304 {
2305 slang_ir_node *n, *loopNode;
2306 assert(oper->type == SLANG_OPER_CONTINUE);
2307 loopNode = A->CurLoop;
2308 assert(loopNode);
2309 assert(loopNode->Opcode == IR_LOOP);
2310 n = new_node0(IR_CONT);
2311 if (n) {
2312 n->Parent = loopNode;
2313 /* insert this node at head of linked list */
2314 n->List = loopNode->List;
2315 loopNode->List = n;
2316 }
2317 return n;
2318 }
2319
2320
2321 /**
2322 * Determine if the given operation is of a specific type.
2323 */
2324 static GLboolean
2325 is_operation_type(const slang_operation *oper, slang_operation_type type)
2326 {
2327 if (oper->type == type)
2328 return GL_TRUE;
2329 else if ((oper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
2330 oper->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) &&
2331 oper->num_children == 1)
2332 return is_operation_type(&oper->children[0], type);
2333 else
2334 return GL_FALSE;
2335 }
2336
2337
2338 /**
2339 * Generate IR tree for an if/then/else conditional using high-level
2340 * IR_IF instruction.
2341 */
2342 static slang_ir_node *
2343 _slang_gen_if(slang_assemble_ctx * A, const slang_operation *oper)
2344 {
2345 /*
2346 * eval expr (child[0])
2347 * IF expr THEN
2348 * if-body code
2349 * ELSE
2350 * else-body code
2351 * ENDIF
2352 */
2353 const GLboolean haveElseClause = !_slang_is_noop(&oper->children[2]);
2354 slang_ir_node *ifNode, *cond, *ifBody, *elseBody;
2355 GLboolean isConst, constTrue;
2356
2357 /* type-check expression */
2358 if (!_slang_is_boolean(A, &oper->children[0])) {
2359 slang_info_log_error(A->log, "boolean expression expected for 'if'");
2360 return NULL;
2361 }
2362
2363 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2364 slang_info_log_error(A->log, "scalar/boolean expression expected for 'if'");
2365 return NULL;
2366 }
2367
2368 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
2369 if (isConst) {
2370 if (constTrue) {
2371 /* if (true) ... */
2372 return _slang_gen_operation(A, &oper->children[1]);
2373 }
2374 else {
2375 /* if (false) ... */
2376 return _slang_gen_operation(A, &oper->children[2]);
2377 }
2378 }
2379
2380 cond = _slang_gen_operation(A, &oper->children[0]);
2381 cond = new_cond(cond);
2382
2383 if (is_operation_type(&oper->children[1], SLANG_OPER_BREAK)
2384 && !haveElseClause) {
2385 /* Special case: generate a conditional break */
2386 ifBody = new_break_if_true(A->CurLoop, cond);
2387 return ifBody;
2388 }
2389 else if (is_operation_type(&oper->children[1], SLANG_OPER_CONTINUE)
2390 && !haveElseClause) {
2391 /* Special case: generate a conditional break */
2392 ifBody = new_cont_if_true(A->CurLoop, cond);
2393 return ifBody;
2394 }
2395 else {
2396 /* general case */
2397 ifBody = _slang_gen_operation(A, &oper->children[1]);
2398 if (haveElseClause)
2399 elseBody = _slang_gen_operation(A, &oper->children[2]);
2400 else
2401 elseBody = NULL;
2402 ifNode = new_if(cond, ifBody, elseBody);
2403 return ifNode;
2404 }
2405 }
2406
2407
2408
2409 static slang_ir_node *
2410 _slang_gen_not(slang_assemble_ctx * A, const slang_operation *oper)
2411 {
2412 slang_ir_node *n;
2413
2414 assert(oper->type == SLANG_OPER_NOT);
2415
2416 /* type-check expression */
2417 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2418 slang_info_log_error(A->log,
2419 "scalar/boolean expression expected for '!'");
2420 return NULL;
2421 }
2422
2423 n = _slang_gen_operation(A, &oper->children[0]);
2424 if (n)
2425 return new_not(n);
2426 else
2427 return NULL;
2428 }
2429
2430
2431 static slang_ir_node *
2432 _slang_gen_xor(slang_assemble_ctx * A, const slang_operation *oper)
2433 {
2434 slang_ir_node *n1, *n2;
2435
2436 assert(oper->type == SLANG_OPER_LOGICALXOR);
2437
2438 if (!_slang_is_scalar_or_boolean(A, &oper->children[0]) ||
2439 !_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2440 slang_info_log_error(A->log,
2441 "scalar/boolean expressions expected for '^^'");
2442 return NULL;
2443 }
2444
2445 n1 = _slang_gen_operation(A, &oper->children[0]);
2446 if (!n1)
2447 return NULL;
2448 n2 = _slang_gen_operation(A, &oper->children[1]);
2449 if (!n2)
2450 return NULL;
2451 return new_node2(IR_NOTEQUAL, n1, n2);
2452 }
2453
2454
2455 /**
2456 * Generate IR node for storage of a temporary of given size.
2457 */
2458 static slang_ir_node *
2459 _slang_gen_temporary(GLint size)
2460 {
2461 slang_ir_storage *store;
2462 slang_ir_node *n = NULL;
2463
2464 store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -2, size);
2465 if (store) {
2466 n = new_node0(IR_VAR_DECL);
2467 if (n) {
2468 n->Store = store;
2469 }
2470 else {
2471 _slang_free(store);
2472 }
2473 }
2474 return n;
2475 }
2476
2477
2478 /**
2479 * Generate IR node for allocating/declaring a variable.
2480 */
2481 static slang_ir_node *
2482 _slang_gen_var_decl(slang_assemble_ctx *A, slang_variable *var)
2483 {
2484 slang_ir_node *n;
2485
2486 /*assert(!var->declared);*/
2487 var->declared = GL_TRUE;
2488
2489 n = new_node0(IR_VAR_DECL);
2490 if (n) {
2491 _slang_attach_storage(n, var);
2492 assert(var->store);
2493 assert(n->Store == var->store);
2494 assert(n->Store);
2495 assert(n->Store->Index < 0);
2496
2497 if (is_sampler_type(&var->type)) {
2498 n->Store->File = PROGRAM_SAMPLER;
2499 }
2500 else {
2501 n->Store->File = PROGRAM_TEMPORARY;
2502 }
2503
2504 n->Store->Size = _slang_sizeof_type_specifier(&n->Var->type.specifier);
2505
2506 if (n->Store->Size <= 0) {
2507 slang_info_log_error(A->log, "invalid declaration for '%s'",
2508 (char*) var->a_name);
2509 return NULL;
2510 }
2511 #if 0
2512 printf("%s var %p %s store=%p index=%d size=%d\n",
2513 __FUNCTION__, (void *) var, (char *) var->a_name,
2514 (void *) n->Store, n->Store->Index, n->Store->Size);
2515 #endif
2516
2517 if (var->array_len > 0) {
2518 /* this is an array */
2519 /* cannot be const-qualified */
2520 if (var->type.qualifier == SLANG_QUAL_CONST) {
2521 slang_info_log_error(A->log, "array '%s' cannot be const",
2522 (char*) var->a_name);
2523 return NULL;
2524 }
2525 else {
2526 /* round up element size to mult of 4 */
2527 GLint sz = (n->Store->Size + 3) & ~3;
2528 /* mult by array size */
2529 sz *= var->array_len;
2530 n->Store->Size = sz;
2531 }
2532 }
2533
2534 assert(n->Store->Size > 0);
2535
2536 /* setup default swizzle for storing the variable */
2537 switch (n->Store->Size) {
2538 case 2:
2539 n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
2540 SWIZZLE_NIL, SWIZZLE_NIL);
2541 break;
2542 case 3:
2543 n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
2544 SWIZZLE_Z, SWIZZLE_NIL);
2545 break;
2546 default:
2547 /* Note that float-sized vars may be allocated in any x/y/z/w
2548 * slot, but that won't be determined until code emit time.
2549 */
2550 n->Store->Swizzle = SWIZZLE_NOOP;
2551 }
2552 }
2553 return n;
2554 }
2555
2556
2557 /**
2558 * Generate code for a selection expression: b ? x : y
2559 * XXX In some cases we could implement a selection expression
2560 * with an LRP instruction (use the boolean as the interpolant).
2561 * Otherwise, we use an IF/ELSE/ENDIF construct.
2562 */
2563 static slang_ir_node *
2564 _slang_gen_select(slang_assemble_ctx *A, slang_operation *oper)
2565 {
2566 slang_ir_node *cond, *ifNode, *trueExpr, *falseExpr, *trueNode, *falseNode;
2567 slang_ir_node *tmpDecl, *tmpVar, *tree;
2568 slang_typeinfo type0, type1, type2;
2569 int size, isBool, isEqual;
2570
2571 assert(oper->type == SLANG_OPER_SELECT);
2572 assert(oper->num_children == 3);
2573
2574 /* type of children[0] must be boolean */
2575 slang_typeinfo_construct(&type0);
2576 _slang_typeof_operation(A, &oper->children[0], &type0);
2577 isBool = (type0.spec.type == SLANG_SPEC_BOOL);
2578 slang_typeinfo_destruct(&type0);
2579 if (!isBool) {
2580 slang_info_log_error(A->log, "selector type is not boolean");
2581 return NULL;
2582 }
2583
2584 slang_typeinfo_construct(&type1);
2585 slang_typeinfo_construct(&type2);
2586 _slang_typeof_operation(A, &oper->children[1], &type1);
2587 _slang_typeof_operation(A, &oper->children[2], &type2);
2588 isEqual = slang_type_specifier_equal(&type1.spec, &type2.spec);
2589 slang_typeinfo_destruct(&type1);
2590 slang_typeinfo_destruct(&type2);
2591 if (!isEqual) {
2592 slang_info_log_error(A->log, "incompatible types for ?: operator");
2593 return NULL;
2594 }
2595
2596 /* size of x or y's type */
2597 size = _slang_sizeof_type_specifier(&type1.spec);
2598 assert(size > 0);
2599
2600 /* temporary var */
2601 tmpDecl = _slang_gen_temporary(size);
2602
2603 /* the condition (child 0) */
2604 cond = _slang_gen_operation(A, &oper->children[0]);
2605 cond = new_cond(cond);
2606
2607 /* if-true body (child 1) */
2608 tmpVar = new_node0(IR_VAR);
2609 tmpVar->Store = tmpDecl->Store;
2610 trueExpr = _slang_gen_operation(A, &oper->children[1]);
2611 trueNode = new_node2(IR_COPY, tmpVar, trueExpr);
2612
2613 /* if-false body (child 2) */
2614 tmpVar = new_node0(IR_VAR);
2615 tmpVar->Store = tmpDecl->Store;
2616 falseExpr = _slang_gen_operation(A, &oper->children[2]);
2617 falseNode = new_node2(IR_COPY, tmpVar, falseExpr);
2618
2619 ifNode = new_if(cond, trueNode, falseNode);
2620
2621 /* tmp var value */
2622 tmpVar = new_node0(IR_VAR);
2623 tmpVar->Store = tmpDecl->Store;
2624
2625 tree = new_seq(ifNode, tmpVar);
2626 tree = new_seq(tmpDecl, tree);
2627
2628 /*_slang_print_ir_tree(tree, 10);*/
2629 return tree;
2630 }
2631
2632
2633 /**
2634 * Generate code for &&.
2635 */
2636 static slang_ir_node *
2637 _slang_gen_logical_and(slang_assemble_ctx *A, slang_operation *oper)
2638 {
2639 /* rewrite "a && b" as "a ? b : false" */
2640 slang_operation *select;
2641 slang_ir_node *n;
2642
2643 select = slang_operation_new(1);
2644 select->type = SLANG_OPER_SELECT;
2645 select->num_children = 3;
2646 select->children = slang_operation_new(3);
2647
2648 slang_operation_copy(&select->children[0], &oper->children[0]);
2649 slang_operation_copy(&select->children[1], &oper->children[1]);
2650 select->children[2].type = SLANG_OPER_LITERAL_BOOL;
2651 ASSIGN_4V(select->children[2].literal, 0, 0, 0, 0); /* false */
2652 select->children[2].literal_size = 1;
2653
2654 n = _slang_gen_select(A, select);
2655 return n;
2656 }
2657
2658
2659 /**
2660 * Generate code for ||.
2661 */
2662 static slang_ir_node *
2663 _slang_gen_logical_or(slang_assemble_ctx *A, slang_operation *oper)
2664 {
2665 /* rewrite "a || b" as "a ? true : b" */
2666 slang_operation *select;
2667 slang_ir_node *n;
2668
2669 select = slang_operation_new(1);
2670 select->type = SLANG_OPER_SELECT;
2671 select->num_children = 3;
2672 select->children = slang_operation_new(3);
2673
2674 slang_operation_copy(&select->children[0], &oper->children[0]);
2675 select->children[1].type = SLANG_OPER_LITERAL_BOOL;
2676 ASSIGN_4V(select->children[1].literal, 1, 1, 1, 1); /* true */
2677 select->children[1].literal_size = 1;
2678 slang_operation_copy(&select->children[2], &oper->children[1]);
2679
2680 n = _slang_gen_select(A, select);
2681 return n;
2682 }
2683
2684
2685 /**
2686 * Generate IR tree for a return statement.
2687 */
2688 static slang_ir_node *
2689 _slang_gen_return(slang_assemble_ctx * A, slang_operation *oper)
2690 {
2691 const GLboolean haveReturnValue
2692 = (oper->num_children == 1 && oper->children[0].type != SLANG_OPER_VOID);
2693
2694 /* error checking */
2695 assert(A->CurFunction);
2696 if (haveReturnValue &&
2697 A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
2698 slang_info_log_error(A->log, "illegal return expression");
2699 return NULL;
2700 }
2701 else if (!haveReturnValue &&
2702 A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
2703 slang_info_log_error(A->log, "return statement requires an expression");
2704 return NULL;
2705 }
2706
2707 if (!haveReturnValue) {
2708 return new_return(A->curFuncEndLabel);
2709 }
2710 else {
2711 /*
2712 * Convert from:
2713 * return expr;
2714 * To:
2715 * __retVal = expr;
2716 * return; // goto __endOfFunction
2717 */
2718 slang_operation *assign;
2719 slang_atom a_retVal;
2720 slang_ir_node *n;
2721
2722 a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
2723 assert(a_retVal);
2724
2725 #if 1 /* DEBUG */
2726 {
2727 slang_variable *v
2728 = _slang_locate_variable(oper->locals, a_retVal, GL_TRUE);
2729 if (!v) {
2730 /* trying to return a value in a void-valued function */
2731 return NULL;
2732 }
2733 }
2734 #endif
2735
2736 assign = slang_operation_new(1);
2737 assign->type = SLANG_OPER_ASSIGN;
2738 assign->num_children = 2;
2739 assign->children = slang_operation_new(2);
2740 /* lhs (__retVal) */
2741 assign->children[0].type = SLANG_OPER_IDENTIFIER;
2742 assign->children[0].a_id = a_retVal;
2743 assign->children[0].locals->outer_scope = assign->locals;
2744 /* rhs (expr) */
2745 /* XXX we might be able to avoid this copy someday */
2746 slang_operation_copy(&assign->children[1], &oper->children[0]);
2747
2748 /* assemble the new code */
2749 n = new_seq(_slang_gen_operation(A, assign),
2750 new_return(A->curFuncEndLabel));
2751
2752 slang_operation_delete(assign);
2753 return n;
2754 }
2755 }
2756
2757
2758 /**
2759 * Determine if the given operation/expression is const-valued.
2760 */
2761 static GLboolean
2762 _slang_is_constant_expr(const slang_operation *oper)
2763 {
2764 slang_variable *var;
2765 GLuint i;
2766
2767 switch (oper->type) {
2768 case SLANG_OPER_IDENTIFIER:
2769 var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
2770 if (var && var->type.qualifier == SLANG_QUAL_CONST)
2771 return GL_TRUE;
2772 return GL_FALSE;
2773 default:
2774 for (i = 0; i < oper->num_children; i++) {
2775 if (!_slang_is_constant_expr(&oper->children[i]))
2776 return GL_FALSE;
2777 }
2778 return GL_TRUE;
2779 }
2780 }
2781
2782
2783 /**
2784 * Check if an assignment of type t1 to t0 is legal.
2785 * XXX more cases needed.
2786 */
2787 static GLboolean
2788 _slang_assignment_compatible(slang_assemble_ctx *A,
2789 slang_operation *op0,
2790 slang_operation *op1)
2791 {
2792 slang_typeinfo t0, t1;
2793 GLuint sz0, sz1;
2794
2795 if (op0->type == SLANG_OPER_POSTINCREMENT ||
2796 op0->type == SLANG_OPER_POSTDECREMENT) {
2797 return GL_FALSE;
2798 }
2799
2800 slang_typeinfo_construct(&t0);
2801 _slang_typeof_operation(A, op0, &t0);
2802
2803 slang_typeinfo_construct(&t1);
2804 _slang_typeof_operation(A, op1, &t1);
2805
2806 sz0 = _slang_sizeof_type_specifier(&t0.spec);
2807 sz1 = _slang_sizeof_type_specifier(&t1.spec);
2808
2809 #if 1
2810 if (sz0 != sz1) {
2811 /*printf("assignment size mismatch %u vs %u\n", sz0, sz1);*/
2812 return GL_FALSE;
2813 }
2814 #endif
2815
2816 if (t0.spec.type == SLANG_SPEC_STRUCT &&
2817 t1.spec.type == SLANG_SPEC_STRUCT &&
2818 t0.spec._struct->a_name != t1.spec._struct->a_name)
2819 return GL_FALSE;
2820
2821 if (t0.spec.type == SLANG_SPEC_FLOAT &&
2822 t1.spec.type == SLANG_SPEC_BOOL)
2823 return GL_FALSE;
2824
2825 #if 0 /* not used just yet - causes problems elsewhere */
2826 if (t0.spec.type == SLANG_SPEC_INT &&
2827 t1.spec.type == SLANG_SPEC_FLOAT)
2828 return GL_FALSE;
2829 #endif
2830
2831 if (t0.spec.type == SLANG_SPEC_BOOL &&
2832 t1.spec.type == SLANG_SPEC_FLOAT)
2833 return GL_FALSE;
2834
2835 if (t0.spec.type == SLANG_SPEC_BOOL &&
2836 t1.spec.type == SLANG_SPEC_INT)
2837 return GL_FALSE;
2838
2839 return GL_TRUE;
2840 }
2841
2842
2843
2844 /**
2845 * Generate IR tree for a variable declaration.
2846 */
2847 static slang_ir_node *
2848 _slang_gen_declaration(slang_assemble_ctx *A, slang_operation *oper)
2849 {
2850 slang_ir_node *n;
2851 slang_ir_node *varDecl;
2852 slang_variable *v;
2853 const char *varName = (char *) oper->a_id;
2854 slang_operation *initializer;
2855
2856 assert(oper->type == SLANG_OPER_VARIABLE_DECL);
2857 assert(oper->num_children <= 1);
2858
2859 v = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
2860 if (!v)
2861 return NULL; /* "shouldn't happen" */
2862
2863 if (v->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
2864 v->type.qualifier == SLANG_QUAL_VARYING ||
2865 v->type.qualifier == SLANG_QUAL_UNIFORM) {
2866 /* can't declare attribute/uniform vars inside functions */
2867 slang_info_log_error(A->log,
2868 "local variable '%s' cannot be an attribute/uniform/varying",
2869 varName);
2870 return NULL;
2871 }
2872
2873 #if 0
2874 if (v->declared) {
2875 slang_info_log_error(A->log, "variable '%s' redeclared", varName);
2876 return NULL;
2877 }
2878 #endif
2879
2880 varDecl = _slang_gen_var_decl(A, v);
2881 if (!varDecl)
2882 return NULL;
2883
2884 /* check if the var has an initializer */
2885 if (oper->num_children > 0) {
2886 assert(oper->num_children == 1);
2887 initializer = &oper->children[0];
2888 }
2889 else if (v->initializer) {
2890 initializer = v->initializer;
2891 }
2892 else {
2893 initializer = NULL;
2894 }
2895
2896 if (v->type.qualifier == SLANG_QUAL_CONST && !initializer) {
2897 slang_info_log_error(A->log,
2898 "const-qualified variable '%s' requires initializer",
2899 varName);
2900 return NULL;
2901 }
2902
2903
2904 if (initializer) {
2905 slang_ir_node *var, *init;
2906
2907 /* type check/compare var and initializer */
2908 if (!_slang_assignment_compatible(A, oper, initializer)) {
2909 slang_info_log_error(A->log, "incompatible types in assignment");
2910 return NULL;
2911 }
2912
2913 var = new_var(A, oper, oper->a_id);
2914 if (!var) {
2915 slang_info_log_error(A->log, "undefined variable '%s'", varName);
2916 return NULL;
2917 }
2918
2919 if (v->type.qualifier == SLANG_QUAL_CONST) {
2920 /* if the variable is const, the initializer must be a const
2921 * expression as well.
2922 */
2923 #if 0
2924 if (!_slang_is_constant_expr(initializer)) {
2925 slang_info_log_error(A->log,
2926 "initializer for %s not constant", varName);
2927 return NULL;
2928 }
2929 #endif
2930 }
2931
2932 _slang_simplify(initializer, &A->space, A->atoms);
2933
2934 init = _slang_gen_operation(A, initializer);
2935 if (!init)
2936 return NULL;
2937
2938 /*assert(init->Store);*/
2939
2940 /* XXX remove this when type checking is added above */
2941 if (init->Store && var->Store->Size != init->Store->Size) {
2942 slang_info_log_error(A->log, "invalid assignment (wrong types)");
2943 return NULL;
2944 }
2945
2946 n = new_node2(IR_COPY, var, init);
2947 n = new_seq(varDecl, n);
2948 }
2949 else {
2950 n = varDecl;
2951 }
2952
2953 return n;
2954 }
2955
2956
2957 /**
2958 * Generate IR tree for a variable (such as in an expression).
2959 */
2960 static slang_ir_node *
2961 _slang_gen_variable(slang_assemble_ctx * A, slang_operation *oper)
2962 {
2963 /* If there's a variable associated with this oper (from inlining)
2964 * use it. Otherwise, use the oper's var id.
2965 */
2966 slang_atom aVar = oper->var ? oper->var->a_name : oper->a_id;
2967 slang_ir_node *n = new_var(A, oper, aVar);
2968 if (!n) {
2969 slang_info_log_error(A->log, "undefined variable '%s'", (char *) aVar);
2970 return NULL;
2971 }
2972 return n;
2973 }
2974
2975
2976
2977 /**
2978 * Return the number of components actually named by the swizzle.
2979 * Recall that swizzles may have undefined/don't-care values.
2980 */
2981 static GLuint
2982 swizzle_size(GLuint swizzle)
2983 {
2984 GLuint size = 0, i;
2985 for (i = 0; i < 4; i++) {
2986 GLuint swz = GET_SWZ(swizzle, i);
2987 size += (swz >= 0 && swz <= 3);
2988 }
2989 return size;
2990 }
2991
2992
2993 static slang_ir_node *
2994 _slang_gen_swizzle(slang_ir_node *child, GLuint swizzle)
2995 {
2996 slang_ir_node *n = new_node1(IR_SWIZZLE, child);
2997 assert(child);
2998 if (n) {
2999 assert(!n->Store);
3000 n->Store = _slang_new_ir_storage_relative(0,
3001 swizzle_size(swizzle),
3002 child->Store);
3003 n->Store->Swizzle = swizzle;
3004 }
3005 return n;
3006 }
3007
3008
3009 static GLboolean
3010 is_store_writable(const slang_assemble_ctx *A, const slang_ir_storage *store)
3011 {
3012 while (store->Parent)
3013 store = store->Parent;
3014
3015 if (!(store->File == PROGRAM_OUTPUT ||
3016 store->File == PROGRAM_TEMPORARY ||
3017 (store->File == PROGRAM_VARYING &&
3018 A->program->Target == GL_VERTEX_PROGRAM_ARB))) {
3019 return GL_FALSE;
3020 }
3021 else {
3022 return GL_TRUE;
3023 }
3024 }
3025
3026
3027 /**
3028 * Generate IR tree for an assignment (=).
3029 */
3030 static slang_ir_node *
3031 _slang_gen_assignment(slang_assemble_ctx * A, slang_operation *oper)
3032 {
3033 if (oper->children[0].type == SLANG_OPER_IDENTIFIER) {
3034 /* Check that var is writeable */
3035 slang_variable *var
3036 = _slang_locate_variable(oper->children[0].locals,
3037 oper->children[0].a_id, GL_TRUE);
3038 if (!var) {
3039 slang_info_log_error(A->log, "undefined variable '%s'",
3040 (char *) oper->children[0].a_id);
3041 return NULL;
3042 }
3043 if (var->type.qualifier == SLANG_QUAL_CONST ||
3044 var->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
3045 var->type.qualifier == SLANG_QUAL_UNIFORM ||
3046 (var->type.qualifier == SLANG_QUAL_VARYING &&
3047 A->program->Target == GL_FRAGMENT_PROGRAM_ARB)) {
3048 slang_info_log_error(A->log,
3049 "illegal assignment to read-only variable '%s'",
3050 (char *) oper->children[0].a_id);
3051 return NULL;
3052 }
3053 }
3054
3055 if (oper->children[0].type == SLANG_OPER_IDENTIFIER &&
3056 oper->children[1].type == SLANG_OPER_CALL) {
3057 /* Special case of: x = f(a, b)
3058 * Replace with f(a, b, x) (where x == hidden __retVal out param)
3059 *
3060 * XXX this could be even more effective if we could accomodate
3061 * cases such as "v.x = f();" - would help with typical vertex
3062 * transformation.
3063 */
3064 slang_ir_node *n;
3065 n = _slang_gen_function_call_name(A,
3066 (const char *) oper->children[1].a_id,
3067 &oper->children[1], &oper->children[0]);
3068 return n;
3069 }
3070 else {
3071 slang_ir_node *n, *lhs, *rhs;
3072
3073 /* lhs and rhs type checking */
3074 if (!_slang_assignment_compatible(A,
3075 &oper->children[0],
3076 &oper->children[1])) {
3077 slang_info_log_error(A->log, "incompatible types in assignment");
3078 return NULL;
3079 }
3080
3081 lhs = _slang_gen_operation(A, &oper->children[0]);
3082 if (!lhs) {
3083 return NULL;
3084 }
3085
3086 if (!lhs->Store) {
3087 slang_info_log_error(A->log,
3088 "invalid left hand side for assignment");
3089 return NULL;
3090 }
3091
3092 /* check that lhs is writable */
3093 if (!is_store_writable(A, lhs->Store)) {
3094 slang_info_log_error(A->log,
3095 "illegal assignment to read-only l-value");
3096 return NULL;
3097 }
3098
3099 rhs = _slang_gen_operation(A, &oper->children[1]);
3100 if (lhs && rhs) {
3101 /* convert lhs swizzle into writemask */
3102 GLuint writemask, newSwizzle;
3103 if (!swizzle_to_writemask(A, lhs->Store->Swizzle,
3104 &writemask, &newSwizzle)) {
3105 /* Non-simple writemask, need to swizzle right hand side in
3106 * order to put components into the right place.
3107 */
3108 rhs = _slang_gen_swizzle(rhs, newSwizzle);
3109 }
3110 n = new_node2(IR_COPY, lhs, rhs);
3111 return n;
3112 }
3113 else {
3114 return NULL;
3115 }
3116 }
3117 }
3118
3119
3120 /**
3121 * Generate IR tree for referencing a field in a struct (or basic vector type)
3122 */
3123 static slang_ir_node *
3124 _slang_gen_struct_field(slang_assemble_ctx * A, slang_operation *oper)
3125 {
3126 slang_typeinfo ti;
3127
3128 /* type of struct */
3129 slang_typeinfo_construct(&ti);
3130 _slang_typeof_operation(A, &oper->children[0], &ti);
3131
3132 if (_slang_type_is_vector(ti.spec.type)) {
3133 /* the field should be a swizzle */
3134 const GLuint rows = _slang_type_dim(ti.spec.type);
3135 slang_swizzle swz;
3136 slang_ir_node *n;
3137 GLuint swizzle;
3138 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
3139 slang_info_log_error(A->log, "Bad swizzle");
3140 return NULL;
3141 }
3142 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
3143 swz.swizzle[1],
3144 swz.swizzle[2],
3145 swz.swizzle[3]);
3146
3147 n = _slang_gen_operation(A, &oper->children[0]);
3148 /* create new parent node with swizzle */
3149 if (n)
3150 n = _slang_gen_swizzle(n, swizzle);
3151 return n;
3152 }
3153 else if ( ti.spec.type == SLANG_SPEC_FLOAT
3154 || ti.spec.type == SLANG_SPEC_INT
3155 || ti.spec.type == SLANG_SPEC_BOOL) {
3156 const GLuint rows = 1;
3157 slang_swizzle swz;
3158 slang_ir_node *n;
3159 GLuint swizzle;
3160 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
3161 slang_info_log_error(A->log, "Bad swizzle");
3162 }
3163 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
3164 swz.swizzle[1],
3165 swz.swizzle[2],
3166 swz.swizzle[3]);
3167 n = _slang_gen_operation(A, &oper->children[0]);
3168 /* create new parent node with swizzle */
3169 n = _slang_gen_swizzle(n, swizzle);
3170 return n;
3171 }
3172 else {
3173 /* the field is a structure member (base.field) */
3174 /* oper->children[0] is the base */
3175 /* oper->a_id is the field name */
3176 slang_ir_node *base, *n;
3177 slang_typeinfo field_ti;
3178 GLint fieldSize, fieldOffset = -1;
3179
3180 /* type of field */
3181 slang_typeinfo_construct(&field_ti);
3182 _slang_typeof_operation(A, oper, &field_ti);
3183
3184 fieldSize = _slang_sizeof_type_specifier(&field_ti.spec);
3185 if (fieldSize > 0)
3186 fieldOffset = _slang_field_offset(&ti.spec, oper->a_id);
3187
3188 if (fieldSize == 0 || fieldOffset < 0) {
3189 const char *structName;
3190 if (ti.spec._struct)
3191 structName = (char *) ti.spec._struct->a_name;
3192 else
3193 structName = "unknown";
3194 slang_info_log_error(A->log,
3195 "\"%s\" is not a member of struct \"%s\"",
3196 (char *) oper->a_id, structName);
3197 return NULL;
3198 }
3199 assert(fieldSize >= 0);
3200
3201 base = _slang_gen_operation(A, &oper->children[0]);
3202 if (!base) {
3203 /* error msg should have already been logged */
3204 return NULL;
3205 }
3206
3207 n = new_node1(IR_FIELD, base);
3208 if (!n)
3209 return NULL;
3210
3211 n->Field = (char *) oper->a_id;
3212
3213 /* Store the field's offset in storage->Index */
3214 n->Store = _slang_new_ir_storage(base->Store->File,
3215 fieldOffset,
3216 fieldSize);
3217
3218 return n;
3219 }
3220 }
3221
3222
3223 /**
3224 * Gen code for array indexing.
3225 */
3226 static slang_ir_node *
3227 _slang_gen_array_element(slang_assemble_ctx * A, slang_operation *oper)
3228 {
3229 slang_typeinfo array_ti;
3230
3231 /* get array's type info */
3232 slang_typeinfo_construct(&array_ti);
3233 _slang_typeof_operation(A, &oper->children[0], &array_ti);
3234
3235 if (_slang_type_is_vector(array_ti.spec.type)) {
3236 /* indexing a simple vector type: "vec4 v; v[0]=p;" */
3237 /* translate the index into a swizzle/writemask: "v.x=p" */
3238 const GLuint max = _slang_type_dim(array_ti.spec.type);
3239 GLint index;
3240 slang_ir_node *n;
3241
3242 index = (GLint) oper->children[1].literal[0];
3243 if (oper->children[1].type != SLANG_OPER_LITERAL_INT ||
3244 index >= (GLint) max) {
3245 slang_info_log_error(A->log, "Invalid array index for vector type");
3246 return NULL;
3247 }
3248
3249 n = _slang_gen_operation(A, &oper->children[0]);
3250 if (n) {
3251 /* use swizzle to access the element */
3252 GLuint swizzle = MAKE_SWIZZLE4(SWIZZLE_X + index,
3253 SWIZZLE_NIL,
3254 SWIZZLE_NIL,
3255 SWIZZLE_NIL);
3256 n = _slang_gen_swizzle(n, swizzle);
3257 }
3258 assert(n->Store);
3259 return n;
3260 }
3261 else {
3262 /* conventional array */
3263 slang_typeinfo elem_ti;
3264 slang_ir_node *elem, *array, *index;
3265 GLint elemSize, arrayLen;
3266
3267 /* size of array element */
3268 slang_typeinfo_construct(&elem_ti);
3269 _slang_typeof_operation(A, oper, &elem_ti);
3270 elemSize = _slang_sizeof_type_specifier(&elem_ti.spec);
3271
3272 if (_slang_type_is_matrix(array_ti.spec.type))
3273 arrayLen = _slang_type_dim(array_ti.spec.type);
3274 else
3275 arrayLen = array_ti.array_len;
3276
3277 slang_typeinfo_destruct(&array_ti);
3278 slang_typeinfo_destruct(&elem_ti);
3279
3280 if (elemSize <= 0) {
3281 /* unknown var or type */
3282 slang_info_log_error(A->log, "Undefined variable or type");
3283 return NULL;
3284 }
3285
3286 array = _slang_gen_operation(A, &oper->children[0]);
3287 index = _slang_gen_operation(A, &oper->children[1]);
3288 if (array && index) {
3289 /* bounds check */
3290 GLint constIndex = -1;
3291 if (index->Opcode == IR_FLOAT) {
3292 constIndex = (int) index->Value[0];
3293 if (constIndex < 0 || constIndex >= arrayLen) {
3294 slang_info_log_error(A->log,
3295 "Array index out of bounds (index=%d size=%d)",
3296 constIndex, arrayLen);
3297 _slang_free_ir_tree(array);
3298 _slang_free_ir_tree(index);
3299 return NULL;
3300 }
3301 }
3302
3303 if (!array->Store) {
3304 slang_info_log_error(A->log, "Invalid array");
3305 return NULL;
3306 }
3307
3308 elem = new_node2(IR_ELEMENT, array, index);
3309
3310 /* The storage info here will be updated during code emit */
3311 elem->Store = _slang_new_ir_storage(array->Store->File,
3312 array->Store->Index,
3313 elemSize);
3314
3315 return elem;
3316 }
3317 else {
3318 _slang_free_ir_tree(array);
3319 _slang_free_ir_tree(index);
3320 return NULL;
3321 }
3322 }
3323 }
3324
3325
3326 static slang_ir_node *
3327 _slang_gen_compare(slang_assemble_ctx *A, slang_operation *oper,
3328 slang_ir_opcode opcode)
3329 {
3330 slang_typeinfo t0, t1;
3331 slang_ir_node *n;
3332
3333 slang_typeinfo_construct(&t0);
3334 _slang_typeof_operation(A, &oper->children[0], &t0);
3335
3336 slang_typeinfo_construct(&t1);
3337 _slang_typeof_operation(A, &oper->children[0], &t1);
3338
3339 if (t0.spec.type == SLANG_SPEC_ARRAY ||
3340 t1.spec.type == SLANG_SPEC_ARRAY) {
3341 slang_info_log_error(A->log, "Illegal array comparison");
3342 return NULL;
3343 }
3344
3345 if (oper->type != SLANG_OPER_EQUAL &&
3346 oper->type != SLANG_OPER_NOTEQUAL) {
3347 /* <, <=, >, >= can only be used with scalars */
3348 if ((t0.spec.type != SLANG_SPEC_INT &&
3349 t0.spec.type != SLANG_SPEC_FLOAT) ||
3350 (t1.spec.type != SLANG_SPEC_INT &&
3351 t1.spec.type != SLANG_SPEC_FLOAT)) {
3352 slang_info_log_error(A->log, "Incompatible type(s) for inequality operator");
3353 return NULL;
3354 }
3355 }
3356
3357 n = new_node2(opcode,
3358 _slang_gen_operation(A, &oper->children[0]),
3359 _slang_gen_operation(A, &oper->children[1]));
3360
3361 /* result is a bool (size 1) */
3362 n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, 1);
3363
3364 return n;
3365 }
3366
3367
3368 #if 0
3369 static void
3370 print_vars(slang_variable_scope *s)
3371 {
3372 int i;
3373 printf("vars: ");
3374 for (i = 0; i < s->num_variables; i++) {
3375 printf("%s %d, \n",
3376 (char*) s->variables[i]->a_name,
3377 s->variables[i]->declared);
3378 }
3379
3380 printf("\n");
3381 }
3382 #endif
3383
3384
3385 #if 0
3386 static void
3387 _slang_undeclare_vars(slang_variable_scope *locals)
3388 {
3389 if (locals->num_variables > 0) {
3390 int i;
3391 for (i = 0; i < locals->num_variables; i++) {
3392 slang_variable *v = locals->variables[i];
3393 printf("undeclare %s at %p\n", (char*) v->a_name, v);
3394 v->declared = GL_FALSE;
3395 }
3396 }
3397 }
3398 #endif
3399
3400
3401 /**
3402 * Generate IR tree for a slang_operation (AST node)
3403 */
3404 static slang_ir_node *
3405 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper)
3406 {
3407 switch (oper->type) {
3408 case SLANG_OPER_BLOCK_NEW_SCOPE:
3409 {
3410 slang_ir_node *n;
3411
3412 _slang_push_var_table(A->vartable);
3413
3414 oper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE; /* temp change */
3415 n = _slang_gen_operation(A, oper);
3416 oper->type = SLANG_OPER_BLOCK_NEW_SCOPE; /* restore */
3417
3418 _slang_pop_var_table(A->vartable);
3419
3420 /*_slang_undeclare_vars(oper->locals);*/
3421 /*print_vars(oper->locals);*/
3422
3423 if (n)
3424 n = new_node1(IR_SCOPE, n);
3425 return n;
3426 }
3427 break;
3428
3429 case SLANG_OPER_BLOCK_NO_NEW_SCOPE:
3430 /* list of operations */
3431 if (oper->num_children > 0)
3432 {
3433 slang_ir_node *n, *tree = NULL;
3434 GLuint i;
3435
3436 for (i = 0; i < oper->num_children; i++) {
3437 n = _slang_gen_operation(A, &oper->children[i]);
3438 if (!n) {
3439 _slang_free_ir_tree(tree);
3440 return NULL; /* error must have occured */
3441 }
3442 tree = new_seq(tree, n);
3443 }
3444
3445 return tree;
3446 }
3447 else {
3448 return new_node0(IR_NOP);
3449 }
3450
3451 case SLANG_OPER_EXPRESSION:
3452 return _slang_gen_operation(A, &oper->children[0]);
3453
3454 case SLANG_OPER_FOR:
3455 return _slang_gen_for(A, oper);
3456 case SLANG_OPER_DO:
3457 return _slang_gen_do(A, oper);
3458 case SLANG_OPER_WHILE:
3459 return _slang_gen_while(A, oper);
3460 case SLANG_OPER_BREAK:
3461 if (!A->CurLoop) {
3462 slang_info_log_error(A->log, "'break' not in loop");
3463 return NULL;
3464 }
3465 return new_break(A->CurLoop);
3466 case SLANG_OPER_CONTINUE:
3467 if (!A->CurLoop) {
3468 slang_info_log_error(A->log, "'continue' not in loop");
3469 return NULL;
3470 }
3471 return _slang_gen_continue(A, oper);
3472 case SLANG_OPER_DISCARD:
3473 return new_node0(IR_KILL);
3474
3475 case SLANG_OPER_EQUAL:
3476 return _slang_gen_compare(A, oper, IR_EQUAL);
3477 case SLANG_OPER_NOTEQUAL:
3478 return _slang_gen_compare(A, oper, IR_NOTEQUAL);
3479 case SLANG_OPER_GREATER:
3480 return _slang_gen_compare(A, oper, IR_SGT);
3481 case SLANG_OPER_LESS:
3482 return _slang_gen_compare(A, oper, IR_SLT);
3483 case SLANG_OPER_GREATEREQUAL:
3484 return _slang_gen_compare(A, oper, IR_SGE);
3485 case SLANG_OPER_LESSEQUAL:
3486 return _slang_gen_compare(A, oper, IR_SLE);
3487 case SLANG_OPER_ADD:
3488 {
3489 slang_ir_node *n;
3490 assert(oper->num_children == 2);
3491 n = _slang_gen_function_call_name(A, "+", oper, NULL);
3492 return n;
3493 }
3494 case SLANG_OPER_SUBTRACT:
3495 {
3496 slang_ir_node *n;
3497 assert(oper->num_children == 2);
3498 n = _slang_gen_function_call_name(A, "-", oper, NULL);
3499 return n;
3500 }
3501 case SLANG_OPER_MULTIPLY:
3502 {
3503 slang_ir_node *n;
3504 assert(oper->num_children == 2);
3505 n = _slang_gen_function_call_name(A, "*", oper, NULL);
3506 return n;
3507 }
3508 case SLANG_OPER_DIVIDE:
3509 {
3510 slang_ir_node *n;
3511 assert(oper->num_children == 2);
3512 n = _slang_gen_function_call_name(A, "/", oper, NULL);
3513 return n;
3514 }
3515 case SLANG_OPER_MINUS:
3516 {
3517 slang_ir_node *n;
3518 assert(oper->num_children == 1);
3519 n = _slang_gen_function_call_name(A, "-", oper, NULL);
3520 return n;
3521 }
3522 case SLANG_OPER_PLUS:
3523 /* +expr --> do nothing */
3524 return _slang_gen_operation(A, &oper->children[0]);
3525 case SLANG_OPER_VARIABLE_DECL:
3526 return _slang_gen_declaration(A, oper);
3527 case SLANG_OPER_ASSIGN:
3528 return _slang_gen_assignment(A, oper);
3529 case SLANG_OPER_ADDASSIGN:
3530 {
3531 slang_ir_node *n;
3532 assert(oper->num_children == 2);
3533 n = _slang_gen_function_call_name(A, "+=", oper, NULL);
3534 return n;
3535 }
3536 case SLANG_OPER_SUBASSIGN:
3537 {
3538 slang_ir_node *n;
3539 assert(oper->num_children == 2);
3540 n = _slang_gen_function_call_name(A, "-=", oper, NULL);
3541 return n;
3542 }
3543 break;
3544 case SLANG_OPER_MULASSIGN:
3545 {
3546 slang_ir_node *n;
3547 assert(oper->num_children == 2);
3548 n = _slang_gen_function_call_name(A, "*=", oper, NULL);
3549 return n;
3550 }
3551 case SLANG_OPER_DIVASSIGN:
3552 {
3553 slang_ir_node *n;
3554 assert(oper->num_children == 2);
3555 n = _slang_gen_function_call_name(A, "/=", oper, NULL);
3556 return n;
3557 }
3558 case SLANG_OPER_LOGICALAND:
3559 {
3560 slang_ir_node *n;
3561 assert(oper->num_children == 2);
3562 n = _slang_gen_logical_and(A, oper);
3563 return n;
3564 }
3565 case SLANG_OPER_LOGICALOR:
3566 {
3567 slang_ir_node *n;
3568 assert(oper->num_children == 2);
3569 n = _slang_gen_logical_or(A, oper);
3570 return n;
3571 }
3572 case SLANG_OPER_LOGICALXOR:
3573 return _slang_gen_xor(A, oper);
3574 case SLANG_OPER_NOT:
3575 return _slang_gen_not(A, oper);
3576 case SLANG_OPER_SELECT: /* b ? x : y */
3577 {
3578 slang_ir_node *n;
3579 assert(oper->num_children == 3);
3580 n = _slang_gen_select(A, oper);
3581 return n;
3582 }
3583
3584 case SLANG_OPER_ASM:
3585 return _slang_gen_asm(A, oper, NULL);
3586 case SLANG_OPER_CALL:
3587 return _slang_gen_function_call_name(A, (const char *) oper->a_id,
3588 oper, NULL);
3589 case SLANG_OPER_METHOD:
3590 return _slang_gen_method_call(A, oper);
3591 case SLANG_OPER_RETURN:
3592 return _slang_gen_return(A, oper);
3593 case SLANG_OPER_LABEL:
3594 return new_label(oper->label);
3595 case SLANG_OPER_IDENTIFIER:
3596 return _slang_gen_variable(A, oper);
3597 case SLANG_OPER_IF:
3598 return _slang_gen_if(A, oper);
3599 case SLANG_OPER_FIELD:
3600 return _slang_gen_struct_field(A, oper);
3601 case SLANG_OPER_SUBSCRIPT:
3602 return _slang_gen_array_element(A, oper);
3603 case SLANG_OPER_LITERAL_FLOAT:
3604 /* fall-through */
3605 case SLANG_OPER_LITERAL_INT:
3606 /* fall-through */
3607 case SLANG_OPER_LITERAL_BOOL:
3608 return new_float_literal(oper->literal, oper->literal_size);
3609
3610 case SLANG_OPER_POSTINCREMENT: /* var++ */
3611 {
3612 slang_ir_node *n;
3613 assert(oper->num_children == 1);
3614 n = _slang_gen_function_call_name(A, "__postIncr", oper, NULL);
3615 return n;
3616 }
3617 case SLANG_OPER_POSTDECREMENT: /* var-- */
3618 {
3619 slang_ir_node *n;
3620 assert(oper->num_children == 1);
3621 n = _slang_gen_function_call_name(A, "__postDecr", oper, NULL);
3622 return n;
3623 }
3624 case SLANG_OPER_PREINCREMENT: /* ++var */
3625 {
3626 slang_ir_node *n;
3627 assert(oper->num_children == 1);
3628 n = _slang_gen_function_call_name(A, "++", oper, NULL);
3629 return n;
3630 }
3631 case SLANG_OPER_PREDECREMENT: /* --var */
3632 {
3633 slang_ir_node *n;
3634 assert(oper->num_children == 1);
3635 n = _slang_gen_function_call_name(A, "--", oper, NULL);
3636 return n;
3637 }
3638
3639 case SLANG_OPER_NON_INLINED_CALL:
3640 case SLANG_OPER_SEQUENCE:
3641 {
3642 slang_ir_node *tree = NULL;
3643 GLuint i;
3644 for (i = 0; i < oper->num_children; i++) {
3645 slang_ir_node *n = _slang_gen_operation(A, &oper->children[i]);
3646 tree = new_seq(tree, n);
3647 if (n)
3648 tree->Store = n->Store;
3649 }
3650 if (oper->type == SLANG_OPER_NON_INLINED_CALL) {
3651 tree = new_function_call(tree, oper->label);
3652 }
3653 return tree;
3654 }
3655
3656 case SLANG_OPER_NONE:
3657 case SLANG_OPER_VOID:
3658 /* returning NULL here would generate an error */
3659 return new_node0(IR_NOP);
3660
3661 default:
3662 _mesa_problem(NULL, "bad node type %d in _slang_gen_operation",
3663 oper->type);
3664 return new_node0(IR_NOP);
3665 }
3666
3667 return NULL;
3668 }
3669
3670
3671 /**
3672 * Compute total size of array give size of element, number of elements.
3673 */
3674 static GLint
3675 array_size(GLint baseSize, GLint arrayLen)
3676 {
3677 GLint total;
3678 if (arrayLen > 1) {
3679 /* round up base type to multiple of 4 */
3680 total = ((baseSize + 3) & ~0x3) * MAX2(arrayLen, 1);
3681 }
3682 else {
3683 total = baseSize;
3684 }
3685 return total;
3686 }
3687
3688
3689 /**
3690 * Called by compiler when a global variable has been parsed/compiled.
3691 * Here we examine the variable's type to determine what kind of register
3692 * storage will be used.
3693 *
3694 * A uniform such as "gl_Position" will become the register specification
3695 * (PROGRAM_OUTPUT, VERT_RESULT_HPOS). Or, uniform "gl_FogFragCoord"
3696 * will be (PROGRAM_INPUT, FRAG_ATTRIB_FOGC).
3697 *
3698 * Samplers are interesting. For "uniform sampler2D tex;" we'll specify
3699 * (PROGRAM_SAMPLER, index) where index is resolved at link-time to an
3700 * actual texture unit (as specified by the user calling glUniform1i()).
3701 */
3702 GLboolean
3703 _slang_codegen_global_variable(slang_assemble_ctx *A, slang_variable *var,
3704 slang_unit_type type)
3705 {
3706 struct gl_program *prog = A->program;
3707 const char *varName = (char *) var->a_name;
3708 GLboolean success = GL_TRUE;
3709 slang_ir_storage *store = NULL;
3710 int dbg = 0;
3711 const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
3712 const GLint texIndex = sampler_to_texture_index(var->type.specifier.type);
3713 const GLint size = _slang_sizeof_type_specifier(&var->type.specifier);
3714
3715 if (texIndex != -1) {
3716 /* This is a texture sampler variable...
3717 * store->File = PROGRAM_SAMPLER
3718 * store->Index = sampler number (0..7, typically)
3719 * store->Size = texture type index (1D, 2D, 3D, cube, etc)
3720 */
3721 if (var->initializer) {
3722 slang_info_log_error(A->log, "illegal assignment to '%s'", varName);
3723 return GL_FALSE;
3724 }
3725 #if FEATURE_es2_glsl /* XXX should use FEATURE_texture_rect */
3726 /* disallow rect samplers */
3727 if (var->type.specifier.type == SLANG_SPEC_SAMPLER2DRECT ||
3728 var->type.specifier.type == SLANG_SPEC_SAMPLER2DRECTSHADOW) {
3729 slang_info_log_error(A->log, "invalid sampler type for '%s'", varName);
3730 return GL_FALSE;
3731 }
3732 #endif
3733 {
3734 GLint sampNum = _mesa_add_sampler(prog->Parameters, varName, datatype);
3735 store = _slang_new_ir_storage(PROGRAM_SAMPLER, sampNum, texIndex);
3736 }
3737 if (dbg) printf("SAMPLER ");
3738 }
3739 else if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
3740 /* Uniform variable */
3741 const GLint totalSize = array_size(size, var->array_len);
3742 const GLuint swizzle = _slang_var_swizzle(totalSize, 0);
3743
3744 if (prog) {
3745 /* user-defined uniform */
3746 if (datatype == GL_NONE) {
3747 if (var->type.specifier.type == SLANG_SPEC_STRUCT) {
3748 /* temporary work-around */
3749 GLenum datatype = GL_FLOAT;
3750 GLint uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
3751 totalSize, datatype, NULL);
3752 store = _slang_new_ir_storage_swz(PROGRAM_UNIFORM, uniformLoc,
3753 totalSize, swizzle);
3754
3755 /* XXX what we need to do is unroll the struct into its
3756 * basic types, creating a uniform variable for each.
3757 * For example:
3758 * struct foo {
3759 * vec3 a;
3760 * vec4 b;
3761 * };
3762 * uniform foo f;
3763 *
3764 * Should produce uniforms:
3765 * "f.a" (GL_FLOAT_VEC3)
3766 * "f.b" (GL_FLOAT_VEC4)
3767 */
3768
3769 if (var->initializer) {
3770 slang_info_log_error(A->log,
3771 "unsupported initializer for uniform '%s'", varName);
3772 return GL_FALSE;
3773 }
3774 }
3775 else {
3776 slang_info_log_error(A->log,
3777 "invalid datatype for uniform variable %s",
3778 varName);
3779 return GL_FALSE;
3780 }
3781 }
3782 else {
3783 GLint uniformLoc;
3784 const GLfloat *initialValues = NULL;
3785 if (var->initializer) {
3786 _slang_simplify(var->initializer, &A->space, A->atoms);
3787 if (var->initializer->type == SLANG_OPER_LITERAL_FLOAT ||
3788 var->initializer->type == SLANG_OPER_LITERAL_INT) {
3789 /* simple float/vector initializer */
3790 initialValues = var->initializer->literal;
3791 }
3792 else {
3793 /* complex initializer */
3794 slang_info_log_error(A->log,
3795 "unsupported initializer for uniform '%s'", varName);
3796 return GL_FALSE;
3797 }
3798 }
3799
3800 uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
3801 totalSize, datatype, initialValues);
3802 store = _slang_new_ir_storage_swz(PROGRAM_UNIFORM, uniformLoc,
3803 totalSize, swizzle);
3804 }
3805 }
3806 else {
3807 /* pre-defined uniform, like gl_ModelviewMatrix */
3808 /* We know it's a uniform, but don't allocate storage unless
3809 * it's really used.
3810 */
3811 store = _slang_new_ir_storage_swz(PROGRAM_STATE_VAR, -1,
3812 totalSize, swizzle);
3813 }
3814 if (dbg) printf("UNIFORM (sz %d) ", totalSize);
3815 }
3816 else if (var->type.qualifier == SLANG_QUAL_VARYING) {
3817 const GLint totalSize = array_size(size, var->array_len);
3818
3819 /* varyings must be float, vec or mat */
3820 if (!_slang_type_is_float_vec_mat(var->type.specifier.type) &&
3821 var->type.specifier.type != SLANG_SPEC_ARRAY) {
3822 slang_info_log_error(A->log,
3823 "varying '%s' must be float/vector/matrix",
3824 varName);
3825 return GL_FALSE;
3826 }
3827
3828 if (var->initializer) {
3829 slang_info_log_error(A->log, "illegal initializer for varying '%s'",
3830 varName);
3831 return GL_FALSE;
3832 }
3833
3834 if (prog) {
3835 /* user-defined varying */
3836 GLbitfield flags;
3837 GLint varyingLoc;
3838 GLuint swizzle;
3839
3840 flags = 0x0;
3841 if (var->type.centroid == SLANG_CENTROID)
3842 flags |= PROG_PARAM_BIT_CENTROID;
3843 if (var->type.variant == SLANG_INVARIANT)
3844 flags |= PROG_PARAM_BIT_INVARIANT;
3845
3846 varyingLoc = _mesa_add_varying(prog->Varying, varName,
3847 totalSize, flags);
3848 swizzle = _slang_var_swizzle(size, 0);
3849 store = _slang_new_ir_storage_swz(PROGRAM_VARYING, varyingLoc,
3850 totalSize, swizzle);
3851 }
3852 else {
3853 /* pre-defined varying, like gl_Color or gl_TexCoord */
3854 if (type == SLANG_UNIT_FRAGMENT_BUILTIN) {
3855 /* fragment program input */
3856 GLuint swizzle;
3857 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
3858 &swizzle);
3859 assert(index >= 0);
3860 assert(index < FRAG_ATTRIB_MAX);
3861 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index,
3862 size, swizzle);
3863 }
3864 else {
3865 /* vertex program output */
3866 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
3867 GLuint swizzle = _slang_var_swizzle(size, 0);
3868 assert(index >= 0);
3869 assert(index < VERT_RESULT_MAX);
3870 assert(type == SLANG_UNIT_VERTEX_BUILTIN);
3871 store = _slang_new_ir_storage_swz(PROGRAM_OUTPUT, index,
3872 size, swizzle);
3873 }
3874 if (dbg) printf("V/F ");
3875 }
3876 if (dbg) printf("VARYING ");
3877 }
3878 else if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE) {
3879 GLuint swizzle;
3880 GLint index;
3881 /* attributes must be float, vec or mat */
3882 if (!_slang_type_is_float_vec_mat(var->type.specifier.type)) {
3883 slang_info_log_error(A->log,
3884 "attribute '%s' must be float/vector/matrix",
3885 varName);
3886 return GL_FALSE;
3887 }
3888
3889 if (prog) {
3890 /* user-defined vertex attribute */
3891 const GLint attr = -1; /* unknown */
3892 swizzle = _slang_var_swizzle(size, 0);
3893 index = _mesa_add_attribute(prog->Attributes, varName,
3894 size, datatype, attr);
3895 assert(index >= 0);
3896 index = VERT_ATTRIB_GENERIC0 + index;
3897 }
3898 else {
3899 /* pre-defined vertex attrib */
3900 index = _slang_input_index(varName, GL_VERTEX_PROGRAM_ARB, &swizzle);
3901 assert(index >= 0);
3902 }
3903 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
3904 if (dbg) printf("ATTRIB ");
3905 }
3906 else if (var->type.qualifier == SLANG_QUAL_FIXEDINPUT) {
3907 GLuint swizzle = SWIZZLE_XYZW; /* silence compiler warning */
3908 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
3909 &swizzle);
3910 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
3911 if (dbg) printf("INPUT ");
3912 }
3913 else if (var->type.qualifier == SLANG_QUAL_FIXEDOUTPUT) {
3914 if (type == SLANG_UNIT_VERTEX_BUILTIN) {
3915 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
3916 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
3917 }
3918 else {
3919 GLint index = _slang_output_index(varName, GL_FRAGMENT_PROGRAM_ARB);
3920 GLint specialSize = 4; /* treat all fragment outputs as float[4] */
3921 assert(type == SLANG_UNIT_FRAGMENT_BUILTIN);
3922 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, specialSize);
3923 }
3924 if (dbg) printf("OUTPUT ");
3925 }
3926 else if (var->type.qualifier == SLANG_QUAL_CONST && !prog) {
3927 /* pre-defined global constant, like gl_MaxLights */
3928 store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
3929 if (dbg) printf("CONST ");
3930 }
3931 else {
3932 /* ordinary variable (may be const) */
3933 slang_ir_node *n;
3934
3935 /* IR node to declare the variable */
3936 n = _slang_gen_var_decl(A, var);
3937
3938 /* IR code for the var's initializer, if present */
3939 if (var->initializer) {
3940 slang_ir_node *lhs, *rhs, *init;
3941
3942 /* Generate IR_COPY instruction to initialize the variable */
3943 lhs = new_node0(IR_VAR);
3944 lhs->Var = var;
3945 lhs->Store = n->Store;
3946
3947 /* constant folding, etc */
3948 _slang_simplify(var->initializer, &A->space, A->atoms);
3949
3950 rhs = _slang_gen_operation(A, var->initializer);
3951 assert(rhs);
3952 init = new_node2(IR_COPY, lhs, rhs);
3953 n = new_seq(n, init);
3954 }
3955
3956 success = _slang_emit_code(n, A->vartable, A->program, GL_FALSE, A->log);
3957
3958 _slang_free_ir_tree(n);
3959 }
3960
3961 if (dbg) printf("GLOBAL VAR %s idx %d\n", (char*) var->a_name,
3962 store ? store->Index : -2);
3963
3964 if (store)
3965 var->store = store; /* save var's storage info */
3966
3967 var->declared = GL_TRUE;
3968
3969 return success;
3970 }
3971
3972
3973 /**
3974 * Produce an IR tree from a function AST (fun->body).
3975 * Then call the code emitter to convert the IR tree into gl_program
3976 * instructions.
3977 */
3978 GLboolean
3979 _slang_codegen_function(slang_assemble_ctx * A, slang_function * fun)
3980 {
3981 slang_ir_node *n;
3982 GLboolean success = GL_TRUE;
3983
3984 if (_mesa_strcmp((char *) fun->header.a_name, "main") != 0) {
3985 /* we only really generate code for main, all other functions get
3986 * inlined or codegen'd upon an actual call.
3987 */
3988 #if 0
3989 /* do some basic error checking though */
3990 if (fun->header.type.specifier.type != SLANG_SPEC_VOID) {
3991 /* check that non-void functions actually return something */
3992 slang_operation *op
3993 = _slang_find_node_type(fun->body, SLANG_OPER_RETURN);
3994 if (!op) {
3995 slang_info_log_error(A->log,
3996 "function \"%s\" has no return statement",
3997 (char *) fun->header.a_name);
3998 printf(
3999 "function \"%s\" has no return statement\n",
4000 (char *) fun->header.a_name);
4001 return GL_FALSE;
4002 }
4003 }
4004 #endif
4005 return GL_TRUE; /* not an error */
4006 }
4007
4008 #if 0
4009 printf("\n*********** codegen_function %s\n", (char *) fun->header.a_name);
4010 slang_print_function(fun, 1);
4011 #endif
4012
4013 /* should have been allocated earlier: */
4014 assert(A->program->Parameters );
4015 assert(A->program->Varying);
4016 assert(A->vartable);
4017 A->CurLoop = NULL;
4018 A->CurFunction = fun;
4019
4020 /* fold constant expressions, etc. */
4021 _slang_simplify(fun->body, &A->space, A->atoms);
4022
4023 #if 0
4024 printf("\n*********** simplified %s\n", (char *) fun->header.a_name);
4025 slang_print_function(fun, 1);
4026 #endif
4027
4028 /* Create an end-of-function label */
4029 A->curFuncEndLabel = _slang_label_new("__endOfFunc__main");
4030
4031 /* push new vartable scope */
4032 _slang_push_var_table(A->vartable);
4033
4034 /* Generate IR tree for the function body code */
4035 n = _slang_gen_operation(A, fun->body);
4036 if (n)
4037 n = new_node1(IR_SCOPE, n);
4038
4039 /* pop vartable, restore previous */
4040 _slang_pop_var_table(A->vartable);
4041
4042 if (!n) {
4043 /* XXX record error */
4044 return GL_FALSE;
4045 }
4046
4047 /* append an end-of-function-label to IR tree */
4048 n = new_seq(n, new_label(A->curFuncEndLabel));
4049
4050 /*_slang_label_delete(A->curFuncEndLabel);*/
4051 A->curFuncEndLabel = NULL;
4052
4053 #if 0
4054 printf("************* New AST for %s *****\n", (char*)fun->header.a_name);
4055 slang_print_function(fun, 1);
4056 #endif
4057 #if 0
4058 printf("************* IR for %s *******\n", (char*)fun->header.a_name);
4059 _slang_print_ir_tree(n, 0);
4060 #endif
4061 #if 0
4062 printf("************* End codegen function ************\n\n");
4063 #endif
4064
4065 /* Emit program instructions */
4066 success = _slang_emit_code(n, A->vartable, A->program, GL_TRUE, A->log);
4067 _slang_free_ir_tree(n);
4068
4069 /* free codegen context */
4070 /*
4071 _mesa_free(A->codegen);
4072 */
4073
4074 return success;
4075 }
4076