mesa: better variable name: s/aux/store/
[mesa.git] / src / mesa / shader / slang / slang_codegen.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file slang_codegen.c
27 * Generate IR tree from AST.
28 * \author Brian Paul
29 */
30
31
32 /***
33 *** NOTES:
34 *** The new_() functions return a new instance of a simple IR node.
35 *** The gen_() functions generate larger IR trees from the simple nodes.
36 ***/
37
38
39
40 #include "main/imports.h"
41 #include "main/macros.h"
42 #include "main/mtypes.h"
43 #include "shader/program.h"
44 #include "shader/prog_instruction.h"
45 #include "shader/prog_parameter.h"
46 #include "shader/prog_print.h"
47 #include "shader/prog_statevars.h"
48 #include "slang_typeinfo.h"
49 #include "slang_codegen.h"
50 #include "slang_compile.h"
51 #include "slang_label.h"
52 #include "slang_mem.h"
53 #include "slang_simplify.h"
54 #include "slang_emit.h"
55 #include "slang_vartable.h"
56 #include "slang_ir.h"
57 #include "slang_print.h"
58
59
60 static slang_ir_node *
61 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper);
62
63
64 static GLboolean
65 is_sampler_type(const slang_fully_specified_type *t)
66 {
67 switch (t->specifier.type) {
68 case SLANG_SPEC_SAMPLER1D:
69 case SLANG_SPEC_SAMPLER2D:
70 case SLANG_SPEC_SAMPLER3D:
71 case SLANG_SPEC_SAMPLERCUBE:
72 case SLANG_SPEC_SAMPLER1DSHADOW:
73 case SLANG_SPEC_SAMPLER2DSHADOW:
74 case SLANG_SPEC_SAMPLER2DRECT:
75 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
76 return GL_TRUE;
77 default:
78 return GL_FALSE;
79 }
80 }
81
82
83 /**
84 * Return the offset (in floats or ints) of the named field within
85 * the given struct. Return -1 if field not found.
86 * If field is NULL, return the size of the struct instead.
87 */
88 static GLint
89 _slang_field_offset(const slang_type_specifier *spec, slang_atom field)
90 {
91 GLint offset = 0;
92 GLuint i;
93 for (i = 0; i < spec->_struct->fields->num_variables; i++) {
94 const slang_variable *v = spec->_struct->fields->variables[i];
95 const GLuint sz = _slang_sizeof_type_specifier(&v->type.specifier);
96 if (sz > 1) {
97 /* types larger than 1 float are register (4-float) aligned */
98 offset = (offset + 3) & ~3;
99 }
100 if (field && v->a_name == field) {
101 return offset;
102 }
103 offset += sz;
104 }
105 if (field)
106 return -1; /* field not found */
107 else
108 return offset; /* struct size */
109 }
110
111
112 /**
113 * Return the size (in floats) of the given type specifier.
114 * If the size is greater than 4, the size should be a multiple of 4
115 * so that the correct number of 4-float registers are allocated.
116 * For example, a mat3x2 is size 12 because we want to store the
117 * 3 columns in 3 float[4] registers.
118 */
119 GLuint
120 _slang_sizeof_type_specifier(const slang_type_specifier *spec)
121 {
122 GLuint sz;
123 switch (spec->type) {
124 case SLANG_SPEC_VOID:
125 sz = 0;
126 break;
127 case SLANG_SPEC_BOOL:
128 sz = 1;
129 break;
130 case SLANG_SPEC_BVEC2:
131 sz = 2;
132 break;
133 case SLANG_SPEC_BVEC3:
134 sz = 3;
135 break;
136 case SLANG_SPEC_BVEC4:
137 sz = 4;
138 break;
139 case SLANG_SPEC_INT:
140 sz = 1;
141 break;
142 case SLANG_SPEC_IVEC2:
143 sz = 2;
144 break;
145 case SLANG_SPEC_IVEC3:
146 sz = 3;
147 break;
148 case SLANG_SPEC_IVEC4:
149 sz = 4;
150 break;
151 case SLANG_SPEC_FLOAT:
152 sz = 1;
153 break;
154 case SLANG_SPEC_VEC2:
155 sz = 2;
156 break;
157 case SLANG_SPEC_VEC3:
158 sz = 3;
159 break;
160 case SLANG_SPEC_VEC4:
161 sz = 4;
162 break;
163 case SLANG_SPEC_MAT2:
164 sz = 2 * 4; /* 2 columns (regs) */
165 break;
166 case SLANG_SPEC_MAT3:
167 sz = 3 * 4;
168 break;
169 case SLANG_SPEC_MAT4:
170 sz = 4 * 4;
171 break;
172 case SLANG_SPEC_MAT23:
173 sz = 2 * 4; /* 2 columns (regs) */
174 break;
175 case SLANG_SPEC_MAT32:
176 sz = 3 * 4; /* 3 columns (regs) */
177 break;
178 case SLANG_SPEC_MAT24:
179 sz = 2 * 4;
180 break;
181 case SLANG_SPEC_MAT42:
182 sz = 4 * 4; /* 4 columns (regs) */
183 break;
184 case SLANG_SPEC_MAT34:
185 sz = 3 * 4;
186 break;
187 case SLANG_SPEC_MAT43:
188 sz = 4 * 4; /* 4 columns (regs) */
189 break;
190 case SLANG_SPEC_SAMPLER1D:
191 case SLANG_SPEC_SAMPLER2D:
192 case SLANG_SPEC_SAMPLER3D:
193 case SLANG_SPEC_SAMPLERCUBE:
194 case SLANG_SPEC_SAMPLER1DSHADOW:
195 case SLANG_SPEC_SAMPLER2DSHADOW:
196 case SLANG_SPEC_SAMPLER2DRECT:
197 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
198 sz = 1; /* a sampler is basically just an integer index */
199 break;
200 case SLANG_SPEC_STRUCT:
201 sz = _slang_field_offset(spec, 0); /* special use */
202 if (sz > 4) {
203 sz = (sz + 3) & ~0x3; /* round up to multiple of four */
204 }
205 break;
206 case SLANG_SPEC_ARRAY:
207 sz = _slang_sizeof_type_specifier(spec->_array);
208 break;
209 default:
210 _mesa_problem(NULL, "Unexpected type in _slang_sizeof_type_specifier()");
211 sz = 0;
212 }
213
214 if (sz > 4) {
215 /* if size is > 4, it should be a multiple of four */
216 assert((sz & 0x3) == 0);
217 }
218 return sz;
219 }
220
221
222 /**
223 * Establish the binding between a slang_ir_node and a slang_variable.
224 * Then, allocate/attach a slang_ir_storage object to the IR node if needed.
225 * The IR node must be a IR_VAR or IR_VAR_DECL node.
226 * \param n the IR node
227 * \param var the variable to associate with the IR node
228 */
229 static void
230 _slang_attach_storage(slang_ir_node *n, slang_variable *var)
231 {
232 assert(n);
233 assert(var);
234 assert(n->Opcode == IR_VAR || n->Opcode == IR_VAR_DECL);
235 assert(!n->Var || n->Var == var);
236
237 n->Var = var;
238
239 if (!n->Store) {
240 /* need to setup storage */
241 if (n->Var && n->Var->store) {
242 /* node storage info = var storage info */
243 n->Store = n->Var->store;
244 }
245 else {
246 /* alloc new storage info */
247 n->Store = _slang_new_ir_storage(PROGRAM_UNDEFINED, -7, -5);
248 #if 0
249 printf("%s var=%s Store=%p Size=%d\n", __FUNCTION__,
250 (char*) var->a_name,
251 (void*) n->Store, n->Store->Size);
252 #endif
253 if (n->Var)
254 n->Var->store = n->Store;
255 assert(n->Var->store);
256 }
257 }
258 }
259
260
261 /**
262 * Return the TEXTURE_*_INDEX value that corresponds to a sampler type,
263 * or -1 if the type is not a sampler.
264 */
265 static GLint
266 sampler_to_texture_index(const slang_type_specifier_type type)
267 {
268 switch (type) {
269 case SLANG_SPEC_SAMPLER1D:
270 return TEXTURE_1D_INDEX;
271 case SLANG_SPEC_SAMPLER2D:
272 return TEXTURE_2D_INDEX;
273 case SLANG_SPEC_SAMPLER3D:
274 return TEXTURE_3D_INDEX;
275 case SLANG_SPEC_SAMPLERCUBE:
276 return TEXTURE_CUBE_INDEX;
277 case SLANG_SPEC_SAMPLER1DSHADOW:
278 return TEXTURE_1D_INDEX; /* XXX fix */
279 case SLANG_SPEC_SAMPLER2DSHADOW:
280 return TEXTURE_2D_INDEX; /* XXX fix */
281 case SLANG_SPEC_SAMPLER2DRECT:
282 return TEXTURE_RECT_INDEX;
283 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
284 return TEXTURE_RECT_INDEX; /* XXX fix */
285 default:
286 return -1;
287 }
288 }
289
290
291 #define SWIZZLE_ZWWW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W)
292
293 /**
294 * Return the VERT_ATTRIB_* or FRAG_ATTRIB_* value that corresponds to
295 * a vertex or fragment program input variable. Return -1 if the input
296 * name is invalid.
297 * XXX return size too
298 */
299 static GLint
300 _slang_input_index(const char *name, GLenum target, GLuint *swizzleOut)
301 {
302 struct input_info {
303 const char *Name;
304 GLuint Attrib;
305 GLuint Swizzle;
306 };
307 static const struct input_info vertInputs[] = {
308 { "gl_Vertex", VERT_ATTRIB_POS, SWIZZLE_NOOP },
309 { "gl_Normal", VERT_ATTRIB_NORMAL, SWIZZLE_NOOP },
310 { "gl_Color", VERT_ATTRIB_COLOR0, SWIZZLE_NOOP },
311 { "gl_SecondaryColor", VERT_ATTRIB_COLOR1, SWIZZLE_NOOP },
312 { "gl_FogCoord", VERT_ATTRIB_FOG, SWIZZLE_XXXX },
313 { "gl_MultiTexCoord0", VERT_ATTRIB_TEX0, SWIZZLE_NOOP },
314 { "gl_MultiTexCoord1", VERT_ATTRIB_TEX1, SWIZZLE_NOOP },
315 { "gl_MultiTexCoord2", VERT_ATTRIB_TEX2, SWIZZLE_NOOP },
316 { "gl_MultiTexCoord3", VERT_ATTRIB_TEX3, SWIZZLE_NOOP },
317 { "gl_MultiTexCoord4", VERT_ATTRIB_TEX4, SWIZZLE_NOOP },
318 { "gl_MultiTexCoord5", VERT_ATTRIB_TEX5, SWIZZLE_NOOP },
319 { "gl_MultiTexCoord6", VERT_ATTRIB_TEX6, SWIZZLE_NOOP },
320 { "gl_MultiTexCoord7", VERT_ATTRIB_TEX7, SWIZZLE_NOOP },
321 { NULL, 0, SWIZZLE_NOOP }
322 };
323 static const struct input_info fragInputs[] = {
324 { "gl_FragCoord", FRAG_ATTRIB_WPOS, SWIZZLE_NOOP },
325 { "gl_Color", FRAG_ATTRIB_COL0, SWIZZLE_NOOP },
326 { "gl_SecondaryColor", FRAG_ATTRIB_COL1, SWIZZLE_NOOP },
327 { "gl_TexCoord", FRAG_ATTRIB_TEX0, SWIZZLE_NOOP },
328 /* note: we're packing several quantities into the fogcoord vector */
329 { "gl_FogFragCoord", FRAG_ATTRIB_FOGC, SWIZZLE_XXXX },
330 { "gl_FrontFacing", FRAG_ATTRIB_FOGC, SWIZZLE_YYYY }, /*XXX*/
331 { "gl_PointCoord", FRAG_ATTRIB_FOGC, SWIZZLE_ZWWW },
332 { NULL, 0, SWIZZLE_NOOP }
333 };
334 GLuint i;
335 const struct input_info *inputs
336 = (target == GL_VERTEX_PROGRAM_ARB) ? vertInputs : fragInputs;
337
338 ASSERT(MAX_TEXTURE_UNITS == 8); /* if this fails, fix vertInputs above */
339
340 for (i = 0; inputs[i].Name; i++) {
341 if (strcmp(inputs[i].Name, name) == 0) {
342 /* found */
343 *swizzleOut = inputs[i].Swizzle;
344 return inputs[i].Attrib;
345 }
346 }
347 return -1;
348 }
349
350
351 /**
352 * Return the VERT_RESULT_* or FRAG_RESULT_* value that corresponds to
353 * a vertex or fragment program output variable. Return -1 for an invalid
354 * output name.
355 */
356 static GLint
357 _slang_output_index(const char *name, GLenum target)
358 {
359 struct output_info {
360 const char *Name;
361 GLuint Attrib;
362 };
363 static const struct output_info vertOutputs[] = {
364 { "gl_Position", VERT_RESULT_HPOS },
365 { "gl_FrontColor", VERT_RESULT_COL0 },
366 { "gl_BackColor", VERT_RESULT_BFC0 },
367 { "gl_FrontSecondaryColor", VERT_RESULT_COL1 },
368 { "gl_BackSecondaryColor", VERT_RESULT_BFC1 },
369 { "gl_TexCoord", VERT_RESULT_TEX0 },
370 { "gl_FogFragCoord", VERT_RESULT_FOGC },
371 { "gl_PointSize", VERT_RESULT_PSIZ },
372 { NULL, 0 }
373 };
374 static const struct output_info fragOutputs[] = {
375 { "gl_FragColor", FRAG_RESULT_COLR },
376 { "gl_FragDepth", FRAG_RESULT_DEPR },
377 { "gl_FragData", FRAG_RESULT_DATA0 },
378 { NULL, 0 }
379 };
380 GLuint i;
381 const struct output_info *outputs
382 = (target == GL_VERTEX_PROGRAM_ARB) ? vertOutputs : fragOutputs;
383
384 for (i = 0; outputs[i].Name; i++) {
385 if (strcmp(outputs[i].Name, name) == 0) {
386 /* found */
387 return outputs[i].Attrib;
388 }
389 }
390 return -1;
391 }
392
393
394
395 /**********************************************************************/
396
397
398 /**
399 * Map "_asm foo" to IR_FOO, etc.
400 */
401 typedef struct
402 {
403 const char *Name;
404 slang_ir_opcode Opcode;
405 GLuint HaveRetValue, NumParams;
406 } slang_asm_info;
407
408
409 static slang_asm_info AsmInfo[] = {
410 /* vec4 binary op */
411 { "vec4_add", IR_ADD, 1, 2 },
412 { "vec4_subtract", IR_SUB, 1, 2 },
413 { "vec4_multiply", IR_MUL, 1, 2 },
414 { "vec4_dot", IR_DOT4, 1, 2 },
415 { "vec3_dot", IR_DOT3, 1, 2 },
416 { "vec3_cross", IR_CROSS, 1, 2 },
417 { "vec4_lrp", IR_LRP, 1, 3 },
418 { "vec4_min", IR_MIN, 1, 2 },
419 { "vec4_max", IR_MAX, 1, 2 },
420 { "vec4_clamp", IR_CLAMP, 1, 3 },
421 { "vec4_seq", IR_SEQUAL, 1, 2 },
422 { "vec4_sne", IR_SNEQUAL, 1, 2 },
423 { "vec4_sge", IR_SGE, 1, 2 },
424 { "vec4_sgt", IR_SGT, 1, 2 },
425 { "vec4_sle", IR_SLE, 1, 2 },
426 { "vec4_slt", IR_SLT, 1, 2 },
427 /* vec4 unary */
428 { "vec4_move", IR_MOVE, 1, 1 },
429 { "vec4_floor", IR_FLOOR, 1, 1 },
430 { "vec4_frac", IR_FRAC, 1, 1 },
431 { "vec4_abs", IR_ABS, 1, 1 },
432 { "vec4_negate", IR_NEG, 1, 1 },
433 { "vec4_ddx", IR_DDX, 1, 1 },
434 { "vec4_ddy", IR_DDY, 1, 1 },
435 /* float binary op */
436 { "float_power", IR_POW, 1, 2 },
437 /* texture / sampler */
438 { "vec4_tex1d", IR_TEX, 1, 2 },
439 { "vec4_texb1d", IR_TEXB, 1, 2 }, /* 1d w/ bias */
440 { "vec4_texp1d", IR_TEXP, 1, 2 }, /* 1d w/ projection */
441 { "vec4_tex2d", IR_TEX, 1, 2 },
442 { "vec4_texb2d", IR_TEXB, 1, 2 }, /* 2d w/ bias */
443 { "vec4_texp2d", IR_TEXP, 1, 2 }, /* 2d w/ projection */
444 { "vec4_tex3d", IR_TEX, 1, 2 },
445 { "vec4_texb3d", IR_TEXB, 1, 2 }, /* 3d w/ bias */
446 { "vec4_texp3d", IR_TEXP, 1, 2 }, /* 3d w/ projection */
447 { "vec4_texcube", IR_TEX, 1, 2 }, /* cubemap */
448 { "vec4_tex_rect", IR_TEX, 1, 2 }, /* rectangle */
449 { "vec4_texp_rect", IR_TEX, 1, 2 },/* rectangle w/ projection */
450
451 /* unary op */
452 { "ivec4_to_vec4", IR_I_TO_F, 1, 1 }, /* int[4] to float[4] */
453 { "vec4_to_ivec4", IR_F_TO_I, 1, 1 }, /* float[4] to int[4] */
454 { "float_exp", IR_EXP, 1, 1 },
455 { "float_exp2", IR_EXP2, 1, 1 },
456 { "float_log2", IR_LOG2, 1, 1 },
457 { "float_rsq", IR_RSQ, 1, 1 },
458 { "float_rcp", IR_RCP, 1, 1 },
459 { "float_sine", IR_SIN, 1, 1 },
460 { "float_cosine", IR_COS, 1, 1 },
461 { "float_noise1", IR_NOISE1, 1, 1},
462 { "float_noise2", IR_NOISE2, 1, 1},
463 { "float_noise3", IR_NOISE3, 1, 1},
464 { "float_noise4", IR_NOISE4, 1, 1},
465
466 { NULL, IR_NOP, 0, 0 }
467 };
468
469
470 static slang_ir_node *
471 new_node3(slang_ir_opcode op,
472 slang_ir_node *c0, slang_ir_node *c1, slang_ir_node *c2)
473 {
474 slang_ir_node *n = (slang_ir_node *) _slang_alloc(sizeof(slang_ir_node));
475 if (n) {
476 n->Opcode = op;
477 n->Children[0] = c0;
478 n->Children[1] = c1;
479 n->Children[2] = c2;
480 n->InstLocation = -1;
481 }
482 return n;
483 }
484
485 static slang_ir_node *
486 new_node2(slang_ir_opcode op, slang_ir_node *c0, slang_ir_node *c1)
487 {
488 return new_node3(op, c0, c1, NULL);
489 }
490
491 static slang_ir_node *
492 new_node1(slang_ir_opcode op, slang_ir_node *c0)
493 {
494 return new_node3(op, c0, NULL, NULL);
495 }
496
497 static slang_ir_node *
498 new_node0(slang_ir_opcode op)
499 {
500 return new_node3(op, NULL, NULL, NULL);
501 }
502
503
504 /**
505 * Create sequence of two nodes.
506 */
507 static slang_ir_node *
508 new_seq(slang_ir_node *left, slang_ir_node *right)
509 {
510 if (!left)
511 return right;
512 if (!right)
513 return left;
514 return new_node2(IR_SEQ, left, right);
515 }
516
517 static slang_ir_node *
518 new_label(slang_label *label)
519 {
520 slang_ir_node *n = new_node0(IR_LABEL);
521 assert(label);
522 if (n)
523 n->Label = label;
524 return n;
525 }
526
527 static slang_ir_node *
528 new_float_literal(const float v[4], GLuint size)
529 {
530 slang_ir_node *n = new_node0(IR_FLOAT);
531 assert(size <= 4);
532 COPY_4V(n->Value, v);
533 /* allocate a storage object, but compute actual location (Index) later */
534 n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
535 return n;
536 }
537
538
539 static slang_ir_node *
540 new_not(slang_ir_node *n)
541 {
542 return new_node1(IR_NOT, n);
543 }
544
545
546 /**
547 * Non-inlined function call.
548 */
549 static slang_ir_node *
550 new_function_call(slang_ir_node *code, slang_label *name)
551 {
552 slang_ir_node *n = new_node1(IR_CALL, code);
553 assert(name);
554 if (n)
555 n->Label = name;
556 return n;
557 }
558
559
560 /**
561 * Unconditional jump.
562 */
563 static slang_ir_node *
564 new_return(slang_label *dest)
565 {
566 slang_ir_node *n = new_node0(IR_RETURN);
567 assert(dest);
568 if (n)
569 n->Label = dest;
570 return n;
571 }
572
573
574 static slang_ir_node *
575 new_loop(slang_ir_node *body)
576 {
577 return new_node1(IR_LOOP, body);
578 }
579
580
581 static slang_ir_node *
582 new_break(slang_ir_node *loopNode)
583 {
584 slang_ir_node *n = new_node0(IR_BREAK);
585 assert(loopNode);
586 assert(loopNode->Opcode == IR_LOOP);
587 if (n) {
588 /* insert this node at head of linked list */
589 n->List = loopNode->List;
590 loopNode->List = n;
591 }
592 return n;
593 }
594
595
596 /**
597 * Make new IR_BREAK_IF_TRUE.
598 */
599 static slang_ir_node *
600 new_break_if_true(slang_ir_node *loopNode, slang_ir_node *cond)
601 {
602 slang_ir_node *n;
603 assert(loopNode);
604 assert(loopNode->Opcode == IR_LOOP);
605 n = new_node1(IR_BREAK_IF_TRUE, cond);
606 if (n) {
607 /* insert this node at head of linked list */
608 n->List = loopNode->List;
609 loopNode->List = n;
610 }
611 return n;
612 }
613
614
615 /**
616 * Make new IR_CONT_IF_TRUE node.
617 */
618 static slang_ir_node *
619 new_cont_if_true(slang_ir_node *loopNode, slang_ir_node *cond)
620 {
621 slang_ir_node *n;
622 assert(loopNode);
623 assert(loopNode->Opcode == IR_LOOP);
624 n = new_node1(IR_CONT_IF_TRUE, cond);
625 if (n) {
626 /* insert this node at head of linked list */
627 n->List = loopNode->List;
628 loopNode->List = n;
629 }
630 return n;
631 }
632
633
634 static slang_ir_node *
635 new_cond(slang_ir_node *n)
636 {
637 slang_ir_node *c = new_node1(IR_COND, n);
638 return c;
639 }
640
641
642 static slang_ir_node *
643 new_if(slang_ir_node *cond, slang_ir_node *ifPart, slang_ir_node *elsePart)
644 {
645 return new_node3(IR_IF, cond, ifPart, elsePart);
646 }
647
648
649 /**
650 * New IR_VAR node - a reference to a previously declared variable.
651 */
652 static slang_ir_node *
653 new_var(slang_assemble_ctx *A, slang_operation *oper, slang_atom name)
654 {
655 slang_ir_node *n;
656 slang_variable *var = _slang_locate_variable(oper->locals, name, GL_TRUE);
657 if (!var)
658 return NULL;
659
660 assert(var->declared);
661
662 assert(!oper->var || oper->var == var);
663
664 n = new_node0(IR_VAR);
665 if (n) {
666 _slang_attach_storage(n, var);
667 /*
668 printf("new_var %s store=%p\n", (char*)name, (void*) n->Store);
669 */
670 }
671 return n;
672 }
673
674
675 /**
676 * Check if the given function is really just a wrapper for a
677 * basic assembly instruction.
678 */
679 static GLboolean
680 slang_is_asm_function(const slang_function *fun)
681 {
682 if (fun->body->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE &&
683 fun->body->num_children == 1 &&
684 fun->body->children[0].type == SLANG_OPER_ASM) {
685 return GL_TRUE;
686 }
687 return GL_FALSE;
688 }
689
690
691 static GLboolean
692 _slang_is_noop(const slang_operation *oper)
693 {
694 if (!oper ||
695 oper->type == SLANG_OPER_VOID ||
696 (oper->num_children == 1 && oper->children[0].type == SLANG_OPER_VOID))
697 return GL_TRUE;
698 else
699 return GL_FALSE;
700 }
701
702
703 /**
704 * Recursively search tree for a node of the given type.
705 */
706 static slang_operation *
707 _slang_find_node_type(slang_operation *oper, slang_operation_type type)
708 {
709 GLuint i;
710 if (oper->type == type)
711 return oper;
712 for (i = 0; i < oper->num_children; i++) {
713 slang_operation *p = _slang_find_node_type(&oper->children[i], type);
714 if (p)
715 return p;
716 }
717 return NULL;
718 }
719
720
721 /**
722 * Count the number of operations of the given time rooted at 'oper'.
723 */
724 static GLuint
725 _slang_count_node_type(slang_operation *oper, slang_operation_type type)
726 {
727 GLuint i, count = 0;
728 if (oper->type == type) {
729 return 1;
730 }
731 for (i = 0; i < oper->num_children; i++) {
732 count += _slang_count_node_type(&oper->children[i], type);
733 }
734 return count;
735 }
736
737
738 /**
739 * Check if the 'return' statement found under 'oper' is a "tail return"
740 * that can be no-op'd. For example:
741 *
742 * void func(void)
743 * {
744 * .. do something ..
745 * return; // this is a no-op
746 * }
747 *
748 * This is used when determining if a function can be inlined. If the
749 * 'return' is not the last statement, we can't inline the function since
750 * we still need the semantic behaviour of the 'return' but we don't want
751 * to accidentally return from the _calling_ function. We'd need to use an
752 * unconditional branch, but we don't have such a GPU instruction (not
753 * always, at least).
754 */
755 static GLboolean
756 _slang_is_tail_return(const slang_operation *oper)
757 {
758 GLuint k = oper->num_children;
759
760 while (k > 0) {
761 const slang_operation *last = &oper->children[k - 1];
762 if (last->type == SLANG_OPER_RETURN)
763 return GL_TRUE;
764 else if (last->type == SLANG_OPER_IDENTIFIER ||
765 last->type == SLANG_OPER_LABEL)
766 k--; /* try prev child */
767 else if (last->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
768 last->type == SLANG_OPER_BLOCK_NEW_SCOPE)
769 /* try sub-children */
770 return _slang_is_tail_return(last);
771 else
772 break;
773 }
774
775 return GL_FALSE;
776 }
777
778
779 static void
780 slang_resolve_variable(slang_operation *oper)
781 {
782 if (oper->type == SLANG_OPER_IDENTIFIER && !oper->var) {
783 oper->var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
784 }
785 }
786
787
788 /**
789 * Replace particular variables (SLANG_OPER_IDENTIFIER) with new expressions.
790 */
791 static void
792 slang_substitute(slang_assemble_ctx *A, slang_operation *oper,
793 GLuint substCount, slang_variable **substOld,
794 slang_operation **substNew, GLboolean isLHS)
795 {
796 switch (oper->type) {
797 case SLANG_OPER_VARIABLE_DECL:
798 {
799 slang_variable *v = _slang_locate_variable(oper->locals,
800 oper->a_id, GL_TRUE);
801 assert(v);
802 if (v->initializer && oper->num_children == 0) {
803 /* set child of oper to copy of initializer */
804 oper->num_children = 1;
805 oper->children = slang_operation_new(1);
806 slang_operation_copy(&oper->children[0], v->initializer);
807 }
808 if (oper->num_children == 1) {
809 /* the initializer */
810 slang_substitute(A, &oper->children[0], substCount,
811 substOld, substNew, GL_FALSE);
812 }
813 }
814 break;
815 case SLANG_OPER_IDENTIFIER:
816 assert(oper->num_children == 0);
817 if (1/**!isLHS XXX FIX */) {
818 slang_atom id = oper->a_id;
819 slang_variable *v;
820 GLuint i;
821 v = _slang_locate_variable(oper->locals, id, GL_TRUE);
822 if (!v) {
823 _mesa_problem(NULL, "var %s not found!\n", (char *) oper->a_id);
824 return;
825 }
826
827 /* look for a substitution */
828 for (i = 0; i < substCount; i++) {
829 if (v == substOld[i]) {
830 /* OK, replace this SLANG_OPER_IDENTIFIER with a new expr */
831 #if 0 /* DEBUG only */
832 if (substNew[i]->type == SLANG_OPER_IDENTIFIER) {
833 assert(substNew[i]->var);
834 assert(substNew[i]->var->a_name);
835 printf("Substitute %s with %s in id node %p\n",
836 (char*)v->a_name, (char*) substNew[i]->var->a_name,
837 (void*) oper);
838 }
839 else {
840 printf("Substitute %s with %f in id node %p\n",
841 (char*)v->a_name, substNew[i]->literal[0],
842 (void*) oper);
843 }
844 #endif
845 slang_operation_copy(oper, substNew[i]);
846 break;
847 }
848 }
849 }
850 break;
851
852 case SLANG_OPER_RETURN:
853 /* do return replacement here too */
854 assert(oper->num_children == 0 || oper->num_children == 1);
855 if (oper->num_children == 1 && !_slang_is_noop(&oper->children[0])) {
856 /* replace:
857 * return expr;
858 * with:
859 * __retVal = expr;
860 * return;
861 * then do substitutions on the assignment.
862 */
863 slang_operation *blockOper, *assignOper, *returnOper;
864
865 /* check if function actually has a return type */
866 assert(A->CurFunction);
867 if (A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
868 slang_info_log_error(A->log, "illegal return expression");
869 return;
870 }
871
872 blockOper = slang_operation_new(1);
873 blockOper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
874 blockOper->num_children = 2;
875 blockOper->locals->outer_scope = oper->locals->outer_scope;
876 blockOper->children = slang_operation_new(2);
877 assignOper = blockOper->children + 0;
878 returnOper = blockOper->children + 1;
879
880 assignOper->type = SLANG_OPER_ASSIGN;
881 assignOper->num_children = 2;
882 assignOper->locals->outer_scope = blockOper->locals;
883 assignOper->children = slang_operation_new(2);
884 assignOper->children[0].type = SLANG_OPER_IDENTIFIER;
885 assignOper->children[0].a_id = slang_atom_pool_atom(A->atoms, "__retVal");
886 assignOper->children[0].locals->outer_scope = assignOper->locals;
887
888 slang_operation_copy(&assignOper->children[1],
889 &oper->children[0]);
890
891 returnOper->type = SLANG_OPER_RETURN; /* return w/ no value */
892 assert(returnOper->num_children == 0);
893
894 /* do substitutions on the "__retVal = expr" sub-tree */
895 slang_substitute(A, assignOper,
896 substCount, substOld, substNew, GL_FALSE);
897
898 /* install new code */
899 slang_operation_copy(oper, blockOper);
900 slang_operation_destruct(blockOper);
901 }
902 else {
903 /* check if return value was expected */
904 assert(A->CurFunction);
905 if (A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
906 slang_info_log_error(A->log, "return statement requires an expression");
907 return;
908 }
909 }
910 break;
911
912 case SLANG_OPER_ASSIGN:
913 case SLANG_OPER_SUBSCRIPT:
914 /* special case:
915 * child[0] can't have substitutions but child[1] can.
916 */
917 slang_substitute(A, &oper->children[0],
918 substCount, substOld, substNew, GL_TRUE);
919 slang_substitute(A, &oper->children[1],
920 substCount, substOld, substNew, GL_FALSE);
921 break;
922 case SLANG_OPER_FIELD:
923 /* XXX NEW - test */
924 slang_substitute(A, &oper->children[0],
925 substCount, substOld, substNew, GL_TRUE);
926 break;
927 default:
928 {
929 GLuint i;
930 for (i = 0; i < oper->num_children; i++)
931 slang_substitute(A, &oper->children[i],
932 substCount, substOld, substNew, GL_FALSE);
933 }
934 }
935 }
936
937
938 /**
939 * Produce inline code for a call to an assembly instruction.
940 * This is typically used to compile a call to a built-in function like this:
941 *
942 * vec4 mix(const vec4 x, const vec4 y, const vec4 a)
943 * {
944 * __asm vec4_lrp __retVal, a, y, x;
945 * }
946 *
947 *
948 * A call to
949 * r = mix(p1, p2, p3);
950 *
951 * Becomes:
952 *
953 * mov
954 * / \
955 * r vec4_lrp
956 * / | \
957 * p3 p2 p1
958 *
959 * We basically translate a SLANG_OPER_CALL into a SLANG_OPER_ASM.
960 */
961 static slang_operation *
962 slang_inline_asm_function(slang_assemble_ctx *A,
963 slang_function *fun, slang_operation *oper)
964 {
965 const GLuint numArgs = oper->num_children;
966 GLuint i;
967 slang_operation *inlined;
968 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
969 slang_variable **substOld;
970 slang_operation **substNew;
971
972 ASSERT(slang_is_asm_function(fun));
973 ASSERT(fun->param_count == numArgs + haveRetValue);
974
975 /*
976 printf("Inline %s as %s\n",
977 (char*) fun->header.a_name,
978 (char*) fun->body->children[0].a_id);
979 */
980
981 /*
982 * We'll substitute formal params with actual args in the asm call.
983 */
984 substOld = (slang_variable **)
985 _slang_alloc(numArgs * sizeof(slang_variable *));
986 substNew = (slang_operation **)
987 _slang_alloc(numArgs * sizeof(slang_operation *));
988 for (i = 0; i < numArgs; i++) {
989 substOld[i] = fun->parameters->variables[i];
990 substNew[i] = oper->children + i;
991 }
992
993 /* make a copy of the code to inline */
994 inlined = slang_operation_new(1);
995 slang_operation_copy(inlined, &fun->body->children[0]);
996 if (haveRetValue) {
997 /* get rid of the __retVal child */
998 inlined->num_children--;
999 for (i = 0; i < inlined->num_children; i++) {
1000 inlined->children[i] = inlined->children[i + 1];
1001 }
1002 }
1003
1004 /* now do formal->actual substitutions */
1005 slang_substitute(A, inlined, numArgs, substOld, substNew, GL_FALSE);
1006
1007 _slang_free(substOld);
1008 _slang_free(substNew);
1009
1010 #if 0
1011 printf("+++++++++++++ inlined asm function %s +++++++++++++\n",
1012 (char *) fun->header.a_name);
1013 slang_print_tree(inlined, 3);
1014 printf("+++++++++++++++++++++++++++++++++++++++++++++++++++\n");
1015 #endif
1016
1017 return inlined;
1018 }
1019
1020
1021 /**
1022 * Inline the given function call operation.
1023 * Return a new slang_operation that corresponds to the inlined code.
1024 */
1025 static slang_operation *
1026 slang_inline_function_call(slang_assemble_ctx * A, slang_function *fun,
1027 slang_operation *oper, slang_operation *returnOper)
1028 {
1029 typedef enum {
1030 SUBST = 1,
1031 COPY_IN,
1032 COPY_OUT
1033 } ParamMode;
1034 ParamMode *paramMode;
1035 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
1036 const GLuint numArgs = oper->num_children;
1037 const GLuint totalArgs = numArgs + haveRetValue;
1038 slang_operation *args = oper->children;
1039 slang_operation *inlined, *top;
1040 slang_variable **substOld;
1041 slang_operation **substNew;
1042 GLuint substCount, numCopyIn, i;
1043 slang_function *prevFunction;
1044 slang_variable_scope *newScope = NULL;
1045
1046 /* save / push */
1047 prevFunction = A->CurFunction;
1048 A->CurFunction = fun;
1049
1050 /*assert(oper->type == SLANG_OPER_CALL); (or (matrix) multiply, etc) */
1051 assert(fun->param_count == totalArgs);
1052
1053 /* allocate temporary arrays */
1054 paramMode = (ParamMode *)
1055 _slang_alloc(totalArgs * sizeof(ParamMode));
1056 substOld = (slang_variable **)
1057 _slang_alloc(totalArgs * sizeof(slang_variable *));
1058 substNew = (slang_operation **)
1059 _slang_alloc(totalArgs * sizeof(slang_operation *));
1060
1061 #if 0
1062 printf("\nInline call to %s (total vars=%d nparams=%d)\n",
1063 (char *) fun->header.a_name,
1064 fun->parameters->num_variables, numArgs);
1065 #endif
1066
1067 if (haveRetValue && !returnOper) {
1068 /* Create 3-child comma sequence for inlined code:
1069 * child[0]: declare __resultTmp
1070 * child[1]: inlined function body
1071 * child[2]: __resultTmp
1072 */
1073 slang_operation *commaSeq;
1074 slang_operation *declOper = NULL;
1075 slang_variable *resultVar;
1076
1077 commaSeq = slang_operation_new(1);
1078 commaSeq->type = SLANG_OPER_SEQUENCE;
1079 assert(commaSeq->locals);
1080 commaSeq->locals->outer_scope = oper->locals->outer_scope;
1081 commaSeq->num_children = 3;
1082 commaSeq->children = slang_operation_new(3);
1083 /* allocate the return var */
1084 resultVar = slang_variable_scope_grow(commaSeq->locals);
1085 /*
1086 printf("Alloc __resultTmp in scope %p for retval of calling %s\n",
1087 (void*)commaSeq->locals, (char *) fun->header.a_name);
1088 */
1089
1090 resultVar->a_name = slang_atom_pool_atom(A->atoms, "__resultTmp");
1091 resultVar->type = fun->header.type; /* XXX copy? */
1092 resultVar->isTemp = GL_TRUE;
1093
1094 /* child[0] = __resultTmp declaration */
1095 declOper = &commaSeq->children[0];
1096 declOper->type = SLANG_OPER_VARIABLE_DECL;
1097 declOper->a_id = resultVar->a_name;
1098 declOper->locals->outer_scope = commaSeq->locals;
1099
1100 /* child[1] = function body */
1101 inlined = &commaSeq->children[1];
1102 inlined->locals->outer_scope = commaSeq->locals;
1103
1104 /* child[2] = __resultTmp reference */
1105 returnOper = &commaSeq->children[2];
1106 returnOper->type = SLANG_OPER_IDENTIFIER;
1107 returnOper->a_id = resultVar->a_name;
1108 returnOper->locals->outer_scope = commaSeq->locals;
1109
1110 top = commaSeq;
1111 }
1112 else {
1113 top = inlined = slang_operation_new(1);
1114 /* XXXX this may be inappropriate!!!! */
1115 inlined->locals->outer_scope = oper->locals->outer_scope;
1116 }
1117
1118
1119 assert(inlined->locals);
1120
1121 /* Examine the parameters, look for inout/out params, look for possible
1122 * substitutions, etc:
1123 * param type behaviour
1124 * in copy actual to local
1125 * const in substitute param with actual
1126 * out copy out
1127 */
1128 substCount = 0;
1129 for (i = 0; i < totalArgs; i++) {
1130 slang_variable *p = fun->parameters->variables[i];
1131 /*
1132 printf("Param %d: %s %s \n", i,
1133 slang_type_qual_string(p->type.qualifier),
1134 (char *) p->a_name);
1135 */
1136 if (p->type.qualifier == SLANG_QUAL_INOUT ||
1137 p->type.qualifier == SLANG_QUAL_OUT) {
1138 /* an output param */
1139 slang_operation *arg;
1140 if (i < numArgs)
1141 arg = &args[i];
1142 else
1143 arg = returnOper;
1144 paramMode[i] = SUBST;
1145
1146 if (arg->type == SLANG_OPER_IDENTIFIER)
1147 slang_resolve_variable(arg);
1148
1149 /* replace parameter 'p' with argument 'arg' */
1150 substOld[substCount] = p;
1151 substNew[substCount] = arg; /* will get copied */
1152 substCount++;
1153 }
1154 else if (p->type.qualifier == SLANG_QUAL_CONST) {
1155 /* a constant input param */
1156 if (args[i].type == SLANG_OPER_IDENTIFIER ||
1157 args[i].type == SLANG_OPER_LITERAL_FLOAT) {
1158 /* replace all occurances of this parameter variable with the
1159 * actual argument variable or a literal.
1160 */
1161 paramMode[i] = SUBST;
1162 slang_resolve_variable(&args[i]);
1163 substOld[substCount] = p;
1164 substNew[substCount] = &args[i]; /* will get copied */
1165 substCount++;
1166 }
1167 else {
1168 paramMode[i] = COPY_IN;
1169 }
1170 }
1171 else {
1172 paramMode[i] = COPY_IN;
1173 }
1174 assert(paramMode[i]);
1175 }
1176
1177 /* actual code inlining: */
1178 slang_operation_copy(inlined, fun->body);
1179
1180 /*** XXX review this */
1181 assert(inlined->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
1182 inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE);
1183 inlined->type = SLANG_OPER_BLOCK_NEW_SCOPE;
1184
1185 #if 0
1186 printf("======================= orig body code ======================\n");
1187 printf("=== params scope = %p\n", (void*) fun->parameters);
1188 slang_print_tree(fun->body, 8);
1189 printf("======================= copied code =========================\n");
1190 slang_print_tree(inlined, 8);
1191 #endif
1192
1193 /* do parameter substitution in inlined code: */
1194 slang_substitute(A, inlined, substCount, substOld, substNew, GL_FALSE);
1195
1196 #if 0
1197 printf("======================= subst code ==========================\n");
1198 slang_print_tree(inlined, 8);
1199 printf("=============================================================\n");
1200 #endif
1201
1202 /* New prolog statements: (inserted before the inlined code)
1203 * Copy the 'in' arguments.
1204 */
1205 numCopyIn = 0;
1206 for (i = 0; i < numArgs; i++) {
1207 if (paramMode[i] == COPY_IN) {
1208 slang_variable *p = fun->parameters->variables[i];
1209 /* declare parameter 'p' */
1210 slang_operation *decl = slang_operation_insert(&inlined->num_children,
1211 &inlined->children,
1212 numCopyIn);
1213
1214 decl->type = SLANG_OPER_VARIABLE_DECL;
1215 assert(decl->locals);
1216 decl->locals->outer_scope = inlined->locals;
1217 decl->a_id = p->a_name;
1218 decl->num_children = 1;
1219 decl->children = slang_operation_new(1);
1220
1221 /* child[0] is the var's initializer */
1222 slang_operation_copy(&decl->children[0], args + i);
1223
1224 /* add parameter 'p' to the local variable scope here */
1225 {
1226 slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
1227 pCopy->type = p->type;
1228 pCopy->a_name = p->a_name;
1229 pCopy->array_len = p->array_len;
1230 }
1231
1232 newScope = inlined->locals;
1233 numCopyIn++;
1234 }
1235 }
1236
1237 /* Now add copies of the function's local vars to the new variable scope */
1238 for (i = totalArgs; i < fun->parameters->num_variables; i++) {
1239 slang_variable *p = fun->parameters->variables[i];
1240 slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
1241 pCopy->type = p->type;
1242 pCopy->a_name = p->a_name;
1243 pCopy->array_len = p->array_len;
1244 }
1245
1246
1247 /* New epilog statements:
1248 * 1. Create end of function label to jump to from return statements.
1249 * 2. Copy the 'out' parameter vars
1250 */
1251 {
1252 slang_operation *lab = slang_operation_insert(&inlined->num_children,
1253 &inlined->children,
1254 inlined->num_children);
1255 lab->type = SLANG_OPER_LABEL;
1256 lab->label = A->curFuncEndLabel;
1257 }
1258
1259 for (i = 0; i < totalArgs; i++) {
1260 if (paramMode[i] == COPY_OUT) {
1261 const slang_variable *p = fun->parameters->variables[i];
1262 /* actualCallVar = outParam */
1263 /*if (i > 0 || !haveRetValue)*/
1264 slang_operation *ass = slang_operation_insert(&inlined->num_children,
1265 &inlined->children,
1266 inlined->num_children);
1267 ass->type = SLANG_OPER_ASSIGN;
1268 ass->num_children = 2;
1269 ass->locals->outer_scope = inlined->locals;
1270 ass->children = slang_operation_new(2);
1271 ass->children[0] = args[i]; /*XXX copy */
1272 ass->children[1].type = SLANG_OPER_IDENTIFIER;
1273 ass->children[1].a_id = p->a_name;
1274 ass->children[1].locals->outer_scope = ass->locals;
1275 }
1276 }
1277
1278 _slang_free(paramMode);
1279 _slang_free(substOld);
1280 _slang_free(substNew);
1281
1282 /* Update scoping to use the new local vars instead of the
1283 * original function's vars. This is especially important
1284 * for nested inlining.
1285 */
1286 if (newScope)
1287 slang_replace_scope(inlined, fun->parameters, newScope);
1288
1289 #if 0
1290 printf("Done Inline call to %s (total vars=%d nparams=%d)\n\n",
1291 (char *) fun->header.a_name,
1292 fun->parameters->num_variables, numArgs);
1293 slang_print_tree(top, 0);
1294 #endif
1295
1296 /* pop */
1297 A->CurFunction = prevFunction;
1298
1299 return top;
1300 }
1301
1302
1303 static slang_ir_node *
1304 _slang_gen_function_call(slang_assemble_ctx *A, slang_function *fun,
1305 slang_operation *oper, slang_operation *dest)
1306 {
1307 slang_ir_node *n;
1308 slang_operation *inlined;
1309 slang_label *prevFuncEndLabel;
1310 char name[200];
1311
1312 prevFuncEndLabel = A->curFuncEndLabel;
1313 sprintf(name, "__endOfFunc_%s_", (char *) fun->header.a_name);
1314 A->curFuncEndLabel = _slang_label_new(name);
1315 assert(A->curFuncEndLabel);
1316
1317 if (slang_is_asm_function(fun) && !dest) {
1318 /* assemble assembly function - tree style */
1319 inlined = slang_inline_asm_function(A, fun, oper);
1320 }
1321 else {
1322 /* non-assembly function */
1323 /* We always generate an "inline-able" block of code here.
1324 * We may either:
1325 * 1. insert the inline code
1326 * 2. Generate a call to the "inline" code as a subroutine
1327 */
1328
1329
1330 slang_operation *ret = NULL;
1331
1332 inlined = slang_inline_function_call(A, fun, oper, dest);
1333 if (!inlined)
1334 return NULL;
1335
1336 ret = _slang_find_node_type(inlined, SLANG_OPER_RETURN);
1337 if (ret) {
1338 /* check if this is a "tail" return */
1339 if (_slang_count_node_type(inlined, SLANG_OPER_RETURN) == 1 &&
1340 _slang_is_tail_return(inlined)) {
1341 /* The only RETURN is the last stmt in the function, no-op it
1342 * and inline the function body.
1343 */
1344 ret->type = SLANG_OPER_NONE;
1345 }
1346 else {
1347 slang_operation *callOper;
1348 /* The function we're calling has one or more 'return' statements.
1349 * So, we can't truly inline this function because we need to
1350 * implement 'return' with RET (and CAL).
1351 * Nevertheless, we performed "inlining" to make a new instance
1352 * of the function body to deal with static register allocation.
1353 *
1354 * XXX check if there's one 'return' and if it's the very last
1355 * statement in the function - we can optimize that case.
1356 */
1357 assert(inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
1358 inlined->type == SLANG_OPER_SEQUENCE);
1359
1360 if (_slang_function_has_return_value(fun) && !dest) {
1361 assert(inlined->children[0].type == SLANG_OPER_VARIABLE_DECL);
1362 assert(inlined->children[2].type == SLANG_OPER_IDENTIFIER);
1363 callOper = &inlined->children[1];
1364 }
1365 else {
1366 callOper = inlined;
1367 }
1368 callOper->type = SLANG_OPER_NON_INLINED_CALL;
1369 callOper->fun = fun;
1370 callOper->label = _slang_label_new_unique((char*) fun->header.a_name);
1371 }
1372 }
1373 }
1374
1375 if (!inlined)
1376 return NULL;
1377
1378 /* Replace the function call with the inlined block (or new CALL stmt) */
1379 slang_operation_destruct(oper);
1380 *oper = *inlined;
1381 _slang_free(inlined);
1382
1383 #if 0
1384 assert(inlined->locals);
1385 printf("*** Inlined code for call to %s:\n",
1386 (char*) fun->header.a_name);
1387 slang_print_tree(oper, 10);
1388 printf("\n");
1389 #endif
1390
1391 n = _slang_gen_operation(A, oper);
1392
1393 /*_slang_label_delete(A->curFuncEndLabel);*/
1394 A->curFuncEndLabel = prevFuncEndLabel;
1395
1396 return n;
1397 }
1398
1399
1400 static slang_asm_info *
1401 slang_find_asm_info(const char *name)
1402 {
1403 GLuint i;
1404 for (i = 0; AsmInfo[i].Name; i++) {
1405 if (_mesa_strcmp(AsmInfo[i].Name, name) == 0) {
1406 return AsmInfo + i;
1407 }
1408 }
1409 return NULL;
1410 }
1411
1412
1413 /**
1414 * Return the default swizzle mask for accessing a variable of the
1415 * given size (in floats). If size = 1, comp is used to identify
1416 * which component [0..3] of the register holds the variable.
1417 */
1418 static GLuint
1419 _slang_var_swizzle(GLint size, GLint comp)
1420 {
1421 switch (size) {
1422 case 1:
1423 return MAKE_SWIZZLE4(comp, comp, comp, comp);
1424 case 2:
1425 return MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_NIL, SWIZZLE_NIL);
1426 case 3:
1427 return MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_NIL);
1428 default:
1429 return SWIZZLE_XYZW;
1430 }
1431 }
1432
1433
1434 /**
1435 * Some write-masked assignments are simple, but others are hard.
1436 * Simple example:
1437 * vec3 v;
1438 * v.xy = vec2(a, b);
1439 * Hard example:
1440 * vec3 v;
1441 * v.zy = vec2(a, b);
1442 * this gets transformed/swizzled into:
1443 * v.zy = vec2(a, b).*yx* (* = don't care)
1444 * This function helps to determine simple vs. non-simple.
1445 */
1446 static GLboolean
1447 _slang_simple_writemask(GLuint writemask, GLuint swizzle)
1448 {
1449 switch (writemask) {
1450 case WRITEMASK_X:
1451 return GET_SWZ(swizzle, 0) == SWIZZLE_X;
1452 case WRITEMASK_Y:
1453 return GET_SWZ(swizzle, 1) == SWIZZLE_Y;
1454 case WRITEMASK_Z:
1455 return GET_SWZ(swizzle, 2) == SWIZZLE_Z;
1456 case WRITEMASK_W:
1457 return GET_SWZ(swizzle, 3) == SWIZZLE_W;
1458 case WRITEMASK_XY:
1459 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
1460 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y);
1461 case WRITEMASK_XYZ:
1462 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
1463 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y)
1464 && (GET_SWZ(swizzle, 2) == SWIZZLE_Z);
1465 case WRITEMASK_XYZW:
1466 return swizzle == SWIZZLE_NOOP;
1467 default:
1468 return GL_FALSE;
1469 }
1470 }
1471
1472
1473 /**
1474 * Convert the given swizzle into a writemask. In some cases this
1475 * is trivial, in other cases, we'll need to also swizzle the right
1476 * hand side to put components in the right places.
1477 * See comment above for more info.
1478 * XXX this function could be simplified and should probably be renamed.
1479 * \param swizzle the incoming swizzle
1480 * \param writemaskOut returns the writemask
1481 * \param swizzleOut swizzle to apply to the right-hand-side
1482 * \return GL_FALSE for simple writemasks, GL_TRUE for non-simple
1483 */
1484 static GLboolean
1485 swizzle_to_writemask(slang_assemble_ctx *A, GLuint swizzle,
1486 GLuint *writemaskOut, GLuint *swizzleOut)
1487 {
1488 GLuint mask = 0x0, newSwizzle[4];
1489 GLint i, size;
1490
1491 /* make new dst writemask, compute size */
1492 for (i = 0; i < 4; i++) {
1493 const GLuint swz = GET_SWZ(swizzle, i);
1494 if (swz == SWIZZLE_NIL) {
1495 /* end */
1496 break;
1497 }
1498 assert(swz >= 0 && swz <= 3);
1499
1500 if (swizzle != SWIZZLE_XXXX &&
1501 swizzle != SWIZZLE_YYYY &&
1502 swizzle != SWIZZLE_ZZZZ &&
1503 swizzle != SWIZZLE_WWWW &&
1504 (mask & (1 << swz))) {
1505 /* a channel can't be specified twice (ex: ".xyyz") */
1506 slang_info_log_error(A->log, "Invalid writemask '%s'",
1507 _mesa_swizzle_string(swizzle, 0, 0));
1508 return GL_FALSE;
1509 }
1510
1511 mask |= (1 << swz);
1512 }
1513 assert(mask <= 0xf);
1514 size = i; /* number of components in mask/swizzle */
1515
1516 *writemaskOut = mask;
1517
1518 /* make new src swizzle, by inversion */
1519 for (i = 0; i < 4; i++) {
1520 newSwizzle[i] = i; /*identity*/
1521 }
1522 for (i = 0; i < size; i++) {
1523 const GLuint swz = GET_SWZ(swizzle, i);
1524 newSwizzle[swz] = i;
1525 }
1526 *swizzleOut = MAKE_SWIZZLE4(newSwizzle[0],
1527 newSwizzle[1],
1528 newSwizzle[2],
1529 newSwizzle[3]);
1530
1531 if (_slang_simple_writemask(mask, *swizzleOut)) {
1532 if (size >= 1)
1533 assert(GET_SWZ(*swizzleOut, 0) == SWIZZLE_X);
1534 if (size >= 2)
1535 assert(GET_SWZ(*swizzleOut, 1) == SWIZZLE_Y);
1536 if (size >= 3)
1537 assert(GET_SWZ(*swizzleOut, 2) == SWIZZLE_Z);
1538 if (size >= 4)
1539 assert(GET_SWZ(*swizzleOut, 3) == SWIZZLE_W);
1540 return GL_TRUE;
1541 }
1542 else
1543 return GL_FALSE;
1544 }
1545
1546
1547 /**
1548 * Recursively traverse 'oper' to produce a swizzle mask in the event
1549 * of any vector subscripts and swizzle suffixes.
1550 * Ex: for "vec4 v", "v[2].x" resolves to v.z
1551 */
1552 static GLuint
1553 resolve_swizzle(const slang_operation *oper)
1554 {
1555 if (oper->type == SLANG_OPER_FIELD) {
1556 /* writemask from .xyzw suffix */
1557 slang_swizzle swz;
1558 if (_slang_is_swizzle((char*) oper->a_id, 4, &swz)) {
1559 GLuint swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
1560 swz.swizzle[1],
1561 swz.swizzle[2],
1562 swz.swizzle[3]);
1563 GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
1564 GLuint s = _slang_swizzle_swizzle(child_swizzle, swizzle);
1565 return s;
1566 }
1567 else
1568 return SWIZZLE_XYZW;
1569 }
1570 else if (oper->type == SLANG_OPER_SUBSCRIPT &&
1571 oper->children[1].type == SLANG_OPER_LITERAL_INT) {
1572 /* writemask from [index] */
1573 GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
1574 GLuint i = (GLuint) oper->children[1].literal[0];
1575 GLuint swizzle;
1576 GLuint s;
1577 switch (i) {
1578 case 0:
1579 swizzle = SWIZZLE_XXXX;
1580 break;
1581 case 1:
1582 swizzle = SWIZZLE_YYYY;
1583 break;
1584 case 2:
1585 swizzle = SWIZZLE_ZZZZ;
1586 break;
1587 case 3:
1588 swizzle = SWIZZLE_WWWW;
1589 break;
1590 default:
1591 swizzle = SWIZZLE_XYZW;
1592 }
1593 s = _slang_swizzle_swizzle(child_swizzle, swizzle);
1594 return s;
1595 }
1596 else {
1597 return SWIZZLE_XYZW;
1598 }
1599 }
1600
1601
1602 /**
1603 * Recursively descend through swizzle nodes to find the node's storage info.
1604 */
1605 static slang_ir_storage *
1606 get_store(const slang_ir_node *n)
1607 {
1608 if (n->Opcode == IR_SWIZZLE) {
1609 return get_store(n->Children[0]);
1610 }
1611 return n->Store;
1612 }
1613
1614
1615
1616 /**
1617 * Generate IR tree for an asm instruction/operation such as:
1618 * __asm vec4_dot __retVal.x, v1, v2;
1619 */
1620 static slang_ir_node *
1621 _slang_gen_asm(slang_assemble_ctx *A, slang_operation *oper,
1622 slang_operation *dest)
1623 {
1624 const slang_asm_info *info;
1625 slang_ir_node *kids[3], *n;
1626 GLuint j, firstOperand;
1627
1628 assert(oper->type == SLANG_OPER_ASM);
1629
1630 info = slang_find_asm_info((char *) oper->a_id);
1631 if (!info) {
1632 _mesa_problem(NULL, "undefined __asm function %s\n",
1633 (char *) oper->a_id);
1634 assert(info);
1635 }
1636 assert(info->NumParams <= 3);
1637
1638 if (info->NumParams == oper->num_children) {
1639 /* Storage for result is not specified.
1640 * Children[0], [1], [2] are the operands.
1641 */
1642 firstOperand = 0;
1643 }
1644 else {
1645 /* Storage for result (child[0]) is specified.
1646 * Children[1], [2], [3] are the operands.
1647 */
1648 firstOperand = 1;
1649 }
1650
1651 /* assemble child(ren) */
1652 kids[0] = kids[1] = kids[2] = NULL;
1653 for (j = 0; j < info->NumParams; j++) {
1654 kids[j] = _slang_gen_operation(A, &oper->children[firstOperand + j]);
1655 if (!kids[j])
1656 return NULL;
1657 }
1658
1659 n = new_node3(info->Opcode, kids[0], kids[1], kids[2]);
1660
1661 if (firstOperand) {
1662 /* Setup n->Store to be a particular location. Otherwise, storage
1663 * for the result (a temporary) will be allocated later.
1664 */
1665 slang_operation *dest_oper;
1666 slang_ir_node *n0;
1667
1668 dest_oper = &oper->children[0];
1669
1670 n0 = _slang_gen_operation(A, dest_oper);
1671 if (!n0)
1672 return NULL;
1673
1674 assert(!n->Store);
1675 n->Store = n0->Store;
1676
1677 assert(n->Store->File != PROGRAM_UNDEFINED || n->Store->Parent);
1678
1679 _slang_free(n0);
1680 }
1681
1682 return n;
1683 }
1684
1685
1686 static void
1687 print_funcs(struct slang_function_scope_ *scope, const char *name)
1688 {
1689 GLuint i;
1690 for (i = 0; i < scope->num_functions; i++) {
1691 slang_function *f = &scope->functions[i];
1692 if (!name || strcmp(name, (char*) f->header.a_name) == 0)
1693 printf(" %s (%d args)\n", name, f->param_count);
1694
1695 }
1696 if (scope->outer_scope)
1697 print_funcs(scope->outer_scope, name);
1698 }
1699
1700
1701 /**
1702 * Find a function of the given name, taking 'numArgs' arguments.
1703 * This is the function we'll try to call when there is no exact match
1704 * between function parameters and call arguments.
1705 *
1706 * XXX we should really create a list of candidate functions and try
1707 * all of them...
1708 */
1709 static slang_function *
1710 _slang_find_function_by_argc(slang_function_scope *scope,
1711 const char *name, int numArgs)
1712 {
1713 while (scope) {
1714 GLuint i;
1715 for (i = 0; i < scope->num_functions; i++) {
1716 slang_function *f = &scope->functions[i];
1717 if (strcmp(name, (char*) f->header.a_name) == 0) {
1718 int haveRetValue = _slang_function_has_return_value(f);
1719 if (numArgs == f->param_count - haveRetValue)
1720 return f;
1721 }
1722 }
1723 scope = scope->outer_scope;
1724 }
1725
1726 return NULL;
1727 }
1728
1729
1730 static slang_function *
1731 _slang_find_function_by_max_argc(slang_function_scope *scope,
1732 const char *name)
1733 {
1734 slang_function *maxFunc = NULL;
1735 GLuint maxArgs = 0;
1736
1737 while (scope) {
1738 GLuint i;
1739 for (i = 0; i < scope->num_functions; i++) {
1740 slang_function *f = &scope->functions[i];
1741 if (strcmp(name, (char*) f->header.a_name) == 0) {
1742 if (f->param_count > maxArgs) {
1743 maxArgs = f->param_count;
1744 maxFunc = f;
1745 }
1746 }
1747 }
1748 scope = scope->outer_scope;
1749 }
1750
1751 return maxFunc;
1752 }
1753
1754
1755 /**
1756 * Generate a new slang_function which is a constructor for a user-defined
1757 * struct type.
1758 */
1759 static slang_function *
1760 _slang_make_constructor(slang_assemble_ctx *A, slang_struct *str)
1761 {
1762 const GLint numFields = str->fields->num_variables;
1763
1764 slang_function *fun = (slang_function *) _mesa_malloc(sizeof(slang_function));
1765 if (!fun)
1766 return NULL;
1767
1768 slang_function_construct(fun);
1769
1770 /* function header (name, return type) */
1771 fun->kind = SLANG_FUNC_CONSTRUCTOR;
1772 fun->header.a_name = str->a_name;
1773 fun->header.type.qualifier = SLANG_QUAL_NONE;
1774 fun->header.type.specifier.type = SLANG_SPEC_STRUCT;
1775 fun->header.type.specifier._struct = str;
1776
1777 /* function parameters (= struct's fields) */
1778 {
1779 GLint i;
1780 for (i = 0; i < numFields; i++) {
1781 /*
1782 printf("Field %d: %s\n", i, (char*) str->fields->variables[i]->a_name);
1783 */
1784 slang_variable *p = slang_variable_scope_grow(fun->parameters);
1785 *p = *str->fields->variables[i]; /* copy the type */
1786 p->type.qualifier = SLANG_QUAL_CONST;
1787 }
1788 fun->param_count = fun->parameters->num_variables;
1789 }
1790
1791 /* Add __retVal to params */
1792 {
1793 slang_variable *p = slang_variable_scope_grow(fun->parameters);
1794 slang_atom a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
1795 assert(a_retVal);
1796 p->a_name = a_retVal;
1797 p->type = fun->header.type;
1798 p->type.qualifier = SLANG_QUAL_OUT;
1799 fun->param_count++;
1800 }
1801
1802 /* function body is:
1803 * block:
1804 * declare T;
1805 * T.f1 = p1;
1806 * T.f2 = p2;
1807 * ...
1808 * T.fn = pn;
1809 * return T;
1810 */
1811 {
1812 slang_variable_scope *scope;
1813 slang_variable *var;
1814 GLint i;
1815
1816 fun->body = slang_operation_new(1);
1817 fun->body->type = SLANG_OPER_BLOCK_NEW_SCOPE;
1818 fun->body->num_children = numFields + 2;
1819 fun->body->children = slang_operation_new(numFields + 2);
1820
1821 scope = fun->body->locals;
1822 scope->outer_scope = fun->parameters;
1823
1824 /* create local var 't' */
1825 var = slang_variable_scope_grow(scope);
1826 var->a_name = slang_atom_pool_atom(A->atoms, "t");
1827 var->type = fun->header.type;
1828
1829 /* declare t */
1830 {
1831 slang_operation *decl;
1832
1833 decl = &fun->body->children[0];
1834 decl->type = SLANG_OPER_VARIABLE_DECL;
1835 decl->locals = _slang_variable_scope_new(scope);
1836 decl->a_id = var->a_name;
1837 }
1838
1839 /* assign params to fields of t */
1840 for (i = 0; i < numFields; i++) {
1841 slang_operation *assign = &fun->body->children[1 + i];
1842
1843 assign->type = SLANG_OPER_ASSIGN;
1844 assign->locals = _slang_variable_scope_new(scope);
1845 assign->num_children = 2;
1846 assign->children = slang_operation_new(2);
1847
1848 {
1849 slang_operation *lhs = &assign->children[0];
1850
1851 lhs->type = SLANG_OPER_FIELD;
1852 lhs->locals = _slang_variable_scope_new(scope);
1853 lhs->num_children = 1;
1854 lhs->children = slang_operation_new(1);
1855 lhs->a_id = str->fields->variables[i]->a_name;
1856
1857 lhs->children[0].type = SLANG_OPER_IDENTIFIER;
1858 lhs->children[0].a_id = var->a_name;
1859 lhs->children[0].locals = _slang_variable_scope_new(scope);
1860
1861 #if 0
1862 lhs->children[1].num_children = 1;
1863 lhs->children[1].children = slang_operation_new(1);
1864 lhs->children[1].children[0].type = SLANG_OPER_IDENTIFIER;
1865 lhs->children[1].children[0].a_id = str->fields->variables[i]->a_name;
1866 lhs->children[1].children->locals = _slang_variable_scope_new(scope);
1867 #endif
1868 }
1869
1870 {
1871 slang_operation *rhs = &assign->children[1];
1872
1873 rhs->type = SLANG_OPER_IDENTIFIER;
1874 rhs->locals = _slang_variable_scope_new(scope);
1875 rhs->a_id = str->fields->variables[i]->a_name;
1876 }
1877 }
1878
1879 /* return t; */
1880 {
1881 slang_operation *ret = &fun->body->children[numFields + 1];
1882
1883 ret->type = SLANG_OPER_RETURN;
1884 ret->locals = _slang_variable_scope_new(scope);
1885 ret->num_children = 1;
1886 ret->children = slang_operation_new(1);
1887 ret->children[0].type = SLANG_OPER_IDENTIFIER;
1888 ret->children[0].a_id = var->a_name;
1889 ret->children[0].locals = _slang_variable_scope_new(scope);
1890
1891 }
1892 }
1893 /*
1894 slang_print_function(fun, 1);
1895 */
1896 return fun;
1897 }
1898
1899
1900 /**
1901 * Find/create a function (constructor) for the given structure name.
1902 */
1903 static slang_function *
1904 _slang_locate_struct_constructor(slang_assemble_ctx *A, const char *name)
1905 {
1906 unsigned int i;
1907 for (i = 0; i < A->space.structs->num_structs; i++) {
1908 slang_struct *str = &A->space.structs->structs[i];
1909 if (strcmp(name, (const char *) str->a_name) == 0) {
1910 /* found a structure type that matches the function name */
1911 if (!str->constructor) {
1912 /* create the constructor function now */
1913 str->constructor = _slang_make_constructor(A, str);
1914 }
1915 return str->constructor;
1916 }
1917 }
1918 return NULL;
1919 }
1920
1921
1922
1923 static GLboolean
1924 _slang_is_vec_mat_type(const char *name)
1925 {
1926 static const char *vecmat_types[] = {
1927 "float", "int", "bool",
1928 "vec2", "vec3", "vec4",
1929 "ivec2", "ivec3", "ivec4",
1930 "bvec2", "bvec3", "bvec4",
1931 "mat2", "mat3", "mat4",
1932 "mat2x3", "mat2x4", "mat3x2", "mat3x4", "mat4x2", "mat4x3",
1933 NULL
1934 };
1935 int i;
1936 for (i = 0; vecmat_types[i]; i++)
1937 if (_mesa_strcmp(name, vecmat_types[i]) == 0)
1938 return GL_TRUE;
1939 return GL_FALSE;
1940 }
1941
1942
1943 /**
1944 * Assemble a function call, given a particular function name.
1945 * \param name the function's name (operators like '*' are possible).
1946 */
1947 static slang_ir_node *
1948 _slang_gen_function_call_name(slang_assemble_ctx *A, const char *name,
1949 slang_operation *oper, slang_operation *dest)
1950 {
1951 slang_operation *params = oper->children;
1952 const GLuint param_count = oper->num_children;
1953 slang_atom atom;
1954 slang_function *fun;
1955 GLboolean error;
1956 slang_ir_node *n;
1957
1958 atom = slang_atom_pool_atom(A->atoms, name);
1959 if (atom == SLANG_ATOM_NULL)
1960 return NULL;
1961
1962 /*
1963 * First, try to find function by name and exact argument type matching.
1964 */
1965 fun = _slang_locate_function(A->space.funcs, atom, params, param_count,
1966 &A->space, A->atoms, A->log, &error);
1967
1968 if (error) {
1969 slang_info_log_error(A->log,
1970 "Function '%s' not found (check argument types)",
1971 name);
1972 return NULL;
1973 }
1974
1975 if (!fun) {
1976 /* Next, try locating a constructor function for a user-defined type */
1977 fun = _slang_locate_struct_constructor(A, name);
1978 }
1979
1980 /*
1981 * At this point, some heuristics are used to try to find a function
1982 * that matches the calling signature by means of casting or "unrolling"
1983 * of constructors.
1984 */
1985
1986 if (!fun && _slang_is_vec_mat_type(name)) {
1987 /* Next, if this call looks like a vec() or mat() constructor call,
1988 * try "unwinding" the args to satisfy a constructor.
1989 */
1990 fun = _slang_find_function_by_max_argc(A->space.funcs, name);
1991 if (fun) {
1992 if (!_slang_adapt_call(oper, fun, &A->space, A->atoms, A->log)) {
1993 slang_info_log_error(A->log,
1994 "Function '%s' not found (check argument types)",
1995 name);
1996 return NULL;
1997 }
1998 }
1999 }
2000
2001 if (!fun && _slang_is_vec_mat_type(name)) {
2002 /* Next, try casting args to the types of the formal parameters */
2003 int numArgs = oper->num_children;
2004 fun = _slang_find_function_by_argc(A->space.funcs, name, numArgs);
2005 if (!fun || !_slang_cast_func_params(oper, fun, &A->space, A->atoms, A->log)) {
2006 slang_info_log_error(A->log,
2007 "Function '%s' not found (check argument types)",
2008 name);
2009 return NULL;
2010 }
2011 assert(fun);
2012 }
2013
2014 if (!fun) {
2015 slang_info_log_error(A->log,
2016 "Function '%s' not found (check argument types)",
2017 name);
2018 return NULL;
2019 }
2020
2021 n = _slang_gen_function_call(A, fun, oper, dest);
2022
2023 if (n && !n->Store && !dest
2024 && fun->header.type.specifier.type != SLANG_SPEC_VOID) {
2025 /* setup n->Store for the result of the function call */
2026 GLint size = _slang_sizeof_type_specifier(&fun->header.type.specifier);
2027 n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, size);
2028 /*printf("Alloc storage for function result, size %d \n", size);*/
2029 }
2030
2031 return n;
2032 }
2033
2034
2035 static GLboolean
2036 _slang_is_constant_cond(const slang_operation *oper, GLboolean *value)
2037 {
2038 if (oper->type == SLANG_OPER_LITERAL_FLOAT ||
2039 oper->type == SLANG_OPER_LITERAL_INT ||
2040 oper->type == SLANG_OPER_LITERAL_BOOL) {
2041 if (oper->literal[0])
2042 *value = GL_TRUE;
2043 else
2044 *value = GL_FALSE;
2045 return GL_TRUE;
2046 }
2047 else if (oper->type == SLANG_OPER_EXPRESSION &&
2048 oper->num_children == 1) {
2049 return _slang_is_constant_cond(&oper->children[0], value);
2050 }
2051 return GL_FALSE;
2052 }
2053
2054
2055 /**
2056 * Test if an operation is a scalar or boolean.
2057 */
2058 static GLboolean
2059 _slang_is_scalar_or_boolean(slang_assemble_ctx *A, slang_operation *oper)
2060 {
2061 slang_typeinfo type;
2062 GLint size;
2063
2064 slang_typeinfo_construct(&type);
2065 _slang_typeof_operation(A, oper, &type);
2066 size = _slang_sizeof_type_specifier(&type.spec);
2067 slang_typeinfo_destruct(&type);
2068 return size == 1;
2069 }
2070
2071
2072 /**
2073 * Test if an operation is boolean.
2074 */
2075 static GLboolean
2076 _slang_is_boolean(slang_assemble_ctx *A, slang_operation *oper)
2077 {
2078 slang_typeinfo type;
2079 GLboolean isBool;
2080
2081 slang_typeinfo_construct(&type);
2082 _slang_typeof_operation(A, oper, &type);
2083 isBool = (type.spec.type == SLANG_SPEC_BOOL);
2084 slang_typeinfo_destruct(&type);
2085 return isBool;
2086 }
2087
2088
2089 /**
2090 * Generate loop code using high-level IR_LOOP instruction
2091 */
2092 static slang_ir_node *
2093 _slang_gen_while(slang_assemble_ctx * A, const slang_operation *oper)
2094 {
2095 /*
2096 * LOOP:
2097 * BREAK if !expr (child[0])
2098 * body code (child[1])
2099 */
2100 slang_ir_node *prevLoop, *loop, *breakIf, *body;
2101 GLboolean isConst, constTrue;
2102
2103 /* type-check expression */
2104 if (!_slang_is_boolean(A, &oper->children[0])) {
2105 slang_info_log_error(A->log, "scalar/boolean expression expected for 'while'");
2106 return NULL;
2107 }
2108
2109 /* Check if loop condition is a constant */
2110 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
2111
2112 if (isConst && !constTrue) {
2113 /* loop is never executed! */
2114 return new_node0(IR_NOP);
2115 }
2116
2117 loop = new_loop(NULL);
2118
2119 /* save old, push new loop */
2120 prevLoop = A->CurLoop;
2121 A->CurLoop = loop;
2122
2123 if (isConst && constTrue) {
2124 /* while(nonzero constant), no conditional break */
2125 breakIf = NULL;
2126 }
2127 else {
2128 slang_ir_node *cond
2129 = new_cond(new_not(_slang_gen_operation(A, &oper->children[0])));
2130 breakIf = new_break_if_true(A->CurLoop, cond);
2131 }
2132 body = _slang_gen_operation(A, &oper->children[1]);
2133 loop->Children[0] = new_seq(breakIf, body);
2134
2135 /* Do infinite loop detection */
2136 /* loop->List is head of linked list of break/continue nodes */
2137 if (!loop->List && isConst && constTrue) {
2138 /* infinite loop detected */
2139 A->CurLoop = prevLoop; /* clean-up */
2140 slang_info_log_error(A->log, "Infinite loop detected!");
2141 return NULL;
2142 }
2143
2144 /* pop loop, restore prev */
2145 A->CurLoop = prevLoop;
2146
2147 return loop;
2148 }
2149
2150
2151 /**
2152 * Generate IR tree for a do-while loop using high-level LOOP, IF instructions.
2153 */
2154 static slang_ir_node *
2155 _slang_gen_do(slang_assemble_ctx * A, const slang_operation *oper)
2156 {
2157 /*
2158 * LOOP:
2159 * body code (child[0])
2160 * tail code:
2161 * BREAK if !expr (child[1])
2162 */
2163 slang_ir_node *prevLoop, *loop;
2164 GLboolean isConst, constTrue;
2165
2166 /* type-check expression */
2167 if (!_slang_is_boolean(A, &oper->children[1])) {
2168 slang_info_log_error(A->log, "scalar/boolean expression expected for 'do/while'");
2169 return NULL;
2170 }
2171
2172 loop = new_loop(NULL);
2173
2174 /* save old, push new loop */
2175 prevLoop = A->CurLoop;
2176 A->CurLoop = loop;
2177
2178 /* loop body: */
2179 loop->Children[0] = _slang_gen_operation(A, &oper->children[0]);
2180
2181 /* Check if loop condition is a constant */
2182 isConst = _slang_is_constant_cond(&oper->children[1], &constTrue);
2183 if (isConst && constTrue) {
2184 /* do { } while(1) ==> no conditional break */
2185 loop->Children[1] = NULL; /* no tail code */
2186 }
2187 else {
2188 slang_ir_node *cond
2189 = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
2190 loop->Children[1] = new_break_if_true(A->CurLoop, cond);
2191 }
2192
2193 /* XXX we should do infinite loop detection, as above */
2194
2195 /* pop loop, restore prev */
2196 A->CurLoop = prevLoop;
2197
2198 return loop;
2199 }
2200
2201
2202 /**
2203 * Generate for-loop using high-level IR_LOOP instruction.
2204 */
2205 static slang_ir_node *
2206 _slang_gen_for(slang_assemble_ctx * A, const slang_operation *oper)
2207 {
2208 /*
2209 * init code (child[0])
2210 * LOOP:
2211 * BREAK if !expr (child[1])
2212 * body code (child[3])
2213 * tail code:
2214 * incr code (child[2]) // XXX continue here
2215 */
2216 slang_ir_node *prevLoop, *loop, *cond, *breakIf, *body, *init, *incr;
2217
2218 init = _slang_gen_operation(A, &oper->children[0]);
2219 loop = new_loop(NULL);
2220
2221 /* save old, push new loop */
2222 prevLoop = A->CurLoop;
2223 A->CurLoop = loop;
2224
2225 cond = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
2226 breakIf = new_break_if_true(A->CurLoop, cond);
2227 body = _slang_gen_operation(A, &oper->children[3]);
2228 incr = _slang_gen_operation(A, &oper->children[2]);
2229
2230 loop->Children[0] = new_seq(breakIf, body);
2231 loop->Children[1] = incr; /* tail code */
2232
2233 /* pop loop, restore prev */
2234 A->CurLoop = prevLoop;
2235
2236 return new_seq(init, loop);
2237 }
2238
2239
2240 static slang_ir_node *
2241 _slang_gen_continue(slang_assemble_ctx * A, const slang_operation *oper)
2242 {
2243 slang_ir_node *n, *loopNode;
2244 assert(oper->type == SLANG_OPER_CONTINUE);
2245 loopNode = A->CurLoop;
2246 assert(loopNode);
2247 assert(loopNode->Opcode == IR_LOOP);
2248 n = new_node0(IR_CONT);
2249 if (n) {
2250 n->Parent = loopNode;
2251 /* insert this node at head of linked list */
2252 n->List = loopNode->List;
2253 loopNode->List = n;
2254 }
2255 return n;
2256 }
2257
2258
2259 /**
2260 * Determine if the given operation is of a specific type.
2261 */
2262 static GLboolean
2263 is_operation_type(const slang_operation *oper, slang_operation_type type)
2264 {
2265 if (oper->type == type)
2266 return GL_TRUE;
2267 else if ((oper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
2268 oper->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) &&
2269 oper->num_children == 1)
2270 return is_operation_type(&oper->children[0], type);
2271 else
2272 return GL_FALSE;
2273 }
2274
2275
2276 /**
2277 * Generate IR tree for an if/then/else conditional using high-level
2278 * IR_IF instruction.
2279 */
2280 static slang_ir_node *
2281 _slang_gen_if(slang_assemble_ctx * A, const slang_operation *oper)
2282 {
2283 /*
2284 * eval expr (child[0])
2285 * IF expr THEN
2286 * if-body code
2287 * ELSE
2288 * else-body code
2289 * ENDIF
2290 */
2291 const GLboolean haveElseClause = !_slang_is_noop(&oper->children[2]);
2292 slang_ir_node *ifNode, *cond, *ifBody, *elseBody;
2293 GLboolean isConst, constTrue;
2294
2295 /* type-check expression */
2296 if (!_slang_is_boolean(A, &oper->children[0])) {
2297 slang_info_log_error(A->log, "boolean expression expected for 'if'");
2298 return NULL;
2299 }
2300
2301 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2302 slang_info_log_error(A->log, "scalar/boolean expression expected for 'if'");
2303 return NULL;
2304 }
2305
2306 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
2307 if (isConst) {
2308 if (constTrue) {
2309 /* if (true) ... */
2310 return _slang_gen_operation(A, &oper->children[1]);
2311 }
2312 else {
2313 /* if (false) ... */
2314 return _slang_gen_operation(A, &oper->children[2]);
2315 }
2316 }
2317
2318 cond = _slang_gen_operation(A, &oper->children[0]);
2319 cond = new_cond(cond);
2320
2321 if (is_operation_type(&oper->children[1], SLANG_OPER_BREAK)
2322 && !haveElseClause) {
2323 /* Special case: generate a conditional break */
2324 ifBody = new_break_if_true(A->CurLoop, cond);
2325 return ifBody;
2326 }
2327 else if (is_operation_type(&oper->children[1], SLANG_OPER_CONTINUE)
2328 && !haveElseClause) {
2329 /* Special case: generate a conditional break */
2330 ifBody = new_cont_if_true(A->CurLoop, cond);
2331 return ifBody;
2332 }
2333 else {
2334 /* general case */
2335 ifBody = _slang_gen_operation(A, &oper->children[1]);
2336 if (haveElseClause)
2337 elseBody = _slang_gen_operation(A, &oper->children[2]);
2338 else
2339 elseBody = NULL;
2340 ifNode = new_if(cond, ifBody, elseBody);
2341 return ifNode;
2342 }
2343 }
2344
2345
2346
2347 static slang_ir_node *
2348 _slang_gen_not(slang_assemble_ctx * A, const slang_operation *oper)
2349 {
2350 slang_ir_node *n;
2351
2352 assert(oper->type == SLANG_OPER_NOT);
2353
2354 /* type-check expression */
2355 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2356 slang_info_log_error(A->log,
2357 "scalar/boolean expression expected for '!'");
2358 return NULL;
2359 }
2360
2361 n = _slang_gen_operation(A, &oper->children[0]);
2362 if (n)
2363 return new_not(n);
2364 else
2365 return NULL;
2366 }
2367
2368
2369 static slang_ir_node *
2370 _slang_gen_xor(slang_assemble_ctx * A, const slang_operation *oper)
2371 {
2372 slang_ir_node *n1, *n2;
2373
2374 assert(oper->type == SLANG_OPER_LOGICALXOR);
2375
2376 if (!_slang_is_scalar_or_boolean(A, &oper->children[0]) ||
2377 !_slang_is_scalar_or_boolean(A, &oper->children[0])) {
2378 slang_info_log_error(A->log,
2379 "scalar/boolean expressions expected for '^^'");
2380 return NULL;
2381 }
2382
2383 n1 = _slang_gen_operation(A, &oper->children[0]);
2384 if (!n1)
2385 return NULL;
2386 n2 = _slang_gen_operation(A, &oper->children[1]);
2387 if (!n2)
2388 return NULL;
2389 return new_node2(IR_NOTEQUAL, n1, n2);
2390 }
2391
2392
2393 /**
2394 * Generate IR node for storage of a temporary of given size.
2395 */
2396 static slang_ir_node *
2397 _slang_gen_temporary(GLint size)
2398 {
2399 slang_ir_storage *store;
2400 slang_ir_node *n = NULL;
2401
2402 store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -2, size);
2403 if (store) {
2404 n = new_node0(IR_VAR_DECL);
2405 if (n) {
2406 n->Store = store;
2407 }
2408 else {
2409 _slang_free(store);
2410 }
2411 }
2412 return n;
2413 }
2414
2415
2416 /**
2417 * Generate IR node for allocating/declaring a variable.
2418 */
2419 static slang_ir_node *
2420 _slang_gen_var_decl(slang_assemble_ctx *A, slang_variable *var)
2421 {
2422 slang_ir_node *n;
2423
2424 /*assert(!var->declared);*/
2425 var->declared = GL_TRUE;
2426
2427 n = new_node0(IR_VAR_DECL);
2428 if (n) {
2429 _slang_attach_storage(n, var);
2430 assert(var->store);
2431 assert(n->Store == var->store);
2432 assert(n->Store);
2433 assert(n->Store->Index < 0);
2434
2435 if (is_sampler_type(&var->type)) {
2436 n->Store->File = PROGRAM_SAMPLER;
2437 }
2438 else {
2439 n->Store->File = PROGRAM_TEMPORARY;
2440 }
2441
2442 n->Store->Size = _slang_sizeof_type_specifier(&n->Var->type.specifier);
2443
2444 if (n->Store->Size <= 0) {
2445 slang_info_log_error(A->log, "invalid declaration for '%s'",
2446 (char*) var->a_name);
2447 return NULL;
2448 }
2449 #if 0
2450 printf("%s var %p %s store=%p index=%d size=%d\n",
2451 __FUNCTION__, (void *) var, (char *) var->a_name,
2452 (void *) n->Store, n->Store->Index, n->Store->Size);
2453 #endif
2454
2455 if (var->array_len > 0) {
2456 /* this is an array */
2457 /* cannot be const-qualified */
2458 if (var->type.qualifier == SLANG_QUAL_CONST) {
2459 slang_info_log_error(A->log, "array '%s' cannot be const",
2460 (char*) var->a_name);
2461 return NULL;
2462 }
2463 else {
2464 /* round up element size to mult of 4 */
2465 GLint sz = (n->Store->Size + 3) & ~3;
2466 /* mult by array size */
2467 sz *= var->array_len;
2468 n->Store->Size = sz;
2469 }
2470 }
2471
2472 assert(n->Store->Size > 0);
2473
2474 /* setup default swizzle for storing the variable */
2475 switch (n->Store->Size) {
2476 case 2:
2477 n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
2478 SWIZZLE_NIL, SWIZZLE_NIL);
2479 break;
2480 case 3:
2481 n->Store->Swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
2482 SWIZZLE_Z, SWIZZLE_NIL);
2483 break;
2484 default:
2485 /* Note that float-sized vars may be allocated in any x/y/z/w
2486 * slot, but that won't be determined until code emit time.
2487 */
2488 n->Store->Swizzle = SWIZZLE_NOOP;
2489 }
2490 }
2491 return n;
2492 }
2493
2494
2495 /**
2496 * Generate code for a selection expression: b ? x : y
2497 * XXX In some cases we could implement a selection expression
2498 * with an LRP instruction (use the boolean as the interpolant).
2499 * Otherwise, we use an IF/ELSE/ENDIF construct.
2500 */
2501 static slang_ir_node *
2502 _slang_gen_select(slang_assemble_ctx *A, slang_operation *oper)
2503 {
2504 slang_ir_node *cond, *ifNode, *trueExpr, *falseExpr, *trueNode, *falseNode;
2505 slang_ir_node *tmpDecl, *tmpVar, *tree;
2506 slang_typeinfo type0, type1, type2;
2507 int size, isBool, isEqual;
2508
2509 assert(oper->type == SLANG_OPER_SELECT);
2510 assert(oper->num_children == 3);
2511
2512 /* type of children[0] must be boolean */
2513 slang_typeinfo_construct(&type0);
2514 _slang_typeof_operation(A, &oper->children[0], &type0);
2515 isBool = (type0.spec.type == SLANG_SPEC_BOOL);
2516 slang_typeinfo_destruct(&type0);
2517 if (!isBool) {
2518 slang_info_log_error(A->log, "selector type is not boolean");
2519 return NULL;
2520 }
2521
2522 slang_typeinfo_construct(&type1);
2523 slang_typeinfo_construct(&type2);
2524 _slang_typeof_operation(A, &oper->children[1], &type1);
2525 _slang_typeof_operation(A, &oper->children[2], &type2);
2526 isEqual = slang_type_specifier_equal(&type1.spec, &type2.spec);
2527 slang_typeinfo_destruct(&type1);
2528 slang_typeinfo_destruct(&type2);
2529 if (!isEqual) {
2530 slang_info_log_error(A->log, "incompatible types for ?: operator");
2531 return NULL;
2532 }
2533
2534 /* size of x or y's type */
2535 size = _slang_sizeof_type_specifier(&type1.spec);
2536 assert(size > 0);
2537
2538 /* temporary var */
2539 tmpDecl = _slang_gen_temporary(size);
2540
2541 /* the condition (child 0) */
2542 cond = _slang_gen_operation(A, &oper->children[0]);
2543 cond = new_cond(cond);
2544
2545 /* if-true body (child 1) */
2546 tmpVar = new_node0(IR_VAR);
2547 tmpVar->Store = tmpDecl->Store;
2548 trueExpr = _slang_gen_operation(A, &oper->children[1]);
2549 trueNode = new_node2(IR_COPY, tmpVar, trueExpr);
2550
2551 /* if-false body (child 2) */
2552 tmpVar = new_node0(IR_VAR);
2553 tmpVar->Store = tmpDecl->Store;
2554 falseExpr = _slang_gen_operation(A, &oper->children[2]);
2555 falseNode = new_node2(IR_COPY, tmpVar, falseExpr);
2556
2557 ifNode = new_if(cond, trueNode, falseNode);
2558
2559 /* tmp var value */
2560 tmpVar = new_node0(IR_VAR);
2561 tmpVar->Store = tmpDecl->Store;
2562
2563 tree = new_seq(ifNode, tmpVar);
2564 tree = new_seq(tmpDecl, tree);
2565
2566 /*_slang_print_ir_tree(tree, 10);*/
2567 return tree;
2568 }
2569
2570
2571 /**
2572 * Generate code for &&.
2573 */
2574 static slang_ir_node *
2575 _slang_gen_logical_and(slang_assemble_ctx *A, slang_operation *oper)
2576 {
2577 /* rewrite "a && b" as "a ? b : false" */
2578 slang_operation *select;
2579 slang_ir_node *n;
2580
2581 select = slang_operation_new(1);
2582 select->type = SLANG_OPER_SELECT;
2583 select->num_children = 3;
2584 select->children = slang_operation_new(3);
2585
2586 slang_operation_copy(&select->children[0], &oper->children[0]);
2587 slang_operation_copy(&select->children[1], &oper->children[1]);
2588 select->children[2].type = SLANG_OPER_LITERAL_BOOL;
2589 ASSIGN_4V(select->children[2].literal, 0, 0, 0, 0); /* false */
2590 select->children[2].literal_size = 1;
2591
2592 n = _slang_gen_select(A, select);
2593 return n;
2594 }
2595
2596
2597 /**
2598 * Generate code for ||.
2599 */
2600 static slang_ir_node *
2601 _slang_gen_logical_or(slang_assemble_ctx *A, slang_operation *oper)
2602 {
2603 /* rewrite "a || b" as "a ? true : b" */
2604 slang_operation *select;
2605 slang_ir_node *n;
2606
2607 select = slang_operation_new(1);
2608 select->type = SLANG_OPER_SELECT;
2609 select->num_children = 3;
2610 select->children = slang_operation_new(3);
2611
2612 slang_operation_copy(&select->children[0], &oper->children[0]);
2613 select->children[1].type = SLANG_OPER_LITERAL_BOOL;
2614 ASSIGN_4V(select->children[1].literal, 1, 1, 1, 1); /* true */
2615 select->children[1].literal_size = 1;
2616 slang_operation_copy(&select->children[2], &oper->children[1]);
2617
2618 n = _slang_gen_select(A, select);
2619 return n;
2620 }
2621
2622
2623 /**
2624 * Generate IR tree for a return statement.
2625 */
2626 static slang_ir_node *
2627 _slang_gen_return(slang_assemble_ctx * A, slang_operation *oper)
2628 {
2629 const GLboolean haveReturnValue
2630 = (oper->num_children == 1 && oper->children[0].type != SLANG_OPER_VOID);
2631
2632 /* error checking */
2633 assert(A->CurFunction);
2634 if (haveReturnValue &&
2635 A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
2636 slang_info_log_error(A->log, "illegal return expression");
2637 return NULL;
2638 }
2639 else if (!haveReturnValue &&
2640 A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
2641 slang_info_log_error(A->log, "return statement requires an expression");
2642 return NULL;
2643 }
2644
2645 if (!haveReturnValue) {
2646 return new_return(A->curFuncEndLabel);
2647 }
2648 else {
2649 /*
2650 * Convert from:
2651 * return expr;
2652 * To:
2653 * __retVal = expr;
2654 * return; // goto __endOfFunction
2655 */
2656 slang_operation *assign;
2657 slang_atom a_retVal;
2658 slang_ir_node *n;
2659
2660 a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
2661 assert(a_retVal);
2662
2663 #if 1 /* DEBUG */
2664 {
2665 slang_variable *v
2666 = _slang_locate_variable(oper->locals, a_retVal, GL_TRUE);
2667 if (!v) {
2668 /* trying to return a value in a void-valued function */
2669 return NULL;
2670 }
2671 }
2672 #endif
2673
2674 assign = slang_operation_new(1);
2675 assign->type = SLANG_OPER_ASSIGN;
2676 assign->num_children = 2;
2677 assign->children = slang_operation_new(2);
2678 /* lhs (__retVal) */
2679 assign->children[0].type = SLANG_OPER_IDENTIFIER;
2680 assign->children[0].a_id = a_retVal;
2681 assign->children[0].locals->outer_scope = assign->locals;
2682 /* rhs (expr) */
2683 /* XXX we might be able to avoid this copy someday */
2684 slang_operation_copy(&assign->children[1], &oper->children[0]);
2685
2686 /* assemble the new code */
2687 n = new_seq(_slang_gen_operation(A, assign),
2688 new_return(A->curFuncEndLabel));
2689
2690 slang_operation_delete(assign);
2691 return n;
2692 }
2693 }
2694
2695
2696 /**
2697 * Determine if the given operation/expression is const-valued.
2698 */
2699 static GLboolean
2700 _slang_is_constant_expr(const slang_operation *oper)
2701 {
2702 slang_variable *var;
2703 GLuint i;
2704
2705 switch (oper->type) {
2706 case SLANG_OPER_IDENTIFIER:
2707 var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
2708 if (var && var->type.qualifier == SLANG_QUAL_CONST)
2709 return GL_TRUE;
2710 return GL_FALSE;
2711 default:
2712 for (i = 0; i < oper->num_children; i++) {
2713 if (!_slang_is_constant_expr(&oper->children[i]))
2714 return GL_FALSE;
2715 }
2716 return GL_TRUE;
2717 }
2718 }
2719
2720
2721 /**
2722 * Check if an assignment of type t1 to t0 is legal.
2723 * XXX more cases needed.
2724 */
2725 static GLboolean
2726 _slang_assignment_compatible(slang_assemble_ctx *A,
2727 slang_operation *op0,
2728 slang_operation *op1)
2729 {
2730 slang_typeinfo t0, t1;
2731 GLuint sz0, sz1;
2732
2733 if (op0->type == SLANG_OPER_POSTINCREMENT ||
2734 op0->type == SLANG_OPER_POSTDECREMENT) {
2735 return GL_FALSE;
2736 }
2737
2738 slang_typeinfo_construct(&t0);
2739 _slang_typeof_operation(A, op0, &t0);
2740
2741 slang_typeinfo_construct(&t1);
2742 _slang_typeof_operation(A, op1, &t1);
2743
2744 sz0 = _slang_sizeof_type_specifier(&t0.spec);
2745 sz1 = _slang_sizeof_type_specifier(&t1.spec);
2746
2747 #if 1
2748 if (sz0 != sz1) {
2749 /*printf("assignment size mismatch %u vs %u\n", sz0, sz1);*/
2750 return GL_FALSE;
2751 }
2752 #endif
2753
2754 if (t0.spec.type == SLANG_SPEC_STRUCT &&
2755 t1.spec.type == SLANG_SPEC_STRUCT &&
2756 t0.spec._struct->a_name != t1.spec._struct->a_name)
2757 return GL_FALSE;
2758
2759 if (t0.spec.type == SLANG_SPEC_FLOAT &&
2760 t1.spec.type == SLANG_SPEC_BOOL)
2761 return GL_FALSE;
2762
2763 #if 0 /* not used just yet - causes problems elsewhere */
2764 if (t0.spec.type == SLANG_SPEC_INT &&
2765 t1.spec.type == SLANG_SPEC_FLOAT)
2766 return GL_FALSE;
2767 #endif
2768
2769 if (t0.spec.type == SLANG_SPEC_BOOL &&
2770 t1.spec.type == SLANG_SPEC_FLOAT)
2771 return GL_FALSE;
2772
2773 if (t0.spec.type == SLANG_SPEC_BOOL &&
2774 t1.spec.type == SLANG_SPEC_INT)
2775 return GL_FALSE;
2776
2777 return GL_TRUE;
2778 }
2779
2780
2781
2782 /**
2783 * Generate IR tree for a variable declaration.
2784 */
2785 static slang_ir_node *
2786 _slang_gen_declaration(slang_assemble_ctx *A, slang_operation *oper)
2787 {
2788 slang_ir_node *n;
2789 slang_ir_node *varDecl;
2790 slang_variable *v;
2791 const char *varName = (char *) oper->a_id;
2792 slang_operation *initializer;
2793
2794 assert(oper->type == SLANG_OPER_VARIABLE_DECL);
2795 assert(oper->num_children <= 1);
2796
2797 v = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
2798 if (!v)
2799 return NULL; /* "shouldn't happen" */
2800
2801 if (v->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
2802 v->type.qualifier == SLANG_QUAL_VARYING ||
2803 v->type.qualifier == SLANG_QUAL_UNIFORM) {
2804 /* can't declare attribute/uniform vars inside functions */
2805 slang_info_log_error(A->log,
2806 "local variable '%s' cannot be an attribute/uniform/varying",
2807 varName);
2808 return NULL;
2809 }
2810
2811 #if 0
2812 if (v->declared) {
2813 slang_info_log_error(A->log, "variable '%s' redeclared", varName);
2814 return NULL;
2815 }
2816 #endif
2817
2818 varDecl = _slang_gen_var_decl(A, v);
2819 if (!varDecl)
2820 return NULL;
2821
2822 /* check if the var has an initializer */
2823 if (oper->num_children > 0) {
2824 assert(oper->num_children == 1);
2825 initializer = &oper->children[0];
2826 }
2827 else if (v->initializer) {
2828 initializer = v->initializer;
2829 }
2830 else {
2831 initializer = NULL;
2832 }
2833
2834 if (v->type.qualifier == SLANG_QUAL_CONST && !initializer) {
2835 slang_info_log_error(A->log,
2836 "const-qualified variable '%s' requires initializer",
2837 varName);
2838 return NULL;
2839 }
2840
2841
2842 if (initializer) {
2843 slang_ir_node *var, *init;
2844
2845 /* type check/compare var and initializer */
2846 if (!_slang_assignment_compatible(A, oper, initializer)) {
2847 slang_info_log_error(A->log, "incompatible types in assignment");
2848 return NULL;
2849 }
2850
2851 var = new_var(A, oper, oper->a_id);
2852 if (!var) {
2853 slang_info_log_error(A->log, "undefined variable '%s'", varName);
2854 return NULL;
2855 }
2856
2857 if (v->type.qualifier == SLANG_QUAL_CONST) {
2858 /* if the variable is const, the initializer must be a const
2859 * expression as well.
2860 */
2861 #if 0
2862 if (!_slang_is_constant_expr(initializer)) {
2863 slang_info_log_error(A->log,
2864 "initializer for %s not constant", varName);
2865 return NULL;
2866 }
2867 #endif
2868 }
2869
2870 _slang_simplify(initializer, &A->space, A->atoms);
2871
2872 init = _slang_gen_operation(A, initializer);
2873 if (!init)
2874 return NULL;
2875
2876 /*assert(init->Store);*/
2877
2878 /* XXX remove this when type checking is added above */
2879 if (init->Store && var->Store->Size != init->Store->Size) {
2880 slang_info_log_error(A->log, "invalid assignment (wrong types)");
2881 return NULL;
2882 }
2883
2884 n = new_node2(IR_COPY, var, init);
2885 n = new_seq(varDecl, n);
2886 }
2887 else {
2888 n = varDecl;
2889 }
2890
2891 return n;
2892 }
2893
2894
2895 /**
2896 * Generate IR tree for a variable (such as in an expression).
2897 */
2898 static slang_ir_node *
2899 _slang_gen_variable(slang_assemble_ctx * A, slang_operation *oper)
2900 {
2901 /* If there's a variable associated with this oper (from inlining)
2902 * use it. Otherwise, use the oper's var id.
2903 */
2904 slang_atom aVar = oper->var ? oper->var->a_name : oper->a_id;
2905 slang_ir_node *n = new_var(A, oper, aVar);
2906 if (!n) {
2907 slang_info_log_error(A->log, "undefined variable '%s'", (char *) aVar);
2908 return NULL;
2909 }
2910 return n;
2911 }
2912
2913
2914
2915 /**
2916 * Return the number of components actually named by the swizzle.
2917 * Recall that swizzles may have undefined/don't-care values.
2918 */
2919 static GLuint
2920 swizzle_size(GLuint swizzle)
2921 {
2922 GLuint size = 0, i;
2923 for (i = 0; i < 4; i++) {
2924 GLuint swz = GET_SWZ(swizzle, i);
2925 size += (swz >= 0 && swz <= 3);
2926 }
2927 return size;
2928 }
2929
2930
2931 static slang_ir_node *
2932 _slang_gen_swizzle(slang_ir_node *child, GLuint swizzle)
2933 {
2934 slang_ir_node *n = new_node1(IR_SWIZZLE, child);
2935 assert(child);
2936 if (n) {
2937 assert(!n->Store);
2938 n->Store = _slang_new_ir_storage_relative(0,
2939 swizzle_size(swizzle),
2940 child->Store);
2941 n->Store->Swizzle = swizzle;
2942 }
2943 return n;
2944 }
2945
2946
2947 static GLboolean
2948 is_store_writable(const slang_assemble_ctx *A, const slang_ir_storage *store)
2949 {
2950 while (store->Parent)
2951 store = store->Parent;
2952
2953 if (!(store->File == PROGRAM_OUTPUT ||
2954 store->File == PROGRAM_TEMPORARY ||
2955 (store->File == PROGRAM_VARYING &&
2956 A->program->Target == GL_VERTEX_PROGRAM_ARB))) {
2957 return GL_FALSE;
2958 }
2959 else {
2960 return GL_TRUE;
2961 }
2962 }
2963
2964
2965 /**
2966 * Generate IR tree for an assignment (=).
2967 */
2968 static slang_ir_node *
2969 _slang_gen_assignment(slang_assemble_ctx * A, slang_operation *oper)
2970 {
2971 if (oper->children[0].type == SLANG_OPER_IDENTIFIER) {
2972 /* Check that var is writeable */
2973 slang_variable *var
2974 = _slang_locate_variable(oper->children[0].locals,
2975 oper->children[0].a_id, GL_TRUE);
2976 if (!var) {
2977 slang_info_log_error(A->log, "undefined variable '%s'",
2978 (char *) oper->children[0].a_id);
2979 return NULL;
2980 }
2981 if (var->type.qualifier == SLANG_QUAL_CONST ||
2982 var->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
2983 var->type.qualifier == SLANG_QUAL_UNIFORM ||
2984 (var->type.qualifier == SLANG_QUAL_VARYING &&
2985 A->program->Target == GL_FRAGMENT_PROGRAM_ARB)) {
2986 slang_info_log_error(A->log,
2987 "illegal assignment to read-only variable '%s'",
2988 (char *) oper->children[0].a_id);
2989 return NULL;
2990 }
2991 }
2992
2993 if (oper->children[0].type == SLANG_OPER_IDENTIFIER &&
2994 oper->children[1].type == SLANG_OPER_CALL) {
2995 /* Special case of: x = f(a, b)
2996 * Replace with f(a, b, x) (where x == hidden __retVal out param)
2997 *
2998 * XXX this could be even more effective if we could accomodate
2999 * cases such as "v.x = f();" - would help with typical vertex
3000 * transformation.
3001 */
3002 slang_ir_node *n;
3003 n = _slang_gen_function_call_name(A,
3004 (const char *) oper->children[1].a_id,
3005 &oper->children[1], &oper->children[0]);
3006 return n;
3007 }
3008 else {
3009 slang_ir_node *n, *lhs, *rhs;
3010
3011 /* lhs and rhs type checking */
3012 if (!_slang_assignment_compatible(A,
3013 &oper->children[0],
3014 &oper->children[1])) {
3015 slang_info_log_error(A->log, "incompatible types in assignment");
3016 return NULL;
3017 }
3018
3019 lhs = _slang_gen_operation(A, &oper->children[0]);
3020 if (!lhs) {
3021 return NULL;
3022 }
3023
3024 if (!lhs->Store) {
3025 slang_info_log_error(A->log,
3026 "invalid left hand side for assignment");
3027 return NULL;
3028 }
3029
3030 /* check that lhs is writable */
3031 if (!is_store_writable(A, lhs->Store)) {
3032 slang_info_log_error(A->log,
3033 "illegal assignment to read-only l-value");
3034 return NULL;
3035 }
3036
3037 rhs = _slang_gen_operation(A, &oper->children[1]);
3038 if (lhs && rhs) {
3039 /* convert lhs swizzle into writemask */
3040 GLuint writemask, newSwizzle;
3041 if (!swizzle_to_writemask(A, lhs->Store->Swizzle,
3042 &writemask, &newSwizzle)) {
3043 /* Non-simple writemask, need to swizzle right hand side in
3044 * order to put components into the right place.
3045 */
3046 rhs = _slang_gen_swizzle(rhs, newSwizzle);
3047 }
3048 n = new_node2(IR_COPY, lhs, rhs);
3049 return n;
3050 }
3051 else {
3052 return NULL;
3053 }
3054 }
3055 }
3056
3057
3058 /**
3059 * Generate IR tree for referencing a field in a struct (or basic vector type)
3060 */
3061 static slang_ir_node *
3062 _slang_gen_struct_field(slang_assemble_ctx * A, slang_operation *oper)
3063 {
3064 slang_typeinfo ti;
3065
3066 /* type of struct */
3067 slang_typeinfo_construct(&ti);
3068 _slang_typeof_operation(A, &oper->children[0], &ti);
3069
3070 if (_slang_type_is_vector(ti.spec.type)) {
3071 /* the field should be a swizzle */
3072 const GLuint rows = _slang_type_dim(ti.spec.type);
3073 slang_swizzle swz;
3074 slang_ir_node *n;
3075 GLuint swizzle;
3076 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
3077 slang_info_log_error(A->log, "Bad swizzle");
3078 return NULL;
3079 }
3080 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
3081 swz.swizzle[1],
3082 swz.swizzle[2],
3083 swz.swizzle[3]);
3084
3085 n = _slang_gen_operation(A, &oper->children[0]);
3086 /* create new parent node with swizzle */
3087 if (n)
3088 n = _slang_gen_swizzle(n, swizzle);
3089 return n;
3090 }
3091 else if ( ti.spec.type == SLANG_SPEC_FLOAT
3092 || ti.spec.type == SLANG_SPEC_INT
3093 || ti.spec.type == SLANG_SPEC_BOOL) {
3094 const GLuint rows = 1;
3095 slang_swizzle swz;
3096 slang_ir_node *n;
3097 GLuint swizzle;
3098 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
3099 slang_info_log_error(A->log, "Bad swizzle");
3100 }
3101 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
3102 swz.swizzle[1],
3103 swz.swizzle[2],
3104 swz.swizzle[3]);
3105 n = _slang_gen_operation(A, &oper->children[0]);
3106 /* create new parent node with swizzle */
3107 n = _slang_gen_swizzle(n, swizzle);
3108 return n;
3109 }
3110 else {
3111 /* the field is a structure member (base.field) */
3112 /* oper->children[0] is the base */
3113 /* oper->a_id is the field name */
3114 slang_ir_node *base, *n;
3115 slang_typeinfo field_ti;
3116 GLint fieldSize, fieldOffset = -1;
3117
3118 /* type of field */
3119 slang_typeinfo_construct(&field_ti);
3120 _slang_typeof_operation(A, oper, &field_ti);
3121
3122 fieldSize = _slang_sizeof_type_specifier(&field_ti.spec);
3123 if (fieldSize > 0)
3124 fieldOffset = _slang_field_offset(&ti.spec, oper->a_id);
3125
3126 if (fieldSize == 0 || fieldOffset < 0) {
3127 const char *structName;
3128 if (ti.spec._struct)
3129 structName = (char *) ti.spec._struct->a_name;
3130 else
3131 structName = "unknown";
3132 slang_info_log_error(A->log,
3133 "\"%s\" is not a member of struct \"%s\"",
3134 (char *) oper->a_id, structName);
3135 return NULL;
3136 }
3137 assert(fieldSize >= 0);
3138
3139 base = _slang_gen_operation(A, &oper->children[0]);
3140 if (!base) {
3141 /* error msg should have already been logged */
3142 return NULL;
3143 }
3144
3145 n = new_node1(IR_FIELD, base);
3146 if (!n)
3147 return NULL;
3148
3149 n->Field = (char *) oper->a_id;
3150
3151 /* Store the field's offset in storage->Index */
3152 n->Store = _slang_new_ir_storage(base->Store->File,
3153 fieldOffset,
3154 fieldSize);
3155
3156 return n;
3157 }
3158 }
3159
3160
3161 /**
3162 * Gen code for array indexing.
3163 */
3164 static slang_ir_node *
3165 _slang_gen_array_element(slang_assemble_ctx * A, slang_operation *oper)
3166 {
3167 slang_typeinfo array_ti;
3168
3169 /* get array's type info */
3170 slang_typeinfo_construct(&array_ti);
3171 _slang_typeof_operation(A, &oper->children[0], &array_ti);
3172
3173 if (_slang_type_is_vector(array_ti.spec.type)) {
3174 /* indexing a simple vector type: "vec4 v; v[0]=p;" */
3175 /* translate the index into a swizzle/writemask: "v.x=p" */
3176 const GLuint max = _slang_type_dim(array_ti.spec.type);
3177 GLint index;
3178 slang_ir_node *n;
3179
3180 index = (GLint) oper->children[1].literal[0];
3181 if (oper->children[1].type != SLANG_OPER_LITERAL_INT ||
3182 index >= (GLint) max) {
3183 slang_info_log_error(A->log, "Invalid array index for vector type");
3184 return NULL;
3185 }
3186
3187 n = _slang_gen_operation(A, &oper->children[0]);
3188 if (n) {
3189 /* use swizzle to access the element */
3190 GLuint swizzle = MAKE_SWIZZLE4(SWIZZLE_X + index,
3191 SWIZZLE_NIL,
3192 SWIZZLE_NIL,
3193 SWIZZLE_NIL);
3194 n = _slang_gen_swizzle(n, swizzle);
3195 }
3196 assert(n->Store);
3197 return n;
3198 }
3199 else {
3200 /* conventional array */
3201 slang_typeinfo elem_ti;
3202 slang_ir_node *elem, *array, *index;
3203 GLint elemSize, arrayLen;
3204
3205 /* size of array element */
3206 slang_typeinfo_construct(&elem_ti);
3207 _slang_typeof_operation(A, oper, &elem_ti);
3208 elemSize = _slang_sizeof_type_specifier(&elem_ti.spec);
3209
3210 if (_slang_type_is_matrix(array_ti.spec.type))
3211 arrayLen = _slang_type_dim(array_ti.spec.type);
3212 else
3213 arrayLen = array_ti.array_len;
3214
3215 slang_typeinfo_destruct(&array_ti);
3216 slang_typeinfo_destruct(&elem_ti);
3217
3218 if (elemSize <= 0) {
3219 /* unknown var or type */
3220 slang_info_log_error(A->log, "Undefined variable or type");
3221 return NULL;
3222 }
3223
3224 array = _slang_gen_operation(A, &oper->children[0]);
3225 index = _slang_gen_operation(A, &oper->children[1]);
3226 if (array && index) {
3227 /* bounds check */
3228 GLint constIndex = -1;
3229 if (index->Opcode == IR_FLOAT) {
3230 constIndex = (int) index->Value[0];
3231 if (constIndex < 0 || constIndex >= arrayLen) {
3232 slang_info_log_error(A->log,
3233 "Array index out of bounds (index=%d size=%d)",
3234 constIndex, arrayLen);
3235 _slang_free_ir_tree(array);
3236 _slang_free_ir_tree(index);
3237 return NULL;
3238 }
3239 }
3240
3241 if (!array->Store) {
3242 slang_info_log_error(A->log, "Invalid array");
3243 return NULL;
3244 }
3245
3246 elem = new_node2(IR_ELEMENT, array, index);
3247
3248 /* The storage info here will be updated during code emit */
3249 elem->Store = _slang_new_ir_storage(array->Store->File,
3250 array->Store->Index,
3251 elemSize);
3252
3253 return elem;
3254 }
3255 else {
3256 _slang_free_ir_tree(array);
3257 _slang_free_ir_tree(index);
3258 return NULL;
3259 }
3260 }
3261 }
3262
3263
3264 static slang_ir_node *
3265 _slang_gen_compare(slang_assemble_ctx *A, slang_operation *oper,
3266 slang_ir_opcode opcode)
3267 {
3268 slang_typeinfo t0, t1;
3269 slang_ir_node *n;
3270
3271 slang_typeinfo_construct(&t0);
3272 _slang_typeof_operation(A, &oper->children[0], &t0);
3273
3274 slang_typeinfo_construct(&t1);
3275 _slang_typeof_operation(A, &oper->children[0], &t1);
3276
3277 if (t0.spec.type == SLANG_SPEC_ARRAY ||
3278 t1.spec.type == SLANG_SPEC_ARRAY) {
3279 slang_info_log_error(A->log, "Illegal array comparison");
3280 return NULL;
3281 }
3282
3283 if (oper->type != SLANG_OPER_EQUAL &&
3284 oper->type != SLANG_OPER_NOTEQUAL) {
3285 /* <, <=, >, >= can only be used with scalars */
3286 if ((t0.spec.type != SLANG_SPEC_INT &&
3287 t0.spec.type != SLANG_SPEC_FLOAT) ||
3288 (t1.spec.type != SLANG_SPEC_INT &&
3289 t1.spec.type != SLANG_SPEC_FLOAT)) {
3290 slang_info_log_error(A->log, "Incompatible type(s) for inequality operator");
3291 return NULL;
3292 }
3293 }
3294
3295 n = new_node2(opcode,
3296 _slang_gen_operation(A, &oper->children[0]),
3297 _slang_gen_operation(A, &oper->children[1]));
3298
3299 /* result is a bool (size 1) */
3300 n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, 1);
3301
3302 return n;
3303 }
3304
3305
3306 #if 0
3307 static void
3308 print_vars(slang_variable_scope *s)
3309 {
3310 int i;
3311 printf("vars: ");
3312 for (i = 0; i < s->num_variables; i++) {
3313 printf("%s %d, \n",
3314 (char*) s->variables[i]->a_name,
3315 s->variables[i]->declared);
3316 }
3317
3318 printf("\n");
3319 }
3320 #endif
3321
3322
3323 #if 0
3324 static void
3325 _slang_undeclare_vars(slang_variable_scope *locals)
3326 {
3327 if (locals->num_variables > 0) {
3328 int i;
3329 for (i = 0; i < locals->num_variables; i++) {
3330 slang_variable *v = locals->variables[i];
3331 printf("undeclare %s at %p\n", (char*) v->a_name, v);
3332 v->declared = GL_FALSE;
3333 }
3334 }
3335 }
3336 #endif
3337
3338
3339 /**
3340 * Generate IR tree for a slang_operation (AST node)
3341 */
3342 static slang_ir_node *
3343 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper)
3344 {
3345 switch (oper->type) {
3346 case SLANG_OPER_BLOCK_NEW_SCOPE:
3347 {
3348 slang_ir_node *n;
3349
3350 _slang_push_var_table(A->vartable);
3351
3352 oper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE; /* temp change */
3353 n = _slang_gen_operation(A, oper);
3354 oper->type = SLANG_OPER_BLOCK_NEW_SCOPE; /* restore */
3355
3356 _slang_pop_var_table(A->vartable);
3357
3358 /*_slang_undeclare_vars(oper->locals);*/
3359 /*print_vars(oper->locals);*/
3360
3361 if (n)
3362 n = new_node1(IR_SCOPE, n);
3363 return n;
3364 }
3365 break;
3366
3367 case SLANG_OPER_BLOCK_NO_NEW_SCOPE:
3368 /* list of operations */
3369 if (oper->num_children > 0)
3370 {
3371 slang_ir_node *n, *tree = NULL;
3372 GLuint i;
3373
3374 for (i = 0; i < oper->num_children; i++) {
3375 n = _slang_gen_operation(A, &oper->children[i]);
3376 if (!n) {
3377 _slang_free_ir_tree(tree);
3378 return NULL; /* error must have occured */
3379 }
3380 tree = new_seq(tree, n);
3381 }
3382
3383 return tree;
3384 }
3385 else {
3386 return new_node0(IR_NOP);
3387 }
3388
3389 case SLANG_OPER_EXPRESSION:
3390 return _slang_gen_operation(A, &oper->children[0]);
3391
3392 case SLANG_OPER_FOR:
3393 return _slang_gen_for(A, oper);
3394 case SLANG_OPER_DO:
3395 return _slang_gen_do(A, oper);
3396 case SLANG_OPER_WHILE:
3397 return _slang_gen_while(A, oper);
3398 case SLANG_OPER_BREAK:
3399 if (!A->CurLoop) {
3400 slang_info_log_error(A->log, "'break' not in loop");
3401 return NULL;
3402 }
3403 return new_break(A->CurLoop);
3404 case SLANG_OPER_CONTINUE:
3405 if (!A->CurLoop) {
3406 slang_info_log_error(A->log, "'continue' not in loop");
3407 return NULL;
3408 }
3409 return _slang_gen_continue(A, oper);
3410 case SLANG_OPER_DISCARD:
3411 return new_node0(IR_KILL);
3412
3413 case SLANG_OPER_EQUAL:
3414 return _slang_gen_compare(A, oper, IR_EQUAL);
3415 case SLANG_OPER_NOTEQUAL:
3416 return _slang_gen_compare(A, oper, IR_NOTEQUAL);
3417 case SLANG_OPER_GREATER:
3418 return _slang_gen_compare(A, oper, IR_SGT);
3419 case SLANG_OPER_LESS:
3420 return _slang_gen_compare(A, oper, IR_SLT);
3421 case SLANG_OPER_GREATEREQUAL:
3422 return _slang_gen_compare(A, oper, IR_SGE);
3423 case SLANG_OPER_LESSEQUAL:
3424 return _slang_gen_compare(A, oper, IR_SLE);
3425 case SLANG_OPER_ADD:
3426 {
3427 slang_ir_node *n;
3428 assert(oper->num_children == 2);
3429 n = _slang_gen_function_call_name(A, "+", oper, NULL);
3430 return n;
3431 }
3432 case SLANG_OPER_SUBTRACT:
3433 {
3434 slang_ir_node *n;
3435 assert(oper->num_children == 2);
3436 n = _slang_gen_function_call_name(A, "-", oper, NULL);
3437 return n;
3438 }
3439 case SLANG_OPER_MULTIPLY:
3440 {
3441 slang_ir_node *n;
3442 assert(oper->num_children == 2);
3443 n = _slang_gen_function_call_name(A, "*", oper, NULL);
3444 return n;
3445 }
3446 case SLANG_OPER_DIVIDE:
3447 {
3448 slang_ir_node *n;
3449 assert(oper->num_children == 2);
3450 n = _slang_gen_function_call_name(A, "/", oper, NULL);
3451 return n;
3452 }
3453 case SLANG_OPER_MINUS:
3454 {
3455 slang_ir_node *n;
3456 assert(oper->num_children == 1);
3457 n = _slang_gen_function_call_name(A, "-", oper, NULL);
3458 return n;
3459 }
3460 case SLANG_OPER_PLUS:
3461 /* +expr --> do nothing */
3462 return _slang_gen_operation(A, &oper->children[0]);
3463 case SLANG_OPER_VARIABLE_DECL:
3464 return _slang_gen_declaration(A, oper);
3465 case SLANG_OPER_ASSIGN:
3466 return _slang_gen_assignment(A, oper);
3467 case SLANG_OPER_ADDASSIGN:
3468 {
3469 slang_ir_node *n;
3470 assert(oper->num_children == 2);
3471 n = _slang_gen_function_call_name(A, "+=", oper, NULL);
3472 return n;
3473 }
3474 case SLANG_OPER_SUBASSIGN:
3475 {
3476 slang_ir_node *n;
3477 assert(oper->num_children == 2);
3478 n = _slang_gen_function_call_name(A, "-=", oper, NULL);
3479 return n;
3480 }
3481 break;
3482 case SLANG_OPER_MULASSIGN:
3483 {
3484 slang_ir_node *n;
3485 assert(oper->num_children == 2);
3486 n = _slang_gen_function_call_name(A, "*=", oper, NULL);
3487 return n;
3488 }
3489 case SLANG_OPER_DIVASSIGN:
3490 {
3491 slang_ir_node *n;
3492 assert(oper->num_children == 2);
3493 n = _slang_gen_function_call_name(A, "/=", oper, NULL);
3494 return n;
3495 }
3496 case SLANG_OPER_LOGICALAND:
3497 {
3498 slang_ir_node *n;
3499 assert(oper->num_children == 2);
3500 n = _slang_gen_logical_and(A, oper);
3501 return n;
3502 }
3503 case SLANG_OPER_LOGICALOR:
3504 {
3505 slang_ir_node *n;
3506 assert(oper->num_children == 2);
3507 n = _slang_gen_logical_or(A, oper);
3508 return n;
3509 }
3510 case SLANG_OPER_LOGICALXOR:
3511 return _slang_gen_xor(A, oper);
3512 case SLANG_OPER_NOT:
3513 return _slang_gen_not(A, oper);
3514 case SLANG_OPER_SELECT: /* b ? x : y */
3515 {
3516 slang_ir_node *n;
3517 assert(oper->num_children == 3);
3518 n = _slang_gen_select(A, oper);
3519 return n;
3520 }
3521
3522 case SLANG_OPER_ASM:
3523 return _slang_gen_asm(A, oper, NULL);
3524 case SLANG_OPER_CALL:
3525 return _slang_gen_function_call_name(A, (const char *) oper->a_id,
3526 oper, NULL);
3527 case SLANG_OPER_RETURN:
3528 return _slang_gen_return(A, oper);
3529 case SLANG_OPER_LABEL:
3530 return new_label(oper->label);
3531 case SLANG_OPER_IDENTIFIER:
3532 return _slang_gen_variable(A, oper);
3533 case SLANG_OPER_IF:
3534 return _slang_gen_if(A, oper);
3535 case SLANG_OPER_FIELD:
3536 return _slang_gen_struct_field(A, oper);
3537 case SLANG_OPER_SUBSCRIPT:
3538 return _slang_gen_array_element(A, oper);
3539 case SLANG_OPER_LITERAL_FLOAT:
3540 /* fall-through */
3541 case SLANG_OPER_LITERAL_INT:
3542 /* fall-through */
3543 case SLANG_OPER_LITERAL_BOOL:
3544 return new_float_literal(oper->literal, oper->literal_size);
3545
3546 case SLANG_OPER_POSTINCREMENT: /* var++ */
3547 {
3548 slang_ir_node *n;
3549 assert(oper->num_children == 1);
3550 n = _slang_gen_function_call_name(A, "__postIncr", oper, NULL);
3551 return n;
3552 }
3553 case SLANG_OPER_POSTDECREMENT: /* var-- */
3554 {
3555 slang_ir_node *n;
3556 assert(oper->num_children == 1);
3557 n = _slang_gen_function_call_name(A, "__postDecr", oper, NULL);
3558 return n;
3559 }
3560 case SLANG_OPER_PREINCREMENT: /* ++var */
3561 {
3562 slang_ir_node *n;
3563 assert(oper->num_children == 1);
3564 n = _slang_gen_function_call_name(A, "++", oper, NULL);
3565 return n;
3566 }
3567 case SLANG_OPER_PREDECREMENT: /* --var */
3568 {
3569 slang_ir_node *n;
3570 assert(oper->num_children == 1);
3571 n = _slang_gen_function_call_name(A, "--", oper, NULL);
3572 return n;
3573 }
3574
3575 case SLANG_OPER_NON_INLINED_CALL:
3576 case SLANG_OPER_SEQUENCE:
3577 {
3578 slang_ir_node *tree = NULL;
3579 GLuint i;
3580 for (i = 0; i < oper->num_children; i++) {
3581 slang_ir_node *n = _slang_gen_operation(A, &oper->children[i]);
3582 tree = new_seq(tree, n);
3583 if (n)
3584 tree->Store = n->Store;
3585 }
3586 if (oper->type == SLANG_OPER_NON_INLINED_CALL) {
3587 tree = new_function_call(tree, oper->label);
3588 }
3589 return tree;
3590 }
3591
3592 case SLANG_OPER_NONE:
3593 case SLANG_OPER_VOID:
3594 /* returning NULL here would generate an error */
3595 return new_node0(IR_NOP);
3596
3597 default:
3598 _mesa_problem(NULL, "bad node type %d in _slang_gen_operation",
3599 oper->type);
3600 return new_node0(IR_NOP);
3601 }
3602
3603 return NULL;
3604 }
3605
3606
3607 /**
3608 * Compute total size of array give size of element, number of elements.
3609 */
3610 static GLint
3611 array_size(GLint baseSize, GLint arrayLen)
3612 {
3613 GLint total;
3614 if (arrayLen > 1) {
3615 /* round up base type to multiple of 4 */
3616 total = ((baseSize + 3) & ~0x3) * MAX2(arrayLen, 1);
3617 }
3618 else {
3619 total = baseSize;
3620 }
3621 return total;
3622 }
3623
3624
3625 /**
3626 * Called by compiler when a global variable has been parsed/compiled.
3627 * Here we examine the variable's type to determine what kind of register
3628 * storage will be used.
3629 *
3630 * A uniform such as "gl_Position" will become the register specification
3631 * (PROGRAM_OUTPUT, VERT_RESULT_HPOS). Or, uniform "gl_FogFragCoord"
3632 * will be (PROGRAM_INPUT, FRAG_ATTRIB_FOGC).
3633 *
3634 * Samplers are interesting. For "uniform sampler2D tex;" we'll specify
3635 * (PROGRAM_SAMPLER, index) where index is resolved at link-time to an
3636 * actual texture unit (as specified by the user calling glUniform1i()).
3637 */
3638 GLboolean
3639 _slang_codegen_global_variable(slang_assemble_ctx *A, slang_variable *var,
3640 slang_unit_type type)
3641 {
3642 struct gl_program *prog = A->program;
3643 const char *varName = (char *) var->a_name;
3644 GLboolean success = GL_TRUE;
3645 slang_ir_storage *store = NULL;
3646 int dbg = 0;
3647 const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
3648 const GLint texIndex = sampler_to_texture_index(var->type.specifier.type);
3649 const GLint size = _slang_sizeof_type_specifier(&var->type.specifier);
3650
3651 if (texIndex != -1) {
3652 /* This is a texture sampler variable...
3653 * store->File = PROGRAM_SAMPLER
3654 * store->Index = sampler number (0..7, typically)
3655 * store->Size = texture type index (1D, 2D, 3D, cube, etc)
3656 */
3657 if (var->initializer) {
3658 slang_info_log_error(A->log, "illegal assignment to '%s'", varName);
3659 return GL_FALSE;
3660 }
3661 #if FEATURE_es2_glsl /* XXX should use FEATURE_texture_rect */
3662 /* disallow rect samplers */
3663 if (var->type.specifier.type == SLANG_SPEC_SAMPLER2DRECT ||
3664 var->type.specifier.type == SLANG_SPEC_SAMPLER2DRECTSHADOW) {
3665 slang_info_log_error(A->log, "invalid sampler type for '%s'", varName);
3666 return GL_FALSE;
3667 }
3668 #endif
3669 {
3670 GLint sampNum = _mesa_add_sampler(prog->Parameters, varName, datatype);
3671 store = _slang_new_ir_storage(PROGRAM_SAMPLER, sampNum, texIndex);
3672 }
3673 if (dbg) printf("SAMPLER ");
3674 }
3675 else if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
3676 /* Uniform variable */
3677 const GLint totalSize = array_size(size, var->array_len);
3678 const GLuint swizzle = _slang_var_swizzle(totalSize, 0);
3679
3680 if (prog) {
3681 /* user-defined uniform */
3682 if (datatype == GL_NONE) {
3683 if (var->type.specifier.type == SLANG_SPEC_STRUCT) {
3684 /* temporary work-around */
3685 GLenum datatype = GL_FLOAT;
3686 GLint uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
3687 totalSize, datatype, NULL);
3688 store = _slang_new_ir_storage_swz(PROGRAM_UNIFORM, uniformLoc,
3689 totalSize, swizzle);
3690
3691 /* XXX what we need to do is unroll the struct into its
3692 * basic types, creating a uniform variable for each.
3693 * For example:
3694 * struct foo {
3695 * vec3 a;
3696 * vec4 b;
3697 * };
3698 * uniform foo f;
3699 *
3700 * Should produce uniforms:
3701 * "f.a" (GL_FLOAT_VEC3)
3702 * "f.b" (GL_FLOAT_VEC4)
3703 */
3704
3705 if (var->initializer) {
3706 slang_info_log_error(A->log,
3707 "unsupported initializer for uniform '%s'", varName);
3708 return GL_FALSE;
3709 }
3710 }
3711 else {
3712 slang_info_log_error(A->log,
3713 "invalid datatype for uniform variable %s",
3714 varName);
3715 return GL_FALSE;
3716 }
3717 }
3718 else {
3719 GLint uniformLoc;
3720 const GLfloat *initialValues = NULL;
3721 if (var->initializer) {
3722 _slang_simplify(var->initializer, &A->space, A->atoms);
3723 if (var->initializer->type == SLANG_OPER_LITERAL_FLOAT ||
3724 var->initializer->type == SLANG_OPER_LITERAL_INT) {
3725 /* simple float/vector initializer */
3726 initialValues = var->initializer->literal;
3727 }
3728 else {
3729 /* complex initializer */
3730 slang_info_log_error(A->log,
3731 "unsupported initializer for uniform '%s'", varName);
3732 return GL_FALSE;
3733 }
3734 }
3735
3736 uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
3737 totalSize, datatype, initialValues);
3738 store = _slang_new_ir_storage_swz(PROGRAM_UNIFORM, uniformLoc,
3739 totalSize, swizzle);
3740 }
3741 }
3742 else {
3743 /* pre-defined uniform, like gl_ModelviewMatrix */
3744 /* We know it's a uniform, but don't allocate storage unless
3745 * it's really used.
3746 */
3747 store = _slang_new_ir_storage_swz(PROGRAM_STATE_VAR, -1,
3748 totalSize, swizzle);
3749 }
3750 if (dbg) printf("UNIFORM (sz %d) ", totalSize);
3751 }
3752 else if (var->type.qualifier == SLANG_QUAL_VARYING) {
3753 const GLint totalSize = array_size(size, var->array_len);
3754
3755 /* varyings must be float, vec or mat */
3756 if (!_slang_type_is_float_vec_mat(var->type.specifier.type) &&
3757 var->type.specifier.type != SLANG_SPEC_ARRAY) {
3758 slang_info_log_error(A->log,
3759 "varying '%s' must be float/vector/matrix",
3760 varName);
3761 return GL_FALSE;
3762 }
3763
3764 if (var->initializer) {
3765 slang_info_log_error(A->log, "illegal initializer for varying '%s'",
3766 varName);
3767 return GL_FALSE;
3768 }
3769
3770 if (prog) {
3771 /* user-defined varying */
3772 GLint varyingLoc = _mesa_add_varying(prog->Varying, varName, totalSize);
3773 GLuint swizzle = _slang_var_swizzle(size, 0);
3774 store = _slang_new_ir_storage_swz(PROGRAM_VARYING, varyingLoc,
3775 totalSize, swizzle);
3776 }
3777 else {
3778 /* pre-defined varying, like gl_Color or gl_TexCoord */
3779 if (type == SLANG_UNIT_FRAGMENT_BUILTIN) {
3780 /* fragment program input */
3781 GLuint swizzle;
3782 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
3783 &swizzle);
3784 assert(index >= 0);
3785 assert(index < FRAG_ATTRIB_MAX);
3786 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index,
3787 size, swizzle);
3788 }
3789 else {
3790 /* vertex program output */
3791 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
3792 GLuint swizzle = _slang_var_swizzle(size, 0);
3793 assert(index >= 0);
3794 assert(index < VERT_RESULT_MAX);
3795 assert(type == SLANG_UNIT_VERTEX_BUILTIN);
3796 store = _slang_new_ir_storage_swz(PROGRAM_OUTPUT, index,
3797 size, swizzle);
3798 }
3799 if (dbg) printf("V/F ");
3800 }
3801 if (dbg) printf("VARYING ");
3802 }
3803 else if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE) {
3804 GLuint swizzle;
3805 GLint index;
3806 /* attributes must be float, vec or mat */
3807 if (!_slang_type_is_float_vec_mat(var->type.specifier.type)) {
3808 slang_info_log_error(A->log,
3809 "attribute '%s' must be float/vector/matrix",
3810 varName);
3811 return GL_FALSE;
3812 }
3813
3814 if (prog) {
3815 /* user-defined vertex attribute */
3816 const GLint attr = -1; /* unknown */
3817 swizzle = _slang_var_swizzle(size, 0);
3818 index = _mesa_add_attribute(prog->Attributes, varName,
3819 size, datatype, attr);
3820 assert(index >= 0);
3821 index = VERT_ATTRIB_GENERIC0 + index;
3822 }
3823 else {
3824 /* pre-defined vertex attrib */
3825 index = _slang_input_index(varName, GL_VERTEX_PROGRAM_ARB, &swizzle);
3826 assert(index >= 0);
3827 }
3828 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
3829 if (dbg) printf("ATTRIB ");
3830 }
3831 else if (var->type.qualifier == SLANG_QUAL_FIXEDINPUT) {
3832 GLuint swizzle = SWIZZLE_XYZW; /* silence compiler warning */
3833 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
3834 &swizzle);
3835 store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
3836 if (dbg) printf("INPUT ");
3837 }
3838 else if (var->type.qualifier == SLANG_QUAL_FIXEDOUTPUT) {
3839 if (type == SLANG_UNIT_VERTEX_BUILTIN) {
3840 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
3841 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
3842 }
3843 else {
3844 GLint index = _slang_output_index(varName, GL_FRAGMENT_PROGRAM_ARB);
3845 GLint specialSize = 4; /* treat all fragment outputs as float[4] */
3846 assert(type == SLANG_UNIT_FRAGMENT_BUILTIN);
3847 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, specialSize);
3848 }
3849 if (dbg) printf("OUTPUT ");
3850 }
3851 else if (var->type.qualifier == SLANG_QUAL_CONST && !prog) {
3852 /* pre-defined global constant, like gl_MaxLights */
3853 store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
3854 if (dbg) printf("CONST ");
3855 }
3856 else {
3857 /* ordinary variable (may be const) */
3858 slang_ir_node *n;
3859
3860 /* IR node to declare the variable */
3861 n = _slang_gen_var_decl(A, var);
3862
3863 /* IR code for the var's initializer, if present */
3864 if (var->initializer) {
3865 slang_ir_node *lhs, *rhs, *init;
3866
3867 /* Generate IR_COPY instruction to initialize the variable */
3868 lhs = new_node0(IR_VAR);
3869 lhs->Var = var;
3870 lhs->Store = n->Store;
3871
3872 /* constant folding, etc */
3873 _slang_simplify(var->initializer, &A->space, A->atoms);
3874
3875 rhs = _slang_gen_operation(A, var->initializer);
3876 assert(rhs);
3877 init = new_node2(IR_COPY, lhs, rhs);
3878 n = new_seq(n, init);
3879 }
3880
3881 success = _slang_emit_code(n, A->vartable, A->program, GL_FALSE, A->log);
3882
3883 _slang_free_ir_tree(n);
3884 }
3885
3886 if (dbg) printf("GLOBAL VAR %s idx %d\n", (char*) var->a_name,
3887 store ? store->Index : -2);
3888
3889 if (store)
3890 var->store = store; /* save var's storage info */
3891
3892 var->declared = GL_TRUE;
3893
3894 return success;
3895 }
3896
3897
3898 /**
3899 * Produce an IR tree from a function AST (fun->body).
3900 * Then call the code emitter to convert the IR tree into gl_program
3901 * instructions.
3902 */
3903 GLboolean
3904 _slang_codegen_function(slang_assemble_ctx * A, slang_function * fun)
3905 {
3906 slang_ir_node *n;
3907 GLboolean success = GL_TRUE;
3908
3909 if (_mesa_strcmp((char *) fun->header.a_name, "main") != 0) {
3910 /* we only really generate code for main, all other functions get
3911 * inlined or codegen'd upon an actual call.
3912 */
3913 #if 0
3914 /* do some basic error checking though */
3915 if (fun->header.type.specifier.type != SLANG_SPEC_VOID) {
3916 /* check that non-void functions actually return something */
3917 slang_operation *op
3918 = _slang_find_node_type(fun->body, SLANG_OPER_RETURN);
3919 if (!op) {
3920 slang_info_log_error(A->log,
3921 "function \"%s\" has no return statement",
3922 (char *) fun->header.a_name);
3923 printf(
3924 "function \"%s\" has no return statement\n",
3925 (char *) fun->header.a_name);
3926 return GL_FALSE;
3927 }
3928 }
3929 #endif
3930 return GL_TRUE; /* not an error */
3931 }
3932
3933 #if 0
3934 printf("\n*********** codegen_function %s\n", (char *) fun->header.a_name);
3935 slang_print_function(fun, 1);
3936 #endif
3937
3938 /* should have been allocated earlier: */
3939 assert(A->program->Parameters );
3940 assert(A->program->Varying);
3941 assert(A->vartable);
3942 A->CurLoop = NULL;
3943 A->CurFunction = fun;
3944
3945 /* fold constant expressions, etc. */
3946 _slang_simplify(fun->body, &A->space, A->atoms);
3947
3948 #if 0
3949 printf("\n*********** simplified %s\n", (char *) fun->header.a_name);
3950 slang_print_function(fun, 1);
3951 #endif
3952
3953 /* Create an end-of-function label */
3954 A->curFuncEndLabel = _slang_label_new("__endOfFunc__main");
3955
3956 /* push new vartable scope */
3957 _slang_push_var_table(A->vartable);
3958
3959 /* Generate IR tree for the function body code */
3960 n = _slang_gen_operation(A, fun->body);
3961 if (n)
3962 n = new_node1(IR_SCOPE, n);
3963
3964 /* pop vartable, restore previous */
3965 _slang_pop_var_table(A->vartable);
3966
3967 if (!n) {
3968 /* XXX record error */
3969 return GL_FALSE;
3970 }
3971
3972 /* append an end-of-function-label to IR tree */
3973 n = new_seq(n, new_label(A->curFuncEndLabel));
3974
3975 /*_slang_label_delete(A->curFuncEndLabel);*/
3976 A->curFuncEndLabel = NULL;
3977
3978 #if 0
3979 printf("************* New AST for %s *****\n", (char*)fun->header.a_name);
3980 slang_print_function(fun, 1);
3981 #endif
3982 #if 0
3983 printf("************* IR for %s *******\n", (char*)fun->header.a_name);
3984 _slang_print_ir_tree(n, 0);
3985 #endif
3986 #if 0
3987 printf("************* End codegen function ************\n\n");
3988 #endif
3989
3990 /* Emit program instructions */
3991 success = _slang_emit_code(n, A->vartable, A->program, GL_TRUE, A->log);
3992 _slang_free_ir_tree(n);
3993
3994 /* free codegen context */
3995 /*
3996 _mesa_free(A->codegen);
3997 */
3998
3999 return success;
4000 }
4001