move some code into new slang_ir.c file
[mesa.git] / src / mesa / shader / slang / slang_codegen.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file slang_codegen.c
27 * Generate IR tree from AST.
28 * \author Brian Paul
29 */
30
31
32 /***
33 *** NOTES:
34 *** The new_() functions return a new instance of a simple IR node.
35 *** The gen_() functions generate larger IR trees from the simple nodes.
36 ***/
37
38
39
40 #include "imports.h"
41 #include "macros.h"
42 #include "mtypes.h"
43 #include "program.h"
44 #include "prog_instruction.h"
45 #include "prog_parameter.h"
46 #include "prog_statevars.h"
47 #include "slang_typeinfo.h"
48 #include "slang_codegen.h"
49 #include "slang_compile.h"
50 #include "slang_label.h"
51 #include "slang_simplify.h"
52 #include "slang_emit.h"
53 #include "slang_vartable.h"
54 #include "slang_ir.h"
55 #include "slang_print.h"
56
57
58 static slang_ir_node *
59 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper);
60
61
62 static GLboolean
63 is_sampler_type(const slang_fully_specified_type *t)
64 {
65 switch (t->specifier.type) {
66 case SLANG_SPEC_SAMPLER1D:
67 case SLANG_SPEC_SAMPLER2D:
68 case SLANG_SPEC_SAMPLER3D:
69 case SLANG_SPEC_SAMPLERCUBE:
70 case SLANG_SPEC_SAMPLER1DSHADOW:
71 case SLANG_SPEC_SAMPLER2DSHADOW:
72 case SLANG_SPEC_SAMPLER2DRECT:
73 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
74 return GL_TRUE;
75 default:
76 return GL_FALSE;
77 }
78 }
79
80
81 /**
82 * Return the offset (in floats or ints) of the named field within
83 * the given struct. Return -1 if field not found.
84 * If field is NULL, return the size of the struct instead.
85 */
86 static GLint
87 _slang_field_offset(const slang_type_specifier *spec, slang_atom field)
88 {
89 GLint offset = 0;
90 GLuint i;
91 for (i = 0; i < spec->_struct->fields->num_variables; i++) {
92 const slang_variable *v = spec->_struct->fields->variables[i];
93 const GLuint sz = _slang_sizeof_type_specifier(&v->type.specifier);
94 if (sz > 1) {
95 /* types larger than 1 float are register (4-float) aligned */
96 offset = (offset + 3) & ~3;
97 }
98 if (field && v->a_name == field) {
99 return offset;
100 }
101 offset += sz;
102 }
103 if (field)
104 return -1; /* field not found */
105 else
106 return offset; /* struct size */
107 }
108
109
110 GLuint
111 _slang_sizeof_type_specifier(const slang_type_specifier *spec)
112 {
113 switch (spec->type) {
114 case SLANG_SPEC_VOID:
115 return 0;
116 case SLANG_SPEC_BOOL:
117 return 1;
118 case SLANG_SPEC_BVEC2:
119 return 2;
120 case SLANG_SPEC_BVEC3:
121 return 3;
122 case SLANG_SPEC_BVEC4:
123 return 4;
124 case SLANG_SPEC_INT:
125 return 1;
126 case SLANG_SPEC_IVEC2:
127 return 2;
128 case SLANG_SPEC_IVEC3:
129 return 3;
130 case SLANG_SPEC_IVEC4:
131 return 4;
132 case SLANG_SPEC_FLOAT:
133 return 1;
134 case SLANG_SPEC_VEC2:
135 return 2;
136 case SLANG_SPEC_VEC3:
137 return 3;
138 case SLANG_SPEC_VEC4:
139 return 4;
140 case SLANG_SPEC_MAT2:
141 return 2 * 2;
142 case SLANG_SPEC_MAT3:
143 return 3 * 3;
144 case SLANG_SPEC_MAT4:
145 return 4 * 4;
146 case SLANG_SPEC_SAMPLER1D:
147 case SLANG_SPEC_SAMPLER2D:
148 case SLANG_SPEC_SAMPLER3D:
149 case SLANG_SPEC_SAMPLERCUBE:
150 case SLANG_SPEC_SAMPLER1DSHADOW:
151 case SLANG_SPEC_SAMPLER2DSHADOW:
152 case SLANG_SPEC_SAMPLER2DRECT:
153 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
154 return 1; /* a sampler is basically just an integer index */
155 case SLANG_SPEC_STRUCT:
156 return _slang_field_offset(spec, 0); /* special use */
157 case SLANG_SPEC_ARRAY:
158 return _slang_sizeof_type_specifier(spec->_array);
159 default:
160 _mesa_problem(NULL, "Unexpected type in _slang_sizeof_type_specifier()");
161 return 0;
162 }
163 return 0;
164 }
165
166
167 /**
168 * Establish the binding between a slang_ir_node and a slang_variable.
169 * Then, allocate/attach a slang_ir_storage object to the IR node if needed.
170 * The IR node must be a IR_VAR or IR_VAR_DECL node.
171 * \param n the IR node
172 * \param var the variable to associate with the IR node
173 */
174 static void
175 _slang_attach_storage(slang_ir_node *n, slang_variable *var)
176 {
177 assert(n);
178 assert(var);
179 assert(n->Opcode == IR_VAR || n->Opcode == IR_VAR_DECL);
180 assert(!n->Var || n->Var == var);
181
182 n->Var = var;
183
184 if (!n->Store) {
185 /* need to setup storage */
186 if (n->Var && n->Var->aux) {
187 /* node storage info = var storage info */
188 n->Store = (slang_ir_storage *) n->Var->aux;
189 }
190 else {
191 /* alloc new storage info */
192 n->Store = _slang_new_ir_storage(PROGRAM_UNDEFINED, -1, -5);
193 if (n->Var)
194 n->Var->aux = n->Store;
195 assert(n->Var->aux);
196 }
197 }
198 }
199
200
201 /**
202 * Return the TEXTURE_*_INDEX value that corresponds to a sampler type,
203 * or -1 if the type is not a sampler.
204 */
205 static GLint
206 sampler_to_texture_index(const slang_type_specifier_type type)
207 {
208 switch (type) {
209 case SLANG_SPEC_SAMPLER1D:
210 return TEXTURE_1D_INDEX;
211 case SLANG_SPEC_SAMPLER2D:
212 return TEXTURE_2D_INDEX;
213 case SLANG_SPEC_SAMPLER3D:
214 return TEXTURE_3D_INDEX;
215 case SLANG_SPEC_SAMPLERCUBE:
216 return TEXTURE_CUBE_INDEX;
217 case SLANG_SPEC_SAMPLER1DSHADOW:
218 return TEXTURE_1D_INDEX; /* XXX fix */
219 case SLANG_SPEC_SAMPLER2DSHADOW:
220 return TEXTURE_2D_INDEX; /* XXX fix */
221 case SLANG_SPEC_SAMPLER2DRECT:
222 return TEXTURE_RECT_INDEX;
223 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
224 return TEXTURE_RECT_INDEX; /* XXX fix */
225 default:
226 return -1;
227 }
228 }
229
230
231 /**
232 * Return the VERT_ATTRIB_* or FRAG_ATTRIB_* value that corresponds to
233 * a vertex or fragment program input variable. Return -1 if the input
234 * name is invalid.
235 * XXX return size too
236 */
237 static GLint
238 _slang_input_index(const char *name, GLenum target, GLuint *swizzleOut)
239 {
240 struct input_info {
241 const char *Name;
242 GLuint Attrib;
243 GLuint Swizzle;
244 };
245 static const struct input_info vertInputs[] = {
246 { "gl_Vertex", VERT_ATTRIB_POS, SWIZZLE_NOOP },
247 { "gl_Normal", VERT_ATTRIB_NORMAL, SWIZZLE_NOOP },
248 { "gl_Color", VERT_ATTRIB_COLOR0, SWIZZLE_NOOP },
249 { "gl_SecondaryColor", VERT_ATTRIB_COLOR1, SWIZZLE_NOOP },
250 { "gl_FogCoord", VERT_ATTRIB_FOG, SWIZZLE_XXXX },
251 { "gl_MultiTexCoord0", VERT_ATTRIB_TEX0, SWIZZLE_NOOP },
252 { "gl_MultiTexCoord1", VERT_ATTRIB_TEX1, SWIZZLE_NOOP },
253 { "gl_MultiTexCoord2", VERT_ATTRIB_TEX2, SWIZZLE_NOOP },
254 { "gl_MultiTexCoord3", VERT_ATTRIB_TEX3, SWIZZLE_NOOP },
255 { "gl_MultiTexCoord4", VERT_ATTRIB_TEX4, SWIZZLE_NOOP },
256 { "gl_MultiTexCoord5", VERT_ATTRIB_TEX5, SWIZZLE_NOOP },
257 { "gl_MultiTexCoord6", VERT_ATTRIB_TEX6, SWIZZLE_NOOP },
258 { "gl_MultiTexCoord7", VERT_ATTRIB_TEX7, SWIZZLE_NOOP },
259 { NULL, 0, SWIZZLE_NOOP }
260 };
261 static const struct input_info fragInputs[] = {
262 { "gl_FragCoord", FRAG_ATTRIB_WPOS, SWIZZLE_NOOP },
263 { "gl_Color", FRAG_ATTRIB_COL0, SWIZZLE_NOOP },
264 { "gl_SecondaryColor", FRAG_ATTRIB_COL1, SWIZZLE_NOOP },
265 { "gl_FogFragCoord", FRAG_ATTRIB_FOGC, SWIZZLE_XXXX },
266 { "gl_TexCoord", FRAG_ATTRIB_TEX0, SWIZZLE_NOOP },
267 { "gl_FrontFacing", FRAG_ATTRIB_FOGC, SWIZZLE_YYYY }, /*XXX*/
268 { NULL, 0, SWIZZLE_NOOP }
269 };
270 GLuint i;
271 const struct input_info *inputs
272 = (target == GL_VERTEX_PROGRAM_ARB) ? vertInputs : fragInputs;
273
274 ASSERT(MAX_TEXTURE_UNITS == 8); /* if this fails, fix vertInputs above */
275
276 for (i = 0; inputs[i].Name; i++) {
277 if (strcmp(inputs[i].Name, name) == 0) {
278 /* found */
279 *swizzleOut = inputs[i].Swizzle;
280 return inputs[i].Attrib;
281 }
282 }
283 return -1;
284 }
285
286
287 /**
288 * Return the VERT_RESULT_* or FRAG_RESULT_* value that corresponds to
289 * a vertex or fragment program output variable. Return -1 for an invalid
290 * output name.
291 */
292 static GLint
293 _slang_output_index(const char *name, GLenum target)
294 {
295 struct output_info {
296 const char *Name;
297 GLuint Attrib;
298 };
299 static const struct output_info vertOutputs[] = {
300 { "gl_Position", VERT_RESULT_HPOS },
301 { "gl_FrontColor", VERT_RESULT_COL0 },
302 { "gl_BackColor", VERT_RESULT_BFC0 },
303 { "gl_FrontSecondaryColor", VERT_RESULT_COL1 },
304 { "gl_BackSecondaryColor", VERT_RESULT_BFC1 },
305 { "gl_TexCoord", VERT_RESULT_TEX0 },
306 { "gl_FogFragCoord", VERT_RESULT_FOGC },
307 { "gl_PointSize", VERT_RESULT_PSIZ },
308 { NULL, 0 }
309 };
310 static const struct output_info fragOutputs[] = {
311 { "gl_FragColor", FRAG_RESULT_COLR },
312 { "gl_FragDepth", FRAG_RESULT_DEPR },
313 { "gl_FragData", FRAG_RESULT_DATA0 },
314 { NULL, 0 }
315 };
316 GLuint i;
317 const struct output_info *outputs
318 = (target == GL_VERTEX_PROGRAM_ARB) ? vertOutputs : fragOutputs;
319
320 for (i = 0; outputs[i].Name; i++) {
321 if (strcmp(outputs[i].Name, name) == 0) {
322 /* found */
323 return outputs[i].Attrib;
324 }
325 }
326 return -1;
327 }
328
329
330
331 /**********************************************************************/
332
333
334 /**
335 * Map "_asm foo" to IR_FOO, etc.
336 */
337 typedef struct
338 {
339 const char *Name;
340 slang_ir_opcode Opcode;
341 GLuint HaveRetValue, NumParams;
342 } slang_asm_info;
343
344
345 static slang_asm_info AsmInfo[] = {
346 /* vec4 binary op */
347 { "vec4_add", IR_ADD, 1, 2 },
348 { "vec4_subtract", IR_SUB, 1, 2 },
349 { "vec4_multiply", IR_MUL, 1, 2 },
350 { "vec4_dot", IR_DOT4, 1, 2 },
351 { "vec3_dot", IR_DOT3, 1, 2 },
352 { "vec3_cross", IR_CROSS, 1, 2 },
353 { "vec4_lrp", IR_LRP, 1, 3 },
354 { "vec4_min", IR_MIN, 1, 2 },
355 { "vec4_max", IR_MAX, 1, 2 },
356 { "vec4_clamp", IR_CLAMP, 1, 3 },
357 { "vec4_seq", IR_SEQUAL, 1, 2 },
358 { "vec4_sne", IR_SNEQUAL, 1, 2 },
359 { "vec4_sge", IR_SGE, 1, 2 },
360 { "vec4_sgt", IR_SGT, 1, 2 },
361 { "vec4_sle", IR_SLE, 1, 2 },
362 { "vec4_slt", IR_SLT, 1, 2 },
363 /* vec4 unary */
364 { "vec4_floor", IR_FLOOR, 1, 1 },
365 { "vec4_frac", IR_FRAC, 1, 1 },
366 { "vec4_abs", IR_ABS, 1, 1 },
367 { "vec4_negate", IR_NEG, 1, 1 },
368 { "vec4_ddx", IR_DDX, 1, 1 },
369 { "vec4_ddy", IR_DDY, 1, 1 },
370 /* float binary op */
371 { "float_power", IR_POW, 1, 2 },
372 /* texture / sampler */
373 { "vec4_tex1d", IR_TEX, 1, 2 },
374 { "vec4_texb1d", IR_TEXB, 1, 2 }, /* 1d w/ bias */
375 { "vec4_texp1d", IR_TEXP, 1, 2 }, /* 1d w/ projection */
376 { "vec4_tex2d", IR_TEX, 1, 2 },
377 { "vec4_texb2d", IR_TEXB, 1, 2 }, /* 2d w/ bias */
378 { "vec4_texp2d", IR_TEXP, 1, 2 }, /* 2d w/ projection */
379 { "vec4_tex3d", IR_TEX, 1, 2 },
380 { "vec4_texb3d", IR_TEXB, 1, 2 }, /* 3d w/ bias */
381 { "vec4_texp3d", IR_TEXP, 1, 2 }, /* 3d w/ projection */
382 { "vec4_texcube", IR_TEX, 1, 2 }, /* cubemap */
383 { "vec4_tex_rect", IR_TEX, 1, 2 }, /* rectangle */
384 { "vec4_texp_rect", IR_TEX, 1, 2 },/* rectangle w/ projection */
385
386 /* unary op */
387 { "int_to_float", IR_I_TO_F, 1, 1 },
388 { "float_to_int", IR_F_TO_I, 1, 1 },
389 { "float_exp", IR_EXP, 1, 1 },
390 { "float_exp2", IR_EXP2, 1, 1 },
391 { "float_log2", IR_LOG2, 1, 1 },
392 { "float_rsq", IR_RSQ, 1, 1 },
393 { "float_rcp", IR_RCP, 1, 1 },
394 { "float_sine", IR_SIN, 1, 1 },
395 { "float_cosine", IR_COS, 1, 1 },
396 { "float_noise1", IR_NOISE1, 1, 1},
397 { "float_noise2", IR_NOISE2, 1, 1},
398 { "float_noise3", IR_NOISE3, 1, 1},
399 { "float_noise4", IR_NOISE4, 1, 1},
400
401 { NULL, IR_NOP, 0, 0 }
402 };
403
404
405 static slang_ir_node *
406 new_node3(slang_ir_opcode op,
407 slang_ir_node *c0, slang_ir_node *c1, slang_ir_node *c2)
408 {
409 slang_ir_node *n = (slang_ir_node *) calloc(1, sizeof(slang_ir_node));
410 if (n) {
411 n->Opcode = op;
412 n->Children[0] = c0;
413 n->Children[1] = c1;
414 n->Children[2] = c2;
415 n->Writemask = WRITEMASK_XYZW;
416 n->InstLocation = -1;
417 }
418 return n;
419 }
420
421 static slang_ir_node *
422 new_node2(slang_ir_opcode op, slang_ir_node *c0, slang_ir_node *c1)
423 {
424 return new_node3(op, c0, c1, NULL);
425 }
426
427 static slang_ir_node *
428 new_node1(slang_ir_opcode op, slang_ir_node *c0)
429 {
430 return new_node3(op, c0, NULL, NULL);
431 }
432
433 static slang_ir_node *
434 new_node0(slang_ir_opcode op)
435 {
436 return new_node3(op, NULL, NULL, NULL);
437 }
438
439
440 static slang_ir_node *
441 new_seq(slang_ir_node *left, slang_ir_node *right)
442 {
443 if (!left)
444 return right;
445 if (!right)
446 return left;
447 return new_node2(IR_SEQ, left, right);
448 }
449
450 static slang_ir_node *
451 new_label(slang_label *label)
452 {
453 slang_ir_node *n = new_node0(IR_LABEL);
454 assert(label);
455 if (n)
456 n->Label = label;
457 return n;
458 }
459
460 static slang_ir_node *
461 new_float_literal(const float v[4])
462 {
463 const GLuint size = (v[0] == v[1] && v[0] == v[2] && v[0] == v[3]) ? 1 : 4;
464 slang_ir_node *n = new_node0(IR_FLOAT);
465 COPY_4V(n->Value, v);
466 /* allocate a storage object, but compute actual location (Index) later */
467 n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
468 return n;
469 }
470
471 /**
472 * Unconditional jump.
473 */
474 static slang_ir_node *
475 new_jump(slang_label *dest)
476 {
477 slang_ir_node *n = new_node0(IR_JUMP);
478 assert(dest);
479 if (n)
480 n->Label = dest;
481 return n;
482 }
483
484
485 static slang_ir_node *
486 new_loop(slang_ir_node *body)
487 {
488 return new_node1(IR_LOOP, body);
489 }
490
491
492 static slang_ir_node *
493 new_break(slang_ir_node *loopNode)
494 {
495 slang_ir_node *n = new_node0(IR_BREAK);
496 assert(loopNode);
497 assert(loopNode->Opcode == IR_LOOP);
498 if (n) {
499 /* insert this node at head of linked list */
500 n->List = loopNode->List;
501 loopNode->List = n;
502 }
503 return n;
504 }
505
506
507 /**
508 * Make new IR_BREAK_IF_TRUE or IR_BREAK_IF_FALSE node.
509 */
510 static slang_ir_node *
511 new_break_if(slang_ir_node *loopNode, slang_ir_node *cond, GLboolean breakTrue)
512 {
513 slang_ir_node *n;
514 assert(loopNode);
515 assert(loopNode->Opcode == IR_LOOP);
516 n = new_node1(breakTrue ? IR_BREAK_IF_TRUE : IR_BREAK_IF_FALSE, cond);
517 if (n) {
518 /* insert this node at head of linked list */
519 n->List = loopNode->List;
520 loopNode->List = n;
521 }
522 return n;
523 }
524
525
526 /**
527 * Make new IR_CONT_IF_TRUE or IR_CONT_IF_FALSE node.
528 */
529 static slang_ir_node *
530 new_cont_if(slang_ir_node *loopNode, slang_ir_node *cond, GLboolean contTrue)
531 {
532 slang_ir_node *n;
533 assert(loopNode);
534 assert(loopNode->Opcode == IR_LOOP);
535 n = new_node1(contTrue ? IR_CONT_IF_TRUE : IR_CONT_IF_FALSE, cond);
536 if (n) {
537 /* insert this node at head of linked list */
538 n->List = loopNode->List;
539 loopNode->List = n;
540 }
541 return n;
542 }
543
544
545 static slang_ir_node *
546 new_cond(slang_ir_node *n)
547 {
548 slang_ir_node *c = new_node1(IR_COND, n);
549 return c;
550 }
551
552
553 static slang_ir_node *
554 new_if(slang_ir_node *cond, slang_ir_node *ifPart, slang_ir_node *elsePart)
555 {
556 return new_node3(IR_IF, cond, ifPart, elsePart);
557 }
558
559
560 /**
561 * New IR_VAR node - a reference to a previously declared variable.
562 */
563 static slang_ir_node *
564 new_var(slang_assemble_ctx *A, slang_operation *oper, slang_atom name)
565 {
566 slang_ir_node *n;
567 slang_variable *var = _slang_locate_variable(oper->locals, name, GL_TRUE);
568 if (!var)
569 return NULL;
570
571 assert(!oper->var || oper->var == var);
572
573 n = new_node0(IR_VAR);
574 if (n) {
575 _slang_attach_storage(n, var);
576 }
577 return n;
578 }
579
580
581 /**
582 * Check if the given function is really just a wrapper for a
583 * basic assembly instruction.
584 */
585 static GLboolean
586 slang_is_asm_function(const slang_function *fun)
587 {
588 if (fun->body->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE &&
589 fun->body->num_children == 1 &&
590 fun->body->children[0].type == SLANG_OPER_ASM) {
591 return GL_TRUE;
592 }
593 return GL_FALSE;
594 }
595
596
597 static GLboolean
598 _slang_is_noop(const slang_operation *oper)
599 {
600 if (!oper ||
601 oper->type == SLANG_OPER_VOID ||
602 (oper->num_children == 1 && oper->children[0].type == SLANG_OPER_VOID))
603 return GL_TRUE;
604 else
605 return GL_FALSE;
606 }
607
608
609 /**
610 * Produce inline code for a call to an assembly instruction.
611 * XXX Note: children are passed as asm args in-order, not by name!
612 */
613 static slang_operation *
614 slang_inline_asm_function(slang_assemble_ctx *A,
615 slang_function *fun, slang_operation *oper)
616 {
617 const GLuint numArgs = oper->num_children;
618 const slang_operation *args = oper->children;
619 GLuint i;
620 slang_operation *inlined = slang_operation_new(1);
621
622 /*assert(oper->type == SLANG_OPER_CALL); or vec4_add, etc */
623 /*
624 printf("Inline asm %s\n", (char*) fun->header.a_name);
625 */
626 inlined->type = fun->body->children[0].type;
627 inlined->a_id = fun->body->children[0].a_id;
628 inlined->num_children = numArgs;
629 inlined->children = slang_operation_new(numArgs);
630 inlined->locals->outer_scope = oper->locals->outer_scope;
631
632 for (i = 0; i < numArgs; i++) {
633 slang_operation_copy(inlined->children + i, args + i);
634 }
635
636 return inlined;
637 }
638
639
640 static void
641 slang_resolve_variable(slang_operation *oper)
642 {
643 if (oper->type == SLANG_OPER_IDENTIFIER && !oper->var) {
644 oper->var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
645 }
646 }
647
648
649 /**
650 * Replace particular variables (SLANG_OPER_IDENTIFIER) with new expressions.
651 */
652 static void
653 slang_substitute(slang_assemble_ctx *A, slang_operation *oper,
654 GLuint substCount, slang_variable **substOld,
655 slang_operation **substNew, GLboolean isLHS)
656 {
657 switch (oper->type) {
658 case SLANG_OPER_VARIABLE_DECL:
659 {
660 slang_variable *v = _slang_locate_variable(oper->locals,
661 oper->a_id, GL_TRUE);
662 assert(v);
663 if (v->initializer && oper->num_children == 0) {
664 /* set child of oper to copy of initializer */
665 oper->num_children = 1;
666 oper->children = slang_operation_new(1);
667 slang_operation_copy(&oper->children[0], v->initializer);
668 }
669 if (oper->num_children == 1) {
670 /* the initializer */
671 slang_substitute(A, &oper->children[0], substCount,
672 substOld, substNew, GL_FALSE);
673 }
674 }
675 break;
676 case SLANG_OPER_IDENTIFIER:
677 assert(oper->num_children == 0);
678 if (1/**!isLHS XXX FIX */) {
679 slang_atom id = oper->a_id;
680 slang_variable *v;
681 GLuint i;
682 v = _slang_locate_variable(oper->locals, id, GL_TRUE);
683 if (!v) {
684 printf("var %s not found!\n", (char *) oper->a_id);
685 _slang_print_var_scope(oper->locals, 6);
686
687 abort();
688 break;
689 }
690
691 /* look for a substitution */
692 for (i = 0; i < substCount; i++) {
693 if (v == substOld[i]) {
694 /* OK, replace this SLANG_OPER_IDENTIFIER with a new expr */
695 #if 0 /* DEBUG only */
696 if (substNew[i]->type == SLANG_OPER_IDENTIFIER) {
697 assert(substNew[i]->var);
698 assert(substNew[i]->var->a_name);
699 printf("Substitute %s with %s in id node %p\n",
700 (char*)v->a_name, (char*) substNew[i]->var->a_name,
701 (void*) oper);
702 }
703 else {
704 printf("Substitute %s with %f in id node %p\n",
705 (char*)v->a_name, substNew[i]->literal[0],
706 (void*) oper);
707 }
708 #endif
709 slang_operation_copy(oper, substNew[i]);
710 break;
711 }
712 }
713 }
714 break;
715
716 case SLANG_OPER_RETURN:
717 /* do return replacement here too */
718 assert(oper->num_children == 0 || oper->num_children == 1);
719 if (!_slang_is_noop(oper)) {
720 /* replace:
721 * return expr;
722 * with:
723 * __retVal = expr;
724 * return;
725 * then do substitutions on the assignment.
726 */
727 slang_operation *blockOper, *assignOper, *returnOper;
728 blockOper = slang_operation_new(1);
729 blockOper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
730 blockOper->num_children = 2;
731 blockOper->locals->outer_scope = oper->locals->outer_scope;
732 blockOper->children = slang_operation_new(2);
733 assignOper = blockOper->children + 0;
734 returnOper = blockOper->children + 1;
735
736 assignOper->type = SLANG_OPER_ASSIGN;
737 assignOper->num_children = 2;
738 assignOper->locals->outer_scope = blockOper->locals;
739 assignOper->children = slang_operation_new(2);
740 assignOper->children[0].type = SLANG_OPER_IDENTIFIER;
741 assignOper->children[0].a_id = slang_atom_pool_atom(A->atoms, "__retVal");
742 assignOper->children[0].locals->outer_scope = assignOper->locals;
743
744 slang_operation_copy(&assignOper->children[1],
745 &oper->children[0]);
746
747 returnOper->type = SLANG_OPER_RETURN;
748 assert(returnOper->num_children == 0);
749
750 /* do substitutions on the "__retVal = expr" sub-tree */
751 slang_substitute(A, assignOper,
752 substCount, substOld, substNew, GL_FALSE);
753
754 /* install new code */
755 slang_operation_copy(oper, blockOper);
756 slang_operation_destruct(blockOper);
757 }
758 break;
759
760 case SLANG_OPER_ASSIGN:
761 case SLANG_OPER_SUBSCRIPT:
762 /* special case:
763 * child[0] can't have substitutions but child[1] can.
764 */
765 slang_substitute(A, &oper->children[0],
766 substCount, substOld, substNew, GL_TRUE);
767 slang_substitute(A, &oper->children[1],
768 substCount, substOld, substNew, GL_FALSE);
769 break;
770 case SLANG_OPER_FIELD:
771 /* XXX NEW - test */
772 slang_substitute(A, &oper->children[0],
773 substCount, substOld, substNew, GL_TRUE);
774 break;
775 default:
776 {
777 GLuint i;
778 for (i = 0; i < oper->num_children; i++)
779 slang_substitute(A, &oper->children[i],
780 substCount, substOld, substNew, GL_FALSE);
781 }
782 }
783 }
784
785
786
787 /**
788 * Inline the given function call operation.
789 * Return a new slang_operation that corresponds to the inlined code.
790 */
791 static slang_operation *
792 slang_inline_function_call(slang_assemble_ctx * A, slang_function *fun,
793 slang_operation *oper, slang_operation *returnOper)
794 {
795 typedef enum {
796 SUBST = 1,
797 COPY_IN,
798 COPY_OUT
799 } ParamMode;
800 ParamMode *paramMode;
801 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
802 const GLuint numArgs = oper->num_children;
803 const GLuint totalArgs = numArgs + haveRetValue;
804 slang_operation *args = oper->children;
805 slang_operation *inlined, *top;
806 slang_variable **substOld;
807 slang_operation **substNew;
808 GLuint substCount, numCopyIn, i;
809
810 /*assert(oper->type == SLANG_OPER_CALL); (or (matrix) multiply, etc) */
811 assert(fun->param_count == totalArgs);
812
813 /* allocate temporary arrays */
814 paramMode = (ParamMode *)
815 _mesa_calloc(totalArgs * sizeof(ParamMode));
816 substOld = (slang_variable **)
817 _mesa_calloc(totalArgs * sizeof(slang_variable *));
818 substNew = (slang_operation **)
819 _mesa_calloc(totalArgs * sizeof(slang_operation *));
820
821 #if 0
822 printf("Inline call to %s (total vars=%d nparams=%d)\n",
823 (char *) fun->header.a_name,
824 fun->parameters->num_variables, numArgs);
825 #endif
826
827 if (haveRetValue && !returnOper) {
828 /* Create 3-child comma sequence for inlined code:
829 * child[0]: declare __resultTmp
830 * child[1]: inlined function body
831 * child[2]: __resultTmp
832 */
833 slang_operation *commaSeq;
834 slang_operation *declOper = NULL;
835 slang_variable *resultVar;
836
837 commaSeq = slang_operation_new(1);
838 commaSeq->type = SLANG_OPER_SEQUENCE;
839 assert(commaSeq->locals);
840 commaSeq->locals->outer_scope = oper->locals->outer_scope;
841 commaSeq->num_children = 3;
842 commaSeq->children = slang_operation_new(3);
843 /* allocate the return var */
844 resultVar = slang_variable_scope_grow(commaSeq->locals);
845 /*
846 printf("Alloc __resultTmp in scope %p for retval of calling %s\n",
847 (void*)commaSeq->locals, (char *) fun->header.a_name);
848 */
849
850 resultVar->a_name = slang_atom_pool_atom(A->atoms, "__resultTmp");
851 resultVar->type = fun->header.type; /* XXX copy? */
852 resultVar->isTemp = GL_TRUE;
853
854 /* child[0] = __resultTmp declaration */
855 declOper = &commaSeq->children[0];
856 declOper->type = SLANG_OPER_VARIABLE_DECL;
857 declOper->a_id = resultVar->a_name;
858 declOper->locals->outer_scope = commaSeq->locals;
859
860 /* child[1] = function body */
861 inlined = &commaSeq->children[1];
862 inlined->locals->outer_scope = commaSeq->locals;
863
864 /* child[2] = __resultTmp reference */
865 returnOper = &commaSeq->children[2];
866 returnOper->type = SLANG_OPER_IDENTIFIER;
867 returnOper->a_id = resultVar->a_name;
868 returnOper->locals->outer_scope = commaSeq->locals;
869
870 top = commaSeq;
871 }
872 else {
873 top = inlined = slang_operation_new(1);
874 /* XXXX this may be inappropriate!!!! */
875 inlined->locals->outer_scope = oper->locals->outer_scope;
876 }
877
878
879 assert(inlined->locals);
880
881 /* Examine the parameters, look for inout/out params, look for possible
882 * substitutions, etc:
883 * param type behaviour
884 * in copy actual to local
885 * const in substitute param with actual
886 * out copy out
887 */
888 substCount = 0;
889 for (i = 0; i < totalArgs; i++) {
890 slang_variable *p = fun->parameters->variables[i];
891 /*
892 printf("Param %d: %s %s \n", i,
893 slang_type_qual_string(p->type.qualifier),
894 (char *) p->a_name);
895 */
896 if (p->type.qualifier == SLANG_QUAL_INOUT ||
897 p->type.qualifier == SLANG_QUAL_OUT) {
898 /* an output param */
899 slang_operation *arg;
900 if (i < numArgs)
901 arg = &args[i];
902 else
903 arg = returnOper;
904 paramMode[i] = SUBST;
905
906 if (arg->type == SLANG_OPER_IDENTIFIER)
907 slang_resolve_variable(arg);
908
909 /* replace parameter 'p' with argument 'arg' */
910 substOld[substCount] = p;
911 substNew[substCount] = arg; /* will get copied */
912 substCount++;
913 }
914 else if (p->type.qualifier == SLANG_QUAL_CONST) {
915 /* a constant input param */
916 if (args[i].type == SLANG_OPER_IDENTIFIER ||
917 args[i].type == SLANG_OPER_LITERAL_FLOAT) {
918 /* replace all occurances of this parameter variable with the
919 * actual argument variable or a literal.
920 */
921 paramMode[i] = SUBST;
922 slang_resolve_variable(&args[i]);
923 substOld[substCount] = p;
924 substNew[substCount] = &args[i]; /* will get copied */
925 substCount++;
926 }
927 else {
928 paramMode[i] = COPY_IN;
929 }
930 }
931 else {
932 paramMode[i] = COPY_IN;
933 }
934 assert(paramMode[i]);
935 }
936
937 /* actual code inlining: */
938 slang_operation_copy(inlined, fun->body);
939
940 /*** XXX review this */
941 assert(inlined->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE);
942 inlined->type = SLANG_OPER_BLOCK_NEW_SCOPE;
943
944 #if 0
945 printf("======================= orig body code ======================\n");
946 printf("=== params scope = %p\n", (void*) fun->parameters);
947 slang_print_tree(fun->body, 8);
948 printf("======================= copied code =========================\n");
949 slang_print_tree(inlined, 8);
950 #endif
951
952 /* do parameter substitution in inlined code: */
953 slang_substitute(A, inlined, substCount, substOld, substNew, GL_FALSE);
954
955 #if 0
956 printf("======================= subst code ==========================\n");
957 slang_print_tree(inlined, 8);
958 printf("=============================================================\n");
959 #endif
960
961 /* New prolog statements: (inserted before the inlined code)
962 * Copy the 'in' arguments.
963 */
964 numCopyIn = 0;
965 for (i = 0; i < numArgs; i++) {
966 if (paramMode[i] == COPY_IN) {
967 slang_variable *p = fun->parameters->variables[i];
968 /* declare parameter 'p' */
969 slang_operation *decl = slang_operation_insert(&inlined->num_children,
970 &inlined->children,
971 numCopyIn);
972 /*
973 printf("COPY_IN %s from expr\n", (char*)p->a_name);
974 */
975 decl->type = SLANG_OPER_VARIABLE_DECL;
976 assert(decl->locals);
977 decl->locals->outer_scope = inlined->locals;
978 decl->a_id = p->a_name;
979 decl->num_children = 1;
980 decl->children = slang_operation_new(1);
981
982 /* child[0] is the var's initializer */
983 slang_operation_copy(&decl->children[0], args + i);
984
985 numCopyIn++;
986 }
987 }
988
989 /* New epilog statements:
990 * 1. Create end of function label to jump to from return statements.
991 * 2. Copy the 'out' parameter vars
992 */
993 {
994 slang_operation *lab = slang_operation_insert(&inlined->num_children,
995 &inlined->children,
996 inlined->num_children);
997 lab->type = SLANG_OPER_LABEL;
998 lab->label = A->curFuncEndLabel;
999 }
1000
1001 for (i = 0; i < totalArgs; i++) {
1002 if (paramMode[i] == COPY_OUT) {
1003 const slang_variable *p = fun->parameters->variables[i];
1004 /* actualCallVar = outParam */
1005 /*if (i > 0 || !haveRetValue)*/
1006 slang_operation *ass = slang_operation_insert(&inlined->num_children,
1007 &inlined->children,
1008 inlined->num_children);
1009 ass->type = SLANG_OPER_ASSIGN;
1010 ass->num_children = 2;
1011 ass->locals->outer_scope = inlined->locals;
1012 ass->children = slang_operation_new(2);
1013 ass->children[0] = args[i]; /*XXX copy */
1014 ass->children[1].type = SLANG_OPER_IDENTIFIER;
1015 ass->children[1].a_id = p->a_name;
1016 ass->children[1].locals->outer_scope = ass->locals;
1017 }
1018 }
1019
1020 _mesa_free(paramMode);
1021 _mesa_free(substOld);
1022 _mesa_free(substNew);
1023
1024 #if 0
1025 printf("Done Inline call to %s (total vars=%d nparams=%d)\n",
1026 (char *) fun->header.a_name,
1027 fun->parameters->num_variables, numArgs);
1028 slang_print_tree(top, 0);
1029 #endif
1030 return top;
1031 }
1032
1033
1034 static slang_ir_node *
1035 _slang_gen_function_call(slang_assemble_ctx *A, slang_function *fun,
1036 slang_operation *oper, slang_operation *dest)
1037 {
1038 slang_ir_node *n;
1039 slang_operation *inlined;
1040 slang_label *prevFuncEndLabel;
1041 char name[200];
1042
1043 prevFuncEndLabel = A->curFuncEndLabel;
1044 sprintf(name, "__endOfFunc_%s_", (char *) fun->header.a_name);
1045 A->curFuncEndLabel = _slang_label_new(name);
1046 assert(A->curFuncEndLabel);
1047
1048 if (slang_is_asm_function(fun) && !dest) {
1049 /* assemble assembly function - tree style */
1050 inlined = slang_inline_asm_function(A, fun, oper);
1051 }
1052 else {
1053 /* non-assembly function */
1054 inlined = slang_inline_function_call(A, fun, oper, dest);
1055 }
1056
1057 /* Replace the function call with the inlined block */
1058 #if 0
1059 slang_operation_construct(oper);
1060 slang_operation_copy(oper, inlined);
1061 #else
1062 *oper = *inlined; /* XXX slang_operation_copy() */
1063 #endif
1064
1065
1066 #if 0
1067 assert(inlined->locals);
1068 printf("*** Inlined code for call to %s:\n",
1069 (char*) fun->header.a_name);
1070 slang_print_tree(oper, 10);
1071 printf("\n");
1072 #endif
1073
1074 n = _slang_gen_operation(A, oper);
1075
1076 /*_slang_label_delete(A->curFuncEndLabel);*/
1077 A->curFuncEndLabel = prevFuncEndLabel;
1078 assert(A->curFuncEndLabel);
1079
1080 return n;
1081 }
1082
1083
1084 static slang_asm_info *
1085 slang_find_asm_info(const char *name)
1086 {
1087 GLuint i;
1088 for (i = 0; AsmInfo[i].Name; i++) {
1089 if (_mesa_strcmp(AsmInfo[i].Name, name) == 0) {
1090 return AsmInfo + i;
1091 }
1092 }
1093 return NULL;
1094 }
1095
1096
1097 static GLuint
1098 make_writemask(const char *field)
1099 {
1100 GLuint mask = 0x0;
1101 while (*field) {
1102 switch (*field) {
1103 case 'x':
1104 mask |= WRITEMASK_X;
1105 break;
1106 case 'y':
1107 mask |= WRITEMASK_Y;
1108 break;
1109 case 'z':
1110 mask |= WRITEMASK_Z;
1111 break;
1112 case 'w':
1113 mask |= WRITEMASK_W;
1114 break;
1115 default:
1116 abort();
1117 }
1118 field++;
1119 }
1120 if (mask == 0x0)
1121 return WRITEMASK_XYZW;
1122 else
1123 return mask;
1124 }
1125
1126
1127 /**
1128 * Generate IR tree for an asm instruction/operation such as:
1129 * __asm vec4_dot __retVal.x, v1, v2;
1130 */
1131 static slang_ir_node *
1132 _slang_gen_asm(slang_assemble_ctx *A, slang_operation *oper,
1133 slang_operation *dest)
1134 {
1135 const slang_asm_info *info;
1136 slang_ir_node *kids[3], *n;
1137 GLuint j, firstOperand;
1138
1139 assert(oper->type == SLANG_OPER_ASM);
1140
1141 info = slang_find_asm_info((char *) oper->a_id);
1142 if (!info) {
1143 _mesa_problem(NULL, "undefined __asm function %s\n",
1144 (char *) oper->a_id);
1145 assert(info);
1146 }
1147 assert(info->NumParams <= 3);
1148
1149 if (info->NumParams == oper->num_children) {
1150 /* Storage for result is not specified.
1151 * Children[0], [1] are the operands.
1152 */
1153 firstOperand = 0;
1154 }
1155 else {
1156 /* Storage for result (child[0]) is specified.
1157 * Children[1], [2] are the operands.
1158 */
1159 firstOperand = 1;
1160 }
1161
1162 /* assemble child(ren) */
1163 kids[0] = kids[1] = kids[2] = NULL;
1164 for (j = 0; j < info->NumParams; j++) {
1165 kids[j] = _slang_gen_operation(A, &oper->children[firstOperand + j]);
1166 if (!kids[j])
1167 return NULL;
1168 }
1169
1170 n = new_node3(info->Opcode, kids[0], kids[1], kids[2]);
1171
1172 if (firstOperand) {
1173 /* Setup n->Store to be a particular location. Otherwise, storage
1174 * for the result (a temporary) will be allocated later.
1175 */
1176 GLuint writemask = WRITEMASK_XYZW;
1177 slang_operation *dest_oper;
1178 slang_ir_node *n0;
1179
1180 dest_oper = &oper->children[0];
1181 while (dest_oper->type == SLANG_OPER_FIELD) {
1182 /* writemask */
1183 writemask &= make_writemask((char*) dest_oper->a_id);
1184 dest_oper = &dest_oper->children[0];
1185 }
1186
1187 n0 = _slang_gen_operation(A, dest_oper);
1188 assert(n0->Var);
1189 assert(n0->Store);
1190 assert(!n->Store);
1191 n->Store = n0->Store;
1192 n->Writemask = writemask;
1193
1194 free(n0);
1195 }
1196
1197 return n;
1198 }
1199
1200
1201 static void
1202 print_funcs(struct slang_function_scope_ *scope, const char *name)
1203 {
1204 GLuint i;
1205 for (i = 0; i < scope->num_functions; i++) {
1206 slang_function *f = &scope->functions[i];
1207 if (!name || strcmp(name, (char*) f->header.a_name) == 0)
1208 printf(" %s (%d args)\n", name, f->param_count);
1209
1210 }
1211 if (scope->outer_scope)
1212 print_funcs(scope->outer_scope, name);
1213 }
1214
1215
1216 /**
1217 * Return first function in the scope that has the given name.
1218 * This is the function we'll try to call when there is no exact match
1219 * between function parameters and call arguments.
1220 *
1221 * XXX we should really create a list of candidate functions and try
1222 * all of them...
1223 */
1224 static slang_function *
1225 _slang_first_function(struct slang_function_scope_ *scope, const char *name)
1226 {
1227 GLuint i;
1228 for (i = 0; i < scope->num_functions; i++) {
1229 slang_function *f = &scope->functions[i];
1230 if (strcmp(name, (char*) f->header.a_name) == 0)
1231 return f;
1232 }
1233 if (scope->outer_scope)
1234 return _slang_first_function(scope->outer_scope, name);
1235 return NULL;
1236 }
1237
1238
1239
1240 /**
1241 * Assemble a function call, given a particular function name.
1242 * \param name the function's name (operators like '*' are possible).
1243 */
1244 static slang_ir_node *
1245 _slang_gen_function_call_name(slang_assemble_ctx *A, const char *name,
1246 slang_operation *oper, slang_operation *dest)
1247 {
1248 slang_operation *params = oper->children;
1249 const GLuint param_count = oper->num_children;
1250 slang_atom atom;
1251 slang_function *fun;
1252
1253 atom = slang_atom_pool_atom(A->atoms, name);
1254 if (atom == SLANG_ATOM_NULL)
1255 return NULL;
1256
1257 /*
1258 * Use 'name' to find the function to call
1259 */
1260 fun = _slang_locate_function(A->space.funcs, atom, params, param_count,
1261 &A->space, A->atoms, A->log);
1262 if (!fun) {
1263 /* A function with exactly the right parameters/types was not found.
1264 * Try adapting the parameters.
1265 */
1266 fun = _slang_first_function(A->space.funcs, name);
1267 if (!_slang_adapt_call(oper, fun, &A->space, A->atoms, A->log)) {
1268 slang_info_log_error(A->log, "Function '%s' not found (check argument types)", name);
1269 return NULL;
1270 }
1271 assert(fun);
1272 }
1273
1274 return _slang_gen_function_call(A, fun, oper, dest);
1275 }
1276
1277
1278 static GLboolean
1279 _slang_is_constant_cond(const slang_operation *oper, GLboolean *value)
1280 {
1281 if (oper->type == SLANG_OPER_LITERAL_FLOAT ||
1282 oper->type == SLANG_OPER_LITERAL_INT ||
1283 oper->type == SLANG_OPER_LITERAL_BOOL) {
1284 if (oper->literal[0])
1285 *value = GL_TRUE;
1286 else
1287 *value = GL_FALSE;
1288 return GL_TRUE;
1289 }
1290 else if (oper->type == SLANG_OPER_EXPRESSION &&
1291 oper->num_children == 1) {
1292 return _slang_is_constant_cond(&oper->children[0], value);
1293 }
1294 return GL_FALSE;
1295 }
1296
1297
1298
1299 /**
1300 * Generate loop code using high-level IR_LOOP instruction
1301 */
1302 static slang_ir_node *
1303 _slang_gen_while(slang_assemble_ctx * A, const slang_operation *oper)
1304 {
1305 /*
1306 * LOOP:
1307 * BREAK if !expr (child[0])
1308 * body code (child[1])
1309 */
1310 slang_ir_node *prevLoop, *loop, *cond, *breakIf, *body;
1311 GLboolean isConst, constTrue;
1312
1313 /* Check if loop condition is a constant */
1314 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
1315
1316 if (isConst && !constTrue) {
1317 /* loop is never executed! */
1318 return new_node0(IR_NOP);
1319 }
1320
1321 loop = new_loop(NULL);
1322
1323 /* save old, push new loop */
1324 prevLoop = A->CurLoop;
1325 A->CurLoop = loop;
1326
1327 cond = new_cond(_slang_gen_operation(A, &oper->children[0]));
1328 if (isConst && constTrue) {
1329 /* while(nonzero constant), no conditional break */
1330 breakIf = NULL;
1331 }
1332 else {
1333 breakIf = new_break_if(A->CurLoop, cond, GL_FALSE);
1334 }
1335 body = _slang_gen_operation(A, &oper->children[1]);
1336 loop->Children[0] = new_seq(breakIf, body);
1337
1338 /* Do infinite loop detection */
1339 /* loop->List is head of linked list of break/continue nodes */
1340 if (!loop->List && isConst && constTrue) {
1341 /* infinite loop detected */
1342 A->CurLoop = prevLoop; /* clean-up */
1343 slang_info_log_error(A->log, "Infinite loop detected!");
1344 return NULL;
1345 }
1346
1347 /* pop loop, restore prev */
1348 A->CurLoop = prevLoop;
1349
1350 return loop;
1351 }
1352
1353
1354 /**
1355 * Generate IR tree for a do-while loop using high-level LOOP, IF instructions.
1356 */
1357 static slang_ir_node *
1358 _slang_gen_do(slang_assemble_ctx * A, const slang_operation *oper)
1359 {
1360 /*
1361 * LOOP:
1362 * body code (child[0])
1363 * tail code:
1364 * BREAK if !expr (child[1])
1365 */
1366 slang_ir_node *prevLoop, *loop, *cond;
1367 GLboolean isConst, constTrue;
1368
1369 loop = new_loop(NULL);
1370
1371 /* save old, push new loop */
1372 prevLoop = A->CurLoop;
1373 A->CurLoop = loop;
1374
1375 /* loop body: */
1376 loop->Children[0] = _slang_gen_operation(A, &oper->children[0]);
1377
1378 /* Check if loop condition is a constant */
1379 isConst = _slang_is_constant_cond(&oper->children[1], &constTrue);
1380 if (isConst && constTrue) {
1381 /* do { } while(1) ==> no conditional break */
1382 loop->Children[1] = NULL; /* no tail code */
1383 }
1384 else {
1385 cond = new_cond(_slang_gen_operation(A, &oper->children[1]));
1386 loop->Children[1] = new_break_if(A->CurLoop, cond, GL_FALSE);
1387 }
1388
1389 /* XXX we should do infinite loop detection, as above */
1390
1391 /* pop loop, restore prev */
1392 A->CurLoop = prevLoop;
1393
1394 return loop;
1395 }
1396
1397
1398 /**
1399 * Generate for-loop using high-level IR_LOOP instruction.
1400 */
1401 static slang_ir_node *
1402 _slang_gen_for(slang_assemble_ctx * A, const slang_operation *oper)
1403 {
1404 /*
1405 * init code (child[0])
1406 * LOOP:
1407 * BREAK if !expr (child[1])
1408 * body code (child[3])
1409 * tail code:
1410 * incr code (child[2]) // XXX continue here
1411 */
1412 slang_ir_node *prevLoop, *loop, *cond, *breakIf, *body, *init, *incr;
1413
1414 init = _slang_gen_operation(A, &oper->children[0]);
1415 loop = new_loop(NULL);
1416
1417 /* save old, push new loop */
1418 prevLoop = A->CurLoop;
1419 A->CurLoop = loop;
1420
1421 cond = new_cond(_slang_gen_operation(A, &oper->children[1]));
1422 breakIf = new_break_if(A->CurLoop, cond, GL_FALSE);
1423 body = _slang_gen_operation(A, &oper->children[3]);
1424 incr = _slang_gen_operation(A, &oper->children[2]);
1425
1426 loop->Children[0] = new_seq(breakIf, body);
1427 loop->Children[1] = incr; /* tail code */
1428
1429 /* pop loop, restore prev */
1430 A->CurLoop = prevLoop;
1431
1432 return new_seq(init, loop);
1433 }
1434
1435
1436 static slang_ir_node *
1437 _slang_gen_continue(slang_assemble_ctx * A, const slang_operation *oper)
1438 {
1439 slang_ir_node *n, *loopNode;
1440 assert(oper->type == SLANG_OPER_CONTINUE);
1441 loopNode = A->CurLoop;
1442 assert(loopNode);
1443 assert(loopNode->Opcode == IR_LOOP);
1444 n = new_node0(IR_CONT);
1445 if (n) {
1446 n->Parent = loopNode;
1447 /* insert this node at head of linked list */
1448 n->List = loopNode->List;
1449 loopNode->List = n;
1450 }
1451 return n;
1452 }
1453
1454
1455 /**
1456 * Determine if the given operation is of a specific type.
1457 */
1458 static GLboolean
1459 is_operation_type(const const slang_operation *oper, slang_operation_type type)
1460 {
1461 if (oper->type == type)
1462 return GL_TRUE;
1463 else if ((oper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
1464 oper->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) &&
1465 oper->num_children == 1)
1466 return is_operation_type(&oper->children[0], type);
1467 else
1468 return GL_FALSE;
1469 }
1470
1471
1472 /**
1473 * Generate IR tree for an if/then/else conditional using high-level
1474 * IR_IF instruction.
1475 */
1476 static slang_ir_node *
1477 _slang_gen_if(slang_assemble_ctx * A, const slang_operation *oper)
1478 {
1479 /*
1480 * eval expr (child[0])
1481 * IF expr THEN
1482 * if-body code
1483 * ELSE
1484 * else-body code
1485 * ENDIF
1486 */
1487 const GLboolean haveElseClause = !_slang_is_noop(&oper->children[2]);
1488 slang_ir_node *ifNode, *cond, *ifBody, *elseBody;
1489
1490 cond = _slang_gen_operation(A, &oper->children[0]);
1491 cond = new_cond(cond);
1492
1493 if (is_operation_type(&oper->children[1], SLANG_OPER_BREAK)) {
1494 /* Special case: generate a conditional break */
1495 ifBody = new_break_if(A->CurLoop, cond, GL_TRUE);
1496 if (haveElseClause) {
1497 elseBody = _slang_gen_operation(A, &oper->children[2]);
1498 return new_seq(ifBody, elseBody);
1499 }
1500 return ifBody;
1501 }
1502 else if (is_operation_type(&oper->children[1], SLANG_OPER_CONTINUE)) {
1503 /* Special case: generate a conditional break */
1504 ifBody = new_cont_if(A->CurLoop, cond, GL_TRUE);
1505 if (haveElseClause) {
1506 elseBody = _slang_gen_operation(A, &oper->children[2]);
1507 return new_seq(ifBody, elseBody);
1508 }
1509 return ifBody;
1510 }
1511 else {
1512 /* general case */
1513 ifBody = _slang_gen_operation(A, &oper->children[1]);
1514 if (haveElseClause)
1515 elseBody = _slang_gen_operation(A, &oper->children[2]);
1516 else
1517 elseBody = NULL;
1518 ifNode = new_if(cond, ifBody, elseBody);
1519 return ifNode;
1520 }
1521 }
1522
1523
1524
1525 /**
1526 * Generate IR node for storage of a temporary of given size.
1527 */
1528 static slang_ir_node *
1529 _slang_gen_temporary(GLint size)
1530 {
1531 slang_ir_storage *store;
1532 slang_ir_node *n;
1533
1534 store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, size);
1535 if (store) {
1536 n = new_node0(IR_VAR_DECL);
1537 if (n) {
1538 n->Store = store;
1539 }
1540 else {
1541 free(store);
1542 }
1543 }
1544 return n;
1545 }
1546
1547
1548 /**
1549 * Generate IR node for allocating/declaring a variable.
1550 */
1551 static slang_ir_node *
1552 _slang_gen_var_decl(slang_assemble_ctx *A, slang_variable *var)
1553 {
1554 slang_ir_node *n;
1555 assert(!is_sampler_type(&var->type));
1556 n = new_node0(IR_VAR_DECL);
1557 if (n) {
1558 _slang_attach_storage(n, var);
1559
1560 assert(var->aux);
1561 assert(n->Store == var->aux);
1562 assert(n->Store);
1563 assert(n->Store->Index < 0);
1564
1565 n->Store->File = PROGRAM_TEMPORARY;
1566 n->Store->Size = _slang_sizeof_type_specifier(&n->Var->type.specifier);
1567 assert(n->Store->Size > 0);
1568 }
1569 return n;
1570 }
1571
1572
1573 /**
1574 * Generate code for a selection expression: b ? x : y
1575 * XXX In some cases we could implement a selection expression
1576 * with an LRP instruction (use the boolean as the interpolant).
1577 * Otherwise, we use an IF/ELSE/ENDIF construct.
1578 */
1579 static slang_ir_node *
1580 _slang_gen_select(slang_assemble_ctx *A, slang_operation *oper)
1581 {
1582 slang_ir_node *cond, *ifNode, *trueExpr, *falseExpr, *trueNode, *falseNode;
1583 slang_ir_node *tmpDecl, *tmpVar, *tree;
1584 slang_typeinfo type;
1585 int size;
1586
1587 assert(oper->type == SLANG_OPER_SELECT);
1588 assert(oper->num_children == 3);
1589
1590 /* size of x or y's type */
1591 slang_typeinfo_construct(&type);
1592 _slang_typeof_operation(A, &oper->children[1], &type);
1593 size = _slang_sizeof_type_specifier(&type.spec);
1594 assert(size > 0);
1595
1596 /* temporary var */
1597 tmpDecl = _slang_gen_temporary(size);
1598
1599 /* the condition (child 0) */
1600 cond = _slang_gen_operation(A, &oper->children[0]);
1601 cond = new_cond(cond);
1602
1603 /* if-true body (child 1) */
1604 tmpVar = new_node0(IR_VAR);
1605 tmpVar->Store = tmpDecl->Store;
1606 trueExpr = _slang_gen_operation(A, &oper->children[1]);
1607 trueNode = new_node2(IR_MOVE, tmpVar, trueExpr);
1608
1609 /* if-false body (child 2) */
1610 tmpVar = new_node0(IR_VAR);
1611 tmpVar->Store = tmpDecl->Store;
1612 falseExpr = _slang_gen_operation(A, &oper->children[2]);
1613 falseNode = new_node2(IR_MOVE, tmpVar, falseExpr);
1614
1615 ifNode = new_if(cond, trueNode, falseNode);
1616
1617 /* tmp var value */
1618 tmpVar = new_node0(IR_VAR);
1619 tmpVar->Store = tmpDecl->Store;
1620
1621 tree = new_seq(ifNode, tmpVar);
1622 tree = new_seq(tmpDecl, tree);
1623
1624 /*_slang_print_ir_tree(tree, 10);*/
1625 return tree;
1626 }
1627
1628
1629 /**
1630 * Generate code for &&.
1631 */
1632 static slang_ir_node *
1633 _slang_gen_logical_and(slang_assemble_ctx *A, slang_operation *oper)
1634 {
1635 /* rewrite "a && b" as "a ? b : false" */
1636 slang_operation *select;
1637 slang_ir_node *n;
1638
1639 select = slang_operation_new(1);
1640 select->type = SLANG_OPER_SELECT;
1641 select->num_children = 3;
1642 select->children = slang_operation_new(3);
1643
1644 slang_operation_copy(&select->children[0], &oper->children[0]);
1645 slang_operation_copy(&select->children[1], &oper->children[1]);
1646 select->children[2].type = SLANG_OPER_LITERAL_BOOL;
1647 ASSIGN_4V(select->children[2].literal, 0, 0, 0, 0); /* false */
1648 select->children[2].literal_size = 1;
1649
1650 n = _slang_gen_select(A, select);
1651
1652 /* xxx wrong */
1653 free(select->children);
1654 free(select);
1655
1656 return n;
1657 }
1658
1659
1660 /**
1661 * Generate code for ||.
1662 */
1663 static slang_ir_node *
1664 _slang_gen_logical_or(slang_assemble_ctx *A, slang_operation *oper)
1665 {
1666 /* rewrite "a || b" as "a ? true : b" */
1667 slang_operation *select;
1668 slang_ir_node *n;
1669
1670 select = slang_operation_new(1);
1671 select->type = SLANG_OPER_SELECT;
1672 select->num_children = 3;
1673 select->children = slang_operation_new(3);
1674
1675 slang_operation_copy(&select->children[0], &oper->children[0]);
1676 select->children[1].type = SLANG_OPER_LITERAL_BOOL;
1677 ASSIGN_4V(select->children[1].literal, 1, 1, 1, 1); /* true */
1678 select->children[1].literal_size = 1;
1679 slang_operation_copy(&select->children[2], &oper->children[1]);
1680
1681 n = _slang_gen_select(A, select);
1682
1683 /* xxx wrong */
1684 free(select->children);
1685 free(select);
1686
1687 return n;
1688 }
1689
1690
1691 /**
1692 * Generate IR tree for a return statement.
1693 */
1694 static slang_ir_node *
1695 _slang_gen_return(slang_assemble_ctx * A, slang_operation *oper)
1696 {
1697 if (oper->num_children == 0 ||
1698 (oper->num_children == 1 &&
1699 oper->children[0].type == SLANG_OPER_VOID)) {
1700 /* Convert from:
1701 * return;
1702 * To:
1703 * goto __endOfFunction;
1704 */
1705 slang_ir_node *n;
1706 slang_operation gotoOp;
1707 slang_operation_construct(&gotoOp);
1708 gotoOp.type = SLANG_OPER_GOTO;
1709 gotoOp.label = A->curFuncEndLabel;
1710 assert(gotoOp.label);
1711
1712 /* assemble the new code */
1713 n = _slang_gen_operation(A, &gotoOp);
1714 /* destroy temp code */
1715 slang_operation_destruct(&gotoOp);
1716 return n;
1717 }
1718 else {
1719 /*
1720 * Convert from:
1721 * return expr;
1722 * To:
1723 * __retVal = expr;
1724 * goto __endOfFunction;
1725 */
1726 slang_operation *block, *assign, *jump;
1727 slang_atom a_retVal;
1728 slang_ir_node *n;
1729
1730 a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
1731 assert(a_retVal);
1732
1733 #if 1 /* DEBUG */
1734 {
1735 slang_variable *v
1736 = _slang_locate_variable(oper->locals, a_retVal, GL_TRUE);
1737 assert(v);
1738 }
1739 #endif
1740
1741 block = slang_operation_new(1);
1742 block->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
1743 assert(block->locals);
1744 block->locals->outer_scope = oper->locals->outer_scope;
1745 block->num_children = 2;
1746 block->children = slang_operation_new(2);
1747
1748 /* child[0]: __retVal = expr; */
1749 assign = &block->children[0];
1750 assign->type = SLANG_OPER_ASSIGN;
1751 assign->locals->outer_scope = block->locals;
1752 assign->num_children = 2;
1753 assign->children = slang_operation_new(2);
1754 /* lhs (__retVal) */
1755 assign->children[0].type = SLANG_OPER_IDENTIFIER;
1756 assign->children[0].a_id = a_retVal;
1757 assign->children[0].locals->outer_scope = assign->locals;
1758 /* rhs (expr) */
1759 /* XXX we might be able to avoid this copy someday */
1760 slang_operation_copy(&assign->children[1], &oper->children[0]);
1761
1762 /* child[1]: goto __endOfFunction */
1763 jump = &block->children[1];
1764 jump->type = SLANG_OPER_GOTO;
1765 assert(A->curFuncEndLabel);
1766 /* XXX don't call function? */
1767 jump->label = A->curFuncEndLabel;
1768 assert(jump->label);
1769
1770 #if 0 /* debug */
1771 printf("NEW RETURN:\n");
1772 slang_print_tree(block, 0);
1773 #endif
1774
1775 /* assemble the new code */
1776 n = _slang_gen_operation(A, block);
1777 slang_operation_delete(block);
1778 return n;
1779 }
1780 }
1781
1782
1783 /**
1784 * Generate IR tree for a variable declaration.
1785 */
1786 static slang_ir_node *
1787 _slang_gen_declaration(slang_assemble_ctx *A, slang_operation *oper)
1788 {
1789 slang_ir_node *n;
1790 slang_ir_node *varDecl;
1791 slang_variable *v;
1792 const char *varName = (char *) oper->a_id;
1793
1794 assert(oper->num_children == 0 || oper->num_children == 1);
1795
1796 v = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
1797 assert(v);
1798
1799 varDecl = _slang_gen_var_decl(A, v);
1800
1801 if (oper->num_children > 0) {
1802 /* child is initializer */
1803 slang_ir_node *var, *init, *rhs;
1804 assert(oper->num_children == 1);
1805 var = new_var(A, oper, oper->a_id);
1806 if (!var) {
1807 slang_info_log_error(A->log, "undefined variable '%s'", varName);
1808 return NULL;
1809 }
1810 /* XXX make copy of this initializer? */
1811 rhs = _slang_gen_operation(A, &oper->children[0]);
1812 assert(rhs);
1813 init = new_node2(IR_MOVE, var, rhs);
1814 /*assert(rhs->Opcode != IR_SEQ);*/
1815 n = new_seq(varDecl, init);
1816 }
1817 else if (v->initializer) {
1818 slang_ir_node *var, *init, *rhs;
1819 var = new_var(A, oper, oper->a_id);
1820 if (!var) {
1821 slang_info_log_error(A->log, "undefined variable '%s'", varName);
1822 return NULL;
1823 }
1824 #if 0
1825 /* XXX make copy of this initializer? */
1826 {
1827 slang_operation dup;
1828 slang_operation_construct(&dup);
1829 slang_operation_copy(&dup, v->initializer);
1830 _slang_simplify(&dup, &A->space, A->atoms);
1831 rhs = _slang_gen_operation(A, &dup);
1832 }
1833 #else
1834 _slang_simplify(v->initializer, &A->space, A->atoms);
1835 rhs = _slang_gen_operation(A, v->initializer);
1836 #endif
1837 assert(rhs);
1838 init = new_node2(IR_MOVE, var, rhs);
1839 /*
1840 assert(rhs->Opcode != IR_SEQ);
1841 */
1842 n = new_seq(varDecl, init);
1843 }
1844 else {
1845 n = varDecl;
1846 }
1847 return n;
1848 }
1849
1850
1851 /**
1852 * Generate IR tree for a variable (such as in an expression).
1853 */
1854 static slang_ir_node *
1855 _slang_gen_variable(slang_assemble_ctx * A, slang_operation *oper)
1856 {
1857 /* If there's a variable associated with this oper (from inlining)
1858 * use it. Otherwise, use the oper's var id.
1859 */
1860 slang_atom aVar = oper->var ? oper->var->a_name : oper->a_id;
1861 slang_ir_node *n = new_var(A, oper, aVar);
1862 if (!n) {
1863 slang_info_log_error(A->log, "undefined variable '%s'", (char *) aVar);
1864 return NULL;
1865 }
1866 return n;
1867 }
1868
1869
1870 /**
1871 * Some write-masked assignments are simple, but others are hard.
1872 * Simple example:
1873 * vec3 v;
1874 * v.xy = vec2(a, b);
1875 * Hard example:
1876 * vec3 v;
1877 * v.zy = vec2(a, b);
1878 * this gets transformed/swizzled into:
1879 * v.zy = vec2(a, b).*yx* (* = don't care)
1880 * This function helps to determine simple vs. non-simple.
1881 */
1882 static GLboolean
1883 _slang_simple_writemask(GLuint writemask, GLuint swizzle)
1884 {
1885 switch (writemask) {
1886 case WRITEMASK_X:
1887 return GET_SWZ(swizzle, 0) == SWIZZLE_X;
1888 case WRITEMASK_Y:
1889 return GET_SWZ(swizzle, 1) == SWIZZLE_Y;
1890 case WRITEMASK_Z:
1891 return GET_SWZ(swizzle, 2) == SWIZZLE_Z;
1892 case WRITEMASK_W:
1893 return GET_SWZ(swizzle, 3) == SWIZZLE_W;
1894 case WRITEMASK_XY:
1895 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
1896 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y);
1897 case WRITEMASK_XYZ:
1898 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
1899 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y)
1900 && (GET_SWZ(swizzle, 2) == SWIZZLE_Z);
1901 case WRITEMASK_XYZW:
1902 return swizzle == SWIZZLE_NOOP;
1903 default:
1904 return GL_FALSE;
1905 }
1906 }
1907
1908
1909 /**
1910 * Convert the given swizzle into a writemask. In some cases this
1911 * is trivial, in other cases, we'll need to also swizzle the right
1912 * hand side to put components in the right places.
1913 * \param swizzle the incoming swizzle
1914 * \param writemaskOut returns the writemask
1915 * \param swizzleOut swizzle to apply to the right-hand-side
1916 * \return GL_FALSE for simple writemasks, GL_TRUE for non-simple
1917 */
1918 static GLboolean
1919 swizzle_to_writemask(GLuint swizzle,
1920 GLuint *writemaskOut, GLuint *swizzleOut)
1921 {
1922 GLuint mask = 0x0, newSwizzle[4];
1923 GLint i, size;
1924
1925 /* make new dst writemask, compute size */
1926 for (i = 0; i < 4; i++) {
1927 const GLuint swz = GET_SWZ(swizzle, i);
1928 if (swz == SWIZZLE_NIL) {
1929 /* end */
1930 break;
1931 }
1932 assert(swz >= 0 && swz <= 3);
1933 mask |= (1 << swz);
1934 }
1935 assert(mask <= 0xf);
1936 size = i; /* number of components in mask/swizzle */
1937
1938 *writemaskOut = mask;
1939
1940 /* make new src swizzle, by inversion */
1941 for (i = 0; i < 4; i++) {
1942 newSwizzle[i] = i; /*identity*/
1943 }
1944 for (i = 0; i < size; i++) {
1945 const GLuint swz = GET_SWZ(swizzle, i);
1946 newSwizzle[swz] = i;
1947 }
1948 *swizzleOut = MAKE_SWIZZLE4(newSwizzle[0],
1949 newSwizzle[1],
1950 newSwizzle[2],
1951 newSwizzle[3]);
1952
1953 if (_slang_simple_writemask(mask, *swizzleOut)) {
1954 if (size >= 1)
1955 assert(GET_SWZ(*swizzleOut, 0) == SWIZZLE_X);
1956 if (size >= 2)
1957 assert(GET_SWZ(*swizzleOut, 1) == SWIZZLE_Y);
1958 if (size >= 3)
1959 assert(GET_SWZ(*swizzleOut, 2) == SWIZZLE_Z);
1960 if (size >= 4)
1961 assert(GET_SWZ(*swizzleOut, 3) == SWIZZLE_W);
1962 return GL_TRUE;
1963 }
1964 else
1965 return GL_FALSE;
1966 }
1967
1968
1969 static slang_ir_node *
1970 _slang_gen_swizzle(slang_ir_node *child, GLuint swizzle)
1971 {
1972 slang_ir_node *n = new_node1(IR_SWIZZLE, child);
1973 assert(child);
1974 if (n) {
1975 n->Store = _slang_new_ir_storage(PROGRAM_UNDEFINED, -1, -1);
1976 n->Store->Swizzle = swizzle;
1977 }
1978 return n;
1979 }
1980
1981
1982 /**
1983 * Generate IR tree for an assignment (=).
1984 */
1985 static slang_ir_node *
1986 _slang_gen_assignment(slang_assemble_ctx * A, slang_operation *oper)
1987 {
1988 if (oper->children[0].type == SLANG_OPER_IDENTIFIER &&
1989 oper->children[1].type == SLANG_OPER_CALL) {
1990 /* Special case of: x = f(a, b)
1991 * Replace with f(a, b, x) (where x == hidden __retVal out param)
1992 *
1993 * XXX this could be even more effective if we could accomodate
1994 * cases such as "v.x = f();" - would help with typical vertex
1995 * transformation.
1996 */
1997 slang_ir_node *n;
1998 n = _slang_gen_function_call_name(A,
1999 (const char *) oper->children[1].a_id,
2000 &oper->children[1], &oper->children[0]);
2001 return n;
2002 }
2003 else {
2004 slang_ir_node *n, *lhs, *rhs;
2005 lhs = _slang_gen_operation(A, &oper->children[0]);
2006
2007 if (lhs) {
2008 if (lhs->Store->File != PROGRAM_OUTPUT &&
2009 lhs->Store->File != PROGRAM_TEMPORARY &&
2010 lhs->Store->File != PROGRAM_VARYING &&
2011 lhs->Store->File != PROGRAM_UNDEFINED) {
2012 slang_info_log_error(A->log, "Assignment to read-only variable");
2013 return NULL;
2014 }
2015 }
2016
2017 rhs = _slang_gen_operation(A, &oper->children[1]);
2018 if (lhs && rhs) {
2019 /* convert lhs swizzle into writemask */
2020 GLuint writemask, newSwizzle;
2021 if (!swizzle_to_writemask(lhs->Store->Swizzle,
2022 &writemask, &newSwizzle)) {
2023 /* Non-simple writemask, need to swizzle right hand side in
2024 * order to put components into the right place.
2025 */
2026 rhs = _slang_gen_swizzle(rhs, newSwizzle);
2027 }
2028 n = new_node2(IR_MOVE, lhs, rhs);
2029 n->Writemask = writemask;
2030 return n;
2031 }
2032 else {
2033 return NULL;
2034 }
2035 }
2036 }
2037
2038
2039 /**
2040 * Generate IR tree for referencing a field in a struct (or basic vector type)
2041 */
2042 static slang_ir_node *
2043 _slang_gen_field(slang_assemble_ctx * A, slang_operation *oper)
2044 {
2045 slang_typeinfo ti;
2046
2047 /* type of struct */
2048 slang_typeinfo_construct(&ti);
2049 _slang_typeof_operation(A, &oper->children[0], &ti);
2050
2051 if (_slang_type_is_vector(ti.spec.type)) {
2052 /* the field should be a swizzle */
2053 const GLuint rows = _slang_type_dim(ti.spec.type);
2054 slang_swizzle swz;
2055 slang_ir_node *n;
2056 GLuint swizzle;
2057 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
2058 slang_info_log_error(A->log, "Bad swizzle");
2059 }
2060 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
2061 swz.swizzle[1],
2062 swz.swizzle[2],
2063 swz.swizzle[3]);
2064
2065 n = _slang_gen_operation(A, &oper->children[0]);
2066 /* create new parent node with swizzle */
2067 if (n)
2068 n = _slang_gen_swizzle(n, swizzle);
2069 return n;
2070 }
2071 else if (ti.spec.type == SLANG_SPEC_FLOAT) {
2072 const GLuint rows = 1;
2073 slang_swizzle swz;
2074 slang_ir_node *n;
2075 GLuint swizzle;
2076 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
2077 slang_info_log_error(A->log, "Bad swizzle");
2078 }
2079 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
2080 swz.swizzle[1],
2081 swz.swizzle[2],
2082 swz.swizzle[3]);
2083 n = _slang_gen_operation(A, &oper->children[0]);
2084 /* create new parent node with swizzle */
2085 n = _slang_gen_swizzle(n, swizzle);
2086 return n;
2087 }
2088 else {
2089 /* the field is a structure member (base.field) */
2090 /* oper->children[0] is the base */
2091 /* oper->a_id is the field name */
2092 slang_ir_node *base, *n;
2093 slang_typeinfo field_ti;
2094 GLint fieldSize, fieldOffset;
2095 /* type of field */
2096 slang_typeinfo_construct(&field_ti);
2097 _slang_typeof_operation(A, oper, &field_ti);
2098
2099 fieldSize = _slang_sizeof_type_specifier(&field_ti.spec);
2100 fieldOffset = _slang_field_offset(&ti.spec, oper->a_id);
2101
2102 if (fieldOffset < 0) {
2103 slang_info_log_error(A->log,
2104 "\"%s\" is not a member of struct \"%s\"",
2105 (char *) oper->a_id,
2106 (char *) ti.spec._struct->a_name);
2107 return NULL;
2108 }
2109 assert(fieldSize >= 0);
2110
2111 base = _slang_gen_operation(A, &oper->children[0]);
2112 if (!base) {
2113 /* error msg should have already been logged */
2114 return NULL;
2115 }
2116
2117 n = new_node1(IR_FIELD, base);
2118 if (n) {
2119 n->Field = (char *) oper->a_id;
2120 n->FieldOffset = fieldOffset;
2121 assert(n->FieldOffset >= 0);
2122 n->Store = _slang_new_ir_storage(base->Store->File,
2123 base->Store->Index,
2124 fieldSize);
2125 }
2126 return n;
2127
2128 #if 0
2129 _mesa_problem(NULL, "glsl structs/fields not supported yet");
2130 return NULL;
2131 #endif
2132 }
2133 }
2134
2135
2136 /**
2137 * Gen code for array indexing.
2138 */
2139 static slang_ir_node *
2140 _slang_gen_subscript(slang_assemble_ctx * A, slang_operation *oper)
2141 {
2142 slang_typeinfo array_ti;
2143
2144 /* get array's type info */
2145 slang_typeinfo_construct(&array_ti);
2146 _slang_typeof_operation(A, &oper->children[0], &array_ti);
2147
2148 if (_slang_type_is_vector(array_ti.spec.type)) {
2149 /* indexing a simple vector type: "vec4 v; v[0]=p;" */
2150 /* translate the index into a swizzle/writemask: "v.x=p" */
2151 const GLuint max = _slang_type_dim(array_ti.spec.type);
2152 GLint index;
2153 slang_ir_node *n;
2154
2155 index = (GLint) oper->children[1].literal[0];
2156 if (oper->children[1].type != SLANG_OPER_LITERAL_INT ||
2157 index >= max) {
2158 slang_info_log_error(A->log, "Invalid array index for vector type");
2159 return NULL;
2160 }
2161
2162 n = _slang_gen_operation(A, &oper->children[0]);
2163 if (n) {
2164 /* use swizzle to access the element */
2165 GLuint swizzle = MAKE_SWIZZLE4(SWIZZLE_X + index,
2166 SWIZZLE_NIL,
2167 SWIZZLE_NIL,
2168 SWIZZLE_NIL);
2169 n = _slang_gen_swizzle(n, swizzle);
2170 /*n->Store = _slang_clone_ir_storage_swz(n->Store, */
2171 n->Writemask = WRITEMASK_X << index;
2172 }
2173 return n;
2174 }
2175 else {
2176 /* conventional array */
2177 slang_typeinfo elem_ti;
2178 slang_ir_node *elem, *array, *index;
2179 GLint elemSize, arrayLen;
2180
2181 /* size of array element */
2182 slang_typeinfo_construct(&elem_ti);
2183 _slang_typeof_operation(A, oper, &elem_ti);
2184 elemSize = _slang_sizeof_type_specifier(&elem_ti.spec);
2185
2186 if (_slang_type_is_matrix(array_ti.spec.type))
2187 arrayLen = _slang_type_dim(array_ti.spec.type);
2188 else
2189 arrayLen = array_ti.array_len;
2190
2191 slang_typeinfo_destruct(&array_ti);
2192 slang_typeinfo_destruct(&elem_ti);
2193
2194 if (elemSize <= 0) {
2195 /* unknown var or type */
2196 slang_info_log_error(A->log, "Undefined variable or type");
2197 return NULL;
2198 }
2199
2200 array = _slang_gen_operation(A, &oper->children[0]);
2201 index = _slang_gen_operation(A, &oper->children[1]);
2202 if (array && index) {
2203 /* bounds check */
2204 if (index->Opcode == IR_FLOAT &&
2205 ((int) index->Value[0] < 0 ||
2206 (int) index->Value[0] >= arrayLen)) {
2207 slang_info_log_error(A->log,
2208 "Array index out of bounds (index=%d size=%d)",
2209 (int) index->Value[0], arrayLen);
2210 _slang_free_ir_tree(array);
2211 _slang_free_ir_tree(index);
2212 return NULL;
2213 }
2214
2215 elem = new_node2(IR_ELEMENT, array, index);
2216 elem->Store = _slang_new_ir_storage(array->Store->File,
2217 array->Store->Index,
2218 elemSize);
2219 /* XXX try to do some array bounds checking here */
2220 return elem;
2221 }
2222 else {
2223 _slang_free_ir_tree(array);
2224 _slang_free_ir_tree(index);
2225 return NULL;
2226 }
2227 }
2228 }
2229
2230
2231 /**
2232 * Look for expressions such as: gl_ModelviewMatrix * gl_Vertex
2233 * and replace with this: gl_Vertex * gl_ModelviewMatrixTranpose
2234 * Since matrices are stored in column-major order, the second form of
2235 * multiplication is much more efficient (just 4 dot products).
2236 */
2237 static void
2238 _slang_check_matmul_optimization(slang_assemble_ctx *A, slang_operation *oper)
2239 {
2240 static const struct {
2241 const char *orig;
2242 const char *tranpose;
2243 } matrices[] = {
2244 {"gl_ModelViewMatrix", "gl_ModelViewMatrixTranspose"},
2245 {"gl_ProjectionMatrix", "gl_ProjectionMatrixTranspose"},
2246 {"gl_ModelViewProjectionMatrix", "gl_ModelViewProjectionMatrixTranspose"},
2247 {"gl_TextureMatrix", "gl_TextureMatrixTranspose"},
2248 {"gl_NormalMatrix", "__NormalMatrixTranspose"},
2249 { NULL, NULL }
2250 };
2251
2252 assert(oper->type == SLANG_OPER_MULTIPLY);
2253 if (oper->children[0].type == SLANG_OPER_IDENTIFIER) {
2254 GLuint i;
2255 for (i = 0; matrices[i].orig; i++) {
2256 if (oper->children[0].a_id
2257 == slang_atom_pool_atom(A->atoms, matrices[i].orig)) {
2258 /*
2259 _mesa_printf("Replace %s with %s\n",
2260 matrices[i].orig, matrices[i].tranpose);
2261 */
2262 assert(oper->children[0].type == SLANG_OPER_IDENTIFIER);
2263 oper->children[0].a_id
2264 = slang_atom_pool_atom(A->atoms, matrices[i].tranpose);
2265 /* finally, swap the operands */
2266 _slang_operation_swap(&oper->children[0], &oper->children[1]);
2267 return;
2268 }
2269 }
2270 }
2271 }
2272
2273
2274 /**
2275 * Generate IR tree for a slang_operation (AST node)
2276 */
2277 static slang_ir_node *
2278 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper)
2279 {
2280 switch (oper->type) {
2281 case SLANG_OPER_BLOCK_NEW_SCOPE:
2282 {
2283 slang_ir_node *n;
2284
2285 _slang_push_var_table(A->vartable);
2286
2287 oper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE; /* temp change */
2288 n = _slang_gen_operation(A, oper);
2289 oper->type = SLANG_OPER_BLOCK_NEW_SCOPE; /* restore */
2290
2291 _slang_pop_var_table(A->vartable);
2292
2293 if (n)
2294 n = new_node1(IR_SCOPE, n);
2295 return n;
2296 }
2297 break;
2298
2299 case SLANG_OPER_BLOCK_NO_NEW_SCOPE:
2300 /* list of operations */
2301 if (oper->num_children > 0)
2302 {
2303 slang_ir_node *n, *tree = NULL;
2304 GLuint i;
2305
2306 for (i = 0; i < oper->num_children; i++) {
2307 n = _slang_gen_operation(A, &oper->children[i]);
2308 if (!n) {
2309 _slang_free_ir_tree(tree);
2310 return NULL; /* error must have occured */
2311 }
2312 tree = tree ? new_seq(tree, n) : n;
2313 }
2314
2315 #if 00
2316 if (oper->locals->num_variables > 0) {
2317 int i;
2318 /*
2319 printf("\n****** Deallocate vars in scope!\n");
2320 */
2321 for (i = 0; i < oper->locals->num_variables; i++) {
2322 slang_variable *v = oper->locals->variables + i;
2323 if (v->aux) {
2324 slang_ir_storage *store = (slang_ir_storage *) v->aux;
2325 /*
2326 printf(" Deallocate var %s\n", (char*) v->a_name);
2327 */
2328 assert(store->File == PROGRAM_TEMPORARY);
2329 assert(store->Index >= 0);
2330 _slang_free_temp(A->vartable, store->Index, store->Size);
2331 }
2332 }
2333 }
2334 #endif
2335 return tree;
2336 }
2337 else {
2338 return new_node0(IR_NOP);
2339 }
2340
2341 case SLANG_OPER_EXPRESSION:
2342 return _slang_gen_operation(A, &oper->children[0]);
2343
2344 case SLANG_OPER_FOR:
2345 return _slang_gen_for(A, oper);
2346 case SLANG_OPER_DO:
2347 return _slang_gen_do(A, oper);
2348 case SLANG_OPER_WHILE:
2349 return _slang_gen_while(A, oper);
2350 case SLANG_OPER_BREAK:
2351 if (!A->CurLoop) {
2352 slang_info_log_error(A->log, "'break' not in loop");
2353 }
2354 return new_break(A->CurLoop);
2355 case SLANG_OPER_CONTINUE:
2356 if (!A->CurLoop) {
2357 slang_info_log_error(A->log, "'continue' not in loop");
2358 }
2359 return _slang_gen_continue(A, oper);
2360 case SLANG_OPER_DISCARD:
2361 return new_node0(IR_KILL);
2362
2363 case SLANG_OPER_EQUAL:
2364 return new_node2(IR_EQUAL,
2365 _slang_gen_operation(A, &oper->children[0]),
2366 _slang_gen_operation(A, &oper->children[1]));
2367 case SLANG_OPER_NOTEQUAL:
2368 return new_node2(IR_NOTEQUAL,
2369 _slang_gen_operation(A, &oper->children[0]),
2370 _slang_gen_operation(A, &oper->children[1]));
2371 case SLANG_OPER_GREATER:
2372 return new_node2(IR_SGT,
2373 _slang_gen_operation(A, &oper->children[0]),
2374 _slang_gen_operation(A, &oper->children[1]));
2375 case SLANG_OPER_LESS:
2376 return new_node2(IR_SLT,
2377 _slang_gen_operation(A, &oper->children[0]),
2378 _slang_gen_operation(A, &oper->children[1]));
2379 case SLANG_OPER_GREATEREQUAL:
2380 return new_node2(IR_SGE,
2381 _slang_gen_operation(A, &oper->children[0]),
2382 _slang_gen_operation(A, &oper->children[1]));
2383 case SLANG_OPER_LESSEQUAL:
2384 return new_node2(IR_SLE,
2385 _slang_gen_operation(A, &oper->children[0]),
2386 _slang_gen_operation(A, &oper->children[1]));
2387 case SLANG_OPER_ADD:
2388 {
2389 slang_ir_node *n;
2390 assert(oper->num_children == 2);
2391 n = _slang_gen_function_call_name(A, "+", oper, NULL);
2392 return n;
2393 }
2394 case SLANG_OPER_SUBTRACT:
2395 {
2396 slang_ir_node *n;
2397 assert(oper->num_children == 2);
2398 n = _slang_gen_function_call_name(A, "-", oper, NULL);
2399 return n;
2400 }
2401 case SLANG_OPER_MULTIPLY:
2402 {
2403 slang_ir_node *n;
2404 assert(oper->num_children == 2);
2405 _slang_check_matmul_optimization(A, oper);
2406 n = _slang_gen_function_call_name(A, "*", oper, NULL);
2407 return n;
2408 }
2409 case SLANG_OPER_DIVIDE:
2410 {
2411 slang_ir_node *n;
2412 assert(oper->num_children == 2);
2413 n = _slang_gen_function_call_name(A, "/", oper, NULL);
2414 return n;
2415 }
2416 case SLANG_OPER_MINUS:
2417 {
2418 slang_ir_node *n;
2419 assert(oper->num_children == 1);
2420 n = _slang_gen_function_call_name(A, "-", oper, NULL);
2421 return n;
2422 }
2423 case SLANG_OPER_PLUS:
2424 /* +expr --> do nothing */
2425 return _slang_gen_operation(A, &oper->children[0]);
2426 case SLANG_OPER_VARIABLE_DECL:
2427 return _slang_gen_declaration(A, oper);
2428 case SLANG_OPER_ASSIGN:
2429 return _slang_gen_assignment(A, oper);
2430 case SLANG_OPER_ADDASSIGN:
2431 {
2432 slang_ir_node *n;
2433 assert(oper->num_children == 2);
2434 n = _slang_gen_function_call_name(A, "+=", oper, &oper->children[0]);
2435 return n;
2436 }
2437 case SLANG_OPER_SUBASSIGN:
2438 {
2439 slang_ir_node *n;
2440 assert(oper->num_children == 2);
2441 n = _slang_gen_function_call_name(A, "-=", oper, &oper->children[0]);
2442 return n;
2443 }
2444 break;
2445 case SLANG_OPER_MULASSIGN:
2446 {
2447 slang_ir_node *n;
2448 assert(oper->num_children == 2);
2449 n = _slang_gen_function_call_name(A, "*=", oper, &oper->children[0]);
2450 return n;
2451 }
2452 case SLANG_OPER_DIVASSIGN:
2453 {
2454 slang_ir_node *n;
2455 assert(oper->num_children == 2);
2456 n = _slang_gen_function_call_name(A, "/=", oper, &oper->children[0]);
2457 return n;
2458 }
2459 case SLANG_OPER_LOGICALAND:
2460 {
2461 slang_ir_node *n;
2462 assert(oper->num_children == 2);
2463 n = _slang_gen_logical_and(A, oper);
2464 return n;
2465 }
2466 case SLANG_OPER_LOGICALOR:
2467 {
2468 slang_ir_node *n;
2469 assert(oper->num_children == 2);
2470 n = _slang_gen_logical_or(A, oper);
2471 return n;
2472 }
2473 case SLANG_OPER_LOGICALXOR:
2474 {
2475 slang_ir_node *n;
2476 assert(oper->num_children == 2);
2477 n = _slang_gen_function_call_name(A, "__logicalXor", oper, NULL);
2478 return n;
2479 }
2480 case SLANG_OPER_NOT:
2481 {
2482 slang_ir_node *n;
2483 assert(oper->num_children == 1);
2484 n = _slang_gen_function_call_name(A, "__logicalNot", oper, NULL);
2485 return n;
2486 }
2487
2488 case SLANG_OPER_SELECT: /* b ? x : y */
2489 {
2490 slang_ir_node *n;
2491 assert(oper->num_children == 3);
2492 n = _slang_gen_select(A, oper);
2493 return n;
2494 }
2495
2496 case SLANG_OPER_ASM:
2497 return _slang_gen_asm(A, oper, NULL);
2498 case SLANG_OPER_CALL:
2499 return _slang_gen_function_call_name(A, (const char *) oper->a_id,
2500 oper, NULL);
2501 case SLANG_OPER_RETURN:
2502 return _slang_gen_return(A, oper);
2503 case SLANG_OPER_GOTO:
2504 return new_jump(oper->label);
2505 case SLANG_OPER_LABEL:
2506 return new_label(oper->label);
2507 case SLANG_OPER_IDENTIFIER:
2508 return _slang_gen_variable(A, oper);
2509 case SLANG_OPER_IF:
2510 return _slang_gen_if(A, oper);
2511 case SLANG_OPER_FIELD:
2512 return _slang_gen_field(A, oper);
2513 case SLANG_OPER_SUBSCRIPT:
2514 return _slang_gen_subscript(A, oper);
2515 case SLANG_OPER_LITERAL_FLOAT:
2516 /* fall-through */
2517 case SLANG_OPER_LITERAL_INT:
2518 /* fall-through */
2519 case SLANG_OPER_LITERAL_BOOL:
2520 return new_float_literal(oper->literal);
2521
2522 case SLANG_OPER_POSTINCREMENT: /* var++ */
2523 {
2524 slang_ir_node *n;
2525 assert(oper->num_children == 1);
2526 n = _slang_gen_function_call_name(A, "__postIncr", oper, NULL);
2527 return n;
2528 }
2529 case SLANG_OPER_POSTDECREMENT: /* var-- */
2530 {
2531 slang_ir_node *n;
2532 assert(oper->num_children == 1);
2533 n = _slang_gen_function_call_name(A, "__postDecr", oper, NULL);
2534 return n;
2535 }
2536 case SLANG_OPER_PREINCREMENT: /* ++var */
2537 {
2538 slang_ir_node *n;
2539 assert(oper->num_children == 1);
2540 n = _slang_gen_function_call_name(A, "++", oper, NULL);
2541 return n;
2542 }
2543 case SLANG_OPER_PREDECREMENT: /* --var */
2544 {
2545 slang_ir_node *n;
2546 assert(oper->num_children == 1);
2547 n = _slang_gen_function_call_name(A, "--", oper, NULL);
2548 return n;
2549 }
2550
2551 case SLANG_OPER_SEQUENCE:
2552 {
2553 slang_ir_node *tree = NULL;
2554 GLuint i;
2555 for (i = 0; i < oper->num_children; i++) {
2556 slang_ir_node *n = _slang_gen_operation(A, &oper->children[i]);
2557 tree = tree ? new_seq(tree, n) : n;
2558 }
2559 return tree;
2560 }
2561
2562 case SLANG_OPER_NONE:
2563 case SLANG_OPER_VOID:
2564 /* returning NULL here would generate an error */
2565 return new_node0(IR_NOP);
2566
2567 default:
2568 printf("Unhandled node type %d\n", oper->type);
2569 abort();
2570 return new_node0(IR_NOP);
2571 }
2572
2573 return NULL;
2574 }
2575
2576
2577
2578 /**
2579 * Called by compiler when a global variable has been parsed/compiled.
2580 * Here we examine the variable's type to determine what kind of register
2581 * storage will be used.
2582 *
2583 * A uniform such as "gl_Position" will become the register specification
2584 * (PROGRAM_OUTPUT, VERT_RESULT_HPOS). Or, uniform "gl_FogFragCoord"
2585 * will be (PROGRAM_INPUT, FRAG_ATTRIB_FOGC).
2586 *
2587 * Samplers are interesting. For "uniform sampler2D tex;" we'll specify
2588 * (PROGRAM_SAMPLER, index) where index is resolved at link-time to an
2589 * actual texture unit (as specified by the user calling glUniform1i()).
2590 */
2591 GLboolean
2592 _slang_codegen_global_variable(slang_assemble_ctx *A, slang_variable *var,
2593 slang_unit_type type)
2594 {
2595 struct gl_program *prog = A->program;
2596 const char *varName = (char *) var->a_name;
2597 GLboolean success = GL_TRUE;
2598 GLint texIndex;
2599 slang_ir_storage *store = NULL;
2600 int dbg = 0;
2601
2602 texIndex = sampler_to_texture_index(var->type.specifier.type);
2603
2604 if (texIndex != -1) {
2605 /* Texture sampler:
2606 * store->File = PROGRAM_SAMPLER
2607 * store->Index = sampler uniform location
2608 * store->Size = texture type index (1D, 2D, 3D, cube, etc)
2609 */
2610 GLint samplerUniform = _mesa_add_sampler(prog->Parameters, varName);
2611 store = _slang_new_ir_storage(PROGRAM_SAMPLER, samplerUniform, texIndex);
2612 if (dbg) printf("SAMPLER ");
2613 }
2614 else if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
2615 /* Uniform variable */
2616 const GLint size = _slang_sizeof_type_specifier(&var->type.specifier)
2617 * MAX2(var->array_len, 1);
2618 if (prog) {
2619 /* user-defined uniform */
2620 GLint uniformLoc = _mesa_add_uniform(prog->Parameters, varName, size);
2621 store = _slang_new_ir_storage(PROGRAM_UNIFORM, uniformLoc, size);
2622 }
2623 else {
2624 /* pre-defined uniform, like gl_ModelviewMatrix */
2625 /* We know it's a uniform, but don't allocate storage unless
2626 * it's really used.
2627 */
2628 store = _slang_new_ir_storage(PROGRAM_STATE_VAR, -1, size);
2629 }
2630 if (dbg) printf("UNIFORM (sz %d) ", size);
2631 }
2632 else if (var->type.qualifier == SLANG_QUAL_VARYING) {
2633 const GLint size = 4; /* XXX fix */
2634 if (prog) {
2635 /* user-defined varying */
2636 GLint varyingLoc = _mesa_add_varying(prog->Varying, varName, size);
2637 store = _slang_new_ir_storage(PROGRAM_VARYING, varyingLoc, size);
2638 }
2639 else {
2640 /* pre-defined varying, like gl_Color or gl_TexCoord */
2641 if (type == SLANG_UNIT_FRAGMENT_BUILTIN) {
2642 GLuint swizzle;
2643 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
2644 &swizzle);
2645 assert(index >= 0);
2646 store = _slang_new_ir_storage(PROGRAM_INPUT, index, size);
2647 store->Swizzle = swizzle;
2648 assert(index < FRAG_ATTRIB_MAX);
2649 }
2650 else {
2651 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
2652 assert(index >= 0);
2653 assert(type == SLANG_UNIT_VERTEX_BUILTIN);
2654 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
2655 assert(index < VERT_RESULT_MAX);
2656 }
2657 if (dbg) printf("V/F ");
2658 }
2659 if (dbg) printf("VARYING ");
2660 }
2661 else if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE) {
2662 if (prog) {
2663 /* user-defined vertex attribute */
2664 const GLint size = _slang_sizeof_type_specifier(&var->type.specifier);
2665 const GLint attr = -1; /* unknown */
2666 GLint index = _mesa_add_attribute(prog->Attributes, varName,
2667 size, attr);
2668 assert(index >= 0);
2669 store = _slang_new_ir_storage(PROGRAM_INPUT,
2670 VERT_ATTRIB_GENERIC0 + index, size);
2671 }
2672 else {
2673 /* pre-defined vertex attrib */
2674 GLuint swizzle;
2675 GLint index = _slang_input_index(varName, GL_VERTEX_PROGRAM_ARB,
2676 &swizzle);
2677 GLint size = 4; /* XXX? */
2678 assert(index >= 0);
2679 store = _slang_new_ir_storage(PROGRAM_INPUT, index, size);
2680 store->Swizzle = swizzle;
2681 }
2682 if (dbg) printf("ATTRIB ");
2683 }
2684 else if (var->type.qualifier == SLANG_QUAL_FIXEDINPUT) {
2685 GLuint swizzle;
2686 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
2687 &swizzle);
2688 GLint size = 4; /* XXX? */
2689 store = _slang_new_ir_storage(PROGRAM_INPUT, index, size);
2690 store->Swizzle = swizzle;
2691 if (dbg) printf("INPUT ");
2692 }
2693 else if (var->type.qualifier == SLANG_QUAL_FIXEDOUTPUT) {
2694 if (type == SLANG_UNIT_VERTEX_BUILTIN) {
2695 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
2696 GLint size = 4; /* XXX? */
2697 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
2698 }
2699 else {
2700 assert(type == SLANG_UNIT_FRAGMENT_BUILTIN);
2701 GLint index = _slang_output_index(varName, GL_FRAGMENT_PROGRAM_ARB);
2702 GLint size = 4; /* XXX? */
2703 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
2704 }
2705 if (dbg) printf("OUTPUT ");
2706 }
2707 else if (var->type.qualifier == SLANG_QUAL_CONST && !prog) {
2708 /* pre-defined global constant, like gl_MaxLights */
2709 const GLint size = _slang_sizeof_type_specifier(&var->type.specifier);
2710 store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
2711 if (dbg) printf("CONST ");
2712 }
2713 else {
2714 /* ordinary variable (may be const) */
2715 slang_ir_node *n;
2716
2717 /* IR node to declare the variable */
2718 n = _slang_gen_var_decl(A, var);
2719
2720 /* IR code for the var's initializer, if present */
2721 if (var->initializer) {
2722 slang_ir_node *lhs, *rhs, *init;
2723
2724 /* Generate IR_MOVE instruction to initialize the variable */
2725 lhs = new_node0(IR_VAR);
2726 lhs->Var = var;
2727 lhs->Store = n->Store;
2728
2729 /* constant folding, etc */
2730 _slang_simplify(var->initializer, &A->space, A->atoms);
2731
2732 rhs = _slang_gen_operation(A, var->initializer);
2733 assert(rhs);
2734 init = new_node2(IR_MOVE, lhs, rhs);
2735 n = new_seq(n, init);
2736 }
2737
2738 success = _slang_emit_code(n, A->vartable, A->program, GL_FALSE, A->log);
2739
2740 _slang_free_ir_tree(n);
2741 }
2742
2743 if (dbg) printf("GLOBAL VAR %s idx %d\n", (char*) var->a_name,
2744 store ? store->Index : -2);
2745
2746 if (store)
2747 var->aux = store; /* save var's storage info */
2748
2749 return success;
2750 }
2751
2752
2753 /**
2754 * Produce an IR tree from a function AST (fun->body).
2755 * Then call the code emitter to convert the IR tree into gl_program
2756 * instructions.
2757 */
2758 GLboolean
2759 _slang_codegen_function(slang_assemble_ctx * A, slang_function * fun)
2760 {
2761 slang_ir_node *n;
2762 GLboolean success = GL_TRUE;
2763
2764 if (_mesa_strcmp((char *) fun->header.a_name, "main") != 0) {
2765 /* we only really generate code for main, all other functions get
2766 * inlined.
2767 */
2768 return GL_TRUE; /* not an error */
2769 }
2770
2771 #if 0
2772 printf("\n*********** codegen_function %s\n", (char *) fun->header.a_name);
2773 slang_print_function(fun, 1);
2774 #endif
2775
2776 /* should have been allocated earlier: */
2777 assert(A->program->Parameters );
2778 assert(A->program->Varying);
2779 assert(A->vartable);
2780
2781 /* fold constant expressions, etc. */
2782 _slang_simplify(fun->body, &A->space, A->atoms);
2783
2784 #if 0
2785 printf("\n*********** simplified %s\n", (char *) fun->header.a_name);
2786 slang_print_function(fun, 1);
2787 #endif
2788
2789 /* Create an end-of-function label */
2790 A->curFuncEndLabel = _slang_label_new("__endOfFunc__main");
2791
2792 /* push new vartable scope */
2793 _slang_push_var_table(A->vartable);
2794
2795 /* Generate IR tree for the function body code */
2796 n = _slang_gen_operation(A, fun->body);
2797 if (n)
2798 n = new_node1(IR_SCOPE, n);
2799
2800 /* pop vartable, restore previous */
2801 _slang_pop_var_table(A->vartable);
2802
2803 if (!n) {
2804 /* XXX record error */
2805 return GL_FALSE;
2806 }
2807
2808 /* append an end-of-function-label to IR tree */
2809 n = new_seq(n, new_label(A->curFuncEndLabel));
2810
2811 /*_slang_label_delete(A->curFuncEndLabel);*/
2812 A->curFuncEndLabel = NULL;
2813
2814 #if 0
2815 printf("************* New AST for %s *****\n", (char*)fun->header.a_name);
2816 slang_print_function(fun, 1);
2817 #endif
2818 #if 0
2819 printf("************* IR for %s *******\n", (char*)fun->header.a_name);
2820 _slang_print_ir_tree(n, 0);
2821 #endif
2822 #if 0
2823 printf("************* End codegen function ************\n\n");
2824 #endif
2825
2826 /* Emit program instructions */
2827 success = _slang_emit_code(n, A->vartable, A->program, GL_TRUE, A->log);
2828 _slang_free_ir_tree(n);
2829
2830 /* free codegen context */
2831 /*
2832 _mesa_free(A->codegen);
2833 */
2834
2835 return success;
2836 }
2837