Fix function call bug 11731. Also, fix up IR_CALL/IR_FUNC confusion.
[mesa.git] / src / mesa / shader / slang / slang_codegen.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file slang_codegen.c
27 * Generate IR tree from AST.
28 * \author Brian Paul
29 */
30
31
32 /***
33 *** NOTES:
34 *** The new_() functions return a new instance of a simple IR node.
35 *** The gen_() functions generate larger IR trees from the simple nodes.
36 ***/
37
38
39
40 #include "main/imports.h"
41 #include "main/macros.h"
42 #include "main/mtypes.h"
43 #include "shader/program.h"
44 #include "shader/prog_instruction.h"
45 #include "shader/prog_parameter.h"
46 #include "shader/prog_statevars.h"
47 #include "slang_typeinfo.h"
48 #include "slang_codegen.h"
49 #include "slang_compile.h"
50 #include "slang_label.h"
51 #include "slang_mem.h"
52 #include "slang_simplify.h"
53 #include "slang_emit.h"
54 #include "slang_vartable.h"
55 #include "slang_ir.h"
56 #include "slang_print.h"
57
58
59 static slang_ir_node *
60 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper);
61
62
63 static GLboolean
64 is_sampler_type(const slang_fully_specified_type *t)
65 {
66 switch (t->specifier.type) {
67 case SLANG_SPEC_SAMPLER1D:
68 case SLANG_SPEC_SAMPLER2D:
69 case SLANG_SPEC_SAMPLER3D:
70 case SLANG_SPEC_SAMPLERCUBE:
71 case SLANG_SPEC_SAMPLER1DSHADOW:
72 case SLANG_SPEC_SAMPLER2DSHADOW:
73 case SLANG_SPEC_SAMPLER2DRECT:
74 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
75 return GL_TRUE;
76 default:
77 return GL_FALSE;
78 }
79 }
80
81
82 /**
83 * Return the offset (in floats or ints) of the named field within
84 * the given struct. Return -1 if field not found.
85 * If field is NULL, return the size of the struct instead.
86 */
87 static GLint
88 _slang_field_offset(const slang_type_specifier *spec, slang_atom field)
89 {
90 GLint offset = 0;
91 GLuint i;
92 for (i = 0; i < spec->_struct->fields->num_variables; i++) {
93 const slang_variable *v = spec->_struct->fields->variables[i];
94 const GLuint sz = _slang_sizeof_type_specifier(&v->type.specifier);
95 if (sz > 1) {
96 /* types larger than 1 float are register (4-float) aligned */
97 offset = (offset + 3) & ~3;
98 }
99 if (field && v->a_name == field) {
100 return offset;
101 }
102 offset += sz;
103 }
104 if (field)
105 return -1; /* field not found */
106 else
107 return offset; /* struct size */
108 }
109
110
111 /**
112 * Return the size (in floats) of the given type specifier.
113 * If the size is greater than 4, the size should be a multiple of 4
114 * so that the correct number of 4-float registers are allocated.
115 * For example, a mat3x2 is size 12 because we want to store the
116 * 3 columns in 3 float[4] registers.
117 */
118 GLuint
119 _slang_sizeof_type_specifier(const slang_type_specifier *spec)
120 {
121 GLuint sz;
122 switch (spec->type) {
123 case SLANG_SPEC_VOID:
124 sz = 0;
125 break;
126 case SLANG_SPEC_BOOL:
127 sz = 1;
128 break;
129 case SLANG_SPEC_BVEC2:
130 sz = 2;
131 break;
132 case SLANG_SPEC_BVEC3:
133 sz = 3;
134 break;
135 case SLANG_SPEC_BVEC4:
136 sz = 4;
137 break;
138 case SLANG_SPEC_INT:
139 sz = 1;
140 break;
141 case SLANG_SPEC_IVEC2:
142 sz = 2;
143 break;
144 case SLANG_SPEC_IVEC3:
145 sz = 3;
146 break;
147 case SLANG_SPEC_IVEC4:
148 sz = 4;
149 break;
150 case SLANG_SPEC_FLOAT:
151 sz = 1;
152 break;
153 case SLANG_SPEC_VEC2:
154 sz = 2;
155 break;
156 case SLANG_SPEC_VEC3:
157 sz = 3;
158 break;
159 case SLANG_SPEC_VEC4:
160 sz = 4;
161 break;
162 case SLANG_SPEC_MAT2:
163 sz = 2 * 4; /* 2 columns (regs) */
164 break;
165 case SLANG_SPEC_MAT3:
166 sz = 3 * 4;
167 break;
168 case SLANG_SPEC_MAT4:
169 sz = 4 * 4;
170 break;
171 case SLANG_SPEC_MAT23:
172 sz = 2 * 4; /* 2 columns (regs) */
173 break;
174 case SLANG_SPEC_MAT32:
175 sz = 3 * 4; /* 3 columns (regs) */
176 break;
177 case SLANG_SPEC_MAT24:
178 sz = 2 * 4;
179 break;
180 case SLANG_SPEC_MAT42:
181 sz = 4 * 4; /* 4 columns (regs) */
182 break;
183 case SLANG_SPEC_MAT34:
184 sz = 3 * 4;
185 break;
186 case SLANG_SPEC_MAT43:
187 sz = 4 * 4; /* 4 columns (regs) */
188 break;
189 case SLANG_SPEC_SAMPLER1D:
190 case SLANG_SPEC_SAMPLER2D:
191 case SLANG_SPEC_SAMPLER3D:
192 case SLANG_SPEC_SAMPLERCUBE:
193 case SLANG_SPEC_SAMPLER1DSHADOW:
194 case SLANG_SPEC_SAMPLER2DSHADOW:
195 case SLANG_SPEC_SAMPLER2DRECT:
196 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
197 sz = 1; /* a sampler is basically just an integer index */
198 break;
199 case SLANG_SPEC_STRUCT:
200 sz = _slang_field_offset(spec, 0); /* special use */
201 if (sz > 4) {
202 sz = (sz + 3) & ~0x3; /* round up to multiple of four */
203 }
204 break;
205 case SLANG_SPEC_ARRAY:
206 sz = _slang_sizeof_type_specifier(spec->_array);
207 break;
208 default:
209 _mesa_problem(NULL, "Unexpected type in _slang_sizeof_type_specifier()");
210 sz = 0;
211 }
212
213 if (sz > 4) {
214 /* if size is > 4, it should be a multiple of four */
215 assert((sz & 0x3) == 0);
216 }
217 return sz;
218 }
219
220
221 /**
222 * Establish the binding between a slang_ir_node and a slang_variable.
223 * Then, allocate/attach a slang_ir_storage object to the IR node if needed.
224 * The IR node must be a IR_VAR or IR_VAR_DECL node.
225 * \param n the IR node
226 * \param var the variable to associate with the IR node
227 */
228 static void
229 _slang_attach_storage(slang_ir_node *n, slang_variable *var)
230 {
231 assert(n);
232 assert(var);
233 assert(n->Opcode == IR_VAR || n->Opcode == IR_VAR_DECL);
234 assert(!n->Var || n->Var == var);
235
236 n->Var = var;
237
238 if (!n->Store) {
239 /* need to setup storage */
240 if (n->Var && n->Var->aux) {
241 /* node storage info = var storage info */
242 n->Store = (slang_ir_storage *) n->Var->aux;
243 }
244 else {
245 /* alloc new storage info */
246 n->Store = _slang_new_ir_storage(PROGRAM_UNDEFINED, -1, -5);
247 if (n->Var)
248 n->Var->aux = n->Store;
249 assert(n->Var->aux);
250 }
251 }
252 }
253
254
255 /**
256 * Return the TEXTURE_*_INDEX value that corresponds to a sampler type,
257 * or -1 if the type is not a sampler.
258 */
259 static GLint
260 sampler_to_texture_index(const slang_type_specifier_type type)
261 {
262 switch (type) {
263 case SLANG_SPEC_SAMPLER1D:
264 return TEXTURE_1D_INDEX;
265 case SLANG_SPEC_SAMPLER2D:
266 return TEXTURE_2D_INDEX;
267 case SLANG_SPEC_SAMPLER3D:
268 return TEXTURE_3D_INDEX;
269 case SLANG_SPEC_SAMPLERCUBE:
270 return TEXTURE_CUBE_INDEX;
271 case SLANG_SPEC_SAMPLER1DSHADOW:
272 return TEXTURE_1D_INDEX; /* XXX fix */
273 case SLANG_SPEC_SAMPLER2DSHADOW:
274 return TEXTURE_2D_INDEX; /* XXX fix */
275 case SLANG_SPEC_SAMPLER2DRECT:
276 return TEXTURE_RECT_INDEX;
277 case SLANG_SPEC_SAMPLER2DRECTSHADOW:
278 return TEXTURE_RECT_INDEX; /* XXX fix */
279 default:
280 return -1;
281 }
282 }
283
284
285 /**
286 * Return the VERT_ATTRIB_* or FRAG_ATTRIB_* value that corresponds to
287 * a vertex or fragment program input variable. Return -1 if the input
288 * name is invalid.
289 * XXX return size too
290 */
291 static GLint
292 _slang_input_index(const char *name, GLenum target, GLuint *swizzleOut)
293 {
294 struct input_info {
295 const char *Name;
296 GLuint Attrib;
297 GLuint Swizzle;
298 };
299 static const struct input_info vertInputs[] = {
300 { "gl_Vertex", VERT_ATTRIB_POS, SWIZZLE_NOOP },
301 { "gl_Normal", VERT_ATTRIB_NORMAL, SWIZZLE_NOOP },
302 { "gl_Color", VERT_ATTRIB_COLOR0, SWIZZLE_NOOP },
303 { "gl_SecondaryColor", VERT_ATTRIB_COLOR1, SWIZZLE_NOOP },
304 { "gl_FogCoord", VERT_ATTRIB_FOG, SWIZZLE_XXXX },
305 { "gl_MultiTexCoord0", VERT_ATTRIB_TEX0, SWIZZLE_NOOP },
306 { "gl_MultiTexCoord1", VERT_ATTRIB_TEX1, SWIZZLE_NOOP },
307 { "gl_MultiTexCoord2", VERT_ATTRIB_TEX2, SWIZZLE_NOOP },
308 { "gl_MultiTexCoord3", VERT_ATTRIB_TEX3, SWIZZLE_NOOP },
309 { "gl_MultiTexCoord4", VERT_ATTRIB_TEX4, SWIZZLE_NOOP },
310 { "gl_MultiTexCoord5", VERT_ATTRIB_TEX5, SWIZZLE_NOOP },
311 { "gl_MultiTexCoord6", VERT_ATTRIB_TEX6, SWIZZLE_NOOP },
312 { "gl_MultiTexCoord7", VERT_ATTRIB_TEX7, SWIZZLE_NOOP },
313 { NULL, 0, SWIZZLE_NOOP }
314 };
315 static const struct input_info fragInputs[] = {
316 { "gl_FragCoord", FRAG_ATTRIB_WPOS, SWIZZLE_NOOP },
317 { "gl_Color", FRAG_ATTRIB_COL0, SWIZZLE_NOOP },
318 { "gl_SecondaryColor", FRAG_ATTRIB_COL1, SWIZZLE_NOOP },
319 { "gl_FogFragCoord", FRAG_ATTRIB_FOGC, SWIZZLE_XXXX },
320 { "gl_TexCoord", FRAG_ATTRIB_TEX0, SWIZZLE_NOOP },
321 { "gl_FrontFacing", FRAG_ATTRIB_FOGC, SWIZZLE_YYYY }, /*XXX*/
322 { NULL, 0, SWIZZLE_NOOP }
323 };
324 GLuint i;
325 const struct input_info *inputs
326 = (target == GL_VERTEX_PROGRAM_ARB) ? vertInputs : fragInputs;
327
328 ASSERT(MAX_TEXTURE_UNITS == 8); /* if this fails, fix vertInputs above */
329
330 for (i = 0; inputs[i].Name; i++) {
331 if (strcmp(inputs[i].Name, name) == 0) {
332 /* found */
333 *swizzleOut = inputs[i].Swizzle;
334 return inputs[i].Attrib;
335 }
336 }
337 return -1;
338 }
339
340
341 /**
342 * Return the VERT_RESULT_* or FRAG_RESULT_* value that corresponds to
343 * a vertex or fragment program output variable. Return -1 for an invalid
344 * output name.
345 */
346 static GLint
347 _slang_output_index(const char *name, GLenum target)
348 {
349 struct output_info {
350 const char *Name;
351 GLuint Attrib;
352 };
353 static const struct output_info vertOutputs[] = {
354 { "gl_Position", VERT_RESULT_HPOS },
355 { "gl_FrontColor", VERT_RESULT_COL0 },
356 { "gl_BackColor", VERT_RESULT_BFC0 },
357 { "gl_FrontSecondaryColor", VERT_RESULT_COL1 },
358 { "gl_BackSecondaryColor", VERT_RESULT_BFC1 },
359 { "gl_TexCoord", VERT_RESULT_TEX0 },
360 { "gl_FogFragCoord", VERT_RESULT_FOGC },
361 { "gl_PointSize", VERT_RESULT_PSIZ },
362 { NULL, 0 }
363 };
364 static const struct output_info fragOutputs[] = {
365 { "gl_FragColor", FRAG_RESULT_COLR },
366 { "gl_FragDepth", FRAG_RESULT_DEPR },
367 { "gl_FragData", FRAG_RESULT_DATA0 },
368 { NULL, 0 }
369 };
370 GLuint i;
371 const struct output_info *outputs
372 = (target == GL_VERTEX_PROGRAM_ARB) ? vertOutputs : fragOutputs;
373
374 for (i = 0; outputs[i].Name; i++) {
375 if (strcmp(outputs[i].Name, name) == 0) {
376 /* found */
377 return outputs[i].Attrib;
378 }
379 }
380 return -1;
381 }
382
383
384
385 /**********************************************************************/
386
387
388 /**
389 * Map "_asm foo" to IR_FOO, etc.
390 */
391 typedef struct
392 {
393 const char *Name;
394 slang_ir_opcode Opcode;
395 GLuint HaveRetValue, NumParams;
396 } slang_asm_info;
397
398
399 static slang_asm_info AsmInfo[] = {
400 /* vec4 binary op */
401 { "vec4_add", IR_ADD, 1, 2 },
402 { "vec4_subtract", IR_SUB, 1, 2 },
403 { "vec4_multiply", IR_MUL, 1, 2 },
404 { "vec4_dot", IR_DOT4, 1, 2 },
405 { "vec3_dot", IR_DOT3, 1, 2 },
406 { "vec3_cross", IR_CROSS, 1, 2 },
407 { "vec4_lrp", IR_LRP, 1, 3 },
408 { "vec4_min", IR_MIN, 1, 2 },
409 { "vec4_max", IR_MAX, 1, 2 },
410 { "vec4_clamp", IR_CLAMP, 1, 3 },
411 { "vec4_seq", IR_SEQUAL, 1, 2 },
412 { "vec4_sne", IR_SNEQUAL, 1, 2 },
413 { "vec4_sge", IR_SGE, 1, 2 },
414 { "vec4_sgt", IR_SGT, 1, 2 },
415 { "vec4_sle", IR_SLE, 1, 2 },
416 { "vec4_slt", IR_SLT, 1, 2 },
417 /* vec4 unary */
418 { "vec4_floor", IR_FLOOR, 1, 1 },
419 { "vec4_frac", IR_FRAC, 1, 1 },
420 { "vec4_abs", IR_ABS, 1, 1 },
421 { "vec4_negate", IR_NEG, 1, 1 },
422 { "vec4_ddx", IR_DDX, 1, 1 },
423 { "vec4_ddy", IR_DDY, 1, 1 },
424 /* float binary op */
425 { "float_power", IR_POW, 1, 2 },
426 /* texture / sampler */
427 { "vec4_tex1d", IR_TEX, 1, 2 },
428 { "vec4_texb1d", IR_TEXB, 1, 2 }, /* 1d w/ bias */
429 { "vec4_texp1d", IR_TEXP, 1, 2 }, /* 1d w/ projection */
430 { "vec4_tex2d", IR_TEX, 1, 2 },
431 { "vec4_texb2d", IR_TEXB, 1, 2 }, /* 2d w/ bias */
432 { "vec4_texp2d", IR_TEXP, 1, 2 }, /* 2d w/ projection */
433 { "vec4_tex3d", IR_TEX, 1, 2 },
434 { "vec4_texb3d", IR_TEXB, 1, 2 }, /* 3d w/ bias */
435 { "vec4_texp3d", IR_TEXP, 1, 2 }, /* 3d w/ projection */
436 { "vec4_texcube", IR_TEX, 1, 2 }, /* cubemap */
437 { "vec4_tex_rect", IR_TEX, 1, 2 }, /* rectangle */
438 { "vec4_texp_rect", IR_TEX, 1, 2 },/* rectangle w/ projection */
439
440 /* unary op */
441 { "int_to_float", IR_I_TO_F, 1, 1 },
442 { "float_to_int", IR_F_TO_I, 1, 1 },
443 { "float_exp", IR_EXP, 1, 1 },
444 { "float_exp2", IR_EXP2, 1, 1 },
445 { "float_log2", IR_LOG2, 1, 1 },
446 { "float_rsq", IR_RSQ, 1, 1 },
447 { "float_rcp", IR_RCP, 1, 1 },
448 { "float_sine", IR_SIN, 1, 1 },
449 { "float_cosine", IR_COS, 1, 1 },
450 { "float_noise1", IR_NOISE1, 1, 1},
451 { "float_noise2", IR_NOISE2, 1, 1},
452 { "float_noise3", IR_NOISE3, 1, 1},
453 { "float_noise4", IR_NOISE4, 1, 1},
454
455 { NULL, IR_NOP, 0, 0 }
456 };
457
458
459 static slang_ir_node *
460 new_node3(slang_ir_opcode op,
461 slang_ir_node *c0, slang_ir_node *c1, slang_ir_node *c2)
462 {
463 slang_ir_node *n = (slang_ir_node *) _slang_alloc(sizeof(slang_ir_node));
464 if (n) {
465 n->Opcode = op;
466 n->Children[0] = c0;
467 n->Children[1] = c1;
468 n->Children[2] = c2;
469 n->Writemask = WRITEMASK_XYZW;
470 n->InstLocation = -1;
471 }
472 return n;
473 }
474
475 static slang_ir_node *
476 new_node2(slang_ir_opcode op, slang_ir_node *c0, slang_ir_node *c1)
477 {
478 return new_node3(op, c0, c1, NULL);
479 }
480
481 static slang_ir_node *
482 new_node1(slang_ir_opcode op, slang_ir_node *c0)
483 {
484 return new_node3(op, c0, NULL, NULL);
485 }
486
487 static slang_ir_node *
488 new_node0(slang_ir_opcode op)
489 {
490 return new_node3(op, NULL, NULL, NULL);
491 }
492
493
494 static slang_ir_node *
495 new_seq(slang_ir_node *left, slang_ir_node *right)
496 {
497 if (!left)
498 return right;
499 if (!right)
500 return left;
501 return new_node2(IR_SEQ, left, right);
502 }
503
504 static slang_ir_node *
505 new_label(slang_label *label)
506 {
507 slang_ir_node *n = new_node0(IR_LABEL);
508 assert(label);
509 if (n)
510 n->Label = label;
511 return n;
512 }
513
514 static slang_ir_node *
515 new_float_literal(const float v[4], GLuint size)
516 {
517 slang_ir_node *n = new_node0(IR_FLOAT);
518 assert(size <= 4);
519 COPY_4V(n->Value, v);
520 /* allocate a storage object, but compute actual location (Index) later */
521 n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
522 return n;
523 }
524
525
526 static slang_ir_node *
527 new_not(slang_ir_node *n)
528 {
529 return new_node1(IR_NOT, n);
530 }
531
532
533 /**
534 * Inlined subroutine.
535 */
536 static slang_ir_node *
537 new_inlined_function_call(slang_ir_node *code, slang_label *name)
538 {
539 slang_ir_node *n = new_node1(IR_CALL, code);
540 assert(name);
541 if (n)
542 n->Label = name;
543 return n;
544 }
545
546
547 /**
548 * Unconditional jump.
549 */
550 static slang_ir_node *
551 new_return(slang_label *dest)
552 {
553 slang_ir_node *n = new_node0(IR_RETURN);
554 assert(dest);
555 if (n)
556 n->Label = dest;
557 return n;
558 }
559
560
561 static slang_ir_node *
562 new_loop(slang_ir_node *body)
563 {
564 return new_node1(IR_LOOP, body);
565 }
566
567
568 static slang_ir_node *
569 new_break(slang_ir_node *loopNode)
570 {
571 slang_ir_node *n = new_node0(IR_BREAK);
572 assert(loopNode);
573 assert(loopNode->Opcode == IR_LOOP);
574 if (n) {
575 /* insert this node at head of linked list */
576 n->List = loopNode->List;
577 loopNode->List = n;
578 }
579 return n;
580 }
581
582
583 /**
584 * Make new IR_BREAK_IF_TRUE.
585 */
586 static slang_ir_node *
587 new_break_if_true(slang_ir_node *loopNode, slang_ir_node *cond)
588 {
589 slang_ir_node *n;
590 assert(loopNode);
591 assert(loopNode->Opcode == IR_LOOP);
592 n = new_node1(IR_BREAK_IF_TRUE, cond);
593 if (n) {
594 /* insert this node at head of linked list */
595 n->List = loopNode->List;
596 loopNode->List = n;
597 }
598 return n;
599 }
600
601
602 /**
603 * Make new IR_CONT_IF_TRUE node.
604 */
605 static slang_ir_node *
606 new_cont_if_true(slang_ir_node *loopNode, slang_ir_node *cond)
607 {
608 slang_ir_node *n;
609 assert(loopNode);
610 assert(loopNode->Opcode == IR_LOOP);
611 n = new_node1(IR_CONT_IF_TRUE, cond);
612 if (n) {
613 /* insert this node at head of linked list */
614 n->List = loopNode->List;
615 loopNode->List = n;
616 }
617 return n;
618 }
619
620
621 static slang_ir_node *
622 new_cond(slang_ir_node *n)
623 {
624 slang_ir_node *c = new_node1(IR_COND, n);
625 return c;
626 }
627
628
629 static slang_ir_node *
630 new_if(slang_ir_node *cond, slang_ir_node *ifPart, slang_ir_node *elsePart)
631 {
632 return new_node3(IR_IF, cond, ifPart, elsePart);
633 }
634
635
636 /**
637 * New IR_VAR node - a reference to a previously declared variable.
638 */
639 static slang_ir_node *
640 new_var(slang_assemble_ctx *A, slang_operation *oper, slang_atom name)
641 {
642 slang_ir_node *n;
643 slang_variable *var = _slang_locate_variable(oper->locals, name, GL_TRUE);
644 if (!var)
645 return NULL;
646
647 assert(!oper->var || oper->var == var);
648
649 n = new_node0(IR_VAR);
650 if (n) {
651 _slang_attach_storage(n, var);
652 }
653 return n;
654 }
655
656
657 /**
658 * Check if the given function is really just a wrapper for a
659 * basic assembly instruction.
660 */
661 static GLboolean
662 slang_is_asm_function(const slang_function *fun)
663 {
664 if (fun->body->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE &&
665 fun->body->num_children == 1 &&
666 fun->body->children[0].type == SLANG_OPER_ASM) {
667 return GL_TRUE;
668 }
669 return GL_FALSE;
670 }
671
672
673 static GLboolean
674 _slang_is_noop(const slang_operation *oper)
675 {
676 if (!oper ||
677 oper->type == SLANG_OPER_VOID ||
678 (oper->num_children == 1 && oper->children[0].type == SLANG_OPER_VOID))
679 return GL_TRUE;
680 else
681 return GL_FALSE;
682 }
683
684
685 /**
686 * Recursively search tree for a node of the given type.
687 */
688 static slang_operation *
689 _slang_find_node_type(slang_operation *oper, slang_operation_type type)
690 {
691 GLuint i;
692 if (oper->type == type)
693 return oper;
694 for (i = 0; i < oper->num_children; i++) {
695 slang_operation *p = _slang_find_node_type(&oper->children[i], type);
696 if (p)
697 return p;
698 }
699 return NULL;
700 }
701
702
703 static void
704 slang_resolve_variable(slang_operation *oper)
705 {
706 if (oper->type == SLANG_OPER_IDENTIFIER && !oper->var) {
707 oper->var = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
708 }
709 }
710
711
712 /**
713 * Replace particular variables (SLANG_OPER_IDENTIFIER) with new expressions.
714 */
715 static void
716 slang_substitute(slang_assemble_ctx *A, slang_operation *oper,
717 GLuint substCount, slang_variable **substOld,
718 slang_operation **substNew, GLboolean isLHS)
719 {
720 switch (oper->type) {
721 case SLANG_OPER_VARIABLE_DECL:
722 {
723 slang_variable *v = _slang_locate_variable(oper->locals,
724 oper->a_id, GL_TRUE);
725 assert(v);
726 if (v->initializer && oper->num_children == 0) {
727 /* set child of oper to copy of initializer */
728 oper->num_children = 1;
729 oper->children = slang_operation_new(1);
730 slang_operation_copy(&oper->children[0], v->initializer);
731 }
732 if (oper->num_children == 1) {
733 /* the initializer */
734 slang_substitute(A, &oper->children[0], substCount,
735 substOld, substNew, GL_FALSE);
736 }
737 }
738 break;
739 case SLANG_OPER_IDENTIFIER:
740 assert(oper->num_children == 0);
741 if (1/**!isLHS XXX FIX */) {
742 slang_atom id = oper->a_id;
743 slang_variable *v;
744 GLuint i;
745 v = _slang_locate_variable(oper->locals, id, GL_TRUE);
746 if (!v) {
747 _mesa_problem(NULL, "var %s not found!\n", (char *) oper->a_id);
748 return;
749 }
750
751 /* look for a substitution */
752 for (i = 0; i < substCount; i++) {
753 if (v == substOld[i]) {
754 /* OK, replace this SLANG_OPER_IDENTIFIER with a new expr */
755 #if 0 /* DEBUG only */
756 if (substNew[i]->type == SLANG_OPER_IDENTIFIER) {
757 assert(substNew[i]->var);
758 assert(substNew[i]->var->a_name);
759 printf("Substitute %s with %s in id node %p\n",
760 (char*)v->a_name, (char*) substNew[i]->var->a_name,
761 (void*) oper);
762 }
763 else {
764 printf("Substitute %s with %f in id node %p\n",
765 (char*)v->a_name, substNew[i]->literal[0],
766 (void*) oper);
767 }
768 #endif
769 slang_operation_copy(oper, substNew[i]);
770 break;
771 }
772 }
773 }
774 break;
775
776 case SLANG_OPER_RETURN:
777 /* do return replacement here too */
778 assert(oper->num_children == 0 || oper->num_children == 1);
779 if (oper->num_children == 1 && !_slang_is_noop(&oper->children[0])) {
780 /* replace:
781 * return expr;
782 * with:
783 * __retVal = expr;
784 * return;
785 * then do substitutions on the assignment.
786 */
787 slang_operation *blockOper, *assignOper, *returnOper;
788
789 /* check if function actually has a return type */
790 assert(A->CurFunction);
791 if (A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
792 slang_info_log_error(A->log, "illegal return expression");
793 return;
794 }
795
796 blockOper = slang_operation_new(1);
797 blockOper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
798 blockOper->num_children = 2;
799 blockOper->locals->outer_scope = oper->locals->outer_scope;
800 blockOper->children = slang_operation_new(2);
801 assignOper = blockOper->children + 0;
802 returnOper = blockOper->children + 1;
803
804 assignOper->type = SLANG_OPER_ASSIGN;
805 assignOper->num_children = 2;
806 assignOper->locals->outer_scope = blockOper->locals;
807 assignOper->children = slang_operation_new(2);
808 assignOper->children[0].type = SLANG_OPER_IDENTIFIER;
809 assignOper->children[0].a_id = slang_atom_pool_atom(A->atoms, "__retVal");
810 assignOper->children[0].locals->outer_scope = assignOper->locals;
811
812 slang_operation_copy(&assignOper->children[1],
813 &oper->children[0]);
814
815 returnOper->type = SLANG_OPER_RETURN; /* return w/ no value */
816 assert(returnOper->num_children == 0);
817
818 /* do substitutions on the "__retVal = expr" sub-tree */
819 slang_substitute(A, assignOper,
820 substCount, substOld, substNew, GL_FALSE);
821
822 /* install new code */
823 slang_operation_copy(oper, blockOper);
824 slang_operation_destruct(blockOper);
825 }
826 else {
827 /* check if return value was expected */
828 assert(A->CurFunction);
829 if (A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
830 slang_info_log_error(A->log, "return statement requires an expression");
831 return;
832 }
833 }
834 break;
835
836 case SLANG_OPER_ASSIGN:
837 case SLANG_OPER_SUBSCRIPT:
838 /* special case:
839 * child[0] can't have substitutions but child[1] can.
840 */
841 slang_substitute(A, &oper->children[0],
842 substCount, substOld, substNew, GL_TRUE);
843 slang_substitute(A, &oper->children[1],
844 substCount, substOld, substNew, GL_FALSE);
845 break;
846 case SLANG_OPER_FIELD:
847 /* XXX NEW - test */
848 slang_substitute(A, &oper->children[0],
849 substCount, substOld, substNew, GL_TRUE);
850 break;
851 default:
852 {
853 GLuint i;
854 for (i = 0; i < oper->num_children; i++)
855 slang_substitute(A, &oper->children[i],
856 substCount, substOld, substNew, GL_FALSE);
857 }
858 }
859 }
860
861
862
863 /**
864 * Produce inline code for a call to an assembly instruction.
865 * This is typically used to compile a call to a built-in function like this:
866 *
867 * vec4 mix(const vec4 x, const vec4 y, const vec4 a)
868 * {
869 * __asm vec4_lrp __retVal, a, y, x;
870 * }
871 *
872 * We basically translate a SLANG_OPER_CALL into a SLANG_OPER_ASM.
873 */
874 static slang_operation *
875 slang_inline_asm_function(slang_assemble_ctx *A,
876 slang_function *fun, slang_operation *oper)
877 {
878 const GLuint numArgs = oper->num_children;
879 GLuint i;
880 slang_operation *inlined;
881 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
882 slang_variable **substOld;
883 slang_operation **substNew;
884
885 ASSERT(slang_is_asm_function(fun));
886 ASSERT(fun->param_count == numArgs + haveRetValue);
887
888 /*
889 printf("Inline %s as %s\n",
890 (char*) fun->header.a_name,
891 (char*) fun->body->children[0].a_id);
892 */
893
894 /*
895 * We'll substitute formal params with actual args in the asm call.
896 */
897 substOld = (slang_variable **)
898 _slang_alloc(numArgs * sizeof(slang_variable *));
899 substNew = (slang_operation **)
900 _slang_alloc(numArgs * sizeof(slang_operation *));
901 for (i = 0; i < numArgs; i++) {
902 substOld[i] = fun->parameters->variables[i];
903 substNew[i] = oper->children + i;
904 }
905
906 /* make a copy of the code to inline */
907 inlined = slang_operation_new(1);
908 slang_operation_copy(inlined, &fun->body->children[0]);
909 if (haveRetValue) {
910 /* get rid of the __retVal child */
911 for (i = 0; i < numArgs; i++) {
912 inlined->children[i] = inlined->children[i + 1];
913 }
914 inlined->num_children--;
915 }
916
917 /* now do formal->actual substitutions */
918 slang_substitute(A, inlined, numArgs, substOld, substNew, GL_FALSE);
919
920 _slang_free(substOld);
921 _slang_free(substNew);
922
923 return inlined;
924 }
925
926
927 /**
928 * Inline the given function call operation.
929 * Return a new slang_operation that corresponds to the inlined code.
930 */
931 static slang_operation *
932 slang_inline_function_call(slang_assemble_ctx * A, slang_function *fun,
933 slang_operation *oper, slang_operation *returnOper)
934 {
935 typedef enum {
936 SUBST = 1,
937 COPY_IN,
938 COPY_OUT
939 } ParamMode;
940 ParamMode *paramMode;
941 const GLboolean haveRetValue = _slang_function_has_return_value(fun);
942 const GLuint numArgs = oper->num_children;
943 const GLuint totalArgs = numArgs + haveRetValue;
944 slang_operation *args = oper->children;
945 slang_operation *inlined, *top;
946 slang_variable **substOld;
947 slang_operation **substNew;
948 GLuint substCount, numCopyIn, i;
949 slang_function *prevFunction;
950
951 /* save / push */
952 prevFunction = A->CurFunction;
953 A->CurFunction = fun;
954
955 /*assert(oper->type == SLANG_OPER_CALL); (or (matrix) multiply, etc) */
956 assert(fun->param_count == totalArgs);
957
958 /* allocate temporary arrays */
959 paramMode = (ParamMode *)
960 _slang_alloc(totalArgs * sizeof(ParamMode));
961 substOld = (slang_variable **)
962 _slang_alloc(totalArgs * sizeof(slang_variable *));
963 substNew = (slang_operation **)
964 _slang_alloc(totalArgs * sizeof(slang_operation *));
965
966 #if 0
967 printf("Inline call to %s (total vars=%d nparams=%d)\n",
968 (char *) fun->header.a_name,
969 fun->parameters->num_variables, numArgs);
970 #endif
971
972 if (haveRetValue && !returnOper) {
973 /* Create 3-child comma sequence for inlined code:
974 * child[0]: declare __resultTmp
975 * child[1]: inlined function body
976 * child[2]: __resultTmp
977 */
978 slang_operation *commaSeq;
979 slang_operation *declOper = NULL;
980 slang_variable *resultVar;
981
982 commaSeq = slang_operation_new(1);
983 commaSeq->type = SLANG_OPER_SEQUENCE;
984 assert(commaSeq->locals);
985 commaSeq->locals->outer_scope = oper->locals->outer_scope;
986 commaSeq->num_children = 3;
987 commaSeq->children = slang_operation_new(3);
988 /* allocate the return var */
989 resultVar = slang_variable_scope_grow(commaSeq->locals);
990 /*
991 printf("Alloc __resultTmp in scope %p for retval of calling %s\n",
992 (void*)commaSeq->locals, (char *) fun->header.a_name);
993 */
994
995 resultVar->a_name = slang_atom_pool_atom(A->atoms, "__resultTmp");
996 resultVar->type = fun->header.type; /* XXX copy? */
997 resultVar->isTemp = GL_TRUE;
998
999 /* child[0] = __resultTmp declaration */
1000 declOper = &commaSeq->children[0];
1001 declOper->type = SLANG_OPER_VARIABLE_DECL;
1002 declOper->a_id = resultVar->a_name;
1003 declOper->locals->outer_scope = commaSeq->locals;
1004
1005 /* child[1] = function body */
1006 inlined = &commaSeq->children[1];
1007 inlined->locals->outer_scope = commaSeq->locals;
1008
1009 /* child[2] = __resultTmp reference */
1010 returnOper = &commaSeq->children[2];
1011 returnOper->type = SLANG_OPER_IDENTIFIER;
1012 returnOper->a_id = resultVar->a_name;
1013 returnOper->locals->outer_scope = commaSeq->locals;
1014
1015 top = commaSeq;
1016 }
1017 else {
1018 top = inlined = slang_operation_new(1);
1019 /* XXXX this may be inappropriate!!!! */
1020 inlined->locals->outer_scope = oper->locals->outer_scope;
1021 }
1022
1023
1024 assert(inlined->locals);
1025
1026 /* Examine the parameters, look for inout/out params, look for possible
1027 * substitutions, etc:
1028 * param type behaviour
1029 * in copy actual to local
1030 * const in substitute param with actual
1031 * out copy out
1032 */
1033 substCount = 0;
1034 for (i = 0; i < totalArgs; i++) {
1035 slang_variable *p = fun->parameters->variables[i];
1036 /*
1037 printf("Param %d: %s %s \n", i,
1038 slang_type_qual_string(p->type.qualifier),
1039 (char *) p->a_name);
1040 */
1041 if (p->type.qualifier == SLANG_QUAL_INOUT ||
1042 p->type.qualifier == SLANG_QUAL_OUT) {
1043 /* an output param */
1044 slang_operation *arg;
1045 if (i < numArgs)
1046 arg = &args[i];
1047 else
1048 arg = returnOper;
1049 paramMode[i] = SUBST;
1050
1051 if (arg->type == SLANG_OPER_IDENTIFIER)
1052 slang_resolve_variable(arg);
1053
1054 /* replace parameter 'p' with argument 'arg' */
1055 substOld[substCount] = p;
1056 substNew[substCount] = arg; /* will get copied */
1057 substCount++;
1058 }
1059 else if (p->type.qualifier == SLANG_QUAL_CONST) {
1060 /* a constant input param */
1061 if (args[i].type == SLANG_OPER_IDENTIFIER ||
1062 args[i].type == SLANG_OPER_LITERAL_FLOAT) {
1063 /* replace all occurances of this parameter variable with the
1064 * actual argument variable or a literal.
1065 */
1066 paramMode[i] = SUBST;
1067 slang_resolve_variable(&args[i]);
1068 substOld[substCount] = p;
1069 substNew[substCount] = &args[i]; /* will get copied */
1070 substCount++;
1071 }
1072 else {
1073 paramMode[i] = COPY_IN;
1074 }
1075 }
1076 else {
1077 paramMode[i] = COPY_IN;
1078 }
1079 assert(paramMode[i]);
1080 }
1081
1082 /* actual code inlining: */
1083 slang_operation_copy(inlined, fun->body);
1084
1085 /*** XXX review this */
1086 assert(inlined->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE);
1087 inlined->type = SLANG_OPER_BLOCK_NEW_SCOPE;
1088
1089 #if 0
1090 printf("======================= orig body code ======================\n");
1091 printf("=== params scope = %p\n", (void*) fun->parameters);
1092 slang_print_tree(fun->body, 8);
1093 printf("======================= copied code =========================\n");
1094 slang_print_tree(inlined, 8);
1095 #endif
1096
1097 /* do parameter substitution in inlined code: */
1098 slang_substitute(A, inlined, substCount, substOld, substNew, GL_FALSE);
1099
1100 #if 0
1101 printf("======================= subst code ==========================\n");
1102 slang_print_tree(inlined, 8);
1103 printf("=============================================================\n");
1104 #endif
1105
1106 /* New prolog statements: (inserted before the inlined code)
1107 * Copy the 'in' arguments.
1108 */
1109 numCopyIn = 0;
1110 for (i = 0; i < numArgs; i++) {
1111 if (paramMode[i] == COPY_IN) {
1112 slang_variable *p = fun->parameters->variables[i];
1113 /* declare parameter 'p' */
1114 slang_operation *decl = slang_operation_insert(&inlined->num_children,
1115 &inlined->children,
1116 numCopyIn);
1117 /*
1118 printf("COPY_IN %s from expr\n", (char*)p->a_name);
1119 */
1120 decl->type = SLANG_OPER_VARIABLE_DECL;
1121 assert(decl->locals);
1122 decl->locals->outer_scope = inlined->locals;
1123 decl->a_id = p->a_name;
1124 decl->num_children = 1;
1125 decl->children = slang_operation_new(1);
1126
1127 /* child[0] is the var's initializer */
1128 slang_operation_copy(&decl->children[0], args + i);
1129
1130 numCopyIn++;
1131 }
1132 }
1133
1134 /* New epilog statements:
1135 * 1. Create end of function label to jump to from return statements.
1136 * 2. Copy the 'out' parameter vars
1137 */
1138 {
1139 slang_operation *lab = slang_operation_insert(&inlined->num_children,
1140 &inlined->children,
1141 inlined->num_children);
1142 lab->type = SLANG_OPER_LABEL;
1143 lab->label = A->curFuncEndLabel;
1144 }
1145
1146 for (i = 0; i < totalArgs; i++) {
1147 if (paramMode[i] == COPY_OUT) {
1148 const slang_variable *p = fun->parameters->variables[i];
1149 /* actualCallVar = outParam */
1150 /*if (i > 0 || !haveRetValue)*/
1151 slang_operation *ass = slang_operation_insert(&inlined->num_children,
1152 &inlined->children,
1153 inlined->num_children);
1154 ass->type = SLANG_OPER_ASSIGN;
1155 ass->num_children = 2;
1156 ass->locals->outer_scope = inlined->locals;
1157 ass->children = slang_operation_new(2);
1158 ass->children[0] = args[i]; /*XXX copy */
1159 ass->children[1].type = SLANG_OPER_IDENTIFIER;
1160 ass->children[1].a_id = p->a_name;
1161 ass->children[1].locals->outer_scope = ass->locals;
1162 }
1163 }
1164
1165 _slang_free(paramMode);
1166 _slang_free(substOld);
1167 _slang_free(substNew);
1168
1169 #if 0
1170 printf("Done Inline call to %s (total vars=%d nparams=%d)\n",
1171 (char *) fun->header.a_name,
1172 fun->parameters->num_variables, numArgs);
1173 slang_print_tree(top, 0);
1174 #endif
1175
1176 /* pop */
1177 A->CurFunction = prevFunction;
1178
1179 return top;
1180 }
1181
1182
1183 static slang_ir_node *
1184 _slang_gen_function_call(slang_assemble_ctx *A, slang_function *fun,
1185 slang_operation *oper, slang_operation *dest)
1186 {
1187 slang_ir_node *n;
1188 slang_operation *inlined;
1189 slang_label *prevFuncEndLabel;
1190 char name[200];
1191
1192 prevFuncEndLabel = A->curFuncEndLabel;
1193 sprintf(name, "__endOfFunc_%s_", (char *) fun->header.a_name);
1194 A->curFuncEndLabel = _slang_label_new(name);
1195 assert(A->curFuncEndLabel);
1196
1197 if (slang_is_asm_function(fun) && !dest) {
1198 /* assemble assembly function - tree style */
1199 inlined = slang_inline_asm_function(A, fun, oper);
1200 }
1201 else {
1202 /* non-assembly function */
1203 inlined = slang_inline_function_call(A, fun, oper, dest);
1204 if (inlined && _slang_find_node_type(inlined, SLANG_OPER_RETURN)) {
1205 slang_operation *callOper;
1206 /* The function we're calling has one or more 'return' statements.
1207 * So, we can't truly inline this function because we need to
1208 * implement 'return' with RET (and CAL).
1209 * Nevertheless, we performed "inlining" to make a new instance
1210 * of the function body to deal with static register allocation.
1211 *
1212 * XXX check if there's one 'return' and if it's the very last
1213 * statement in the function - we can optimize that case.
1214 */
1215 assert(inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
1216 inlined->type == SLANG_OPER_SEQUENCE);
1217 if (_slang_function_has_return_value(fun) && !dest) {
1218 assert(inlined->children[0].type == SLANG_OPER_VARIABLE_DECL);
1219 assert(inlined->children[2].type == SLANG_OPER_IDENTIFIER);
1220 callOper = &inlined->children[1];
1221 }
1222 else {
1223 callOper = inlined;
1224 }
1225 callOper->type = SLANG_OPER_INLINED_CALL;
1226 callOper->fun = fun;
1227 callOper->label = _slang_label_new_unique((char*) fun->header.a_name);
1228 }
1229 }
1230
1231 if (!inlined)
1232 return NULL;
1233
1234 /* Replace the function call with the inlined block */
1235 slang_operation_destruct(oper);
1236 *oper = *inlined;
1237 _slang_free(inlined);
1238
1239 #if 0
1240 assert(inlined->locals);
1241 printf("*** Inlined code for call to %s:\n",
1242 (char*) fun->header.a_name);
1243 slang_print_tree(oper, 10);
1244 printf("\n");
1245 #endif
1246
1247 n = _slang_gen_operation(A, oper);
1248
1249 /*_slang_label_delete(A->curFuncEndLabel);*/
1250 A->curFuncEndLabel = prevFuncEndLabel;
1251
1252 return n;
1253 }
1254
1255
1256 static slang_asm_info *
1257 slang_find_asm_info(const char *name)
1258 {
1259 GLuint i;
1260 for (i = 0; AsmInfo[i].Name; i++) {
1261 if (_mesa_strcmp(AsmInfo[i].Name, name) == 0) {
1262 return AsmInfo + i;
1263 }
1264 }
1265 return NULL;
1266 }
1267
1268
1269 static GLuint
1270 make_writemask(const char *field)
1271 {
1272 GLuint mask = 0x0;
1273 while (*field) {
1274 switch (*field) {
1275 case 'x':
1276 case 's':
1277 case 'r':
1278 mask |= WRITEMASK_X;
1279 break;
1280 case 'y':
1281 case 't':
1282 case 'g':
1283 mask |= WRITEMASK_Y;
1284 break;
1285 case 'z':
1286 case 'p':
1287 case 'b':
1288 mask |= WRITEMASK_Z;
1289 break;
1290 case 'w':
1291 case 'q':
1292 case 'a':
1293 mask |= WRITEMASK_W;
1294 break;
1295 default:
1296 _mesa_problem(NULL, "invalid writemask in make_writemask()");
1297 return 0;
1298 }
1299 field++;
1300 }
1301 if (mask == 0x0)
1302 return WRITEMASK_XYZW;
1303 else
1304 return mask;
1305 }
1306
1307
1308 /**
1309 * Generate IR tree for an asm instruction/operation such as:
1310 * __asm vec4_dot __retVal.x, v1, v2;
1311 */
1312 static slang_ir_node *
1313 _slang_gen_asm(slang_assemble_ctx *A, slang_operation *oper,
1314 slang_operation *dest)
1315 {
1316 const slang_asm_info *info;
1317 slang_ir_node *kids[3], *n;
1318 GLuint j, firstOperand;
1319
1320 assert(oper->type == SLANG_OPER_ASM);
1321
1322 info = slang_find_asm_info((char *) oper->a_id);
1323 if (!info) {
1324 _mesa_problem(NULL, "undefined __asm function %s\n",
1325 (char *) oper->a_id);
1326 assert(info);
1327 }
1328 assert(info->NumParams <= 3);
1329
1330 if (info->NumParams == oper->num_children) {
1331 /* Storage for result is not specified.
1332 * Children[0], [1] are the operands.
1333 */
1334 firstOperand = 0;
1335 }
1336 else {
1337 /* Storage for result (child[0]) is specified.
1338 * Children[1], [2] are the operands.
1339 */
1340 firstOperand = 1;
1341 }
1342
1343 /* assemble child(ren) */
1344 kids[0] = kids[1] = kids[2] = NULL;
1345 for (j = 0; j < info->NumParams; j++) {
1346 kids[j] = _slang_gen_operation(A, &oper->children[firstOperand + j]);
1347 if (!kids[j])
1348 return NULL;
1349 }
1350
1351 n = new_node3(info->Opcode, kids[0], kids[1], kids[2]);
1352
1353 if (firstOperand) {
1354 /* Setup n->Store to be a particular location. Otherwise, storage
1355 * for the result (a temporary) will be allocated later.
1356 */
1357 GLuint writemask = WRITEMASK_XYZW;
1358 slang_operation *dest_oper;
1359 slang_ir_node *n0;
1360
1361 dest_oper = &oper->children[0];
1362 while (dest_oper->type == SLANG_OPER_FIELD) {
1363 /* writemask */
1364 writemask &= make_writemask((char*) dest_oper->a_id);
1365 dest_oper = &dest_oper->children[0];
1366 }
1367
1368 n0 = _slang_gen_operation(A, dest_oper);
1369 assert(n0->Var);
1370 assert(n0->Store);
1371 assert(!n->Store);
1372 n->Store = n0->Store;
1373 n->Writemask = writemask;
1374
1375 _slang_free(n0);
1376 }
1377
1378 return n;
1379 }
1380
1381
1382 static void
1383 print_funcs(struct slang_function_scope_ *scope, const char *name)
1384 {
1385 GLuint i;
1386 for (i = 0; i < scope->num_functions; i++) {
1387 slang_function *f = &scope->functions[i];
1388 if (!name || strcmp(name, (char*) f->header.a_name) == 0)
1389 printf(" %s (%d args)\n", name, f->param_count);
1390
1391 }
1392 if (scope->outer_scope)
1393 print_funcs(scope->outer_scope, name);
1394 }
1395
1396
1397 /**
1398 * Return first function in the scope that has the given name.
1399 * This is the function we'll try to call when there is no exact match
1400 * between function parameters and call arguments.
1401 *
1402 * XXX we should really create a list of candidate functions and try
1403 * all of them...
1404 */
1405 static slang_function *
1406 _slang_first_function(struct slang_function_scope_ *scope, const char *name)
1407 {
1408 GLuint i;
1409 for (i = 0; i < scope->num_functions; i++) {
1410 slang_function *f = &scope->functions[i];
1411 if (strcmp(name, (char*) f->header.a_name) == 0)
1412 return f;
1413 }
1414 if (scope->outer_scope)
1415 return _slang_first_function(scope->outer_scope, name);
1416 return NULL;
1417 }
1418
1419
1420
1421 /**
1422 * Assemble a function call, given a particular function name.
1423 * \param name the function's name (operators like '*' are possible).
1424 */
1425 static slang_ir_node *
1426 _slang_gen_function_call_name(slang_assemble_ctx *A, const char *name,
1427 slang_operation *oper, slang_operation *dest)
1428 {
1429 slang_operation *params = oper->children;
1430 const GLuint param_count = oper->num_children;
1431 slang_atom atom;
1432 slang_function *fun;
1433
1434 atom = slang_atom_pool_atom(A->atoms, name);
1435 if (atom == SLANG_ATOM_NULL)
1436 return NULL;
1437
1438 /*
1439 * Use 'name' to find the function to call
1440 */
1441 fun = _slang_locate_function(A->space.funcs, atom, params, param_count,
1442 &A->space, A->atoms, A->log);
1443 if (!fun) {
1444 /* A function with exactly the right parameters/types was not found.
1445 * Try adapting the parameters.
1446 */
1447 fun = _slang_first_function(A->space.funcs, name);
1448 if (!fun || !_slang_adapt_call(oper, fun, &A->space, A->atoms, A->log)) {
1449 slang_info_log_error(A->log, "Function '%s' not found (check argument types)", name);
1450 return NULL;
1451 }
1452 assert(fun);
1453 }
1454
1455 return _slang_gen_function_call(A, fun, oper, dest);
1456 }
1457
1458
1459 static GLboolean
1460 _slang_is_constant_cond(const slang_operation *oper, GLboolean *value)
1461 {
1462 if (oper->type == SLANG_OPER_LITERAL_FLOAT ||
1463 oper->type == SLANG_OPER_LITERAL_INT ||
1464 oper->type == SLANG_OPER_LITERAL_BOOL) {
1465 if (oper->literal[0])
1466 *value = GL_TRUE;
1467 else
1468 *value = GL_FALSE;
1469 return GL_TRUE;
1470 }
1471 else if (oper->type == SLANG_OPER_EXPRESSION &&
1472 oper->num_children == 1) {
1473 return _slang_is_constant_cond(&oper->children[0], value);
1474 }
1475 return GL_FALSE;
1476 }
1477
1478
1479 /**
1480 * Test if an operation is a scalar or boolean.
1481 */
1482 static GLboolean
1483 _slang_is_scalar_or_boolean(slang_assemble_ctx *A, slang_operation *oper)
1484 {
1485 slang_typeinfo type;
1486 GLint size;
1487
1488 slang_typeinfo_construct(&type);
1489 _slang_typeof_operation(A, oper, &type);
1490 size = _slang_sizeof_type_specifier(&type.spec);
1491 slang_typeinfo_destruct(&type);
1492 return size == 1;
1493 }
1494
1495
1496 /**
1497 * Generate loop code using high-level IR_LOOP instruction
1498 */
1499 static slang_ir_node *
1500 _slang_gen_while(slang_assemble_ctx * A, const slang_operation *oper)
1501 {
1502 /*
1503 * LOOP:
1504 * BREAK if !expr (child[0])
1505 * body code (child[1])
1506 */
1507 slang_ir_node *prevLoop, *loop, *breakIf, *body;
1508 GLboolean isConst, constTrue;
1509
1510 /* type-check expression */
1511 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
1512 slang_info_log_error(A->log, "scalar/boolean expression expected for 'while'");
1513 return NULL;
1514 }
1515
1516 /* Check if loop condition is a constant */
1517 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
1518
1519 if (isConst && !constTrue) {
1520 /* loop is never executed! */
1521 return new_node0(IR_NOP);
1522 }
1523
1524 loop = new_loop(NULL);
1525
1526 /* save old, push new loop */
1527 prevLoop = A->CurLoop;
1528 A->CurLoop = loop;
1529
1530 if (isConst && constTrue) {
1531 /* while(nonzero constant), no conditional break */
1532 breakIf = NULL;
1533 }
1534 else {
1535 slang_ir_node *cond
1536 = new_cond(new_not(_slang_gen_operation(A, &oper->children[0])));
1537 breakIf = new_break_if_true(A->CurLoop, cond);
1538 }
1539 body = _slang_gen_operation(A, &oper->children[1]);
1540 loop->Children[0] = new_seq(breakIf, body);
1541
1542 /* Do infinite loop detection */
1543 /* loop->List is head of linked list of break/continue nodes */
1544 if (!loop->List && isConst && constTrue) {
1545 /* infinite loop detected */
1546 A->CurLoop = prevLoop; /* clean-up */
1547 slang_info_log_error(A->log, "Infinite loop detected!");
1548 return NULL;
1549 }
1550
1551 /* pop loop, restore prev */
1552 A->CurLoop = prevLoop;
1553
1554 return loop;
1555 }
1556
1557
1558 /**
1559 * Generate IR tree for a do-while loop using high-level LOOP, IF instructions.
1560 */
1561 static slang_ir_node *
1562 _slang_gen_do(slang_assemble_ctx * A, const slang_operation *oper)
1563 {
1564 /*
1565 * LOOP:
1566 * body code (child[0])
1567 * tail code:
1568 * BREAK if !expr (child[1])
1569 */
1570 slang_ir_node *prevLoop, *loop;
1571 GLboolean isConst, constTrue;
1572
1573 /* type-check expression */
1574 if (!_slang_is_scalar_or_boolean(A, &oper->children[1])) {
1575 slang_info_log_error(A->log, "scalar/boolean expression expected for 'do/while'");
1576 return NULL;
1577 }
1578
1579 loop = new_loop(NULL);
1580
1581 /* save old, push new loop */
1582 prevLoop = A->CurLoop;
1583 A->CurLoop = loop;
1584
1585 /* loop body: */
1586 loop->Children[0] = _slang_gen_operation(A, &oper->children[0]);
1587
1588 /* Check if loop condition is a constant */
1589 isConst = _slang_is_constant_cond(&oper->children[1], &constTrue);
1590 if (isConst && constTrue) {
1591 /* do { } while(1) ==> no conditional break */
1592 loop->Children[1] = NULL; /* no tail code */
1593 }
1594 else {
1595 slang_ir_node *cond
1596 = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
1597 loop->Children[1] = new_break_if_true(A->CurLoop, cond);
1598 }
1599
1600 /* XXX we should do infinite loop detection, as above */
1601
1602 /* pop loop, restore prev */
1603 A->CurLoop = prevLoop;
1604
1605 return loop;
1606 }
1607
1608
1609 /**
1610 * Generate for-loop using high-level IR_LOOP instruction.
1611 */
1612 static slang_ir_node *
1613 _slang_gen_for(slang_assemble_ctx * A, const slang_operation *oper)
1614 {
1615 /*
1616 * init code (child[0])
1617 * LOOP:
1618 * BREAK if !expr (child[1])
1619 * body code (child[3])
1620 * tail code:
1621 * incr code (child[2]) // XXX continue here
1622 */
1623 slang_ir_node *prevLoop, *loop, *cond, *breakIf, *body, *init, *incr;
1624
1625 init = _slang_gen_operation(A, &oper->children[0]);
1626 loop = new_loop(NULL);
1627
1628 /* save old, push new loop */
1629 prevLoop = A->CurLoop;
1630 A->CurLoop = loop;
1631
1632 cond = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
1633 breakIf = new_break_if_true(A->CurLoop, cond);
1634 body = _slang_gen_operation(A, &oper->children[3]);
1635 incr = _slang_gen_operation(A, &oper->children[2]);
1636
1637 loop->Children[0] = new_seq(breakIf, body);
1638 loop->Children[1] = incr; /* tail code */
1639
1640 /* pop loop, restore prev */
1641 A->CurLoop = prevLoop;
1642
1643 return new_seq(init, loop);
1644 }
1645
1646
1647 static slang_ir_node *
1648 _slang_gen_continue(slang_assemble_ctx * A, const slang_operation *oper)
1649 {
1650 slang_ir_node *n, *loopNode;
1651 assert(oper->type == SLANG_OPER_CONTINUE);
1652 loopNode = A->CurLoop;
1653 assert(loopNode);
1654 assert(loopNode->Opcode == IR_LOOP);
1655 n = new_node0(IR_CONT);
1656 if (n) {
1657 n->Parent = loopNode;
1658 /* insert this node at head of linked list */
1659 n->List = loopNode->List;
1660 loopNode->List = n;
1661 }
1662 return n;
1663 }
1664
1665
1666 /**
1667 * Determine if the given operation is of a specific type.
1668 */
1669 static GLboolean
1670 is_operation_type(const slang_operation *oper, slang_operation_type type)
1671 {
1672 if (oper->type == type)
1673 return GL_TRUE;
1674 else if ((oper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
1675 oper->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) &&
1676 oper->num_children == 1)
1677 return is_operation_type(&oper->children[0], type);
1678 else
1679 return GL_FALSE;
1680 }
1681
1682
1683 /**
1684 * Generate IR tree for an if/then/else conditional using high-level
1685 * IR_IF instruction.
1686 */
1687 static slang_ir_node *
1688 _slang_gen_if(slang_assemble_ctx * A, const slang_operation *oper)
1689 {
1690 /*
1691 * eval expr (child[0])
1692 * IF expr THEN
1693 * if-body code
1694 * ELSE
1695 * else-body code
1696 * ENDIF
1697 */
1698 const GLboolean haveElseClause = !_slang_is_noop(&oper->children[2]);
1699 slang_ir_node *ifNode, *cond, *ifBody, *elseBody;
1700 GLboolean isConst, constTrue;
1701
1702 /* type-check expression */
1703 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
1704 slang_info_log_error(A->log, "scalar/boolean expression expected for 'if'");
1705 return NULL;
1706 }
1707
1708 isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
1709 if (isConst) {
1710 if (constTrue) {
1711 /* if (true) ... */
1712 return _slang_gen_operation(A, &oper->children[1]);
1713 }
1714 else {
1715 /* if (false) ... */
1716 return _slang_gen_operation(A, &oper->children[2]);
1717 }
1718 }
1719
1720 cond = _slang_gen_operation(A, &oper->children[0]);
1721 cond = new_cond(cond);
1722
1723 if (is_operation_type(&oper->children[1], SLANG_OPER_BREAK)) {
1724 /* Special case: generate a conditional break */
1725 ifBody = new_break_if_true(A->CurLoop, cond);
1726 if (haveElseClause) {
1727 elseBody = _slang_gen_operation(A, &oper->children[2]);
1728 return new_seq(ifBody, elseBody);
1729 }
1730 return ifBody;
1731 }
1732 else if (is_operation_type(&oper->children[1], SLANG_OPER_CONTINUE)) {
1733 /* Special case: generate a conditional break */
1734 ifBody = new_cont_if_true(A->CurLoop, cond);
1735 if (haveElseClause) {
1736 elseBody = _slang_gen_operation(A, &oper->children[2]);
1737 return new_seq(ifBody, elseBody);
1738 }
1739 return ifBody;
1740 }
1741 else {
1742 /* general case */
1743 ifBody = _slang_gen_operation(A, &oper->children[1]);
1744 if (haveElseClause)
1745 elseBody = _slang_gen_operation(A, &oper->children[2]);
1746 else
1747 elseBody = NULL;
1748 ifNode = new_if(cond, ifBody, elseBody);
1749 return ifNode;
1750 }
1751 }
1752
1753
1754
1755 static slang_ir_node *
1756 _slang_gen_not(slang_assemble_ctx * A, const slang_operation *oper)
1757 {
1758 slang_ir_node *n;
1759
1760 assert(oper->type == SLANG_OPER_NOT);
1761
1762 /* type-check expression */
1763 if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
1764 slang_info_log_error(A->log,
1765 "scalar/boolean expression expected for '!'");
1766 return NULL;
1767 }
1768
1769 n = _slang_gen_operation(A, &oper->children[0]);
1770 if (n)
1771 return new_not(n);
1772 else
1773 return NULL;
1774 }
1775
1776
1777 static slang_ir_node *
1778 _slang_gen_xor(slang_assemble_ctx * A, const slang_operation *oper)
1779 {
1780 slang_ir_node *n1, *n2;
1781
1782 assert(oper->type == SLANG_OPER_LOGICALXOR);
1783
1784 if (!_slang_is_scalar_or_boolean(A, &oper->children[0]) ||
1785 !_slang_is_scalar_or_boolean(A, &oper->children[0])) {
1786 slang_info_log_error(A->log,
1787 "scalar/boolean expressions expected for '^^'");
1788 return NULL;
1789 }
1790
1791 n1 = _slang_gen_operation(A, &oper->children[0]);
1792 if (!n1)
1793 return NULL;
1794 n2 = _slang_gen_operation(A, &oper->children[1]);
1795 if (!n2)
1796 return NULL;
1797 return new_node2(IR_NOTEQUAL, n1, n2);
1798 }
1799
1800
1801 /**
1802 * Generate IR node for storage of a temporary of given size.
1803 */
1804 static slang_ir_node *
1805 _slang_gen_temporary(GLint size)
1806 {
1807 slang_ir_storage *store;
1808 slang_ir_node *n = NULL;
1809
1810 store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, size);
1811 if (store) {
1812 n = new_node0(IR_VAR_DECL);
1813 if (n) {
1814 n->Store = store;
1815 }
1816 else {
1817 _slang_free(store);
1818 }
1819 }
1820 return n;
1821 }
1822
1823
1824 /**
1825 * Generate IR node for allocating/declaring a variable.
1826 */
1827 static slang_ir_node *
1828 _slang_gen_var_decl(slang_assemble_ctx *A, slang_variable *var)
1829 {
1830 slang_ir_node *n;
1831 assert(!is_sampler_type(&var->type));
1832 n = new_node0(IR_VAR_DECL);
1833 if (n) {
1834 _slang_attach_storage(n, var);
1835
1836 assert(var->aux);
1837 assert(n->Store == var->aux);
1838 assert(n->Store);
1839 assert(n->Store->Index < 0);
1840
1841 n->Store->File = PROGRAM_TEMPORARY;
1842 n->Store->Size = _slang_sizeof_type_specifier(&n->Var->type.specifier);
1843 assert(n->Store->Size > 0);
1844 }
1845 return n;
1846 }
1847
1848
1849 /**
1850 * Generate code for a selection expression: b ? x : y
1851 * XXX In some cases we could implement a selection expression
1852 * with an LRP instruction (use the boolean as the interpolant).
1853 * Otherwise, we use an IF/ELSE/ENDIF construct.
1854 */
1855 static slang_ir_node *
1856 _slang_gen_select(slang_assemble_ctx *A, slang_operation *oper)
1857 {
1858 slang_ir_node *cond, *ifNode, *trueExpr, *falseExpr, *trueNode, *falseNode;
1859 slang_ir_node *tmpDecl, *tmpVar, *tree;
1860 slang_typeinfo type;
1861 int size;
1862
1863 assert(oper->type == SLANG_OPER_SELECT);
1864 assert(oper->num_children == 3);
1865
1866 /* size of x or y's type */
1867 slang_typeinfo_construct(&type);
1868 _slang_typeof_operation(A, &oper->children[1], &type);
1869 size = _slang_sizeof_type_specifier(&type.spec);
1870 assert(size > 0);
1871
1872 /* temporary var */
1873 tmpDecl = _slang_gen_temporary(size);
1874
1875 /* the condition (child 0) */
1876 cond = _slang_gen_operation(A, &oper->children[0]);
1877 cond = new_cond(cond);
1878
1879 /* if-true body (child 1) */
1880 tmpVar = new_node0(IR_VAR);
1881 tmpVar->Store = tmpDecl->Store;
1882 trueExpr = _slang_gen_operation(A, &oper->children[1]);
1883 trueNode = new_node2(IR_MOVE, tmpVar, trueExpr);
1884
1885 /* if-false body (child 2) */
1886 tmpVar = new_node0(IR_VAR);
1887 tmpVar->Store = tmpDecl->Store;
1888 falseExpr = _slang_gen_operation(A, &oper->children[2]);
1889 falseNode = new_node2(IR_MOVE, tmpVar, falseExpr);
1890
1891 ifNode = new_if(cond, trueNode, falseNode);
1892
1893 /* tmp var value */
1894 tmpVar = new_node0(IR_VAR);
1895 tmpVar->Store = tmpDecl->Store;
1896
1897 tree = new_seq(ifNode, tmpVar);
1898 tree = new_seq(tmpDecl, tree);
1899
1900 /*_slang_print_ir_tree(tree, 10);*/
1901 return tree;
1902 }
1903
1904
1905 /**
1906 * Generate code for &&.
1907 */
1908 static slang_ir_node *
1909 _slang_gen_logical_and(slang_assemble_ctx *A, slang_operation *oper)
1910 {
1911 /* rewrite "a && b" as "a ? b : false" */
1912 slang_operation *select;
1913 slang_ir_node *n;
1914
1915 select = slang_operation_new(1);
1916 select->type = SLANG_OPER_SELECT;
1917 select->num_children = 3;
1918 select->children = slang_operation_new(3);
1919
1920 slang_operation_copy(&select->children[0], &oper->children[0]);
1921 slang_operation_copy(&select->children[1], &oper->children[1]);
1922 select->children[2].type = SLANG_OPER_LITERAL_BOOL;
1923 ASSIGN_4V(select->children[2].literal, 0, 0, 0, 0); /* false */
1924 select->children[2].literal_size = 1;
1925
1926 n = _slang_gen_select(A, select);
1927 return n;
1928 }
1929
1930
1931 /**
1932 * Generate code for ||.
1933 */
1934 static slang_ir_node *
1935 _slang_gen_logical_or(slang_assemble_ctx *A, slang_operation *oper)
1936 {
1937 /* rewrite "a || b" as "a ? true : b" */
1938 slang_operation *select;
1939 slang_ir_node *n;
1940
1941 select = slang_operation_new(1);
1942 select->type = SLANG_OPER_SELECT;
1943 select->num_children = 3;
1944 select->children = slang_operation_new(3);
1945
1946 slang_operation_copy(&select->children[0], &oper->children[0]);
1947 select->children[1].type = SLANG_OPER_LITERAL_BOOL;
1948 ASSIGN_4V(select->children[1].literal, 1, 1, 1, 1); /* true */
1949 select->children[1].literal_size = 1;
1950 slang_operation_copy(&select->children[2], &oper->children[1]);
1951
1952 n = _slang_gen_select(A, select);
1953 return n;
1954 }
1955
1956
1957 /**
1958 * Generate IR tree for a return statement.
1959 */
1960 static slang_ir_node *
1961 _slang_gen_return(slang_assemble_ctx * A, slang_operation *oper)
1962 {
1963 const GLboolean haveReturnValue
1964 = (oper->num_children == 1 && oper->children[0].type != SLANG_OPER_VOID);
1965
1966 /* error checking */
1967 assert(A->CurFunction);
1968 if (haveReturnValue &&
1969 A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
1970 slang_info_log_error(A->log, "illegal return expression");
1971 return NULL;
1972 }
1973 else if (!haveReturnValue &&
1974 A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
1975 slang_info_log_error(A->log, "return statement requires an expression");
1976 return NULL;
1977 }
1978
1979 if (!haveReturnValue) {
1980 return new_return(A->curFuncEndLabel);
1981 }
1982 else {
1983 /*
1984 * Convert from:
1985 * return expr;
1986 * To:
1987 * __retVal = expr;
1988 * return; // goto __endOfFunction
1989 */
1990 slang_operation *assign;
1991 slang_atom a_retVal;
1992 slang_ir_node *n;
1993
1994 a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
1995 assert(a_retVal);
1996
1997 #if 1 /* DEBUG */
1998 {
1999 slang_variable *v
2000 = _slang_locate_variable(oper->locals, a_retVal, GL_TRUE);
2001 if (!v) {
2002 /* trying to return a value in a void-valued function */
2003 return NULL;
2004 }
2005 }
2006 #endif
2007
2008 assign = slang_operation_new(1);
2009 assign->type = SLANG_OPER_ASSIGN;
2010 assign->num_children = 2;
2011 assign->children = slang_operation_new(2);
2012 /* lhs (__retVal) */
2013 assign->children[0].type = SLANG_OPER_IDENTIFIER;
2014 assign->children[0].a_id = a_retVal;
2015 assign->children[0].locals->outer_scope = assign->locals;
2016 /* rhs (expr) */
2017 /* XXX we might be able to avoid this copy someday */
2018 slang_operation_copy(&assign->children[1], &oper->children[0]);
2019
2020 /* assemble the new code */
2021 n = new_seq(_slang_gen_operation(A, assign),
2022 new_return(A->curFuncEndLabel));
2023
2024 slang_operation_delete(assign);
2025 return n;
2026 }
2027 }
2028
2029
2030 /**
2031 * Generate IR tree for a variable declaration.
2032 */
2033 static slang_ir_node *
2034 _slang_gen_declaration(slang_assemble_ctx *A, slang_operation *oper)
2035 {
2036 slang_ir_node *n;
2037 slang_ir_node *varDecl;
2038 slang_variable *v;
2039 const char *varName = (char *) oper->a_id;
2040
2041 assert(oper->num_children == 0 || oper->num_children == 1);
2042
2043 v = _slang_locate_variable(oper->locals, oper->a_id, GL_TRUE);
2044 assert(v);
2045
2046 varDecl = _slang_gen_var_decl(A, v);
2047
2048 if (oper->num_children > 0) {
2049 /* child is initializer */
2050 slang_ir_node *var, *init, *rhs;
2051 assert(oper->num_children == 1);
2052 var = new_var(A, oper, oper->a_id);
2053 if (!var) {
2054 slang_info_log_error(A->log, "undefined variable '%s'", varName);
2055 return NULL;
2056 }
2057 /* XXX make copy of this initializer? */
2058 rhs = _slang_gen_operation(A, &oper->children[0]);
2059 assert(rhs);
2060 init = new_node2(IR_MOVE, var, rhs);
2061 /*assert(rhs->Opcode != IR_SEQ);*/
2062 n = new_seq(varDecl, init);
2063 }
2064 else if (v->initializer) {
2065 slang_ir_node *var, *init, *rhs;
2066 var = new_var(A, oper, oper->a_id);
2067 if (!var) {
2068 slang_info_log_error(A->log, "undefined variable '%s'", varName);
2069 return NULL;
2070 }
2071 #if 0
2072 /* XXX make copy of this initializer? */
2073 {
2074 slang_operation dup;
2075 slang_operation_construct(&dup);
2076 slang_operation_copy(&dup, v->initializer);
2077 _slang_simplify(&dup, &A->space, A->atoms);
2078 rhs = _slang_gen_operation(A, &dup);
2079 }
2080 #else
2081 _slang_simplify(v->initializer, &A->space, A->atoms);
2082 rhs = _slang_gen_operation(A, v->initializer);
2083 #endif
2084 if (!rhs)
2085 return NULL;
2086
2087 assert(rhs);
2088 init = new_node2(IR_MOVE, var, rhs);
2089 /*
2090 assert(rhs->Opcode != IR_SEQ);
2091 */
2092 n = new_seq(varDecl, init);
2093 }
2094 else {
2095 n = varDecl;
2096 }
2097 return n;
2098 }
2099
2100
2101 /**
2102 * Generate IR tree for a variable (such as in an expression).
2103 */
2104 static slang_ir_node *
2105 _slang_gen_variable(slang_assemble_ctx * A, slang_operation *oper)
2106 {
2107 /* If there's a variable associated with this oper (from inlining)
2108 * use it. Otherwise, use the oper's var id.
2109 */
2110 slang_atom aVar = oper->var ? oper->var->a_name : oper->a_id;
2111 slang_ir_node *n = new_var(A, oper, aVar);
2112 if (!n) {
2113 slang_info_log_error(A->log, "undefined variable '%s'", (char *) aVar);
2114 return NULL;
2115 }
2116 return n;
2117 }
2118
2119
2120 /**
2121 * Some write-masked assignments are simple, but others are hard.
2122 * Simple example:
2123 * vec3 v;
2124 * v.xy = vec2(a, b);
2125 * Hard example:
2126 * vec3 v;
2127 * v.zy = vec2(a, b);
2128 * this gets transformed/swizzled into:
2129 * v.zy = vec2(a, b).*yx* (* = don't care)
2130 * This function helps to determine simple vs. non-simple.
2131 */
2132 static GLboolean
2133 _slang_simple_writemask(GLuint writemask, GLuint swizzle)
2134 {
2135 switch (writemask) {
2136 case WRITEMASK_X:
2137 return GET_SWZ(swizzle, 0) == SWIZZLE_X;
2138 case WRITEMASK_Y:
2139 return GET_SWZ(swizzle, 1) == SWIZZLE_Y;
2140 case WRITEMASK_Z:
2141 return GET_SWZ(swizzle, 2) == SWIZZLE_Z;
2142 case WRITEMASK_W:
2143 return GET_SWZ(swizzle, 3) == SWIZZLE_W;
2144 case WRITEMASK_XY:
2145 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
2146 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y);
2147 case WRITEMASK_XYZ:
2148 return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
2149 && (GET_SWZ(swizzle, 1) == SWIZZLE_Y)
2150 && (GET_SWZ(swizzle, 2) == SWIZZLE_Z);
2151 case WRITEMASK_XYZW:
2152 return swizzle == SWIZZLE_NOOP;
2153 default:
2154 return GL_FALSE;
2155 }
2156 }
2157
2158
2159 /**
2160 * Convert the given swizzle into a writemask. In some cases this
2161 * is trivial, in other cases, we'll need to also swizzle the right
2162 * hand side to put components in the right places.
2163 * \param swizzle the incoming swizzle
2164 * \param writemaskOut returns the writemask
2165 * \param swizzleOut swizzle to apply to the right-hand-side
2166 * \return GL_FALSE for simple writemasks, GL_TRUE for non-simple
2167 */
2168 static GLboolean
2169 swizzle_to_writemask(GLuint swizzle,
2170 GLuint *writemaskOut, GLuint *swizzleOut)
2171 {
2172 GLuint mask = 0x0, newSwizzle[4];
2173 GLint i, size;
2174
2175 /* make new dst writemask, compute size */
2176 for (i = 0; i < 4; i++) {
2177 const GLuint swz = GET_SWZ(swizzle, i);
2178 if (swz == SWIZZLE_NIL) {
2179 /* end */
2180 break;
2181 }
2182 assert(swz >= 0 && swz <= 3);
2183 mask |= (1 << swz);
2184 }
2185 assert(mask <= 0xf);
2186 size = i; /* number of components in mask/swizzle */
2187
2188 *writemaskOut = mask;
2189
2190 /* make new src swizzle, by inversion */
2191 for (i = 0; i < 4; i++) {
2192 newSwizzle[i] = i; /*identity*/
2193 }
2194 for (i = 0; i < size; i++) {
2195 const GLuint swz = GET_SWZ(swizzle, i);
2196 newSwizzle[swz] = i;
2197 }
2198 *swizzleOut = MAKE_SWIZZLE4(newSwizzle[0],
2199 newSwizzle[1],
2200 newSwizzle[2],
2201 newSwizzle[3]);
2202
2203 if (_slang_simple_writemask(mask, *swizzleOut)) {
2204 if (size >= 1)
2205 assert(GET_SWZ(*swizzleOut, 0) == SWIZZLE_X);
2206 if (size >= 2)
2207 assert(GET_SWZ(*swizzleOut, 1) == SWIZZLE_Y);
2208 if (size >= 3)
2209 assert(GET_SWZ(*swizzleOut, 2) == SWIZZLE_Z);
2210 if (size >= 4)
2211 assert(GET_SWZ(*swizzleOut, 3) == SWIZZLE_W);
2212 return GL_TRUE;
2213 }
2214 else
2215 return GL_FALSE;
2216 }
2217
2218
2219 static slang_ir_node *
2220 _slang_gen_swizzle(slang_ir_node *child, GLuint swizzle)
2221 {
2222 slang_ir_node *n = new_node1(IR_SWIZZLE, child);
2223 assert(child);
2224 if (n) {
2225 n->Store = _slang_new_ir_storage(PROGRAM_UNDEFINED, -1, -1);
2226 n->Store->Swizzle = swizzle;
2227 }
2228 return n;
2229 }
2230
2231
2232 /**
2233 * Generate IR tree for an assignment (=).
2234 */
2235 static slang_ir_node *
2236 _slang_gen_assignment(slang_assemble_ctx * A, slang_operation *oper)
2237 {
2238 if (oper->children[0].type == SLANG_OPER_IDENTIFIER) {
2239 /* Check that var is writeable */
2240 slang_variable *var
2241 = _slang_locate_variable(oper->children[0].locals,
2242 oper->children[0].a_id, GL_TRUE);
2243 if (!var) {
2244 slang_info_log_error(A->log, "undefined variable '%s'",
2245 (char *) oper->children[0].a_id);
2246 return NULL;
2247 }
2248 if (var->type.qualifier == SLANG_QUAL_CONST ||
2249 var->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
2250 var->type.qualifier == SLANG_QUAL_UNIFORM ||
2251 (var->type.qualifier == SLANG_QUAL_VARYING &&
2252 A->program->Target == GL_FRAGMENT_PROGRAM_ARB)) {
2253 slang_info_log_error(A->log,
2254 "illegal assignment to read-only variable '%s'",
2255 (char *) oper->children[0].a_id);
2256 return NULL;
2257 }
2258 }
2259
2260 if (oper->children[0].type == SLANG_OPER_IDENTIFIER &&
2261 oper->children[1].type == SLANG_OPER_CALL) {
2262 /* Special case of: x = f(a, b)
2263 * Replace with f(a, b, x) (where x == hidden __retVal out param)
2264 *
2265 * XXX this could be even more effective if we could accomodate
2266 * cases such as "v.x = f();" - would help with typical vertex
2267 * transformation.
2268 */
2269 slang_ir_node *n;
2270 n = _slang_gen_function_call_name(A,
2271 (const char *) oper->children[1].a_id,
2272 &oper->children[1], &oper->children[0]);
2273 return n;
2274 }
2275 else {
2276 slang_ir_node *n, *lhs, *rhs;
2277 lhs = _slang_gen_operation(A, &oper->children[0]);
2278
2279 if (lhs) {
2280 if (!(lhs->Store->File == PROGRAM_OUTPUT ||
2281 lhs->Store->File == PROGRAM_TEMPORARY ||
2282 (lhs->Store->File == PROGRAM_VARYING &&
2283 A->program->Target == GL_VERTEX_PROGRAM_ARB) ||
2284 lhs->Store->File == PROGRAM_UNDEFINED)) {
2285 slang_info_log_error(A->log,
2286 "illegal assignment to read-only l-value");
2287 return NULL;
2288 }
2289 }
2290
2291 rhs = _slang_gen_operation(A, &oper->children[1]);
2292 if (lhs && rhs) {
2293 /* convert lhs swizzle into writemask */
2294 GLuint writemask, newSwizzle;
2295 if (!swizzle_to_writemask(lhs->Store->Swizzle,
2296 &writemask, &newSwizzle)) {
2297 /* Non-simple writemask, need to swizzle right hand side in
2298 * order to put components into the right place.
2299 */
2300 rhs = _slang_gen_swizzle(rhs, newSwizzle);
2301 }
2302 n = new_node2(IR_MOVE, lhs, rhs);
2303 n->Writemask = writemask;
2304 return n;
2305 }
2306 else {
2307 return NULL;
2308 }
2309 }
2310 }
2311
2312
2313 /**
2314 * Generate IR tree for referencing a field in a struct (or basic vector type)
2315 */
2316 static slang_ir_node *
2317 _slang_gen_field(slang_assemble_ctx * A, slang_operation *oper)
2318 {
2319 slang_typeinfo ti;
2320
2321 /* type of struct */
2322 slang_typeinfo_construct(&ti);
2323 _slang_typeof_operation(A, &oper->children[0], &ti);
2324
2325 if (_slang_type_is_vector(ti.spec.type)) {
2326 /* the field should be a swizzle */
2327 const GLuint rows = _slang_type_dim(ti.spec.type);
2328 slang_swizzle swz;
2329 slang_ir_node *n;
2330 GLuint swizzle;
2331 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
2332 slang_info_log_error(A->log, "Bad swizzle");
2333 }
2334 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
2335 swz.swizzle[1],
2336 swz.swizzle[2],
2337 swz.swizzle[3]);
2338
2339 n = _slang_gen_operation(A, &oper->children[0]);
2340 /* create new parent node with swizzle */
2341 if (n)
2342 n = _slang_gen_swizzle(n, swizzle);
2343 return n;
2344 }
2345 else if ( ti.spec.type == SLANG_SPEC_FLOAT
2346 || ti.spec.type == SLANG_SPEC_INT) {
2347 const GLuint rows = 1;
2348 slang_swizzle swz;
2349 slang_ir_node *n;
2350 GLuint swizzle;
2351 if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
2352 slang_info_log_error(A->log, "Bad swizzle");
2353 }
2354 swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
2355 swz.swizzle[1],
2356 swz.swizzle[2],
2357 swz.swizzle[3]);
2358 n = _slang_gen_operation(A, &oper->children[0]);
2359 /* create new parent node with swizzle */
2360 n = _slang_gen_swizzle(n, swizzle);
2361 return n;
2362 }
2363 else {
2364 /* the field is a structure member (base.field) */
2365 /* oper->children[0] is the base */
2366 /* oper->a_id is the field name */
2367 slang_ir_node *base, *n;
2368 slang_typeinfo field_ti;
2369 GLint fieldSize, fieldOffset = -1;
2370 /* type of field */
2371 slang_typeinfo_construct(&field_ti);
2372 _slang_typeof_operation(A, oper, &field_ti);
2373
2374 fieldSize = _slang_sizeof_type_specifier(&field_ti.spec);
2375 if (fieldSize > 0)
2376 fieldOffset = _slang_field_offset(&ti.spec, oper->a_id);
2377
2378 if (fieldSize == 0 || fieldOffset < 0) {
2379 slang_info_log_error(A->log,
2380 "\"%s\" is not a member of struct \"%s\"",
2381 (char *) oper->a_id,
2382 (char *) ti.spec._struct->a_name);
2383 return NULL;
2384 }
2385 assert(fieldSize >= 0);
2386
2387 base = _slang_gen_operation(A, &oper->children[0]);
2388 if (!base) {
2389 /* error msg should have already been logged */
2390 return NULL;
2391 }
2392
2393 n = new_node1(IR_FIELD, base);
2394 if (n) {
2395 n->Field = (char *) oper->a_id;
2396 n->FieldOffset = fieldOffset;
2397 assert(n->FieldOffset >= 0);
2398 n->Store = _slang_new_ir_storage(base->Store->File,
2399 base->Store->Index,
2400 fieldSize);
2401 }
2402 return n;
2403
2404 #if 0
2405 _mesa_problem(NULL, "glsl structs/fields not supported yet");
2406 return NULL;
2407 #endif
2408 }
2409 }
2410
2411
2412 /**
2413 * Gen code for array indexing.
2414 */
2415 static slang_ir_node *
2416 _slang_gen_subscript(slang_assemble_ctx * A, slang_operation *oper)
2417 {
2418 slang_typeinfo array_ti;
2419
2420 /* get array's type info */
2421 slang_typeinfo_construct(&array_ti);
2422 _slang_typeof_operation(A, &oper->children[0], &array_ti);
2423
2424 if (_slang_type_is_vector(array_ti.spec.type)) {
2425 /* indexing a simple vector type: "vec4 v; v[0]=p;" */
2426 /* translate the index into a swizzle/writemask: "v.x=p" */
2427 const GLuint max = _slang_type_dim(array_ti.spec.type);
2428 GLint index;
2429 slang_ir_node *n;
2430
2431 index = (GLint) oper->children[1].literal[0];
2432 if (oper->children[1].type != SLANG_OPER_LITERAL_INT ||
2433 index >= max) {
2434 slang_info_log_error(A->log, "Invalid array index for vector type");
2435 return NULL;
2436 }
2437
2438 n = _slang_gen_operation(A, &oper->children[0]);
2439 if (n) {
2440 /* use swizzle to access the element */
2441 GLuint swizzle = MAKE_SWIZZLE4(SWIZZLE_X + index,
2442 SWIZZLE_NIL,
2443 SWIZZLE_NIL,
2444 SWIZZLE_NIL);
2445 n = _slang_gen_swizzle(n, swizzle);
2446 /*n->Store = _slang_clone_ir_storage_swz(n->Store, */
2447 n->Writemask = WRITEMASK_X << index;
2448 }
2449 return n;
2450 }
2451 else {
2452 /* conventional array */
2453 slang_typeinfo elem_ti;
2454 slang_ir_node *elem, *array, *index;
2455 GLint elemSize, arrayLen;
2456
2457 /* size of array element */
2458 slang_typeinfo_construct(&elem_ti);
2459 _slang_typeof_operation(A, oper, &elem_ti);
2460 elemSize = _slang_sizeof_type_specifier(&elem_ti.spec);
2461
2462 if (_slang_type_is_matrix(array_ti.spec.type))
2463 arrayLen = _slang_type_dim(array_ti.spec.type);
2464 else
2465 arrayLen = array_ti.array_len;
2466
2467 slang_typeinfo_destruct(&array_ti);
2468 slang_typeinfo_destruct(&elem_ti);
2469
2470 if (elemSize <= 0) {
2471 /* unknown var or type */
2472 slang_info_log_error(A->log, "Undefined variable or type");
2473 return NULL;
2474 }
2475
2476 array = _slang_gen_operation(A, &oper->children[0]);
2477 index = _slang_gen_operation(A, &oper->children[1]);
2478 if (array && index) {
2479 /* bounds check */
2480 if (index->Opcode == IR_FLOAT &&
2481 ((int) index->Value[0] < 0 ||
2482 (int) index->Value[0] >= arrayLen)) {
2483 slang_info_log_error(A->log,
2484 "Array index out of bounds (index=%d size=%d)",
2485 (int) index->Value[0], arrayLen);
2486 _slang_free_ir_tree(array);
2487 _slang_free_ir_tree(index);
2488 return NULL;
2489 }
2490
2491 elem = new_node2(IR_ELEMENT, array, index);
2492 elem->Store = _slang_new_ir_storage(array->Store->File,
2493 array->Store->Index,
2494 elemSize);
2495 /* XXX try to do some array bounds checking here */
2496 return elem;
2497 }
2498 else {
2499 _slang_free_ir_tree(array);
2500 _slang_free_ir_tree(index);
2501 return NULL;
2502 }
2503 }
2504 }
2505
2506
2507 /**
2508 * Look for expressions such as: gl_ModelviewMatrix * gl_Vertex
2509 * and replace with this: gl_Vertex * gl_ModelviewMatrixTranpose
2510 * Since matrices are stored in column-major order, the second form of
2511 * multiplication is much more efficient (just 4 dot products).
2512 */
2513 static void
2514 _slang_check_matmul_optimization(slang_assemble_ctx *A, slang_operation *oper)
2515 {
2516 static const struct {
2517 const char *orig;
2518 const char *tranpose;
2519 } matrices[] = {
2520 {"gl_ModelViewMatrix", "gl_ModelViewMatrixTranspose"},
2521 {"gl_ProjectionMatrix", "gl_ProjectionMatrixTranspose"},
2522 {"gl_ModelViewProjectionMatrix", "gl_ModelViewProjectionMatrixTranspose"},
2523 {"gl_TextureMatrix", "gl_TextureMatrixTranspose"},
2524 {"gl_NormalMatrix", "__NormalMatrixTranspose"},
2525 { NULL, NULL }
2526 };
2527
2528 assert(oper->type == SLANG_OPER_MULTIPLY);
2529 if (oper->children[0].type == SLANG_OPER_IDENTIFIER) {
2530 GLuint i;
2531 for (i = 0; matrices[i].orig; i++) {
2532 if (oper->children[0].a_id
2533 == slang_atom_pool_atom(A->atoms, matrices[i].orig)) {
2534 /*
2535 _mesa_printf("Replace %s with %s\n",
2536 matrices[i].orig, matrices[i].tranpose);
2537 */
2538 assert(oper->children[0].type == SLANG_OPER_IDENTIFIER);
2539 oper->children[0].a_id
2540 = slang_atom_pool_atom(A->atoms, matrices[i].tranpose);
2541 /* finally, swap the operands */
2542 _slang_operation_swap(&oper->children[0], &oper->children[1]);
2543 return;
2544 }
2545 }
2546 }
2547 }
2548
2549
2550 /**
2551 * Generate IR tree for a slang_operation (AST node)
2552 */
2553 static slang_ir_node *
2554 _slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper)
2555 {
2556 switch (oper->type) {
2557 case SLANG_OPER_BLOCK_NEW_SCOPE:
2558 {
2559 slang_ir_node *n;
2560
2561 _slang_push_var_table(A->vartable);
2562
2563 oper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE; /* temp change */
2564 n = _slang_gen_operation(A, oper);
2565 oper->type = SLANG_OPER_BLOCK_NEW_SCOPE; /* restore */
2566
2567 _slang_pop_var_table(A->vartable);
2568
2569 if (n)
2570 n = new_node1(IR_SCOPE, n);
2571 return n;
2572 }
2573 break;
2574
2575 case SLANG_OPER_BLOCK_NO_NEW_SCOPE:
2576 /* list of operations */
2577 if (oper->num_children > 0)
2578 {
2579 slang_ir_node *n, *tree = NULL;
2580 GLuint i;
2581
2582 for (i = 0; i < oper->num_children; i++) {
2583 n = _slang_gen_operation(A, &oper->children[i]);
2584 if (!n) {
2585 _slang_free_ir_tree(tree);
2586 return NULL; /* error must have occured */
2587 }
2588 tree = tree ? new_seq(tree, n) : n;
2589 }
2590
2591 #if 00
2592 if (oper->locals->num_variables > 0) {
2593 int i;
2594 /*
2595 printf("\n****** Deallocate vars in scope!\n");
2596 */
2597 for (i = 0; i < oper->locals->num_variables; i++) {
2598 slang_variable *v = oper->locals->variables + i;
2599 if (v->aux) {
2600 slang_ir_storage *store = (slang_ir_storage *) v->aux;
2601 /*
2602 printf(" Deallocate var %s\n", (char*) v->a_name);
2603 */
2604 assert(store->File == PROGRAM_TEMPORARY);
2605 assert(store->Index >= 0);
2606 _slang_free_temp(A->vartable, store->Index, store->Size);
2607 }
2608 }
2609 }
2610 #endif
2611 return tree;
2612 }
2613 else {
2614 return new_node0(IR_NOP);
2615 }
2616
2617 case SLANG_OPER_EXPRESSION:
2618 return _slang_gen_operation(A, &oper->children[0]);
2619
2620 case SLANG_OPER_FOR:
2621 return _slang_gen_for(A, oper);
2622 case SLANG_OPER_DO:
2623 return _slang_gen_do(A, oper);
2624 case SLANG_OPER_WHILE:
2625 return _slang_gen_while(A, oper);
2626 case SLANG_OPER_BREAK:
2627 if (!A->CurLoop) {
2628 slang_info_log_error(A->log, "'break' not in loop");
2629 return NULL;
2630 }
2631 return new_break(A->CurLoop);
2632 case SLANG_OPER_CONTINUE:
2633 if (!A->CurLoop) {
2634 slang_info_log_error(A->log, "'continue' not in loop");
2635 return NULL;
2636 }
2637 return _slang_gen_continue(A, oper);
2638 case SLANG_OPER_DISCARD:
2639 return new_node0(IR_KILL);
2640
2641 case SLANG_OPER_EQUAL:
2642 return new_node2(IR_EQUAL,
2643 _slang_gen_operation(A, &oper->children[0]),
2644 _slang_gen_operation(A, &oper->children[1]));
2645 case SLANG_OPER_NOTEQUAL:
2646 return new_node2(IR_NOTEQUAL,
2647 _slang_gen_operation(A, &oper->children[0]),
2648 _slang_gen_operation(A, &oper->children[1]));
2649 case SLANG_OPER_GREATER:
2650 return new_node2(IR_SGT,
2651 _slang_gen_operation(A, &oper->children[0]),
2652 _slang_gen_operation(A, &oper->children[1]));
2653 case SLANG_OPER_LESS:
2654 return new_node2(IR_SLT,
2655 _slang_gen_operation(A, &oper->children[0]),
2656 _slang_gen_operation(A, &oper->children[1]));
2657 case SLANG_OPER_GREATEREQUAL:
2658 return new_node2(IR_SGE,
2659 _slang_gen_operation(A, &oper->children[0]),
2660 _slang_gen_operation(A, &oper->children[1]));
2661 case SLANG_OPER_LESSEQUAL:
2662 return new_node2(IR_SLE,
2663 _slang_gen_operation(A, &oper->children[0]),
2664 _slang_gen_operation(A, &oper->children[1]));
2665 case SLANG_OPER_ADD:
2666 {
2667 slang_ir_node *n;
2668 assert(oper->num_children == 2);
2669 n = _slang_gen_function_call_name(A, "+", oper, NULL);
2670 return n;
2671 }
2672 case SLANG_OPER_SUBTRACT:
2673 {
2674 slang_ir_node *n;
2675 assert(oper->num_children == 2);
2676 n = _slang_gen_function_call_name(A, "-", oper, NULL);
2677 return n;
2678 }
2679 case SLANG_OPER_MULTIPLY:
2680 {
2681 slang_ir_node *n;
2682 assert(oper->num_children == 2);
2683 _slang_check_matmul_optimization(A, oper);
2684 n = _slang_gen_function_call_name(A, "*", oper, NULL);
2685 return n;
2686 }
2687 case SLANG_OPER_DIVIDE:
2688 {
2689 slang_ir_node *n;
2690 assert(oper->num_children == 2);
2691 n = _slang_gen_function_call_name(A, "/", oper, NULL);
2692 return n;
2693 }
2694 case SLANG_OPER_MINUS:
2695 {
2696 slang_ir_node *n;
2697 assert(oper->num_children == 1);
2698 n = _slang_gen_function_call_name(A, "-", oper, NULL);
2699 return n;
2700 }
2701 case SLANG_OPER_PLUS:
2702 /* +expr --> do nothing */
2703 return _slang_gen_operation(A, &oper->children[0]);
2704 case SLANG_OPER_VARIABLE_DECL:
2705 return _slang_gen_declaration(A, oper);
2706 case SLANG_OPER_ASSIGN:
2707 return _slang_gen_assignment(A, oper);
2708 case SLANG_OPER_ADDASSIGN:
2709 {
2710 slang_ir_node *n;
2711 assert(oper->num_children == 2);
2712 n = _slang_gen_function_call_name(A, "+=", oper, &oper->children[0]);
2713 return n;
2714 }
2715 case SLANG_OPER_SUBASSIGN:
2716 {
2717 slang_ir_node *n;
2718 assert(oper->num_children == 2);
2719 n = _slang_gen_function_call_name(A, "-=", oper, &oper->children[0]);
2720 return n;
2721 }
2722 break;
2723 case SLANG_OPER_MULASSIGN:
2724 {
2725 slang_ir_node *n;
2726 assert(oper->num_children == 2);
2727 n = _slang_gen_function_call_name(A, "*=", oper, &oper->children[0]);
2728 return n;
2729 }
2730 case SLANG_OPER_DIVASSIGN:
2731 {
2732 slang_ir_node *n;
2733 assert(oper->num_children == 2);
2734 n = _slang_gen_function_call_name(A, "/=", oper, &oper->children[0]);
2735 return n;
2736 }
2737 case SLANG_OPER_LOGICALAND:
2738 {
2739 slang_ir_node *n;
2740 assert(oper->num_children == 2);
2741 n = _slang_gen_logical_and(A, oper);
2742 return n;
2743 }
2744 case SLANG_OPER_LOGICALOR:
2745 {
2746 slang_ir_node *n;
2747 assert(oper->num_children == 2);
2748 n = _slang_gen_logical_or(A, oper);
2749 return n;
2750 }
2751 case SLANG_OPER_LOGICALXOR:
2752 return _slang_gen_xor(A, oper);
2753 case SLANG_OPER_NOT:
2754 return _slang_gen_not(A, oper);
2755 case SLANG_OPER_SELECT: /* b ? x : y */
2756 {
2757 slang_ir_node *n;
2758 assert(oper->num_children == 3);
2759 n = _slang_gen_select(A, oper);
2760 return n;
2761 }
2762
2763 case SLANG_OPER_ASM:
2764 return _slang_gen_asm(A, oper, NULL);
2765 case SLANG_OPER_CALL:
2766 return _slang_gen_function_call_name(A, (const char *) oper->a_id,
2767 oper, NULL);
2768 case SLANG_OPER_RETURN:
2769 return _slang_gen_return(A, oper);
2770 case SLANG_OPER_LABEL:
2771 return new_label(oper->label);
2772 case SLANG_OPER_IDENTIFIER:
2773 return _slang_gen_variable(A, oper);
2774 case SLANG_OPER_IF:
2775 return _slang_gen_if(A, oper);
2776 case SLANG_OPER_FIELD:
2777 return _slang_gen_field(A, oper);
2778 case SLANG_OPER_SUBSCRIPT:
2779 return _slang_gen_subscript(A, oper);
2780 case SLANG_OPER_LITERAL_FLOAT:
2781 /* fall-through */
2782 case SLANG_OPER_LITERAL_INT:
2783 /* fall-through */
2784 case SLANG_OPER_LITERAL_BOOL:
2785 return new_float_literal(oper->literal, oper->literal_size);
2786
2787 case SLANG_OPER_POSTINCREMENT: /* var++ */
2788 {
2789 slang_ir_node *n;
2790 assert(oper->num_children == 1);
2791 n = _slang_gen_function_call_name(A, "__postIncr", oper, NULL);
2792 return n;
2793 }
2794 case SLANG_OPER_POSTDECREMENT: /* var-- */
2795 {
2796 slang_ir_node *n;
2797 assert(oper->num_children == 1);
2798 n = _slang_gen_function_call_name(A, "__postDecr", oper, NULL);
2799 return n;
2800 }
2801 case SLANG_OPER_PREINCREMENT: /* ++var */
2802 {
2803 slang_ir_node *n;
2804 assert(oper->num_children == 1);
2805 n = _slang_gen_function_call_name(A, "++", oper, NULL);
2806 return n;
2807 }
2808 case SLANG_OPER_PREDECREMENT: /* --var */
2809 {
2810 slang_ir_node *n;
2811 assert(oper->num_children == 1);
2812 n = _slang_gen_function_call_name(A, "--", oper, NULL);
2813 return n;
2814 }
2815
2816 case SLANG_OPER_INLINED_CALL:
2817 case SLANG_OPER_SEQUENCE:
2818 {
2819 slang_ir_node *tree = NULL;
2820 GLuint i;
2821 for (i = 0; i < oper->num_children; i++) {
2822 slang_ir_node *n = _slang_gen_operation(A, &oper->children[i]);
2823 tree = tree ? new_seq(tree, n) : n;
2824 }
2825 if (oper->type == SLANG_OPER_INLINED_CALL) {
2826 tree = new_inlined_function_call(tree, oper->label);
2827 }
2828 return tree;
2829 }
2830
2831 case SLANG_OPER_NONE:
2832 case SLANG_OPER_VOID:
2833 /* returning NULL here would generate an error */
2834 return new_node0(IR_NOP);
2835
2836 default:
2837 _mesa_problem(NULL, "bad node type %d in _slang_gen_operation",
2838 oper->type);
2839 return new_node0(IR_NOP);
2840 }
2841
2842 return NULL;
2843 }
2844
2845
2846
2847 /**
2848 * Called by compiler when a global variable has been parsed/compiled.
2849 * Here we examine the variable's type to determine what kind of register
2850 * storage will be used.
2851 *
2852 * A uniform such as "gl_Position" will become the register specification
2853 * (PROGRAM_OUTPUT, VERT_RESULT_HPOS). Or, uniform "gl_FogFragCoord"
2854 * will be (PROGRAM_INPUT, FRAG_ATTRIB_FOGC).
2855 *
2856 * Samplers are interesting. For "uniform sampler2D tex;" we'll specify
2857 * (PROGRAM_SAMPLER, index) where index is resolved at link-time to an
2858 * actual texture unit (as specified by the user calling glUniform1i()).
2859 */
2860 GLboolean
2861 _slang_codegen_global_variable(slang_assemble_ctx *A, slang_variable *var,
2862 slang_unit_type type)
2863 {
2864 struct gl_program *prog = A->program;
2865 const char *varName = (char *) var->a_name;
2866 GLboolean success = GL_TRUE;
2867 slang_ir_storage *store = NULL;
2868 int dbg = 0;
2869 const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
2870 const GLint texIndex = sampler_to_texture_index(var->type.specifier.type);
2871
2872 if (texIndex != -1) {
2873 /* Texture sampler:
2874 * store->File = PROGRAM_SAMPLER
2875 * store->Index = sampler uniform location
2876 * store->Size = texture type index (1D, 2D, 3D, cube, etc)
2877 */
2878 GLint samplerUniform
2879 = _mesa_add_sampler(prog->Parameters, varName, datatype);
2880 store = _slang_new_ir_storage(PROGRAM_SAMPLER, samplerUniform, texIndex);
2881 if (dbg) printf("SAMPLER ");
2882 }
2883 else if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
2884 /* Uniform variable */
2885 const GLint size = _slang_sizeof_type_specifier(&var->type.specifier)
2886 * MAX2(var->array_len, 1);
2887 if (prog) {
2888 /* user-defined uniform */
2889 if (datatype == GL_NONE) {
2890 if (var->type.specifier.type == SLANG_SPEC_STRUCT) {
2891 _mesa_problem(NULL, "user-declared uniform structs not supported yet");
2892 /* XXX what we need to do is unroll the struct into its
2893 * basic types, creating a uniform variable for each.
2894 * For example:
2895 * struct foo {
2896 * vec3 a;
2897 * vec4 b;
2898 * };
2899 * uniform foo f;
2900 *
2901 * Should produce uniforms:
2902 * "f.a" (GL_FLOAT_VEC3)
2903 * "f.b" (GL_FLOAT_VEC4)
2904 */
2905 }
2906 else {
2907 slang_info_log_error(A->log,
2908 "invalid datatype for uniform variable %s",
2909 (char *) var->a_name);
2910 }
2911 return GL_FALSE;
2912 }
2913 else {
2914 GLint uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
2915 size, datatype);
2916 store = _slang_new_ir_storage(PROGRAM_UNIFORM, uniformLoc, size);
2917 }
2918 }
2919 else {
2920 /* pre-defined uniform, like gl_ModelviewMatrix */
2921 /* We know it's a uniform, but don't allocate storage unless
2922 * it's really used.
2923 */
2924 store = _slang_new_ir_storage(PROGRAM_STATE_VAR, -1, size);
2925 }
2926 if (dbg) printf("UNIFORM (sz %d) ", size);
2927 }
2928 else if (var->type.qualifier == SLANG_QUAL_VARYING) {
2929 const GLint size = 4; /* XXX fix */
2930 if (prog) {
2931 /* user-defined varying */
2932 GLint varyingLoc = _mesa_add_varying(prog->Varying, varName, size);
2933 store = _slang_new_ir_storage(PROGRAM_VARYING, varyingLoc, size);
2934 }
2935 else {
2936 /* pre-defined varying, like gl_Color or gl_TexCoord */
2937 if (type == SLANG_UNIT_FRAGMENT_BUILTIN) {
2938 GLuint swizzle;
2939 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
2940 &swizzle);
2941 assert(index >= 0);
2942 store = _slang_new_ir_storage(PROGRAM_INPUT, index, size);
2943 store->Swizzle = swizzle;
2944 assert(index < FRAG_ATTRIB_MAX);
2945 }
2946 else {
2947 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
2948 assert(index >= 0);
2949 assert(type == SLANG_UNIT_VERTEX_BUILTIN);
2950 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
2951 assert(index < VERT_RESULT_MAX);
2952 }
2953 if (dbg) printf("V/F ");
2954 }
2955 if (dbg) printf("VARYING ");
2956 }
2957 else if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE) {
2958 if (prog) {
2959 /* user-defined vertex attribute */
2960 const GLint size = _slang_sizeof_type_specifier(&var->type.specifier);
2961 const GLint attr = -1; /* unknown */
2962 GLint index = _mesa_add_attribute(prog->Attributes, varName,
2963 size, attr);
2964 assert(index >= 0);
2965 store = _slang_new_ir_storage(PROGRAM_INPUT,
2966 VERT_ATTRIB_GENERIC0 + index, size);
2967 }
2968 else {
2969 /* pre-defined vertex attrib */
2970 GLuint swizzle;
2971 GLint index = _slang_input_index(varName, GL_VERTEX_PROGRAM_ARB,
2972 &swizzle);
2973 GLint size = 4; /* XXX? */
2974 assert(index >= 0);
2975 store = _slang_new_ir_storage(PROGRAM_INPUT, index, size);
2976 store->Swizzle = swizzle;
2977 }
2978 if (dbg) printf("ATTRIB ");
2979 }
2980 else if (var->type.qualifier == SLANG_QUAL_FIXEDINPUT) {
2981 GLuint swizzle = SWIZZLE_XYZW; /* silence compiler warning */
2982 GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
2983 &swizzle);
2984 GLint size = 4; /* XXX? */
2985 store = _slang_new_ir_storage(PROGRAM_INPUT, index, size);
2986 store->Swizzle = swizzle;
2987 if (dbg) printf("INPUT ");
2988 }
2989 else if (var->type.qualifier == SLANG_QUAL_FIXEDOUTPUT) {
2990 if (type == SLANG_UNIT_VERTEX_BUILTIN) {
2991 GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
2992 GLint size = 4; /* XXX? */
2993 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
2994 }
2995 else {
2996 GLint index = _slang_output_index(varName, GL_FRAGMENT_PROGRAM_ARB);
2997 GLint size = 4; /* XXX? */
2998 assert(type == SLANG_UNIT_FRAGMENT_BUILTIN);
2999 store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
3000 }
3001 if (dbg) printf("OUTPUT ");
3002 }
3003 else if (var->type.qualifier == SLANG_QUAL_CONST && !prog) {
3004 /* pre-defined global constant, like gl_MaxLights */
3005 const GLint size = _slang_sizeof_type_specifier(&var->type.specifier);
3006 store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
3007 if (dbg) printf("CONST ");
3008 }
3009 else {
3010 /* ordinary variable (may be const) */
3011 slang_ir_node *n;
3012
3013 /* IR node to declare the variable */
3014 n = _slang_gen_var_decl(A, var);
3015
3016 /* IR code for the var's initializer, if present */
3017 if (var->initializer) {
3018 slang_ir_node *lhs, *rhs, *init;
3019
3020 /* Generate IR_MOVE instruction to initialize the variable */
3021 lhs = new_node0(IR_VAR);
3022 lhs->Var = var;
3023 lhs->Store = n->Store;
3024
3025 /* constant folding, etc */
3026 _slang_simplify(var->initializer, &A->space, A->atoms);
3027
3028 rhs = _slang_gen_operation(A, var->initializer);
3029 assert(rhs);
3030 init = new_node2(IR_MOVE, lhs, rhs);
3031 n = new_seq(n, init);
3032 }
3033
3034 success = _slang_emit_code(n, A->vartable, A->program, GL_FALSE, A->log);
3035
3036 _slang_free_ir_tree(n);
3037 }
3038
3039 if (dbg) printf("GLOBAL VAR %s idx %d\n", (char*) var->a_name,
3040 store ? store->Index : -2);
3041
3042 if (store)
3043 var->aux = store; /* save var's storage info */
3044
3045 return success;
3046 }
3047
3048
3049 /**
3050 * Produce an IR tree from a function AST (fun->body).
3051 * Then call the code emitter to convert the IR tree into gl_program
3052 * instructions.
3053 */
3054 GLboolean
3055 _slang_codegen_function(slang_assemble_ctx * A, slang_function * fun)
3056 {
3057 slang_ir_node *n;
3058 GLboolean success = GL_TRUE;
3059
3060 if (_mesa_strcmp((char *) fun->header.a_name, "main") != 0) {
3061 /* we only really generate code for main, all other functions get
3062 * inlined.
3063 */
3064 #if 0
3065 /* do some basic error checking though */
3066 if (fun->header.type.specifier.type != SLANG_SPEC_VOID) {
3067 /* check that non-void functions actually return something */
3068 slang_operation *op
3069 = _slang_find_node_type(fun->body, SLANG_OPER_RETURN);
3070 if (!op) {
3071 slang_info_log_error(A->log,
3072 "function \"%s\" has no return statement",
3073 (char *) fun->header.a_name);
3074 printf(
3075 "function \"%s\" has no return statement\n",
3076 (char *) fun->header.a_name);
3077 return GL_FALSE;
3078 }
3079 }
3080 #endif
3081 return GL_TRUE; /* not an error */
3082 }
3083
3084 #if 0
3085 printf("\n*********** codegen_function %s\n", (char *) fun->header.a_name);
3086 slang_print_function(fun, 1);
3087 #endif
3088
3089 /* should have been allocated earlier: */
3090 assert(A->program->Parameters );
3091 assert(A->program->Varying);
3092 assert(A->vartable);
3093 A->CurLoop = NULL;
3094 A->CurFunction = fun;
3095
3096 /* fold constant expressions, etc. */
3097 _slang_simplify(fun->body, &A->space, A->atoms);
3098
3099 #if 0
3100 printf("\n*********** simplified %s\n", (char *) fun->header.a_name);
3101 slang_print_function(fun, 1);
3102 #endif
3103
3104 /* Create an end-of-function label */
3105 A->curFuncEndLabel = _slang_label_new("__endOfFunc__main");
3106
3107 /* push new vartable scope */
3108 _slang_push_var_table(A->vartable);
3109
3110 /* Generate IR tree for the function body code */
3111 n = _slang_gen_operation(A, fun->body);
3112 if (n)
3113 n = new_node1(IR_SCOPE, n);
3114
3115 /* pop vartable, restore previous */
3116 _slang_pop_var_table(A->vartable);
3117
3118 if (!n) {
3119 /* XXX record error */
3120 return GL_FALSE;
3121 }
3122
3123 /* append an end-of-function-label to IR tree */
3124 n = new_seq(n, new_label(A->curFuncEndLabel));
3125
3126 /*_slang_label_delete(A->curFuncEndLabel);*/
3127 A->curFuncEndLabel = NULL;
3128
3129 #if 0
3130 printf("************* New AST for %s *****\n", (char*)fun->header.a_name);
3131 slang_print_function(fun, 1);
3132 #endif
3133 #if 0
3134 printf("************* IR for %s *******\n", (char*)fun->header.a_name);
3135 _slang_print_ir_tree(n, 0);
3136 #endif
3137 #if 0
3138 printf("************* End codegen function ************\n\n");
3139 #endif
3140
3141 /* Emit program instructions */
3142 success = _slang_emit_code(n, A->vartable, A->program, GL_TRUE, A->log);
3143 _slang_free_ir_tree(n);
3144
3145 /* free codegen context */
3146 /*
3147 _mesa_free(A->codegen);
3148 */
3149
3150 return success;
3151 }
3152