merge from master
[mesa.git] / src / mesa / shader / slang / slang_emit.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file slang_emit.c
27 * Emit program instructions (PI code) from IR trees.
28 * \author Brian Paul
29 */
30
31 /***
32 *** NOTES
33 ***
34 *** To emit GPU instructions, we basically just do an in-order traversal
35 *** of the IR tree.
36 ***/
37
38
39 #include "imports.h"
40 #include "context.h"
41 #include "macros.h"
42 #include "program.h"
43 #include "prog_instruction.h"
44 #include "prog_parameter.h"
45 #include "prog_print.h"
46 #include "slang_builtin.h"
47 #include "slang_emit.h"
48
49
50 #define PEEPHOLE_OPTIMIZATIONS 1
51 #define ANNOTATE 0
52
53
54 /* XXX temporarily here */
55
56
57 typedef struct
58 {
59 slang_info_log *log;
60 slang_var_table *vt;
61 struct gl_program *prog;
62 /* code-gen options */
63 GLboolean EmitHighLevelInstructions;
64 GLboolean EmitComments;
65 } slang_emit_info;
66
67
68 /**
69 * Assembly and IR info
70 */
71 typedef struct
72 {
73 slang_ir_opcode IrOpcode;
74 const char *IrName;
75 gl_inst_opcode InstOpcode;
76 GLuint ResultSize, NumParams;
77 } slang_ir_info;
78
79
80
81 static const slang_ir_info IrInfo[] = {
82 /* binary ops */
83 { IR_ADD, "IR_ADD", OPCODE_ADD, 4, 2 },
84 { IR_SUB, "IR_SUB", OPCODE_SUB, 4, 2 },
85 { IR_MUL, "IR_MUL", OPCODE_MUL, 4, 2 },
86 { IR_DIV, "IR_DIV", OPCODE_NOP, 0, 2 }, /* XXX broke */
87 { IR_DOT4, "IR_DOT_4", OPCODE_DP4, 1, 2 },
88 { IR_DOT3, "IR_DOT_3", OPCODE_DP3, 1, 2 },
89 { IR_CROSS, "IR_CROSS", OPCODE_XPD, 3, 2 },
90 { IR_LRP, "IR_LRP", OPCODE_LRP, 4, 3 },
91 { IR_MIN, "IR_MIN", OPCODE_MIN, 4, 2 },
92 { IR_MAX, "IR_MAX", OPCODE_MAX, 4, 2 },
93 { IR_CLAMP, "IR_CLAMP", OPCODE_NOP, 4, 3 }, /* special case: emit_clamp() */
94 { IR_SEQUAL, "IR_SEQUAL", OPCODE_SEQ, 4, 2 },
95 { IR_SNEQUAL, "IR_SNEQUAL", OPCODE_SNE, 4, 2 },
96 { IR_SGE, "IR_SGE", OPCODE_SGE, 4, 2 },
97 { IR_SGT, "IR_SGT", OPCODE_SGT, 4, 2 },
98 { IR_SLE, "IR_SLE", OPCODE_SLE, 4, 2 },
99 { IR_SLT, "IR_SLT", OPCODE_SLT, 4, 2 },
100 { IR_POW, "IR_POW", OPCODE_POW, 1, 2 },
101 /* unary ops */
102 { IR_I_TO_F, "IR_I_TO_F", OPCODE_NOP, 1, 1 },
103 { IR_F_TO_I, "IR_F_TO_I", OPCODE_INT, 4, 1 }, /* 4 floats to 4 ints */
104 { IR_EXP, "IR_EXP", OPCODE_EXP, 1, 1 },
105 { IR_EXP2, "IR_EXP2", OPCODE_EX2, 1, 1 },
106 { IR_LOG2, "IR_LOG2", OPCODE_LG2, 1, 1 },
107 { IR_RSQ, "IR_RSQ", OPCODE_RSQ, 1, 1 },
108 { IR_RCP, "IR_RCP", OPCODE_RCP, 1, 1 },
109 { IR_FLOOR, "IR_FLOOR", OPCODE_FLR, 4, 1 },
110 { IR_FRAC, "IR_FRAC", OPCODE_FRC, 4, 1 },
111 { IR_ABS, "IR_ABS", OPCODE_ABS, 4, 1 },
112 { IR_NEG, "IR_NEG", OPCODE_NOP, 4, 1 }, /* special case: emit_negation() */
113 { IR_DDX, "IR_DDX", OPCODE_DDX, 4, 1 },
114 { IR_DDX, "IR_DDY", OPCODE_DDX, 4, 1 },
115 { IR_SIN, "IR_SIN", OPCODE_SIN, 1, 1 },
116 { IR_COS, "IR_COS", OPCODE_COS, 1, 1 },
117 { IR_NOISE1, "IR_NOISE1", OPCODE_NOISE1, 1, 1 },
118 { IR_NOISE2, "IR_NOISE2", OPCODE_NOISE2, 1, 1 },
119 { IR_NOISE3, "IR_NOISE3", OPCODE_NOISE3, 1, 1 },
120 { IR_NOISE4, "IR_NOISE4", OPCODE_NOISE4, 1, 1 },
121
122 /* other */
123 { IR_SEQ, "IR_SEQ", OPCODE_NOP, 0, 0 },
124 { IR_SCOPE, "IR_SCOPE", OPCODE_NOP, 0, 0 },
125 { IR_LABEL, "IR_LABEL", OPCODE_NOP, 0, 0 },
126 { IR_JUMP, "IR_JUMP", OPCODE_NOP, 0, 0 },
127 { IR_IF, "IR_IF", OPCODE_NOP, 0, 0 },
128 { IR_KILL, "IR_KILL", OPCODE_NOP, 0, 0 },
129 { IR_COND, "IR_COND", OPCODE_NOP, 0, 0 },
130 { IR_CALL, "IR_CALL", OPCODE_NOP, 0, 0 },
131 { IR_MOVE, "IR_MOVE", OPCODE_NOP, 0, 1 },
132 { IR_NOT, "IR_NOT", OPCODE_NOP, 1, 1 },
133 { IR_VAR, "IR_VAR", OPCODE_NOP, 0, 0 },
134 { IR_VAR_DECL, "IR_VAR_DECL", OPCODE_NOP, 0, 0 },
135 { IR_TEX, "IR_TEX", OPCODE_TEX, 4, 1 },
136 { IR_TEXB, "IR_TEXB", OPCODE_TXB, 4, 1 },
137 { IR_TEXP, "IR_TEXP", OPCODE_TXP, 4, 1 },
138 { IR_FLOAT, "IR_FLOAT", OPCODE_NOP, 0, 0 }, /* float literal */
139 { IR_FIELD, "IR_FIELD", OPCODE_NOP, 0, 0 },
140 { IR_ELEMENT, "IR_ELEMENT", OPCODE_NOP, 0, 0 },
141 { IR_SWIZZLE, "IR_SWIZZLE", OPCODE_NOP, 0, 0 },
142 { IR_NOP, NULL, OPCODE_NOP, 0, 0 }
143 };
144
145
146 static const slang_ir_info *
147 slang_find_ir_info(slang_ir_opcode opcode)
148 {
149 GLuint i;
150 for (i = 0; IrInfo[i].IrName; i++) {
151 if (IrInfo[i].IrOpcode == opcode) {
152 return IrInfo + i;
153 }
154 }
155 return NULL;
156 }
157
158 static const char *
159 slang_ir_name(slang_ir_opcode opcode)
160 {
161 return slang_find_ir_info(opcode)->IrName;
162 }
163
164
165 /**
166 * Swizzle a swizzle. That is, return swz2(swz1)
167 */
168 static GLuint
169 swizzle_swizzle(GLuint swz1, GLuint swz2)
170 {
171 GLuint i, swz, s[4];
172 for (i = 0; i < 4; i++) {
173 GLuint c = GET_SWZ(swz2, i);
174 s[i] = GET_SWZ(swz1, c);
175 }
176 swz = MAKE_SWIZZLE4(s[0], s[1], s[2], s[3]);
177 return swz;
178 }
179
180
181 slang_ir_storage *
182 _slang_new_ir_storage(enum register_file file, GLint index, GLint size)
183 {
184 slang_ir_storage *st;
185 st = (slang_ir_storage *) _mesa_calloc(sizeof(slang_ir_storage));
186 if (st) {
187 st->File = file;
188 st->Index = index;
189 st->Size = size;
190 st->Swizzle = SWIZZLE_NOOP;
191 }
192 return st;
193 }
194
195
196 static const char *
197 swizzle_string(GLuint swizzle)
198 {
199 static char s[6];
200 GLuint i;
201 s[0] = '.';
202 for (i = 1; i < 5; i++) {
203 s[i] = "xyzw"[GET_SWZ(swizzle, i-1)];
204 }
205 s[i] = 0;
206 return s;
207 }
208
209 static const char *
210 writemask_string(GLuint writemask)
211 {
212 static char s[6];
213 GLuint i, j = 0;
214 s[j++] = '.';
215 for (i = 0; i < 4; i++) {
216 if (writemask & (1 << i))
217 s[j++] = "xyzw"[i];
218 }
219 s[j] = 0;
220 return s;
221 }
222
223 static const char *
224 storage_string(const slang_ir_storage *st)
225 {
226 static const char *files[] = {
227 "TEMP",
228 "LOCAL_PARAM",
229 "ENV_PARAM",
230 "STATE",
231 "INPUT",
232 "OUTPUT",
233 "NAMED_PARAM",
234 "CONSTANT",
235 "UNIFORM",
236 "WRITE_ONLY",
237 "ADDRESS",
238 "SAMPLER",
239 "UNDEFINED"
240 };
241 static char s[100];
242 #if 0
243 if (st->Size == 1)
244 sprintf(s, "%s[%d]", files[st->File], st->Index);
245 else
246 sprintf(s, "%s[%d..%d]", files[st->File], st->Index,
247 st->Index + st->Size - 1);
248 #endif
249 assert(st->File < (GLint) (sizeof(files) / sizeof(files[0])));
250 sprintf(s, "%s[%d]", files[st->File], st->Index);
251 return s;
252 }
253
254
255 static void
256 spaces(int n)
257 {
258 while (n-- > 0) {
259 printf(" ");
260 }
261 }
262
263 #define IND 0
264 void
265 slang_print_ir(const slang_ir_node *n, int indent)
266 {
267 if (!n)
268 return;
269 #if !IND
270 if (n->Opcode != IR_SEQ)
271 #else
272 printf("%3d:", indent);
273 #endif
274 spaces(indent);
275
276 switch (n->Opcode) {
277 case IR_SEQ:
278 #if IND
279 printf("SEQ at %p\n", (void*) n);
280 #endif
281 assert(n->Children[0]);
282 assert(n->Children[1]);
283 slang_print_ir(n->Children[0], indent + IND);
284 slang_print_ir(n->Children[1], indent + IND);
285 break;
286 case IR_SCOPE:
287 printf("NEW SCOPE\n");
288 assert(!n->Children[1]);
289 slang_print_ir(n->Children[0], indent + 3);
290 break;
291 case IR_MOVE:
292 printf("MOVE (writemask = %s)\n", writemask_string(n->Writemask));
293 slang_print_ir(n->Children[0], indent+3);
294 slang_print_ir(n->Children[1], indent+3);
295 break;
296 case IR_LABEL:
297 printf("LABEL: %s\n", n->Label->Name);
298 break;
299 case IR_COND:
300 printf("COND\n");
301 slang_print_ir(n->Children[0], indent + 3);
302 break;
303 case IR_JUMP:
304 printf("JUMP %s\n", n->Label->Name);
305 break;
306
307 case IR_IF:
308 printf("IF \n");
309 slang_print_ir(n->Children[0], indent+3);
310 spaces(indent);
311 printf("THEN\n");
312 slang_print_ir(n->Children[1], indent+3);
313 if (n->Children[2]) {
314 spaces(indent);
315 printf("ELSE\n");
316 slang_print_ir(n->Children[2], indent+3);
317 }
318 printf("ENDIF\n");
319 break;
320
321 case IR_BEGIN_SUB:
322 printf("BEGIN_SUB\n");
323 break;
324 case IR_END_SUB:
325 printf("END_SUB\n");
326 break;
327 case IR_RETURN:
328 printf("RETURN\n");
329 break;
330 case IR_CALL:
331 printf("CALL\n");
332 break;
333
334 case IR_LOOP:
335 printf("LOOP\n");
336 slang_print_ir(n->Children[0], indent+3);
337 spaces(indent);
338 printf("ENDLOOP\n");
339 break;
340 case IR_CONT:
341 printf("CONT\n");
342 break;
343 case IR_BREAK:
344 printf("BREAK\n");
345 break;
346 case IR_BREAK_IF_FALSE:
347 printf("BREAK_IF_FALSE\n");
348 slang_print_ir(n->Children[0], indent+3);
349 break;
350 case IR_BREAK_IF_TRUE:
351 printf("BREAK_IF_TRUE\n");
352 slang_print_ir(n->Children[0], indent+3);
353 break;
354 case IR_CONT_IF_FALSE:
355 printf("CONT_IF_FALSE\n");
356 slang_print_ir(n->Children[0], indent+3);
357 break;
358 case IR_CONT_IF_TRUE:
359 printf("CONT_IF_TRUE\n");
360 slang_print_ir(n->Children[0], indent+3);
361 break;
362
363 case IR_VAR:
364 printf("VAR %s%s at %s store %p\n",
365 (n->Var ? (char *) n->Var->a_name : "TEMP"),
366 swizzle_string(n->Store->Swizzle),
367 storage_string(n->Store), (void*) n->Store);
368 break;
369 case IR_VAR_DECL:
370 printf("VAR_DECL %s (%p) at %s store %p\n",
371 (n->Var ? (char *) n->Var->a_name : "TEMP"),
372 (void*) n->Var, storage_string(n->Store),
373 (void*) n->Store);
374 break;
375 case IR_FIELD:
376 printf("FIELD %s of\n", n->Field);
377 slang_print_ir(n->Children[0], indent+3);
378 break;
379 case IR_FLOAT:
380 printf("FLOAT %g %g %g %g\n",
381 n->Value[0], n->Value[1], n->Value[2], n->Value[3]);
382 break;
383 case IR_I_TO_F:
384 printf("INT_TO_FLOAT\n");
385 slang_print_ir(n->Children[0], indent+3);
386 break;
387 case IR_F_TO_I:
388 printf("FLOAT_TO_INT\n");
389 slang_print_ir(n->Children[0], indent+3);
390 break;
391 case IR_SWIZZLE:
392 printf("SWIZZLE %s of (store %p) \n",
393 swizzle_string(n->Store->Swizzle), (void*) n->Store);
394 slang_print_ir(n->Children[0], indent + 3);
395 break;
396 default:
397 printf("%s (%p, %p) (store %p)\n", slang_ir_name(n->Opcode),
398 (void*) n->Children[0], (void*) n->Children[1], (void*) n->Store);
399 slang_print_ir(n->Children[0], indent+3);
400 slang_print_ir(n->Children[1], indent+3);
401 }
402 }
403
404
405 /**
406 * Allocate temporary storage for an intermediate result (such as for
407 * a multiply or add, etc.
408 */
409 static GLboolean
410 alloc_temp_storage(slang_emit_info *emitInfo, slang_ir_node *n, GLint size)
411 {
412 assert(!n->Var);
413 assert(!n->Store);
414 assert(size > 0);
415 n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, size);
416 if (!_slang_alloc_temp(emitInfo->vt, n->Store)) {
417 slang_info_log_error(emitInfo->log,
418 "Ran out of registers, too many temporaries");
419 return GL_FALSE;
420 }
421 return GL_TRUE;
422 }
423
424
425 /**
426 * Free temporary storage, if n->Store is, in fact, temp storage.
427 * Otherwise, no-op.
428 */
429 static void
430 free_temp_storage(slang_var_table *vt, slang_ir_node *n)
431 {
432 if (n->Store->File == PROGRAM_TEMPORARY && n->Store->Index >= 0) {
433 if (_slang_is_temp(vt, n->Store)) {
434 _slang_free_temp(vt, n->Store);
435 n->Store->Index = -1;
436 n->Store->Size = -1;
437 }
438 }
439 }
440
441
442 /**
443 * Convert IR storage to an instruction dst register.
444 */
445 static void
446 storage_to_dst_reg(struct prog_dst_register *dst, const slang_ir_storage *st,
447 GLuint writemask)
448 {
449 static const GLuint defaultWritemask[4] = {
450 WRITEMASK_X,
451 WRITEMASK_X | WRITEMASK_Y,
452 WRITEMASK_X | WRITEMASK_Y | WRITEMASK_Z,
453 WRITEMASK_X | WRITEMASK_Y | WRITEMASK_Z | WRITEMASK_W
454 };
455 assert(st->Index >= 0);
456 dst->File = st->File;
457 dst->Index = st->Index;
458 assert(st->File != PROGRAM_UNDEFINED);
459 assert(st->Size >= 1);
460 assert(st->Size <= 4);
461 if (st->Size == 1) {
462 GLuint comp = GET_SWZ(st->Swizzle, 0);
463 assert(comp < 4);
464 assert(writemask & WRITEMASK_X);
465 dst->WriteMask = WRITEMASK_X << comp;
466 }
467 else {
468 dst->WriteMask = defaultWritemask[st->Size - 1] & writemask;
469 }
470 }
471
472
473 /**
474 * Convert IR storage to an instruction src register.
475 */
476 static void
477 storage_to_src_reg(struct prog_src_register *src, const slang_ir_storage *st)
478 {
479 static const GLuint defaultSwizzle[4] = {
480 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
481 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
482 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
483 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W)
484 };
485 assert(st->File >= 0);
486 assert(st->File < PROGRAM_UNDEFINED);
487 assert(st->Size >= 1);
488 assert(st->Size <= 4);
489 src->File = st->File;
490 src->Index = st->Index;
491 if (st->Swizzle != SWIZZLE_NOOP)
492 src->Swizzle = st->Swizzle;
493 else
494 src->Swizzle = defaultSwizzle[st->Size - 1]; /*XXX really need this?*/
495
496 assert(GET_SWZ(src->Swizzle, 0) != SWIZZLE_NIL);
497 assert(GET_SWZ(src->Swizzle, 1) != SWIZZLE_NIL);
498 assert(GET_SWZ(src->Swizzle, 2) != SWIZZLE_NIL);
499 assert(GET_SWZ(src->Swizzle, 3) != SWIZZLE_NIL);
500 }
501
502
503
504 /**
505 * Add new instruction at end of given program.
506 * \param prog the program to append instruction onto
507 * \param opcode opcode for the new instruction
508 * \return pointer to the new instruction
509 */
510 static struct prog_instruction *
511 new_instruction(slang_emit_info *emitInfo, gl_inst_opcode opcode)
512 {
513 struct gl_program *prog = emitInfo->prog;
514 struct prog_instruction *inst;
515 prog->Instructions = _mesa_realloc_instructions(prog->Instructions,
516 prog->NumInstructions,
517 prog->NumInstructions + 1);
518 inst = prog->Instructions + prog->NumInstructions;
519 prog->NumInstructions++;
520 _mesa_init_instructions(inst, 1);
521 inst->Opcode = opcode;
522 inst->BranchTarget = -1; /* invalid */
523 /*
524 printf("New inst %d: %p %s\n", prog->NumInstructions-1,(void*)inst,
525 _mesa_opcode_string(inst->Opcode));
526 */
527 return inst;
528 }
529
530
531 #if 0
532 /**
533 * Return pointer to last instruction in program.
534 */
535 static struct prog_instruction *
536 prev_instruction(struct gl_program *prog)
537 {
538 if (prog->NumInstructions == 0)
539 return NULL;
540 else
541 return prog->Instructions + prog->NumInstructions - 1;
542 }
543 #endif
544
545
546 static struct prog_instruction *
547 emit(slang_emit_info *emitInfo, slang_ir_node *n);
548
549
550 /**
551 * Return an annotation string for given node's storage.
552 */
553 static char *
554 storage_annotation(const slang_ir_node *n, const struct gl_program *prog)
555 {
556 #if ANNOTATE
557 const slang_ir_storage *st = n->Store;
558 static char s[100] = "";
559
560 if (!st)
561 return _mesa_strdup("");
562
563 switch (st->File) {
564 case PROGRAM_CONSTANT:
565 if (st->Index >= 0) {
566 const GLfloat *val = prog->Parameters->ParameterValues[st->Index];
567 if (st->Swizzle == SWIZZLE_NOOP)
568 sprintf(s, "{%g, %g, %g, %g}", val[0], val[1], val[2], val[3]);
569 else {
570 sprintf(s, "%g", val[GET_SWZ(st->Swizzle, 0)]);
571 }
572 }
573 break;
574 case PROGRAM_TEMPORARY:
575 if (n->Var)
576 sprintf(s, "%s", (char *) n->Var->a_name);
577 else
578 sprintf(s, "t[%d]", st->Index);
579 break;
580 case PROGRAM_STATE_VAR:
581 case PROGRAM_UNIFORM:
582 sprintf(s, "%s", prog->Parameters->Parameters[st->Index].Name);
583 break;
584 case PROGRAM_VARYING:
585 sprintf(s, "%s", prog->Varying->Parameters[st->Index].Name);
586 break;
587 case PROGRAM_INPUT:
588 sprintf(s, "input[%d]", st->Index);
589 break;
590 case PROGRAM_OUTPUT:
591 sprintf(s, "output[%d]", st->Index);
592 break;
593 default:
594 s[0] = 0;
595 }
596 return _mesa_strdup(s);
597 #else
598 return NULL;
599 #endif
600 }
601
602
603 /**
604 * Return an annotation string for an instruction.
605 */
606 static char *
607 instruction_annotation(gl_inst_opcode opcode, char *dstAnnot,
608 char *srcAnnot0, char *srcAnnot1, char *srcAnnot2)
609 {
610 #if ANNOTATE
611 const char *operator;
612 char *s;
613 int len = 50;
614
615 if (dstAnnot)
616 len += strlen(dstAnnot);
617 else
618 dstAnnot = _mesa_strdup("");
619
620 if (srcAnnot0)
621 len += strlen(srcAnnot0);
622 else
623 srcAnnot0 = _mesa_strdup("");
624
625 if (srcAnnot1)
626 len += strlen(srcAnnot1);
627 else
628 srcAnnot1 = _mesa_strdup("");
629
630 if (srcAnnot2)
631 len += strlen(srcAnnot2);
632 else
633 srcAnnot2 = _mesa_strdup("");
634
635 switch (opcode) {
636 case OPCODE_ADD:
637 operator = "+";
638 break;
639 case OPCODE_SUB:
640 operator = "-";
641 break;
642 case OPCODE_MUL:
643 operator = "*";
644 break;
645 case OPCODE_DP3:
646 operator = "DP3";
647 break;
648 case OPCODE_DP4:
649 operator = "DP4";
650 break;
651 case OPCODE_XPD:
652 operator = "XPD";
653 break;
654 case OPCODE_RSQ:
655 operator = "RSQ";
656 break;
657 case OPCODE_SGT:
658 operator = ">";
659 break;
660 default:
661 operator = ",";
662 }
663
664 s = (char *) malloc(len);
665 sprintf(s, "%s = %s %s %s %s", dstAnnot,
666 srcAnnot0, operator, srcAnnot1, srcAnnot2);
667 assert(_mesa_strlen(s) < len);
668
669 free(dstAnnot);
670 free(srcAnnot0);
671 free(srcAnnot1);
672 free(srcAnnot2);
673
674 return s;
675 #else
676 return NULL;
677 #endif
678 }
679
680
681
682 /**
683 * Generate code for a simple arithmetic instruction.
684 * Either 1, 2 or 3 operands.
685 */
686 static struct prog_instruction *
687 emit_arith(slang_emit_info *emitInfo, slang_ir_node *n)
688 {
689 struct prog_instruction *inst;
690 const slang_ir_info *info = slang_find_ir_info(n->Opcode);
691 char *srcAnnot[3], *dstAnnot;
692 GLuint i;
693
694 assert(info);
695 assert(info->InstOpcode != OPCODE_NOP);
696
697 srcAnnot[0] = srcAnnot[1] = srcAnnot[2] = dstAnnot = NULL;
698
699 #if PEEPHOLE_OPTIMIZATIONS
700 /* Look for MAD opportunity */
701 if (info->NumParams == 2 &&
702 n->Opcode == IR_ADD && n->Children[0]->Opcode == IR_MUL) {
703 /* found pattern IR_ADD(IR_MUL(A, B), C) */
704 emit(emitInfo, n->Children[0]->Children[0]); /* A */
705 emit(emitInfo, n->Children[0]->Children[1]); /* B */
706 emit(emitInfo, n->Children[1]); /* C */
707 /* generate MAD instruction */
708 inst = new_instruction(emitInfo, OPCODE_MAD);
709 /* operands: A, B, C: */
710 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Children[0]->Store);
711 storage_to_src_reg(&inst->SrcReg[1], n->Children[0]->Children[1]->Store);
712 storage_to_src_reg(&inst->SrcReg[2], n->Children[1]->Store);
713 free_temp_storage(emitInfo->vt, n->Children[0]->Children[0]);
714 free_temp_storage(emitInfo->vt, n->Children[0]->Children[1]);
715 free_temp_storage(emitInfo->vt, n->Children[1]);
716 }
717 else if (info->NumParams == 2 &&
718 n->Opcode == IR_ADD && n->Children[1]->Opcode == IR_MUL) {
719 /* found pattern IR_ADD(A, IR_MUL(B, C)) */
720 emit(emitInfo, n->Children[0]); /* A */
721 emit(emitInfo, n->Children[1]->Children[0]); /* B */
722 emit(emitInfo, n->Children[1]->Children[1]); /* C */
723 /* generate MAD instruction */
724 inst = new_instruction(emitInfo, OPCODE_MAD);
725 /* operands: B, C, A */
726 storage_to_src_reg(&inst->SrcReg[0], n->Children[1]->Children[0]->Store);
727 storage_to_src_reg(&inst->SrcReg[1], n->Children[1]->Children[1]->Store);
728 storage_to_src_reg(&inst->SrcReg[2], n->Children[0]->Store);
729 free_temp_storage(emitInfo->vt, n->Children[1]->Children[0]);
730 free_temp_storage(emitInfo->vt, n->Children[1]->Children[1]);
731 free_temp_storage(emitInfo->vt, n->Children[0]);
732 }
733 else
734 #endif
735 {
736 /* normal case */
737
738 /* gen code for children */
739 for (i = 0; i < info->NumParams; i++)
740 emit(emitInfo, n->Children[i]);
741
742 /* gen this instruction and src registers */
743 inst = new_instruction(emitInfo, info->InstOpcode);
744 for (i = 0; i < info->NumParams; i++)
745 storage_to_src_reg(&inst->SrcReg[i], n->Children[i]->Store);
746
747 /* annotation */
748 for (i = 0; i < info->NumParams; i++)
749 srcAnnot[i] = storage_annotation(n->Children[i], emitInfo->prog);
750
751 /* free temps */
752 for (i = 0; i < info->NumParams; i++)
753 free_temp_storage(emitInfo->vt, n->Children[i]);
754 }
755
756 /* result storage */
757 if (!n->Store) {
758 if (!alloc_temp_storage(emitInfo, n, info->ResultSize))
759 return NULL;
760 }
761 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
762
763 dstAnnot = storage_annotation(n, emitInfo->prog);
764
765 inst->Comment = instruction_annotation(inst->Opcode, dstAnnot, srcAnnot[0],
766 srcAnnot[1], srcAnnot[2]);
767
768 /*_mesa_print_instruction(inst);*/
769 return inst;
770 }
771
772
773 /**
774 * Generate code for an IR_CLAMP instruction.
775 */
776 static struct prog_instruction *
777 emit_clamp(slang_emit_info *emitInfo, slang_ir_node *n)
778 {
779 struct prog_instruction *inst;
780
781 assert(n->Opcode == IR_CLAMP);
782 /* ch[0] = value
783 * ch[1] = min limit
784 * ch[2] = max limit
785 */
786
787 inst = emit(emitInfo, n->Children[0]);
788
789 /* If lower limit == 0.0 and upper limit == 1.0,
790 * set prev instruction's SaturateMode field to SATURATE_ZERO_ONE.
791 * Else,
792 * emit OPCODE_MIN, OPCODE_MAX sequence.
793 */
794 #if 0
795 /* XXX this isn't quite finished yet */
796 if (n->Children[1]->Opcode == IR_FLOAT &&
797 n->Children[1]->Value[0] == 0.0 &&
798 n->Children[1]->Value[1] == 0.0 &&
799 n->Children[1]->Value[2] == 0.0 &&
800 n->Children[1]->Value[3] == 0.0 &&
801 n->Children[2]->Opcode == IR_FLOAT &&
802 n->Children[2]->Value[0] == 1.0 &&
803 n->Children[2]->Value[1] == 1.0 &&
804 n->Children[2]->Value[2] == 1.0 &&
805 n->Children[2]->Value[3] == 1.0) {
806 if (!inst) {
807 inst = prev_instruction(prog);
808 }
809 if (inst && inst->Opcode != OPCODE_NOP) {
810 /* and prev instruction's DstReg matches n->Children[0]->Store */
811 inst->SaturateMode = SATURATE_ZERO_ONE;
812 n->Store = n->Children[0]->Store;
813 return inst;
814 }
815 }
816 #endif
817
818 if (!n->Store)
819 if (!alloc_temp_storage(emitInfo, n, n->Children[0]->Store->Size))
820 return NULL;
821
822 emit(emitInfo, n->Children[1]);
823 emit(emitInfo, n->Children[2]);
824
825 /* tmp = max(ch[0], ch[1]) */
826 inst = new_instruction(emitInfo, OPCODE_MAX);
827 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
828 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
829 storage_to_src_reg(&inst->SrcReg[1], n->Children[1]->Store);
830
831 /* tmp = min(tmp, ch[2]) */
832 inst = new_instruction(emitInfo, OPCODE_MIN);
833 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
834 storage_to_src_reg(&inst->SrcReg[0], n->Store);
835 storage_to_src_reg(&inst->SrcReg[1], n->Children[2]->Store);
836
837 return inst;
838 }
839
840
841 static struct prog_instruction *
842 emit_negation(slang_emit_info *emitInfo, slang_ir_node *n)
843 {
844 /* Implement as MOV dst, -src; */
845 /* XXX we could look at the previous instruction and in some circumstances
846 * modify it to accomplish the negation.
847 */
848 struct prog_instruction *inst;
849
850 emit(emitInfo, n->Children[0]);
851
852 if (!n->Store)
853 if (!alloc_temp_storage(emitInfo, n, n->Children[0]->Store->Size))
854 return NULL;
855
856 inst = new_instruction(emitInfo, OPCODE_MOV);
857 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
858 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
859 inst->SrcReg[0].NegateBase = NEGATE_XYZW;
860 return inst;
861 }
862
863
864 static struct prog_instruction *
865 emit_label(slang_emit_info *emitInfo, const slang_ir_node *n)
866 {
867 assert(n->Label);
868 assert(_slang_label_get_location(n->Label) < 0);
869 _slang_label_set_location(n->Label, emitInfo->prog->NumInstructions,
870 emitInfo->prog);
871 return NULL;
872 }
873
874
875 static struct prog_instruction *
876 emit_jump(slang_emit_info *emitInfo, slang_ir_node *n)
877 {
878 struct prog_instruction *inst;
879 assert(n);
880 assert(n->Label);
881 inst = new_instruction(emitInfo, OPCODE_BRA);
882 inst->DstReg.CondMask = COND_TR; /* always branch */
883 inst->BranchTarget = _slang_label_get_location(n->Label);
884 if (inst->BranchTarget < 0) {
885 _slang_label_add_reference(n->Label, emitInfo->prog->NumInstructions - 1);
886 }
887 return inst;
888 }
889
890
891 static struct prog_instruction *
892 emit_kill(slang_emit_info *emitInfo)
893 {
894 struct prog_instruction *inst;
895 /* NV-KILL - discard fragment depending on condition code.
896 * Note that ARB-KILL depends on sign of vector operand.
897 */
898 inst = new_instruction(emitInfo, OPCODE_KIL_NV);
899 inst->DstReg.CondMask = COND_TR; /* always branch */
900 return inst;
901 }
902
903
904 static struct prog_instruction *
905 emit_tex(slang_emit_info *emitInfo, slang_ir_node *n)
906 {
907 struct prog_instruction *inst;
908
909 (void) emit(emitInfo, n->Children[1]);
910
911 if (n->Opcode == IR_TEX) {
912 inst = new_instruction(emitInfo, OPCODE_TEX);
913 }
914 else if (n->Opcode == IR_TEXB) {
915 inst = new_instruction(emitInfo, OPCODE_TXB);
916 }
917 else {
918 assert(n->Opcode == IR_TEXP);
919 inst = new_instruction(emitInfo, OPCODE_TXP);
920 }
921
922 if (!n->Store)
923 if (!alloc_temp_storage(emitInfo, n, 4))
924 return NULL;
925
926 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
927
928 /* Child[1] is the coord */
929 assert(n->Children[1]->Store->File != PROGRAM_UNDEFINED);
930 assert(n->Children[1]->Store->Index >= 0);
931 storage_to_src_reg(&inst->SrcReg[0], n->Children[1]->Store);
932
933 /* Child[0] is the sampler (a uniform which'll indicate the texture unit) */
934 assert(n->Children[0]->Store);
935 assert(n->Children[0]->Store->Size >= TEXTURE_1D_INDEX);
936
937 inst->Sampler = n->Children[0]->Store->Index; /* i.e. uniform's index */
938 inst->TexSrcTarget = n->Children[0]->Store->Size;
939 inst->TexSrcUnit = 27; /* Dummy value; the TexSrcUnit will be computed at
940 * link time, using the sampler uniform's value.
941 */
942 return inst;
943 }
944
945
946 static struct prog_instruction *
947 emit_move(slang_emit_info *emitInfo, slang_ir_node *n)
948 {
949 struct prog_instruction *inst;
950
951 /* lhs */
952 emit(emitInfo, n->Children[0]);
953
954 /* rhs */
955 assert(n->Children[1]);
956 inst = emit(emitInfo, n->Children[1]);
957
958 assert(n->Children[1]->Store->Index >= 0);
959
960 assert(!n->Store);
961 n->Store = n->Children[0]->Store;
962
963 #if PEEPHOLE_OPTIMIZATIONS
964 if (inst && _slang_is_temp(emitInfo->vt, n->Children[1]->Store)) {
965 /* Peephole optimization:
966 * Just modify the RHS to put its result into the dest of this
967 * MOVE operation. Then, this MOVE is a no-op.
968 */
969 _slang_free_temp(emitInfo->vt, n->Children[1]->Store);
970 *n->Children[1]->Store = *n->Children[0]->Store;
971 /* fixup the prev (RHS) instruction */
972 assert(n->Children[0]->Store->Index >= 0);
973 storage_to_dst_reg(&inst->DstReg, n->Children[0]->Store, n->Writemask);
974 return inst;
975 }
976 else
977 #endif
978 {
979 if (n->Children[0]->Store->Size > 4) {
980 /* move matrix/struct etc (block of registers) */
981 slang_ir_storage dstStore = *n->Children[0]->Store;
982 slang_ir_storage srcStore = *n->Children[1]->Store;
983 GLint size = srcStore.Size;
984 ASSERT(n->Children[0]->Writemask == WRITEMASK_XYZW);
985 ASSERT(n->Children[1]->Store->Swizzle == SWIZZLE_NOOP);
986 dstStore.Size = 4;
987 srcStore.Size = 4;
988 while (size >= 4) {
989 inst = new_instruction(emitInfo, OPCODE_MOV);
990 inst->Comment = _mesa_strdup("IR_MOVE block");
991 storage_to_dst_reg(&inst->DstReg, &dstStore, n->Writemask);
992 storage_to_src_reg(&inst->SrcReg[0], &srcStore);
993 srcStore.Index++;
994 dstStore.Index++;
995 size -= 4;
996 }
997 }
998 else {
999 /* single register move */
1000 char *srcAnnot, *dstAnnot;
1001 inst = new_instruction(emitInfo, OPCODE_MOV);
1002 assert(n->Children[0]->Store->Index >= 0);
1003 storage_to_dst_reg(&inst->DstReg, n->Children[0]->Store, n->Writemask);
1004 storage_to_src_reg(&inst->SrcReg[0], n->Children[1]->Store);
1005 dstAnnot = storage_annotation(n->Children[0], emitInfo->prog);
1006 srcAnnot = storage_annotation(n->Children[1], emitInfo->prog);
1007 inst->Comment = instruction_annotation(inst->Opcode, dstAnnot,
1008 srcAnnot, NULL, NULL);
1009 }
1010 free_temp_storage(emitInfo->vt, n->Children[1]);
1011 return inst;
1012 }
1013 }
1014
1015
1016 static struct prog_instruction *
1017 emit_cond(slang_emit_info *emitInfo, slang_ir_node *n)
1018 {
1019 /* Conditional expression (in if/while/for stmts).
1020 * Need to update condition code register.
1021 * Next instruction is typically an IR_IF.
1022 */
1023 struct prog_instruction *inst;
1024
1025 if (!n->Children[0])
1026 return NULL;
1027
1028 inst = emit(emitInfo, n->Children[0]);
1029 if (inst) {
1030 /* set inst's CondUpdate flag */
1031 inst->CondUpdate = GL_TRUE;
1032 return inst; /* XXX or null? */
1033 }
1034 else {
1035 /* This'll happen for things like "if (i) ..." where no code
1036 * is normally generated for the expression "i".
1037 * Generate a move instruction just to set condition codes.
1038 * Note: must use full 4-component vector since all four
1039 * condition codes must be set identically.
1040 */
1041 if (!alloc_temp_storage(emitInfo, n, 4))
1042 return NULL;
1043 inst = new_instruction(emitInfo, OPCODE_MOV);
1044 inst->CondUpdate = GL_TRUE;
1045 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
1046 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
1047 _slang_free_temp(emitInfo->vt, n->Store);
1048 inst->Comment = _mesa_strdup("COND expr");
1049 return inst; /* XXX or null? */
1050 }
1051 }
1052
1053
1054 /**
1055 * Logical-NOT
1056 */
1057 static struct prog_instruction *
1058 emit_not(slang_emit_info *emitInfo, slang_ir_node *n)
1059 {
1060 GLfloat zero = 0.0;
1061 slang_ir_storage st;
1062 struct prog_instruction *inst;
1063
1064 /* need zero constant */
1065 st.File = PROGRAM_CONSTANT;
1066 st.Size = 1;
1067 st.Index = _mesa_add_unnamed_constant(emitInfo->prog->Parameters, &zero,
1068 1, &st.Swizzle);
1069
1070 /* child expr */
1071 (void) emit(emitInfo, n->Children[0]);
1072 /* XXXX if child instr is SGT convert to SLE, if SEQ, SNE, etc */
1073
1074 if (!n->Store)
1075 if (!alloc_temp_storage(emitInfo, n, n->Children[0]->Store->Size))
1076 return NULL;
1077
1078 inst = new_instruction(emitInfo, OPCODE_SEQ);
1079 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
1080 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
1081 storage_to_src_reg(&inst->SrcReg[1], &st);
1082
1083 free_temp_storage(emitInfo->vt, n->Children[0]);
1084
1085 inst->Comment = _mesa_strdup("NOT");
1086 return inst;
1087 }
1088
1089
1090 static struct prog_instruction *
1091 emit_if(slang_emit_info *emitInfo, slang_ir_node *n)
1092 {
1093 struct gl_program *prog = emitInfo->prog;
1094 struct prog_instruction *ifInst;
1095 GLuint ifInstLoc, elseInstLoc = 0;
1096
1097 emit(emitInfo, n->Children[0]); /* the condition */
1098 ifInstLoc = prog->NumInstructions;
1099 if (emitInfo->EmitHighLevelInstructions) {
1100 ifInst = new_instruction(emitInfo, OPCODE_IF);
1101 ifInst->DstReg.CondMask = COND_NE; /* if cond is non-zero */
1102 ifInst->DstReg.CondSwizzle = SWIZZLE_X;
1103 }
1104 else {
1105 /* conditional jump to else, or endif */
1106 ifInst = new_instruction(emitInfo, OPCODE_BRA);
1107 ifInst->DstReg.CondMask = COND_EQ; /* BRA if cond is zero */
1108 ifInst->DstReg.CondSwizzle = SWIZZLE_X;
1109 ifInst->Comment = _mesa_strdup("if zero");
1110 }
1111
1112 /* if body */
1113 emit(emitInfo, n->Children[1]);
1114
1115 if (n->Children[2]) {
1116 /* have else body */
1117 elseInstLoc = prog->NumInstructions;
1118 if (emitInfo->EmitHighLevelInstructions) {
1119 (void) new_instruction(emitInfo, OPCODE_ELSE);
1120 }
1121 else {
1122 /* jump to endif instruction */
1123 struct prog_instruction *inst;
1124 inst = new_instruction(emitInfo, OPCODE_BRA);
1125 inst->Comment = _mesa_strdup("else");
1126 inst->DstReg.CondMask = COND_TR; /* always branch */
1127 }
1128 ifInst = prog->Instructions + ifInstLoc;
1129 ifInst->BranchTarget = prog->NumInstructions;
1130
1131 emit(emitInfo, n->Children[2]);
1132 }
1133 else {
1134 /* no else body */
1135 ifInst = prog->Instructions + ifInstLoc;
1136 ifInst->BranchTarget = prog->NumInstructions + 1;
1137 }
1138
1139 if (emitInfo->EmitHighLevelInstructions) {
1140 (void) new_instruction(emitInfo, OPCODE_ENDIF);
1141 }
1142
1143 if (n->Children[2]) {
1144 struct prog_instruction *elseInst;
1145 elseInst = prog->Instructions + elseInstLoc;
1146 elseInst->BranchTarget = prog->NumInstructions;
1147 }
1148 return NULL;
1149 }
1150
1151
1152 static struct prog_instruction *
1153 emit_loop(slang_emit_info *emitInfo, slang_ir_node *n)
1154 {
1155 struct gl_program *prog = emitInfo->prog;
1156 struct prog_instruction *beginInst, *endInst;
1157 GLuint beginInstLoc, endInstLoc;
1158 slang_ir_node *ir;
1159
1160 /* emit OPCODE_BGNLOOP */
1161 beginInstLoc = prog->NumInstructions;
1162 if (emitInfo->EmitHighLevelInstructions) {
1163 (void) new_instruction(emitInfo, OPCODE_BGNLOOP);
1164 }
1165
1166 /* body */
1167 emit(emitInfo, n->Children[0]);
1168
1169 endInstLoc = prog->NumInstructions;
1170 if (emitInfo->EmitHighLevelInstructions) {
1171 /* emit OPCODE_ENDLOOP */
1172 endInst = new_instruction(emitInfo, OPCODE_ENDLOOP);
1173 }
1174 else {
1175 /* emit unconditional BRA-nch */
1176 endInst = new_instruction(emitInfo, OPCODE_BRA);
1177 endInst->DstReg.CondMask = COND_TR; /* always true */
1178 }
1179 /* end instruction's BranchTarget points to top of loop */
1180 endInst->BranchTarget = beginInstLoc;
1181
1182 if (emitInfo->EmitHighLevelInstructions) {
1183 /* BGNLOOP's BranchTarget points to the ENDLOOP inst */
1184 beginInst = prog->Instructions + beginInstLoc;
1185 beginInst->BranchTarget = prog->NumInstructions - 1;
1186 }
1187
1188 /* Done emitting loop code. Now walk over the loop's linked list of
1189 * BREAK and CONT nodes, filling in their BranchTarget fields (which
1190 * will point to the ENDLOOP+1 or BGNLOOP instructions, respectively).
1191 */
1192 for (ir = n->BranchNode; ir; ir = ir->BranchNode) {
1193 struct prog_instruction *inst = prog->Instructions + ir->InstLocation;
1194 assert(inst->BranchTarget < 0);
1195 if (ir->Opcode == IR_BREAK ||
1196 ir->Opcode == IR_BREAK_IF_FALSE ||
1197 ir->Opcode == IR_BREAK_IF_TRUE) {
1198 assert(inst->Opcode == OPCODE_BRK ||
1199 inst->Opcode == OPCODE_BRA);
1200 /* go to instruction after end of loop */
1201 inst->BranchTarget = endInstLoc + 1;
1202 }
1203 else {
1204 assert(ir->Opcode == IR_CONT ||
1205 ir->Opcode == IR_CONT_IF_FALSE ||
1206 ir->Opcode == IR_CONT_IF_TRUE);
1207 assert(inst->Opcode == OPCODE_CONT ||
1208 inst->Opcode == OPCODE_BRA);
1209 /* to go instruction at top of loop */
1210 inst->BranchTarget = beginInstLoc;
1211 }
1212 }
1213 return NULL;
1214 }
1215
1216
1217 /**
1218 * "Continue" or "break" statement.
1219 * Either OPCODE_CONT, OPCODE_BRK or OPCODE_BRA will be emitted.
1220 */
1221 static struct prog_instruction *
1222 emit_cont_break(slang_emit_info *emitInfo, slang_ir_node *n)
1223 {
1224 gl_inst_opcode opcode;
1225 struct prog_instruction *inst;
1226 n->InstLocation = emitInfo->prog->NumInstructions;
1227 if (emitInfo->EmitHighLevelInstructions) {
1228 opcode = (n->Opcode == IR_CONT) ? OPCODE_CONT : OPCODE_BRK;
1229 }
1230 else {
1231 opcode = OPCODE_BRA;
1232 }
1233 inst = new_instruction(emitInfo, opcode);
1234 inst->DstReg.CondMask = COND_TR; /* always true */
1235 return inst;
1236 }
1237
1238
1239 /**
1240 * Conditional "continue" or "break" statement.
1241 * Either OPCODE_CONT, OPCODE_BRK or OPCODE_BRA will be emitted.
1242 */
1243 static struct prog_instruction *
1244 emit_cont_break_if(slang_emit_info *emitInfo, slang_ir_node *n,
1245 GLboolean breakTrue)
1246 {
1247 gl_inst_opcode opcode;
1248 struct prog_instruction *inst;
1249
1250 /* evaluate condition expr, setting cond codes */
1251 inst = emit(emitInfo, n->Children[0]);
1252 assert(inst);
1253 inst->CondUpdate = GL_TRUE;
1254
1255 n->InstLocation = emitInfo->prog->NumInstructions;
1256 if (emitInfo->EmitHighLevelInstructions) {
1257 if (n->Opcode == IR_CONT_IF_TRUE ||
1258 n->Opcode == IR_CONT_IF_FALSE)
1259 opcode = OPCODE_CONT;
1260 else
1261 opcode = OPCODE_BRK;
1262 }
1263 else {
1264 opcode = OPCODE_BRA;
1265 }
1266 inst = new_instruction(emitInfo, opcode);
1267 inst->DstReg.CondMask = breakTrue ? COND_NE : COND_EQ;
1268 return inst;
1269 }
1270
1271
1272
1273 /**
1274 * Remove any SWIZZLE_NIL terms from given swizzle mask (smear prev term).
1275 * Ex: fix_swizzle("zyNN") -> "zyyy"
1276 */
1277 static GLuint
1278 fix_swizzle(GLuint swizzle)
1279 {
1280 GLuint swz[4], i;
1281 for (i = 0; i < 4; i++) {
1282 swz[i] = GET_SWZ(swizzle, i);
1283 if (swz[i] == SWIZZLE_NIL) {
1284 swz[i] = swz[i - 1];
1285 }
1286 }
1287 return MAKE_SWIZZLE4(swz[0], swz[1], swz[2], swz[3]);
1288 }
1289
1290
1291 static struct prog_instruction *
1292 emit_swizzle(slang_emit_info *emitInfo, slang_ir_node *n)
1293 {
1294 GLuint swizzle;
1295
1296 /* swizzled storage access */
1297 (void) emit(emitInfo, n->Children[0]);
1298
1299 /* "pull-up" the child's storage info, applying our swizzle info */
1300 n->Store->File = n->Children[0]->Store->File;
1301 n->Store->Index = n->Children[0]->Store->Index;
1302 n->Store->Size = n->Children[0]->Store->Size;
1303 /*n->Var = n->Children[0]->Var; XXX for debug */
1304 assert(n->Store->Index >= 0);
1305
1306 swizzle = fix_swizzle(n->Store->Swizzle);
1307 #ifdef DEBUG
1308 {
1309 GLuint s = n->Children[0]->Store->Swizzle;
1310 assert(GET_SWZ(s, 0) != SWIZZLE_NIL);
1311 assert(GET_SWZ(s, 1) != SWIZZLE_NIL);
1312 assert(GET_SWZ(s, 2) != SWIZZLE_NIL);
1313 assert(GET_SWZ(s, 3) != SWIZZLE_NIL);
1314 }
1315 #endif
1316
1317 /* apply this swizzle to child's swizzle to get composed swizzle */
1318 n->Store->Swizzle = swizzle_swizzle(n->Children[0]->Store->Swizzle,
1319 swizzle);
1320 return NULL;
1321 }
1322
1323
1324 /**
1325 * Dereference array element. Just resolve storage for the array
1326 * element represented by this node.
1327 */
1328 static struct prog_instruction *
1329 emit_array_element(slang_emit_info *emitInfo, slang_ir_node *n)
1330 {
1331 assert(n->Store);
1332 assert(n->Store->File != PROGRAM_UNDEFINED);
1333 assert(n->Store->Size > 0);
1334
1335 if (n->Store->File == PROGRAM_STATE_VAR) {
1336 n->Store->Index = _slang_alloc_statevar(n, emitInfo->prog->Parameters);
1337 return NULL;
1338 }
1339
1340
1341 if (n->Children[1]->Opcode == IR_FLOAT) {
1342 /* Constant index */
1343 const GLint arrayAddr = n->Children[0]->Store->Index;
1344 const GLint index = (GLint) n->Children[1]->Value[0];
1345 n->Store->Index = arrayAddr + index;
1346 }
1347 else {
1348 /* Variable index - PROBLEM */
1349 const GLint arrayAddr = n->Children[0]->Store->Index;
1350 const GLint index = 0;
1351 _mesa_problem(NULL, "variable array indexes not supported yet!");
1352 n->Store->Index = arrayAddr + index;
1353 }
1354 return NULL; /* no instruction */
1355 }
1356
1357
1358 /**
1359 * Resolve storage for accessing a structure field.
1360 */
1361 static struct prog_instruction *
1362 emit_struct_field(slang_emit_info *emitInfo, slang_ir_node *n)
1363 {
1364 if (n->Store->File == PROGRAM_STATE_VAR) {
1365 n->Store->Index = _slang_alloc_statevar(n, emitInfo->prog->Parameters);
1366 }
1367 else {
1368 _mesa_problem(NULL, "structs/fields not supported yet");
1369 }
1370 return NULL; /* no instruction */
1371 }
1372
1373
1374 static struct prog_instruction *
1375 emit(slang_emit_info *emitInfo, slang_ir_node *n)
1376 {
1377 struct prog_instruction *inst;
1378 if (!n)
1379 return NULL;
1380
1381 switch (n->Opcode) {
1382 case IR_SEQ:
1383 /* sequence of two sub-trees */
1384 assert(n->Children[0]);
1385 assert(n->Children[1]);
1386 emit(emitInfo, n->Children[0]);
1387 inst = emit(emitInfo, n->Children[1]);
1388 assert(!n->Store);
1389 n->Store = n->Children[1]->Store;
1390 return inst;
1391
1392 case IR_SCOPE:
1393 /* new variable scope */
1394 _slang_push_var_table(emitInfo->vt);
1395 inst = emit(emitInfo, n->Children[0]);
1396 _slang_pop_var_table(emitInfo->vt);
1397 return inst;
1398
1399 case IR_VAR_DECL:
1400 /* Variable declaration - allocate a register for it */
1401 assert(n->Store);
1402 assert(n->Store->File != PROGRAM_UNDEFINED);
1403 assert(n->Store->Size > 0);
1404 assert(n->Store->Index < 0);
1405 if (!n->Var || n->Var->isTemp) {
1406 /* a nameless/temporary variable, will be freed after first use */
1407 if (!_slang_alloc_temp(emitInfo->vt, n->Store)) {
1408 slang_info_log_error(emitInfo->log,
1409 "Ran out of registers, too many temporaries");
1410 return NULL;
1411 }
1412 }
1413 else {
1414 /* a regular variable */
1415 _slang_add_variable(emitInfo->vt, n->Var);
1416 if (!_slang_alloc_var(emitInfo->vt, n->Store)) {
1417 slang_info_log_error(emitInfo->log,
1418 "Ran out of registers, too many variables");
1419 return NULL;
1420 }
1421 /*
1422 printf("IR_VAR_DECL %s %d store %p\n",
1423 (char*) n->Var->a_name, n->Store->Index, (void*) n->Store);
1424 */
1425 assert(n->Var->aux == n->Store);
1426 }
1427 if (emitInfo->EmitComments) {
1428 /* emit NOP with comment describing the variable's storage location */
1429 char s[1000];
1430 sprintf(s, "TEMP[%d]%s = %s (size %d)",
1431 n->Store->Index,
1432 _mesa_swizzle_string(n->Store->Swizzle, 0, GL_FALSE),
1433 (char *) n->Var->a_name,
1434 n->Store->Size);
1435 inst = new_instruction(emitInfo, OPCODE_NOP);
1436 inst->Comment = _mesa_strdup(s);
1437 return inst;
1438 }
1439 return NULL;
1440
1441 case IR_VAR:
1442 /* Reference to a variable
1443 * Storage should have already been resolved/allocated.
1444 */
1445 assert(n->Store);
1446 assert(n->Store->File != PROGRAM_UNDEFINED);
1447
1448 if (n->Store->File == PROGRAM_STATE_VAR &&
1449 n->Store->Index < 0) {
1450 n->Store->Index = _slang_alloc_statevar(n, emitInfo->prog->Parameters);
1451 }
1452
1453 if (n->Store->Index < 0) {
1454 printf("#### VAR %s not allocated!\n", (char*)n->Var->a_name);
1455 }
1456 assert(n->Store->Index >= 0);
1457 assert(n->Store->Size > 0);
1458 break;
1459
1460 case IR_ELEMENT:
1461 return emit_array_element(emitInfo, n);
1462 case IR_FIELD:
1463 return emit_struct_field(emitInfo, n);
1464 case IR_SWIZZLE:
1465 return emit_swizzle(emitInfo, n);
1466
1467 case IR_I_TO_F:
1468 /* just move */
1469 emit(emitInfo, n->Children[0]);
1470 inst = new_instruction(emitInfo, OPCODE_MOV);
1471 if (!n->Store) {
1472 if (!alloc_temp_storage(emitInfo, n, 1))
1473 return NULL;
1474 }
1475 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
1476 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
1477 if (emitInfo->EmitComments)
1478 inst->Comment = _mesa_strdup("int to float");
1479 return NULL;
1480
1481 /* Simple arithmetic */
1482 /* unary */
1483 case IR_RSQ:
1484 case IR_RCP:
1485 case IR_FLOOR:
1486 case IR_FRAC:
1487 case IR_F_TO_I:
1488 case IR_ABS:
1489 case IR_SIN:
1490 case IR_COS:
1491 case IR_DDX:
1492 case IR_DDY:
1493 case IR_NOISE1:
1494 case IR_NOISE2:
1495 case IR_NOISE3:
1496 case IR_NOISE4:
1497 /* binary */
1498 case IR_ADD:
1499 case IR_SUB:
1500 case IR_MUL:
1501 case IR_DOT4:
1502 case IR_DOT3:
1503 case IR_CROSS:
1504 case IR_MIN:
1505 case IR_MAX:
1506 case IR_SEQUAL:
1507 case IR_SNEQUAL:
1508 case IR_SGE:
1509 case IR_SGT:
1510 case IR_SLE:
1511 case IR_SLT:
1512 case IR_POW:
1513 case IR_EXP:
1514 case IR_EXP2:
1515 /* trinary operators */
1516 case IR_LRP:
1517 return emit_arith(emitInfo, n);
1518 case IR_CLAMP:
1519 return emit_clamp(emitInfo, n);
1520 case IR_TEX:
1521 case IR_TEXB:
1522 case IR_TEXP:
1523 return emit_tex(emitInfo, n);
1524 case IR_NEG:
1525 return emit_negation(emitInfo, n);
1526 case IR_FLOAT:
1527 /* find storage location for this float constant */
1528 n->Store->Index = _mesa_add_unnamed_constant(emitInfo->prog->Parameters, n->Value,
1529 n->Store->Size,
1530 &n->Store->Swizzle);
1531 if (n->Store->Index < 0) {
1532 slang_info_log_error(emitInfo->log, "Ran out of space for constants");
1533 return NULL;
1534 }
1535 return NULL;
1536
1537 case IR_MOVE:
1538 return emit_move(emitInfo, n);
1539
1540 case IR_COND:
1541 return emit_cond(emitInfo, n);
1542
1543 case IR_NOT:
1544 return emit_not(emitInfo, n);
1545
1546 case IR_LABEL:
1547 return emit_label(emitInfo, n);
1548 case IR_JUMP:
1549 assert(n);
1550 assert(n->Label);
1551 return emit_jump(emitInfo, n);
1552 case IR_KILL:
1553 return emit_kill(emitInfo);
1554
1555 case IR_IF:
1556 return emit_if(emitInfo, n);
1557
1558 case IR_LOOP:
1559 return emit_loop(emitInfo, n);
1560 case IR_BREAK_IF_FALSE:
1561 case IR_CONT_IF_FALSE:
1562 return emit_cont_break_if(emitInfo, n, GL_FALSE);
1563 case IR_BREAK_IF_TRUE:
1564 case IR_CONT_IF_TRUE:
1565 return emit_cont_break_if(emitInfo, n, GL_TRUE);
1566 case IR_BREAK:
1567 /* fall-through */
1568 case IR_CONT:
1569 return emit_cont_break(emitInfo, n);
1570
1571 case IR_BEGIN_SUB:
1572 return new_instruction(emitInfo, OPCODE_BGNSUB);
1573 case IR_END_SUB:
1574 return new_instruction(emitInfo, OPCODE_ENDSUB);
1575 case IR_RETURN:
1576 return new_instruction(emitInfo, OPCODE_RET);
1577
1578 case IR_NOP:
1579 return NULL;
1580
1581 default:
1582 _mesa_problem(NULL, "Unexpected IR opcode in emit()\n");
1583 abort();
1584 }
1585 return NULL;
1586 }
1587
1588
1589 GLboolean
1590 _slang_emit_code(slang_ir_node *n, slang_var_table *vt,
1591 struct gl_program *prog, GLboolean withEnd,
1592 slang_info_log *log)
1593 {
1594 GET_CURRENT_CONTEXT(ctx);
1595 GLboolean success;
1596 slang_emit_info emitInfo;
1597
1598 emitInfo.log = log;
1599 emitInfo.vt = vt;
1600 emitInfo.prog = prog;
1601
1602 emitInfo.EmitHighLevelInstructions = ctx->Shader.EmitHighLevelInstructions;
1603 emitInfo.EmitComments = ctx->Shader.EmitComments;
1604
1605 (void) emit(&emitInfo, n);
1606
1607 /* finish up by adding the END opcode to program */
1608 if (withEnd) {
1609 struct prog_instruction *inst;
1610 inst = new_instruction(&emitInfo, OPCODE_END);
1611 }
1612 success = GL_TRUE;
1613
1614 #if 0
1615 printf("*********** End emit code (%u inst):\n", prog->NumInstructions);
1616 _mesa_print_program(prog);
1617 _mesa_print_program_parameters(ctx,prog);
1618 #endif
1619
1620 return success;
1621 }