Support for user-defined structures.
[mesa.git] / src / mesa / shader / slang / slang_emit.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file slang_emit.c
27 * Emit program instructions (PI code) from IR trees.
28 * \author Brian Paul
29 */
30
31 /***
32 *** NOTES
33 ***
34 *** To emit GPU instructions, we basically just do an in-order traversal
35 *** of the IR tree.
36 ***/
37
38
39 #include "imports.h"
40 #include "context.h"
41 #include "macros.h"
42 #include "program.h"
43 #include "prog_instruction.h"
44 #include "prog_parameter.h"
45 #include "prog_print.h"
46 #include "slang_builtin.h"
47 #include "slang_emit.h"
48
49
50 #define PEEPHOLE_OPTIMIZATIONS 1
51 #define ANNOTATE 0
52
53
54 /* XXX temporarily here */
55
56
57 typedef struct
58 {
59 slang_info_log *log;
60 slang_var_table *vt;
61 struct gl_program *prog;
62 /* code-gen options */
63 GLboolean EmitHighLevelInstructions;
64 GLboolean EmitComments;
65 } slang_emit_info;
66
67
68 /**
69 * Assembly and IR info
70 */
71 typedef struct
72 {
73 slang_ir_opcode IrOpcode;
74 const char *IrName;
75 gl_inst_opcode InstOpcode;
76 GLuint ResultSize, NumParams;
77 } slang_ir_info;
78
79
80
81 static const slang_ir_info IrInfo[] = {
82 /* binary ops */
83 { IR_ADD, "IR_ADD", OPCODE_ADD, 4, 2 },
84 { IR_SUB, "IR_SUB", OPCODE_SUB, 4, 2 },
85 { IR_MUL, "IR_MUL", OPCODE_MUL, 4, 2 },
86 { IR_DIV, "IR_DIV", OPCODE_NOP, 0, 2 }, /* XXX broke */
87 { IR_DOT4, "IR_DOT_4", OPCODE_DP4, 1, 2 },
88 { IR_DOT3, "IR_DOT_3", OPCODE_DP3, 1, 2 },
89 { IR_CROSS, "IR_CROSS", OPCODE_XPD, 3, 2 },
90 { IR_LRP, "IR_LRP", OPCODE_LRP, 4, 3 },
91 { IR_MIN, "IR_MIN", OPCODE_MIN, 4, 2 },
92 { IR_MAX, "IR_MAX", OPCODE_MAX, 4, 2 },
93 { IR_CLAMP, "IR_CLAMP", OPCODE_NOP, 4, 3 }, /* special case: emit_clamp() */
94 { IR_SEQUAL, "IR_SEQUAL", OPCODE_SEQ, 4, 2 },
95 { IR_SNEQUAL, "IR_SNEQUAL", OPCODE_SNE, 4, 2 },
96 { IR_SGE, "IR_SGE", OPCODE_SGE, 4, 2 },
97 { IR_SGT, "IR_SGT", OPCODE_SGT, 4, 2 },
98 { IR_SLE, "IR_SLE", OPCODE_SLE, 4, 2 },
99 { IR_SLT, "IR_SLT", OPCODE_SLT, 4, 2 },
100 { IR_POW, "IR_POW", OPCODE_POW, 1, 2 },
101 /* unary ops */
102 { IR_I_TO_F, "IR_I_TO_F", OPCODE_NOP, 1, 1 },
103 { IR_F_TO_I, "IR_F_TO_I", OPCODE_INT, 4, 1 }, /* 4 floats to 4 ints */
104 { IR_EXP, "IR_EXP", OPCODE_EXP, 1, 1 },
105 { IR_EXP2, "IR_EXP2", OPCODE_EX2, 1, 1 },
106 { IR_LOG2, "IR_LOG2", OPCODE_LG2, 1, 1 },
107 { IR_RSQ, "IR_RSQ", OPCODE_RSQ, 1, 1 },
108 { IR_RCP, "IR_RCP", OPCODE_RCP, 1, 1 },
109 { IR_FLOOR, "IR_FLOOR", OPCODE_FLR, 4, 1 },
110 { IR_FRAC, "IR_FRAC", OPCODE_FRC, 4, 1 },
111 { IR_ABS, "IR_ABS", OPCODE_ABS, 4, 1 },
112 { IR_NEG, "IR_NEG", OPCODE_NOP, 4, 1 }, /* special case: emit_negation() */
113 { IR_DDX, "IR_DDX", OPCODE_DDX, 4, 1 },
114 { IR_DDX, "IR_DDY", OPCODE_DDX, 4, 1 },
115 { IR_SIN, "IR_SIN", OPCODE_SIN, 1, 1 },
116 { IR_COS, "IR_COS", OPCODE_COS, 1, 1 },
117 { IR_NOISE1, "IR_NOISE1", OPCODE_NOISE1, 1, 1 },
118 { IR_NOISE2, "IR_NOISE2", OPCODE_NOISE2, 1, 1 },
119 { IR_NOISE3, "IR_NOISE3", OPCODE_NOISE3, 1, 1 },
120 { IR_NOISE4, "IR_NOISE4", OPCODE_NOISE4, 1, 1 },
121
122 /* other */
123 { IR_SEQ, "IR_SEQ", OPCODE_NOP, 0, 0 },
124 { IR_SCOPE, "IR_SCOPE", OPCODE_NOP, 0, 0 },
125 { IR_LABEL, "IR_LABEL", OPCODE_NOP, 0, 0 },
126 { IR_JUMP, "IR_JUMP", OPCODE_NOP, 0, 0 },
127 { IR_IF, "IR_IF", OPCODE_NOP, 0, 0 },
128 { IR_KILL, "IR_KILL", OPCODE_NOP, 0, 0 },
129 { IR_COND, "IR_COND", OPCODE_NOP, 0, 0 },
130 { IR_CALL, "IR_CALL", OPCODE_NOP, 0, 0 },
131 { IR_MOVE, "IR_MOVE", OPCODE_NOP, 0, 1 },
132 { IR_NOT, "IR_NOT", OPCODE_NOP, 1, 1 },
133 { IR_VAR, "IR_VAR", OPCODE_NOP, 0, 0 },
134 { IR_VAR_DECL, "IR_VAR_DECL", OPCODE_NOP, 0, 0 },
135 { IR_TEX, "IR_TEX", OPCODE_TEX, 4, 1 },
136 { IR_TEXB, "IR_TEXB", OPCODE_TXB, 4, 1 },
137 { IR_TEXP, "IR_TEXP", OPCODE_TXP, 4, 1 },
138 { IR_FLOAT, "IR_FLOAT", OPCODE_NOP, 0, 0 }, /* float literal */
139 { IR_FIELD, "IR_FIELD", OPCODE_NOP, 0, 0 },
140 { IR_ELEMENT, "IR_ELEMENT", OPCODE_NOP, 0, 0 },
141 { IR_SWIZZLE, "IR_SWIZZLE", OPCODE_NOP, 0, 0 },
142 { IR_NOP, NULL, OPCODE_NOP, 0, 0 }
143 };
144
145
146 static const slang_ir_info *
147 slang_find_ir_info(slang_ir_opcode opcode)
148 {
149 GLuint i;
150 for (i = 0; IrInfo[i].IrName; i++) {
151 if (IrInfo[i].IrOpcode == opcode) {
152 return IrInfo + i;
153 }
154 }
155 return NULL;
156 }
157
158 static const char *
159 slang_ir_name(slang_ir_opcode opcode)
160 {
161 return slang_find_ir_info(opcode)->IrName;
162 }
163
164
165 /**
166 * Swizzle a swizzle. That is, return swz2(swz1)
167 */
168 static GLuint
169 swizzle_swizzle(GLuint swz1, GLuint swz2)
170 {
171 GLuint i, swz, s[4];
172 for (i = 0; i < 4; i++) {
173 GLuint c = GET_SWZ(swz2, i);
174 s[i] = GET_SWZ(swz1, c);
175 }
176 swz = MAKE_SWIZZLE4(s[0], s[1], s[2], s[3]);
177 return swz;
178 }
179
180
181 slang_ir_storage *
182 _slang_new_ir_storage(enum register_file file, GLint index, GLint size)
183 {
184 slang_ir_storage *st;
185 st = (slang_ir_storage *) _mesa_calloc(sizeof(slang_ir_storage));
186 if (st) {
187 st->File = file;
188 st->Index = index;
189 st->Size = size;
190 st->Swizzle = SWIZZLE_NOOP;
191 }
192 return st;
193 }
194
195
196 static const char *
197 swizzle_string(GLuint swizzle)
198 {
199 static char s[6];
200 GLuint i;
201 s[0] = '.';
202 for (i = 1; i < 5; i++) {
203 s[i] = "xyzw"[GET_SWZ(swizzle, i-1)];
204 }
205 s[i] = 0;
206 return s;
207 }
208
209 static const char *
210 writemask_string(GLuint writemask)
211 {
212 static char s[6];
213 GLuint i, j = 0;
214 s[j++] = '.';
215 for (i = 0; i < 4; i++) {
216 if (writemask & (1 << i))
217 s[j++] = "xyzw"[i];
218 }
219 s[j] = 0;
220 return s;
221 }
222
223 static const char *
224 storage_string(const slang_ir_storage *st)
225 {
226 static const char *files[] = {
227 "TEMP",
228 "LOCAL_PARAM",
229 "ENV_PARAM",
230 "STATE",
231 "INPUT",
232 "OUTPUT",
233 "NAMED_PARAM",
234 "CONSTANT",
235 "UNIFORM",
236 "WRITE_ONLY",
237 "ADDRESS",
238 "SAMPLER",
239 "UNDEFINED"
240 };
241 static char s[100];
242 #if 0
243 if (st->Size == 1)
244 sprintf(s, "%s[%d]", files[st->File], st->Index);
245 else
246 sprintf(s, "%s[%d..%d]", files[st->File], st->Index,
247 st->Index + st->Size - 1);
248 #endif
249 assert(st->File < (GLint) (sizeof(files) / sizeof(files[0])));
250 sprintf(s, "%s[%d]", files[st->File], st->Index);
251 return s;
252 }
253
254
255 static void
256 spaces(int n)
257 {
258 while (n-- > 0) {
259 printf(" ");
260 }
261 }
262
263 #define IND 0
264 void
265 slang_print_ir(const slang_ir_node *n, int indent)
266 {
267 if (!n)
268 return;
269 #if !IND
270 if (n->Opcode != IR_SEQ)
271 #else
272 printf("%3d:", indent);
273 #endif
274 spaces(indent);
275
276 switch (n->Opcode) {
277 case IR_SEQ:
278 #if IND
279 printf("SEQ at %p\n", (void*) n);
280 #endif
281 assert(n->Children[0]);
282 assert(n->Children[1]);
283 slang_print_ir(n->Children[0], indent + IND);
284 slang_print_ir(n->Children[1], indent + IND);
285 break;
286 case IR_SCOPE:
287 printf("NEW SCOPE\n");
288 assert(!n->Children[1]);
289 slang_print_ir(n->Children[0], indent + 3);
290 break;
291 case IR_MOVE:
292 printf("MOVE (writemask = %s)\n", writemask_string(n->Writemask));
293 slang_print_ir(n->Children[0], indent+3);
294 slang_print_ir(n->Children[1], indent+3);
295 break;
296 case IR_LABEL:
297 printf("LABEL: %s\n", n->Label->Name);
298 break;
299 case IR_COND:
300 printf("COND\n");
301 slang_print_ir(n->Children[0], indent + 3);
302 break;
303 case IR_JUMP:
304 printf("JUMP %s\n", n->Label->Name);
305 break;
306
307 case IR_IF:
308 printf("IF \n");
309 slang_print_ir(n->Children[0], indent+3);
310 spaces(indent);
311 printf("THEN\n");
312 slang_print_ir(n->Children[1], indent+3);
313 if (n->Children[2]) {
314 spaces(indent);
315 printf("ELSE\n");
316 slang_print_ir(n->Children[2], indent+3);
317 }
318 printf("ENDIF\n");
319 break;
320
321 case IR_BEGIN_SUB:
322 printf("BEGIN_SUB\n");
323 break;
324 case IR_END_SUB:
325 printf("END_SUB\n");
326 break;
327 case IR_RETURN:
328 printf("RETURN\n");
329 break;
330 case IR_CALL:
331 printf("CALL\n");
332 break;
333
334 case IR_LOOP:
335 printf("LOOP\n");
336 slang_print_ir(n->Children[0], indent+3);
337 spaces(indent);
338 printf("ENDLOOP\n");
339 break;
340 case IR_CONT:
341 printf("CONT\n");
342 break;
343 case IR_BREAK:
344 printf("BREAK\n");
345 break;
346 case IR_BREAK_IF_FALSE:
347 printf("BREAK_IF_FALSE\n");
348 slang_print_ir(n->Children[0], indent+3);
349 break;
350 case IR_BREAK_IF_TRUE:
351 printf("BREAK_IF_TRUE\n");
352 slang_print_ir(n->Children[0], indent+3);
353 break;
354 case IR_CONT_IF_FALSE:
355 printf("CONT_IF_FALSE\n");
356 slang_print_ir(n->Children[0], indent+3);
357 break;
358 case IR_CONT_IF_TRUE:
359 printf("CONT_IF_TRUE\n");
360 slang_print_ir(n->Children[0], indent+3);
361 break;
362
363 case IR_VAR:
364 printf("VAR %s%s at %s store %p\n",
365 (n->Var ? (char *) n->Var->a_name : "TEMP"),
366 swizzle_string(n->Store->Swizzle),
367 storage_string(n->Store), (void*) n->Store);
368 break;
369 case IR_VAR_DECL:
370 printf("VAR_DECL %s (%p) at %s store %p\n",
371 (n->Var ? (char *) n->Var->a_name : "TEMP"),
372 (void*) n->Var, storage_string(n->Store),
373 (void*) n->Store);
374 break;
375 case IR_FIELD:
376 printf("FIELD %s of\n", n->Field);
377 slang_print_ir(n->Children[0], indent+3);
378 break;
379 case IR_FLOAT:
380 printf("FLOAT %g %g %g %g\n",
381 n->Value[0], n->Value[1], n->Value[2], n->Value[3]);
382 break;
383 case IR_I_TO_F:
384 printf("INT_TO_FLOAT\n");
385 slang_print_ir(n->Children[0], indent+3);
386 break;
387 case IR_F_TO_I:
388 printf("FLOAT_TO_INT\n");
389 slang_print_ir(n->Children[0], indent+3);
390 break;
391 case IR_SWIZZLE:
392 printf("SWIZZLE %s of (store %p) \n",
393 swizzle_string(n->Store->Swizzle), (void*) n->Store);
394 slang_print_ir(n->Children[0], indent + 3);
395 break;
396 default:
397 printf("%s (%p, %p) (store %p)\n", slang_ir_name(n->Opcode),
398 (void*) n->Children[0], (void*) n->Children[1], (void*) n->Store);
399 slang_print_ir(n->Children[0], indent+3);
400 slang_print_ir(n->Children[1], indent+3);
401 }
402 }
403
404
405 /**
406 * Allocate temporary storage for an intermediate result (such as for
407 * a multiply or add, etc.
408 */
409 static GLboolean
410 alloc_temp_storage(slang_emit_info *emitInfo, slang_ir_node *n, GLint size)
411 {
412 assert(!n->Var);
413 assert(!n->Store);
414 assert(size > 0);
415 n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, size);
416 if (!_slang_alloc_temp(emitInfo->vt, n->Store)) {
417 slang_info_log_error(emitInfo->log,
418 "Ran out of registers, too many temporaries");
419 return GL_FALSE;
420 }
421 return GL_TRUE;
422 }
423
424
425 /**
426 * Free temporary storage, if n->Store is, in fact, temp storage.
427 * Otherwise, no-op.
428 */
429 static void
430 free_temp_storage(slang_var_table *vt, slang_ir_node *n)
431 {
432 if (n->Store->File == PROGRAM_TEMPORARY && n->Store->Index >= 0) {
433 if (_slang_is_temp(vt, n->Store)) {
434 _slang_free_temp(vt, n->Store);
435 n->Store->Index = -1;
436 n->Store->Size = -1;
437 }
438 }
439 }
440
441
442 /**
443 * Convert IR storage to an instruction dst register.
444 */
445 static void
446 storage_to_dst_reg(struct prog_dst_register *dst, const slang_ir_storage *st,
447 GLuint writemask)
448 {
449 static const GLuint defaultWritemask[4] = {
450 WRITEMASK_X,
451 WRITEMASK_X | WRITEMASK_Y,
452 WRITEMASK_X | WRITEMASK_Y | WRITEMASK_Z,
453 WRITEMASK_X | WRITEMASK_Y | WRITEMASK_Z | WRITEMASK_W
454 };
455 assert(st->Index >= 0);
456 dst->File = st->File;
457 dst->Index = st->Index;
458 assert(st->File != PROGRAM_UNDEFINED);
459 assert(st->Size >= 1);
460 assert(st->Size <= 4);
461 if (st->Size == 1) {
462 GLuint comp = GET_SWZ(st->Swizzle, 0);
463 assert(comp < 4);
464 assert(writemask & WRITEMASK_X);
465 dst->WriteMask = WRITEMASK_X << comp;
466 }
467 else {
468 dst->WriteMask = defaultWritemask[st->Size - 1] & writemask;
469 }
470 }
471
472
473 /**
474 * Convert IR storage to an instruction src register.
475 */
476 static void
477 storage_to_src_reg(struct prog_src_register *src, const slang_ir_storage *st)
478 {
479 static const GLuint defaultSwizzle[4] = {
480 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
481 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
482 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
483 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W)
484 };
485 assert(st->File >= 0);
486 assert(st->File < PROGRAM_UNDEFINED);
487 assert(st->Size >= 1);
488 assert(st->Size <= 4);
489 src->File = st->File;
490 src->Index = st->Index;
491 if (st->Swizzle != SWIZZLE_NOOP)
492 src->Swizzle = st->Swizzle;
493 else
494 src->Swizzle = defaultSwizzle[st->Size - 1]; /*XXX really need this?*/
495
496 assert(GET_SWZ(src->Swizzle, 0) != SWIZZLE_NIL);
497 assert(GET_SWZ(src->Swizzle, 1) != SWIZZLE_NIL);
498 assert(GET_SWZ(src->Swizzle, 2) != SWIZZLE_NIL);
499 assert(GET_SWZ(src->Swizzle, 3) != SWIZZLE_NIL);
500 }
501
502
503
504 /**
505 * Add new instruction at end of given program.
506 * \param prog the program to append instruction onto
507 * \param opcode opcode for the new instruction
508 * \return pointer to the new instruction
509 */
510 static struct prog_instruction *
511 new_instruction(slang_emit_info *emitInfo, gl_inst_opcode opcode)
512 {
513 struct gl_program *prog = emitInfo->prog;
514 struct prog_instruction *inst;
515 prog->Instructions = _mesa_realloc_instructions(prog->Instructions,
516 prog->NumInstructions,
517 prog->NumInstructions + 1);
518 inst = prog->Instructions + prog->NumInstructions;
519 prog->NumInstructions++;
520 _mesa_init_instructions(inst, 1);
521 inst->Opcode = opcode;
522 inst->BranchTarget = -1; /* invalid */
523 /*
524 printf("New inst %d: %p %s\n", prog->NumInstructions-1,(void*)inst,
525 _mesa_opcode_string(inst->Opcode));
526 */
527 return inst;
528 }
529
530
531 #if 0
532 /**
533 * Return pointer to last instruction in program.
534 */
535 static struct prog_instruction *
536 prev_instruction(struct gl_program *prog)
537 {
538 if (prog->NumInstructions == 0)
539 return NULL;
540 else
541 return prog->Instructions + prog->NumInstructions - 1;
542 }
543 #endif
544
545
546 static struct prog_instruction *
547 emit(slang_emit_info *emitInfo, slang_ir_node *n);
548
549
550 /**
551 * Return an annotation string for given node's storage.
552 */
553 static char *
554 storage_annotation(const slang_ir_node *n, const struct gl_program *prog)
555 {
556 #if ANNOTATE
557 const slang_ir_storage *st = n->Store;
558 static char s[100] = "";
559
560 if (!st)
561 return _mesa_strdup("");
562
563 switch (st->File) {
564 case PROGRAM_CONSTANT:
565 if (st->Index >= 0) {
566 const GLfloat *val = prog->Parameters->ParameterValues[st->Index];
567 if (st->Swizzle == SWIZZLE_NOOP)
568 sprintf(s, "{%g, %g, %g, %g}", val[0], val[1], val[2], val[3]);
569 else {
570 sprintf(s, "%g", val[GET_SWZ(st->Swizzle, 0)]);
571 }
572 }
573 break;
574 case PROGRAM_TEMPORARY:
575 if (n->Var)
576 sprintf(s, "%s", (char *) n->Var->a_name);
577 else
578 sprintf(s, "t[%d]", st->Index);
579 break;
580 case PROGRAM_STATE_VAR:
581 case PROGRAM_UNIFORM:
582 sprintf(s, "%s", prog->Parameters->Parameters[st->Index].Name);
583 break;
584 case PROGRAM_VARYING:
585 sprintf(s, "%s", prog->Varying->Parameters[st->Index].Name);
586 break;
587 case PROGRAM_INPUT:
588 sprintf(s, "input[%d]", st->Index);
589 break;
590 case PROGRAM_OUTPUT:
591 sprintf(s, "output[%d]", st->Index);
592 break;
593 default:
594 s[0] = 0;
595 }
596 return _mesa_strdup(s);
597 #else
598 return NULL;
599 #endif
600 }
601
602
603 /**
604 * Return an annotation string for an instruction.
605 */
606 static char *
607 instruction_annotation(gl_inst_opcode opcode, char *dstAnnot,
608 char *srcAnnot0, char *srcAnnot1, char *srcAnnot2)
609 {
610 #if ANNOTATE
611 const char *operator;
612 char *s;
613 int len = 50;
614
615 if (dstAnnot)
616 len += strlen(dstAnnot);
617 else
618 dstAnnot = _mesa_strdup("");
619
620 if (srcAnnot0)
621 len += strlen(srcAnnot0);
622 else
623 srcAnnot0 = _mesa_strdup("");
624
625 if (srcAnnot1)
626 len += strlen(srcAnnot1);
627 else
628 srcAnnot1 = _mesa_strdup("");
629
630 if (srcAnnot2)
631 len += strlen(srcAnnot2);
632 else
633 srcAnnot2 = _mesa_strdup("");
634
635 switch (opcode) {
636 case OPCODE_ADD:
637 operator = "+";
638 break;
639 case OPCODE_SUB:
640 operator = "-";
641 break;
642 case OPCODE_MUL:
643 operator = "*";
644 break;
645 case OPCODE_DP3:
646 operator = "DP3";
647 break;
648 case OPCODE_DP4:
649 operator = "DP4";
650 break;
651 case OPCODE_XPD:
652 operator = "XPD";
653 break;
654 case OPCODE_RSQ:
655 operator = "RSQ";
656 break;
657 case OPCODE_SGT:
658 operator = ">";
659 break;
660 default:
661 operator = ",";
662 }
663
664 s = (char *) malloc(len);
665 sprintf(s, "%s = %s %s %s %s", dstAnnot,
666 srcAnnot0, operator, srcAnnot1, srcAnnot2);
667 assert(_mesa_strlen(s) < len);
668
669 free(dstAnnot);
670 free(srcAnnot0);
671 free(srcAnnot1);
672 free(srcAnnot2);
673
674 return s;
675 #else
676 return NULL;
677 #endif
678 }
679
680
681
682 /**
683 * Generate code for a simple arithmetic instruction.
684 * Either 1, 2 or 3 operands.
685 */
686 static struct prog_instruction *
687 emit_arith(slang_emit_info *emitInfo, slang_ir_node *n)
688 {
689 struct prog_instruction *inst;
690 const slang_ir_info *info = slang_find_ir_info(n->Opcode);
691 char *srcAnnot[3], *dstAnnot;
692 GLuint i;
693
694 assert(info);
695 assert(info->InstOpcode != OPCODE_NOP);
696
697 srcAnnot[0] = srcAnnot[1] = srcAnnot[2] = dstAnnot = NULL;
698
699 #if PEEPHOLE_OPTIMIZATIONS
700 /* Look for MAD opportunity */
701 if (info->NumParams == 2 &&
702 n->Opcode == IR_ADD && n->Children[0]->Opcode == IR_MUL) {
703 /* found pattern IR_ADD(IR_MUL(A, B), C) */
704 emit(emitInfo, n->Children[0]->Children[0]); /* A */
705 emit(emitInfo, n->Children[0]->Children[1]); /* B */
706 emit(emitInfo, n->Children[1]); /* C */
707 /* generate MAD instruction */
708 inst = new_instruction(emitInfo, OPCODE_MAD);
709 /* operands: A, B, C: */
710 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Children[0]->Store);
711 storage_to_src_reg(&inst->SrcReg[1], n->Children[0]->Children[1]->Store);
712 storage_to_src_reg(&inst->SrcReg[2], n->Children[1]->Store);
713 free_temp_storage(emitInfo->vt, n->Children[0]->Children[0]);
714 free_temp_storage(emitInfo->vt, n->Children[0]->Children[1]);
715 free_temp_storage(emitInfo->vt, n->Children[1]);
716 }
717 else if (info->NumParams == 2 &&
718 n->Opcode == IR_ADD && n->Children[1]->Opcode == IR_MUL) {
719 /* found pattern IR_ADD(A, IR_MUL(B, C)) */
720 emit(emitInfo, n->Children[0]); /* A */
721 emit(emitInfo, n->Children[1]->Children[0]); /* B */
722 emit(emitInfo, n->Children[1]->Children[1]); /* C */
723 /* generate MAD instruction */
724 inst = new_instruction(emitInfo, OPCODE_MAD);
725 /* operands: B, C, A */
726 storage_to_src_reg(&inst->SrcReg[0], n->Children[1]->Children[0]->Store);
727 storage_to_src_reg(&inst->SrcReg[1], n->Children[1]->Children[1]->Store);
728 storage_to_src_reg(&inst->SrcReg[2], n->Children[0]->Store);
729 free_temp_storage(emitInfo->vt, n->Children[1]->Children[0]);
730 free_temp_storage(emitInfo->vt, n->Children[1]->Children[1]);
731 free_temp_storage(emitInfo->vt, n->Children[0]);
732 }
733 else
734 #endif
735 {
736 /* normal case */
737
738 /* gen code for children */
739 for (i = 0; i < info->NumParams; i++)
740 emit(emitInfo, n->Children[i]);
741
742 /* gen this instruction and src registers */
743 inst = new_instruction(emitInfo, info->InstOpcode);
744 for (i = 0; i < info->NumParams; i++)
745 storage_to_src_reg(&inst->SrcReg[i], n->Children[i]->Store);
746
747 /* annotation */
748 for (i = 0; i < info->NumParams; i++)
749 srcAnnot[i] = storage_annotation(n->Children[i], emitInfo->prog);
750
751 /* free temps */
752 for (i = 0; i < info->NumParams; i++)
753 free_temp_storage(emitInfo->vt, n->Children[i]);
754 }
755
756 /* result storage */
757 if (!n->Store) {
758 if (!alloc_temp_storage(emitInfo, n, info->ResultSize))
759 return NULL;
760 }
761 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
762
763 dstAnnot = storage_annotation(n, emitInfo->prog);
764
765 inst->Comment = instruction_annotation(inst->Opcode, dstAnnot, srcAnnot[0],
766 srcAnnot[1], srcAnnot[2]);
767
768 /*_mesa_print_instruction(inst);*/
769 return inst;
770 }
771
772
773 /**
774 * Emit code for == and != operators. These could normally be handled
775 * by emit_arith() except we need to be able to handle structure comparisons.
776 */
777 static struct prog_instruction *
778 emit_compare(slang_emit_info *emitInfo, slang_ir_node *n)
779 {
780 struct prog_instruction *inst;
781
782 assert(n->Opcode == IR_SEQUAL || n->Opcode == IR_SNEQUAL);
783
784 /* gen code for children */
785 emit(emitInfo, n->Children[0]);
786 emit(emitInfo, n->Children[1]);
787
788 assert(n->Children[0]->Store->Size == n->Children[1]->Store->Size);
789
790 /* gen this instruction and src registers */
791 inst = new_instruction(emitInfo,
792 (n->Opcode == IR_SEQUAL) ? OPCODE_SEQ : OPCODE_SNE);
793 if (n->Children[0]->Store->Size > 4) {
794 /* struct compare */
795 _mesa_problem(NULL, "struct compare not implemented!");
796 return NULL;
797 }
798 else {
799 /* small/simple types */
800 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
801 storage_to_src_reg(&inst->SrcReg[1], n->Children[1]->Store);
802 }
803
804 /* free temps */
805 free_temp_storage(emitInfo->vt, n->Children[0]);
806 free_temp_storage(emitInfo->vt, n->Children[1]);
807
808 /* result storage */
809 if (!n->Store) {
810 if (!alloc_temp_storage(emitInfo, n, 1)) /* 1 bool */
811 return NULL;
812 }
813 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
814
815 return inst;
816 }
817
818
819
820 /**
821 * Generate code for an IR_CLAMP instruction.
822 */
823 static struct prog_instruction *
824 emit_clamp(slang_emit_info *emitInfo, slang_ir_node *n)
825 {
826 struct prog_instruction *inst;
827
828 assert(n->Opcode == IR_CLAMP);
829 /* ch[0] = value
830 * ch[1] = min limit
831 * ch[2] = max limit
832 */
833
834 inst = emit(emitInfo, n->Children[0]);
835
836 /* If lower limit == 0.0 and upper limit == 1.0,
837 * set prev instruction's SaturateMode field to SATURATE_ZERO_ONE.
838 * Else,
839 * emit OPCODE_MIN, OPCODE_MAX sequence.
840 */
841 #if 0
842 /* XXX this isn't quite finished yet */
843 if (n->Children[1]->Opcode == IR_FLOAT &&
844 n->Children[1]->Value[0] == 0.0 &&
845 n->Children[1]->Value[1] == 0.0 &&
846 n->Children[1]->Value[2] == 0.0 &&
847 n->Children[1]->Value[3] == 0.0 &&
848 n->Children[2]->Opcode == IR_FLOAT &&
849 n->Children[2]->Value[0] == 1.0 &&
850 n->Children[2]->Value[1] == 1.0 &&
851 n->Children[2]->Value[2] == 1.0 &&
852 n->Children[2]->Value[3] == 1.0) {
853 if (!inst) {
854 inst = prev_instruction(prog);
855 }
856 if (inst && inst->Opcode != OPCODE_NOP) {
857 /* and prev instruction's DstReg matches n->Children[0]->Store */
858 inst->SaturateMode = SATURATE_ZERO_ONE;
859 n->Store = n->Children[0]->Store;
860 return inst;
861 }
862 }
863 #endif
864
865 if (!n->Store)
866 if (!alloc_temp_storage(emitInfo, n, n->Children[0]->Store->Size))
867 return NULL;
868
869 emit(emitInfo, n->Children[1]);
870 emit(emitInfo, n->Children[2]);
871
872 /* tmp = max(ch[0], ch[1]) */
873 inst = new_instruction(emitInfo, OPCODE_MAX);
874 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
875 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
876 storage_to_src_reg(&inst->SrcReg[1], n->Children[1]->Store);
877
878 /* tmp = min(tmp, ch[2]) */
879 inst = new_instruction(emitInfo, OPCODE_MIN);
880 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
881 storage_to_src_reg(&inst->SrcReg[0], n->Store);
882 storage_to_src_reg(&inst->SrcReg[1], n->Children[2]->Store);
883
884 return inst;
885 }
886
887
888 static struct prog_instruction *
889 emit_negation(slang_emit_info *emitInfo, slang_ir_node *n)
890 {
891 /* Implement as MOV dst, -src; */
892 /* XXX we could look at the previous instruction and in some circumstances
893 * modify it to accomplish the negation.
894 */
895 struct prog_instruction *inst;
896
897 emit(emitInfo, n->Children[0]);
898
899 if (!n->Store)
900 if (!alloc_temp_storage(emitInfo, n, n->Children[0]->Store->Size))
901 return NULL;
902
903 inst = new_instruction(emitInfo, OPCODE_MOV);
904 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
905 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
906 inst->SrcReg[0].NegateBase = NEGATE_XYZW;
907 return inst;
908 }
909
910
911 static struct prog_instruction *
912 emit_label(slang_emit_info *emitInfo, const slang_ir_node *n)
913 {
914 assert(n->Label);
915 assert(_slang_label_get_location(n->Label) < 0);
916 _slang_label_set_location(n->Label, emitInfo->prog->NumInstructions,
917 emitInfo->prog);
918 return NULL;
919 }
920
921
922 static struct prog_instruction *
923 emit_jump(slang_emit_info *emitInfo, slang_ir_node *n)
924 {
925 struct prog_instruction *inst;
926 assert(n);
927 assert(n->Label);
928 inst = new_instruction(emitInfo, OPCODE_BRA);
929 inst->DstReg.CondMask = COND_TR; /* always branch */
930 inst->BranchTarget = _slang_label_get_location(n->Label);
931 if (inst->BranchTarget < 0) {
932 _slang_label_add_reference(n->Label, emitInfo->prog->NumInstructions - 1);
933 }
934 return inst;
935 }
936
937
938 static struct prog_instruction *
939 emit_kill(slang_emit_info *emitInfo)
940 {
941 struct prog_instruction *inst;
942 /* NV-KILL - discard fragment depending on condition code.
943 * Note that ARB-KILL depends on sign of vector operand.
944 */
945 inst = new_instruction(emitInfo, OPCODE_KIL_NV);
946 inst->DstReg.CondMask = COND_TR; /* always branch */
947 return inst;
948 }
949
950
951 static struct prog_instruction *
952 emit_tex(slang_emit_info *emitInfo, slang_ir_node *n)
953 {
954 struct prog_instruction *inst;
955
956 (void) emit(emitInfo, n->Children[1]);
957
958 if (n->Opcode == IR_TEX) {
959 inst = new_instruction(emitInfo, OPCODE_TEX);
960 }
961 else if (n->Opcode == IR_TEXB) {
962 inst = new_instruction(emitInfo, OPCODE_TXB);
963 }
964 else {
965 assert(n->Opcode == IR_TEXP);
966 inst = new_instruction(emitInfo, OPCODE_TXP);
967 }
968
969 if (!n->Store)
970 if (!alloc_temp_storage(emitInfo, n, 4))
971 return NULL;
972
973 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
974
975 /* Child[1] is the coord */
976 assert(n->Children[1]->Store->File != PROGRAM_UNDEFINED);
977 assert(n->Children[1]->Store->Index >= 0);
978 storage_to_src_reg(&inst->SrcReg[0], n->Children[1]->Store);
979
980 /* Child[0] is the sampler (a uniform which'll indicate the texture unit) */
981 assert(n->Children[0]->Store);
982 assert(n->Children[0]->Store->Size >= TEXTURE_1D_INDEX);
983
984 inst->Sampler = n->Children[0]->Store->Index; /* i.e. uniform's index */
985 inst->TexSrcTarget = n->Children[0]->Store->Size;
986 inst->TexSrcUnit = 27; /* Dummy value; the TexSrcUnit will be computed at
987 * link time, using the sampler uniform's value.
988 */
989 return inst;
990 }
991
992
993 static struct prog_instruction *
994 emit_move(slang_emit_info *emitInfo, slang_ir_node *n)
995 {
996 struct prog_instruction *inst;
997
998 /* lhs */
999 emit(emitInfo, n->Children[0]);
1000
1001 /* rhs */
1002 assert(n->Children[1]);
1003 inst = emit(emitInfo, n->Children[1]);
1004
1005 assert(n->Children[1]->Store->Index >= 0);
1006
1007 assert(!n->Store);
1008 n->Store = n->Children[0]->Store;
1009
1010 #if PEEPHOLE_OPTIMIZATIONS
1011 if (inst && _slang_is_temp(emitInfo->vt, n->Children[1]->Store)) {
1012 /* Peephole optimization:
1013 * Just modify the RHS to put its result into the dest of this
1014 * MOVE operation. Then, this MOVE is a no-op.
1015 */
1016 _slang_free_temp(emitInfo->vt, n->Children[1]->Store);
1017 *n->Children[1]->Store = *n->Children[0]->Store;
1018 /* fixup the prev (RHS) instruction */
1019 assert(n->Children[0]->Store->Index >= 0);
1020 storage_to_dst_reg(&inst->DstReg, n->Children[0]->Store, n->Writemask);
1021 return inst;
1022 }
1023 else
1024 #endif
1025 {
1026 if (n->Children[0]->Store->Size > 4) {
1027 /* move matrix/struct etc (block of registers) */
1028 slang_ir_storage dstStore = *n->Children[0]->Store;
1029 slang_ir_storage srcStore = *n->Children[1]->Store;
1030 GLint size = srcStore.Size;
1031 ASSERT(n->Children[0]->Writemask == WRITEMASK_XYZW);
1032 ASSERT(n->Children[1]->Store->Swizzle == SWIZZLE_NOOP);
1033 dstStore.Size = 4;
1034 srcStore.Size = 4;
1035 while (size >= 4) {
1036 inst = new_instruction(emitInfo, OPCODE_MOV);
1037 inst->Comment = _mesa_strdup("IR_MOVE block");
1038 storage_to_dst_reg(&inst->DstReg, &dstStore, n->Writemask);
1039 storage_to_src_reg(&inst->SrcReg[0], &srcStore);
1040 srcStore.Index++;
1041 dstStore.Index++;
1042 size -= 4;
1043 }
1044 }
1045 else {
1046 /* single register move */
1047 char *srcAnnot, *dstAnnot;
1048 inst = new_instruction(emitInfo, OPCODE_MOV);
1049 assert(n->Children[0]->Store->Index >= 0);
1050 storage_to_dst_reg(&inst->DstReg, n->Children[0]->Store, n->Writemask);
1051 storage_to_src_reg(&inst->SrcReg[0], n->Children[1]->Store);
1052 dstAnnot = storage_annotation(n->Children[0], emitInfo->prog);
1053 srcAnnot = storage_annotation(n->Children[1], emitInfo->prog);
1054 inst->Comment = instruction_annotation(inst->Opcode, dstAnnot,
1055 srcAnnot, NULL, NULL);
1056 }
1057 free_temp_storage(emitInfo->vt, n->Children[1]);
1058 return inst;
1059 }
1060 }
1061
1062
1063 static struct prog_instruction *
1064 emit_cond(slang_emit_info *emitInfo, slang_ir_node *n)
1065 {
1066 /* Conditional expression (in if/while/for stmts).
1067 * Need to update condition code register.
1068 * Next instruction is typically an IR_IF.
1069 */
1070 struct prog_instruction *inst;
1071
1072 if (!n->Children[0])
1073 return NULL;
1074
1075 inst = emit(emitInfo, n->Children[0]);
1076 if (inst) {
1077 /* set inst's CondUpdate flag */
1078 inst->CondUpdate = GL_TRUE;
1079 return inst; /* XXX or null? */
1080 }
1081 else {
1082 /* This'll happen for things like "if (i) ..." where no code
1083 * is normally generated for the expression "i".
1084 * Generate a move instruction just to set condition codes.
1085 * Note: must use full 4-component vector since all four
1086 * condition codes must be set identically.
1087 */
1088 if (!alloc_temp_storage(emitInfo, n, 4))
1089 return NULL;
1090 inst = new_instruction(emitInfo, OPCODE_MOV);
1091 inst->CondUpdate = GL_TRUE;
1092 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
1093 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
1094 _slang_free_temp(emitInfo->vt, n->Store);
1095 inst->Comment = _mesa_strdup("COND expr");
1096 return inst; /* XXX or null? */
1097 }
1098 }
1099
1100
1101 /**
1102 * Logical-NOT
1103 */
1104 static struct prog_instruction *
1105 emit_not(slang_emit_info *emitInfo, slang_ir_node *n)
1106 {
1107 GLfloat zero = 0.0;
1108 slang_ir_storage st;
1109 struct prog_instruction *inst;
1110
1111 /* need zero constant */
1112 st.File = PROGRAM_CONSTANT;
1113 st.Size = 1;
1114 st.Index = _mesa_add_unnamed_constant(emitInfo->prog->Parameters, &zero,
1115 1, &st.Swizzle);
1116
1117 /* child expr */
1118 (void) emit(emitInfo, n->Children[0]);
1119 /* XXXX if child instr is SGT convert to SLE, if SEQ, SNE, etc */
1120
1121 if (!n->Store)
1122 if (!alloc_temp_storage(emitInfo, n, n->Children[0]->Store->Size))
1123 return NULL;
1124
1125 inst = new_instruction(emitInfo, OPCODE_SEQ);
1126 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
1127 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
1128 storage_to_src_reg(&inst->SrcReg[1], &st);
1129
1130 free_temp_storage(emitInfo->vt, n->Children[0]);
1131
1132 inst->Comment = _mesa_strdup("NOT");
1133 return inst;
1134 }
1135
1136
1137 static struct prog_instruction *
1138 emit_if(slang_emit_info *emitInfo, slang_ir_node *n)
1139 {
1140 struct gl_program *prog = emitInfo->prog;
1141 struct prog_instruction *ifInst;
1142 GLuint ifInstLoc, elseInstLoc = 0;
1143
1144 emit(emitInfo, n->Children[0]); /* the condition */
1145 ifInstLoc = prog->NumInstructions;
1146 if (emitInfo->EmitHighLevelInstructions) {
1147 ifInst = new_instruction(emitInfo, OPCODE_IF);
1148 ifInst->DstReg.CondMask = COND_NE; /* if cond is non-zero */
1149 ifInst->DstReg.CondSwizzle = SWIZZLE_X;
1150 }
1151 else {
1152 /* conditional jump to else, or endif */
1153 ifInst = new_instruction(emitInfo, OPCODE_BRA);
1154 ifInst->DstReg.CondMask = COND_EQ; /* BRA if cond is zero */
1155 ifInst->DstReg.CondSwizzle = SWIZZLE_X;
1156 ifInst->Comment = _mesa_strdup("if zero");
1157 }
1158
1159 /* if body */
1160 emit(emitInfo, n->Children[1]);
1161
1162 if (n->Children[2]) {
1163 /* have else body */
1164 elseInstLoc = prog->NumInstructions;
1165 if (emitInfo->EmitHighLevelInstructions) {
1166 (void) new_instruction(emitInfo, OPCODE_ELSE);
1167 }
1168 else {
1169 /* jump to endif instruction */
1170 struct prog_instruction *inst;
1171 inst = new_instruction(emitInfo, OPCODE_BRA);
1172 inst->Comment = _mesa_strdup("else");
1173 inst->DstReg.CondMask = COND_TR; /* always branch */
1174 }
1175 ifInst = prog->Instructions + ifInstLoc;
1176 ifInst->BranchTarget = prog->NumInstructions;
1177
1178 emit(emitInfo, n->Children[2]);
1179 }
1180 else {
1181 /* no else body */
1182 ifInst = prog->Instructions + ifInstLoc;
1183 ifInst->BranchTarget = prog->NumInstructions + 1;
1184 }
1185
1186 if (emitInfo->EmitHighLevelInstructions) {
1187 (void) new_instruction(emitInfo, OPCODE_ENDIF);
1188 }
1189
1190 if (n->Children[2]) {
1191 struct prog_instruction *elseInst;
1192 elseInst = prog->Instructions + elseInstLoc;
1193 elseInst->BranchTarget = prog->NumInstructions;
1194 }
1195 return NULL;
1196 }
1197
1198
1199 static struct prog_instruction *
1200 emit_loop(slang_emit_info *emitInfo, slang_ir_node *n)
1201 {
1202 struct gl_program *prog = emitInfo->prog;
1203 struct prog_instruction *beginInst, *endInst;
1204 GLuint beginInstLoc, endInstLoc;
1205 slang_ir_node *ir;
1206
1207 /* emit OPCODE_BGNLOOP */
1208 beginInstLoc = prog->NumInstructions;
1209 if (emitInfo->EmitHighLevelInstructions) {
1210 (void) new_instruction(emitInfo, OPCODE_BGNLOOP);
1211 }
1212
1213 /* body */
1214 emit(emitInfo, n->Children[0]);
1215
1216 endInstLoc = prog->NumInstructions;
1217 if (emitInfo->EmitHighLevelInstructions) {
1218 /* emit OPCODE_ENDLOOP */
1219 endInst = new_instruction(emitInfo, OPCODE_ENDLOOP);
1220 }
1221 else {
1222 /* emit unconditional BRA-nch */
1223 endInst = new_instruction(emitInfo, OPCODE_BRA);
1224 endInst->DstReg.CondMask = COND_TR; /* always true */
1225 }
1226 /* end instruction's BranchTarget points to top of loop */
1227 endInst->BranchTarget = beginInstLoc;
1228
1229 if (emitInfo->EmitHighLevelInstructions) {
1230 /* BGNLOOP's BranchTarget points to the ENDLOOP inst */
1231 beginInst = prog->Instructions + beginInstLoc;
1232 beginInst->BranchTarget = prog->NumInstructions - 1;
1233 }
1234
1235 /* Done emitting loop code. Now walk over the loop's linked list of
1236 * BREAK and CONT nodes, filling in their BranchTarget fields (which
1237 * will point to the ENDLOOP+1 or BGNLOOP instructions, respectively).
1238 */
1239 for (ir = n->BranchNode; ir; ir = ir->BranchNode) {
1240 struct prog_instruction *inst = prog->Instructions + ir->InstLocation;
1241 assert(inst->BranchTarget < 0);
1242 if (ir->Opcode == IR_BREAK ||
1243 ir->Opcode == IR_BREAK_IF_FALSE ||
1244 ir->Opcode == IR_BREAK_IF_TRUE) {
1245 assert(inst->Opcode == OPCODE_BRK ||
1246 inst->Opcode == OPCODE_BRA);
1247 /* go to instruction after end of loop */
1248 inst->BranchTarget = endInstLoc + 1;
1249 }
1250 else {
1251 assert(ir->Opcode == IR_CONT ||
1252 ir->Opcode == IR_CONT_IF_FALSE ||
1253 ir->Opcode == IR_CONT_IF_TRUE);
1254 assert(inst->Opcode == OPCODE_CONT ||
1255 inst->Opcode == OPCODE_BRA);
1256 /* to go instruction at top of loop */
1257 inst->BranchTarget = beginInstLoc;
1258 }
1259 }
1260 return NULL;
1261 }
1262
1263
1264 /**
1265 * "Continue" or "break" statement.
1266 * Either OPCODE_CONT, OPCODE_BRK or OPCODE_BRA will be emitted.
1267 */
1268 static struct prog_instruction *
1269 emit_cont_break(slang_emit_info *emitInfo, slang_ir_node *n)
1270 {
1271 gl_inst_opcode opcode;
1272 struct prog_instruction *inst;
1273 n->InstLocation = emitInfo->prog->NumInstructions;
1274 if (emitInfo->EmitHighLevelInstructions) {
1275 opcode = (n->Opcode == IR_CONT) ? OPCODE_CONT : OPCODE_BRK;
1276 }
1277 else {
1278 opcode = OPCODE_BRA;
1279 }
1280 inst = new_instruction(emitInfo, opcode);
1281 inst->DstReg.CondMask = COND_TR; /* always true */
1282 return inst;
1283 }
1284
1285
1286 /**
1287 * Conditional "continue" or "break" statement.
1288 * Either OPCODE_CONT, OPCODE_BRK or OPCODE_BRA will be emitted.
1289 */
1290 static struct prog_instruction *
1291 emit_cont_break_if(slang_emit_info *emitInfo, slang_ir_node *n,
1292 GLboolean breakTrue)
1293 {
1294 gl_inst_opcode opcode;
1295 struct prog_instruction *inst;
1296
1297 /* evaluate condition expr, setting cond codes */
1298 inst = emit(emitInfo, n->Children[0]);
1299 assert(inst);
1300 inst->CondUpdate = GL_TRUE;
1301
1302 n->InstLocation = emitInfo->prog->NumInstructions;
1303 if (emitInfo->EmitHighLevelInstructions) {
1304 if (n->Opcode == IR_CONT_IF_TRUE ||
1305 n->Opcode == IR_CONT_IF_FALSE)
1306 opcode = OPCODE_CONT;
1307 else
1308 opcode = OPCODE_BRK;
1309 }
1310 else {
1311 opcode = OPCODE_BRA;
1312 }
1313 inst = new_instruction(emitInfo, opcode);
1314 inst->DstReg.CondMask = breakTrue ? COND_NE : COND_EQ;
1315 return inst;
1316 }
1317
1318
1319
1320 /**
1321 * Remove any SWIZZLE_NIL terms from given swizzle mask (smear prev term).
1322 * Ex: fix_swizzle("zyNN") -> "zyyy"
1323 */
1324 static GLuint
1325 fix_swizzle(GLuint swizzle)
1326 {
1327 GLuint swz[4], i;
1328 for (i = 0; i < 4; i++) {
1329 swz[i] = GET_SWZ(swizzle, i);
1330 if (swz[i] == SWIZZLE_NIL) {
1331 swz[i] = swz[i - 1];
1332 }
1333 }
1334 return MAKE_SWIZZLE4(swz[0], swz[1], swz[2], swz[3]);
1335 }
1336
1337
1338 static struct prog_instruction *
1339 emit_swizzle(slang_emit_info *emitInfo, slang_ir_node *n)
1340 {
1341 GLuint swizzle;
1342
1343 /* swizzled storage access */
1344 (void) emit(emitInfo, n->Children[0]);
1345
1346 /* "pull-up" the child's storage info, applying our swizzle info */
1347 n->Store->File = n->Children[0]->Store->File;
1348 n->Store->Index = n->Children[0]->Store->Index;
1349 n->Store->Size = n->Children[0]->Store->Size;
1350 /*n->Var = n->Children[0]->Var; XXX for debug */
1351 assert(n->Store->Index >= 0);
1352
1353 swizzle = fix_swizzle(n->Store->Swizzle);
1354 #ifdef DEBUG
1355 {
1356 GLuint s = n->Children[0]->Store->Swizzle;
1357 assert(GET_SWZ(s, 0) != SWIZZLE_NIL);
1358 assert(GET_SWZ(s, 1) != SWIZZLE_NIL);
1359 assert(GET_SWZ(s, 2) != SWIZZLE_NIL);
1360 assert(GET_SWZ(s, 3) != SWIZZLE_NIL);
1361 }
1362 #endif
1363
1364 /* apply this swizzle to child's swizzle to get composed swizzle */
1365 n->Store->Swizzle = swizzle_swizzle(n->Children[0]->Store->Swizzle,
1366 swizzle);
1367 return NULL;
1368 }
1369
1370
1371 /**
1372 * Dereference array element. Just resolve storage for the array
1373 * element represented by this node.
1374 */
1375 static struct prog_instruction *
1376 emit_array_element(slang_emit_info *emitInfo, slang_ir_node *n)
1377 {
1378 assert(n->Store);
1379 assert(n->Store->File != PROGRAM_UNDEFINED);
1380 assert(n->Store->Size > 0);
1381
1382 if (n->Store->File == PROGRAM_STATE_VAR) {
1383 n->Store->Index = _slang_alloc_statevar(n, emitInfo->prog->Parameters);
1384 return NULL;
1385 }
1386
1387 if (n->Children[1]->Opcode == IR_FLOAT) {
1388 /* Constant index */
1389 const GLint arrayAddr = n->Children[0]->Store->Index;
1390 const GLint index = (GLint) n->Children[1]->Value[0];
1391 n->Store->Index = arrayAddr + index;
1392 }
1393 else {
1394 /* Variable index - PROBLEM */
1395 const GLint arrayAddr = n->Children[0]->Store->Index;
1396 const GLint index = 0;
1397 _mesa_problem(NULL, "variable array indexes not supported yet!");
1398 n->Store->Index = arrayAddr + index;
1399 }
1400 return NULL; /* no instruction */
1401 }
1402
1403
1404 /**
1405 * Resolve storage for accessing a structure field.
1406 */
1407 static struct prog_instruction *
1408 emit_struct_field(slang_emit_info *emitInfo, slang_ir_node *n)
1409 {
1410 if (n->Store->File == PROGRAM_STATE_VAR) {
1411 n->Store->Index = _slang_alloc_statevar(n, emitInfo->prog->Parameters);
1412 }
1413 else {
1414 GLint offset = n->FieldOffset / 4;
1415 assert(n->Children[0]->Store->Index >= 0);
1416 n->Store->Index = n->Children[0]->Store->Index + offset;
1417 if (n->Store->Size == 1) {
1418 GLint swz = n->FieldOffset % 4;
1419 n->Store->Swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
1420 }
1421 else {
1422 n->Store->Swizzle = SWIZZLE_XYZW;
1423 }
1424 }
1425 return NULL; /* no instruction */
1426 }
1427
1428
1429 static struct prog_instruction *
1430 emit(slang_emit_info *emitInfo, slang_ir_node *n)
1431 {
1432 struct prog_instruction *inst;
1433 if (!n)
1434 return NULL;
1435
1436 switch (n->Opcode) {
1437 case IR_SEQ:
1438 /* sequence of two sub-trees */
1439 assert(n->Children[0]);
1440 assert(n->Children[1]);
1441 emit(emitInfo, n->Children[0]);
1442 inst = emit(emitInfo, n->Children[1]);
1443 assert(!n->Store);
1444 n->Store = n->Children[1]->Store;
1445 return inst;
1446
1447 case IR_SCOPE:
1448 /* new variable scope */
1449 _slang_push_var_table(emitInfo->vt);
1450 inst = emit(emitInfo, n->Children[0]);
1451 _slang_pop_var_table(emitInfo->vt);
1452 return inst;
1453
1454 case IR_VAR_DECL:
1455 /* Variable declaration - allocate a register for it */
1456 assert(n->Store);
1457 assert(n->Store->File != PROGRAM_UNDEFINED);
1458 assert(n->Store->Size > 0);
1459 assert(n->Store->Index < 0);
1460 if (!n->Var || n->Var->isTemp) {
1461 /* a nameless/temporary variable, will be freed after first use */
1462 if (!_slang_alloc_temp(emitInfo->vt, n->Store)) {
1463 slang_info_log_error(emitInfo->log,
1464 "Ran out of registers, too many temporaries");
1465 return NULL;
1466 }
1467 }
1468 else {
1469 /* a regular variable */
1470 _slang_add_variable(emitInfo->vt, n->Var);
1471 if (!_slang_alloc_var(emitInfo->vt, n->Store)) {
1472 slang_info_log_error(emitInfo->log,
1473 "Ran out of registers, too many variables");
1474 return NULL;
1475 }
1476 /*
1477 printf("IR_VAR_DECL %s %d store %p\n",
1478 (char*) n->Var->a_name, n->Store->Index, (void*) n->Store);
1479 */
1480 assert(n->Var->aux == n->Store);
1481 }
1482 if (emitInfo->EmitComments) {
1483 /* emit NOP with comment describing the variable's storage location */
1484 char s[1000];
1485 sprintf(s, "TEMP[%d]%s = variable %s (size %d)",
1486 n->Store->Index,
1487 _mesa_swizzle_string(n->Store->Swizzle, 0, GL_FALSE),
1488 (n->Var ? (char *) n->Var->a_name : "anonymous"),
1489 n->Store->Size);
1490 inst = new_instruction(emitInfo, OPCODE_NOP);
1491 inst->Comment = _mesa_strdup(s);
1492 return inst;
1493 }
1494 return NULL;
1495
1496 case IR_VAR:
1497 /* Reference to a variable
1498 * Storage should have already been resolved/allocated.
1499 */
1500 assert(n->Store);
1501 assert(n->Store->File != PROGRAM_UNDEFINED);
1502
1503 if (n->Store->File == PROGRAM_STATE_VAR &&
1504 n->Store->Index < 0) {
1505 n->Store->Index = _slang_alloc_statevar(n, emitInfo->prog->Parameters);
1506 }
1507
1508 if (n->Store->Index < 0) {
1509 printf("#### VAR %s not allocated!\n", (char*)n->Var->a_name);
1510 }
1511 assert(n->Store->Index >= 0);
1512 assert(n->Store->Size > 0);
1513 break;
1514
1515 case IR_ELEMENT:
1516 return emit_array_element(emitInfo, n);
1517 case IR_FIELD:
1518 return emit_struct_field(emitInfo, n);
1519 case IR_SWIZZLE:
1520 return emit_swizzle(emitInfo, n);
1521
1522 case IR_I_TO_F:
1523 /* just move */
1524 emit(emitInfo, n->Children[0]);
1525 inst = new_instruction(emitInfo, OPCODE_MOV);
1526 if (!n->Store) {
1527 if (!alloc_temp_storage(emitInfo, n, 1))
1528 return NULL;
1529 }
1530 storage_to_dst_reg(&inst->DstReg, n->Store, n->Writemask);
1531 storage_to_src_reg(&inst->SrcReg[0], n->Children[0]->Store);
1532 if (emitInfo->EmitComments)
1533 inst->Comment = _mesa_strdup("int to float");
1534 return NULL;
1535
1536 /* Simple arithmetic */
1537 /* unary */
1538 case IR_RSQ:
1539 case IR_RCP:
1540 case IR_FLOOR:
1541 case IR_FRAC:
1542 case IR_F_TO_I:
1543 case IR_ABS:
1544 case IR_SIN:
1545 case IR_COS:
1546 case IR_DDX:
1547 case IR_DDY:
1548 case IR_NOISE1:
1549 case IR_NOISE2:
1550 case IR_NOISE3:
1551 case IR_NOISE4:
1552 /* binary */
1553 case IR_ADD:
1554 case IR_SUB:
1555 case IR_MUL:
1556 case IR_DOT4:
1557 case IR_DOT3:
1558 case IR_CROSS:
1559 case IR_MIN:
1560 case IR_MAX:
1561 case IR_SGE:
1562 case IR_SGT:
1563 case IR_SLE:
1564 case IR_SLT:
1565 case IR_POW:
1566 case IR_EXP:
1567 case IR_EXP2:
1568 /* trinary operators */
1569 case IR_LRP:
1570 return emit_arith(emitInfo, n);
1571
1572 case IR_SEQUAL:
1573 case IR_SNEQUAL:
1574 return emit_compare(emitInfo, n);
1575
1576 case IR_CLAMP:
1577 return emit_clamp(emitInfo, n);
1578 case IR_TEX:
1579 case IR_TEXB:
1580 case IR_TEXP:
1581 return emit_tex(emitInfo, n);
1582 case IR_NEG:
1583 return emit_negation(emitInfo, n);
1584 case IR_FLOAT:
1585 /* find storage location for this float constant */
1586 n->Store->Index = _mesa_add_unnamed_constant(emitInfo->prog->Parameters, n->Value,
1587 n->Store->Size,
1588 &n->Store->Swizzle);
1589 if (n->Store->Index < 0) {
1590 slang_info_log_error(emitInfo->log, "Ran out of space for constants");
1591 return NULL;
1592 }
1593 return NULL;
1594
1595 case IR_MOVE:
1596 return emit_move(emitInfo, n);
1597
1598 case IR_COND:
1599 return emit_cond(emitInfo, n);
1600
1601 case IR_NOT:
1602 return emit_not(emitInfo, n);
1603
1604 case IR_LABEL:
1605 return emit_label(emitInfo, n);
1606 case IR_JUMP:
1607 assert(n);
1608 assert(n->Label);
1609 return emit_jump(emitInfo, n);
1610 case IR_KILL:
1611 return emit_kill(emitInfo);
1612
1613 case IR_IF:
1614 return emit_if(emitInfo, n);
1615
1616 case IR_LOOP:
1617 return emit_loop(emitInfo, n);
1618 case IR_BREAK_IF_FALSE:
1619 case IR_CONT_IF_FALSE:
1620 return emit_cont_break_if(emitInfo, n, GL_FALSE);
1621 case IR_BREAK_IF_TRUE:
1622 case IR_CONT_IF_TRUE:
1623 return emit_cont_break_if(emitInfo, n, GL_TRUE);
1624 case IR_BREAK:
1625 /* fall-through */
1626 case IR_CONT:
1627 return emit_cont_break(emitInfo, n);
1628
1629 case IR_BEGIN_SUB:
1630 return new_instruction(emitInfo, OPCODE_BGNSUB);
1631 case IR_END_SUB:
1632 return new_instruction(emitInfo, OPCODE_ENDSUB);
1633 case IR_RETURN:
1634 return new_instruction(emitInfo, OPCODE_RET);
1635
1636 case IR_NOP:
1637 return NULL;
1638
1639 default:
1640 _mesa_problem(NULL, "Unexpected IR opcode in emit()\n");
1641 abort();
1642 }
1643 return NULL;
1644 }
1645
1646
1647 GLboolean
1648 _slang_emit_code(slang_ir_node *n, slang_var_table *vt,
1649 struct gl_program *prog, GLboolean withEnd,
1650 slang_info_log *log)
1651 {
1652 GET_CURRENT_CONTEXT(ctx);
1653 GLboolean success;
1654 slang_emit_info emitInfo;
1655
1656 emitInfo.log = log;
1657 emitInfo.vt = vt;
1658 emitInfo.prog = prog;
1659
1660 emitInfo.EmitHighLevelInstructions = ctx->Shader.EmitHighLevelInstructions;
1661 emitInfo.EmitComments = 1+ctx->Shader.EmitComments;
1662
1663 (void) emit(&emitInfo, n);
1664
1665 /* finish up by adding the END opcode to program */
1666 if (withEnd) {
1667 struct prog_instruction *inst;
1668 inst = new_instruction(&emitInfo, OPCODE_END);
1669 }
1670 success = GL_TRUE;
1671
1672 #if 0
1673 printf("*********** End emit code (%u inst):\n", prog->NumInstructions);
1674 _mesa_print_program(prog);
1675 _mesa_print_program_parameters(ctx,prog);
1676 #endif
1677
1678 return success;
1679 }