mesa: Prefix main includes with dir to avoid conflicts.
[mesa.git] / src / mesa / shader / slang / slang_library_noise.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5
4 *
5 * Copyright (C) 2006 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /*
26 * SimplexNoise1234
27 * Copyright (c) 2003-2005, Stefan Gustavson
28 *
29 * Contact: stegu@itn.liu.se
30 */
31
32 /** \file
33 \brief C implementation of Perlin Simplex Noise over 1,2,3, and 4 dimensions.
34 \author Stefan Gustavson (stegu@itn.liu.se)
35 */
36
37 /*
38 * This implementation is "Simplex Noise" as presented by
39 * Ken Perlin at a relatively obscure and not often cited course
40 * session "Real-Time Shading" at Siggraph 2001 (before real
41 * time shading actually took on), under the title "hardware noise".
42 * The 3D function is numerically equivalent to his Java reference
43 * code available in the PDF course notes, although I re-implemented
44 * it from scratch to get more readable code. The 1D, 2D and 4D cases
45 * were implemented from scratch by me from Ken Perlin's text.
46 *
47 * This file has no dependencies on any other file, not even its own
48 * header file. The header file is made for use by external code only.
49 */
50
51
52 #include "main/imports.h"
53 #include "slang_library_noise.h"
54
55 #define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) )
56
57 /*
58 * ---------------------------------------------------------------------
59 * Static data
60 */
61
62 /*
63 * Permutation table. This is just a random jumble of all numbers 0-255,
64 * repeated twice to avoid wrapping the index at 255 for each lookup.
65 * This needs to be exactly the same for all instances on all platforms,
66 * so it's easiest to just keep it as static explicit data.
67 * This also removes the need for any initialisation of this class.
68 *
69 * Note that making this an int[] instead of a char[] might make the
70 * code run faster on platforms with a high penalty for unaligned single
71 * byte addressing. Intel x86 is generally single-byte-friendly, but
72 * some other CPUs are faster with 4-aligned reads.
73 * However, a char[] is smaller, which avoids cache trashing, and that
74 * is probably the most important aspect on most architectures.
75 * This array is accessed a *lot* by the noise functions.
76 * A vector-valued noise over 3D accesses it 96 times, and a
77 * float-valued 4D noise 64 times. We want this to fit in the cache!
78 */
79 unsigned char perm[512] = {151,160,137,91,90,15,
80 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
81 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
82 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
83 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
84 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
85 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
86 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
87 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
88 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
89 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
90 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
91 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
92 151,160,137,91,90,15,
93 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
94 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
95 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
96 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
97 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
98 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
99 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
100 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
101 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
102 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
103 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
104 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
105 };
106
107 /*
108 * ---------------------------------------------------------------------
109 */
110
111 /*
112 * Helper functions to compute gradients-dot-residualvectors (1D to 4D)
113 * Note that these generate gradients of more than unit length. To make
114 * a close match with the value range of classic Perlin noise, the final
115 * noise values need to be rescaled to fit nicely within [-1,1].
116 * (The simplex noise functions as such also have different scaling.)
117 * Note also that these noise functions are the most practical and useful
118 * signed version of Perlin noise. To return values according to the
119 * RenderMan specification from the SL noise() and pnoise() functions,
120 * the noise values need to be scaled and offset to [0,1], like this:
121 * float SLnoise = (SimplexNoise1234::noise(x,y,z) + 1.0) * 0.5;
122 */
123
124 static float grad1( int hash, float x ) {
125 int h = hash & 15;
126 float grad = 1.0f + (h & 7); /* Gradient value 1.0, 2.0, ..., 8.0 */
127 if (h&8) grad = -grad; /* Set a random sign for the gradient */
128 return ( grad * x ); /* Multiply the gradient with the distance */
129 }
130
131 static float grad2( int hash, float x, float y ) {
132 int h = hash & 7; /* Convert low 3 bits of hash code */
133 float u = h<4 ? x : y; /* into 8 simple gradient directions, */
134 float v = h<4 ? y : x; /* and compute the dot product with (x,y). */
135 return ((h&1)? -u : u) + ((h&2)? -2.0f*v : 2.0f*v);
136 }
137
138 static float grad3( int hash, float x, float y , float z ) {
139 int h = hash & 15; /* Convert low 4 bits of hash code into 12 simple */
140 float u = h<8 ? x : y; /* gradient directions, and compute dot product. */
141 float v = h<4 ? y : h==12||h==14 ? x : z; /* Fix repeats at h = 12 to 15 */
142 return ((h&1)? -u : u) + ((h&2)? -v : v);
143 }
144
145 static float grad4( int hash, float x, float y, float z, float t ) {
146 int h = hash & 31; /* Convert low 5 bits of hash code into 32 simple */
147 float u = h<24 ? x : y; /* gradient directions, and compute dot product. */
148 float v = h<16 ? y : z;
149 float w = h<8 ? z : t;
150 return ((h&1)? -u : u) + ((h&2)? -v : v) + ((h&4)? -w : w);
151 }
152
153 /* A lookup table to traverse the simplex around a given point in 4D. */
154 /* Details can be found where this table is used, in the 4D noise method. */
155 /* TODO: This should not be required, backport it from Bill's GLSL code! */
156 static unsigned char simplex[64][4] = {
157 {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
158 {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
159 {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
160 {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
161 {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
162 {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
163 {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
164 {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};
165
166 /* 1D simplex noise */
167 GLfloat _slang_library_noise1 (GLfloat x)
168 {
169 int i0 = FASTFLOOR(x);
170 int i1 = i0 + 1;
171 float x0 = x - i0;
172 float x1 = x0 - 1.0f;
173 float t1 = 1.0f - x1*x1;
174 float n0, n1;
175
176 float t0 = 1.0f - x0*x0;
177 /* if(t0 < 0.0f) t0 = 0.0f; // this never happens for the 1D case */
178 t0 *= t0;
179 n0 = t0 * t0 * grad1(perm[i0 & 0xff], x0);
180
181 /* if(t1 < 0.0f) t1 = 0.0f; // this never happens for the 1D case */
182 t1 *= t1;
183 n1 = t1 * t1 * grad1(perm[i1 & 0xff], x1);
184 /* The maximum value of this noise is 8*(3/4)^4 = 2.53125 */
185 /* A factor of 0.395 would scale to fit exactly within [-1,1], but */
186 /* we want to match PRMan's 1D noise, so we scale it down some more. */
187 return 0.25f * (n0 + n1);
188 }
189
190 /* 2D simplex noise */
191 GLfloat _slang_library_noise2 (GLfloat x, GLfloat y)
192 {
193 #define F2 0.366025403f /* F2 = 0.5*(sqrt(3.0)-1.0) */
194 #define G2 0.211324865f /* G2 = (3.0-Math.sqrt(3.0))/6.0 */
195
196 float n0, n1, n2; /* Noise contributions from the three corners */
197
198 /* Skew the input space to determine which simplex cell we're in */
199 float s = (x+y)*F2; /* Hairy factor for 2D */
200 float xs = x + s;
201 float ys = y + s;
202 int i = FASTFLOOR(xs);
203 int j = FASTFLOOR(ys);
204
205 float t = (float)(i+j)*G2;
206 float X0 = i-t; /* Unskew the cell origin back to (x,y) space */
207 float Y0 = j-t;
208 float x0 = x-X0; /* The x,y distances from the cell origin */
209 float y0 = y-Y0;
210
211 float x1, y1, x2, y2;
212 int ii, jj;
213 float t0, t1, t2;
214
215 /* For the 2D case, the simplex shape is an equilateral triangle. */
216 /* Determine which simplex we are in. */
217 int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */
218 if(x0>y0) {i1=1; j1=0;} /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
219 else {i1=0; j1=1;} /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */
220
221 /* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and */
222 /* a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where */
223 /* c = (3-sqrt(3))/6 */
224
225 x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */
226 y1 = y0 - j1 + G2;
227 x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */
228 y2 = y0 - 1.0f + 2.0f * G2;
229
230 /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
231 ii = i % 256;
232 jj = j % 256;
233
234 /* Calculate the contribution from the three corners */
235 t0 = 0.5f - x0*x0-y0*y0;
236 if(t0 < 0.0f) n0 = 0.0f;
237 else {
238 t0 *= t0;
239 n0 = t0 * t0 * grad2(perm[ii+perm[jj]], x0, y0);
240 }
241
242 t1 = 0.5f - x1*x1-y1*y1;
243 if(t1 < 0.0f) n1 = 0.0f;
244 else {
245 t1 *= t1;
246 n1 = t1 * t1 * grad2(perm[ii+i1+perm[jj+j1]], x1, y1);
247 }
248
249 t2 = 0.5f - x2*x2-y2*y2;
250 if(t2 < 0.0f) n2 = 0.0f;
251 else {
252 t2 *= t2;
253 n2 = t2 * t2 * grad2(perm[ii+1+perm[jj+1]], x2, y2);
254 }
255
256 /* Add contributions from each corner to get the final noise value. */
257 /* The result is scaled to return values in the interval [-1,1]. */
258 return 40.0f * (n0 + n1 + n2); /* TODO: The scale factor is preliminary! */
259 }
260
261 /* 3D simplex noise */
262 GLfloat _slang_library_noise3 (GLfloat x, GLfloat y, GLfloat z)
263 {
264 /* Simple skewing factors for the 3D case */
265 #define F3 0.333333333f
266 #define G3 0.166666667f
267
268 float n0, n1, n2, n3; /* Noise contributions from the four corners */
269
270 /* Skew the input space to determine which simplex cell we're in */
271 float s = (x+y+z)*F3; /* Very nice and simple skew factor for 3D */
272 float xs = x+s;
273 float ys = y+s;
274 float zs = z+s;
275 int i = FASTFLOOR(xs);
276 int j = FASTFLOOR(ys);
277 int k = FASTFLOOR(zs);
278
279 float t = (float)(i+j+k)*G3;
280 float X0 = i-t; /* Unskew the cell origin back to (x,y,z) space */
281 float Y0 = j-t;
282 float Z0 = k-t;
283 float x0 = x-X0; /* The x,y,z distances from the cell origin */
284 float y0 = y-Y0;
285 float z0 = z-Z0;
286
287 float x1, y1, z1, x2, y2, z2, x3, y3, z3;
288 int ii, jj, kk;
289 float t0, t1, t2, t3;
290
291 /* For the 3D case, the simplex shape is a slightly irregular tetrahedron. */
292 /* Determine which simplex we are in. */
293 int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */
294 int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */
295
296 /* This code would benefit from a backport from the GLSL version! */
297 if(x0>=y0) {
298 if(y0>=z0)
299 { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } /* X Y Z order */
300 else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } /* X Z Y order */
301 else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } /* Z X Y order */
302 }
303 else { /* x0<y0 */
304 if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } /* Z Y X order */
305 else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } /* Y Z X order */
306 else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } /* Y X Z order */
307 }
308
309 /* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), */
310 /* a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and */
311 /* a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where */
312 /* c = 1/6. */
313
314 x1 = x0 - i1 + G3; /* Offsets for second corner in (x,y,z) coords */
315 y1 = y0 - j1 + G3;
316 z1 = z0 - k1 + G3;
317 x2 = x0 - i2 + 2.0f*G3; /* Offsets for third corner in (x,y,z) coords */
318 y2 = y0 - j2 + 2.0f*G3;
319 z2 = z0 - k2 + 2.0f*G3;
320 x3 = x0 - 1.0f + 3.0f*G3; /* Offsets for last corner in (x,y,z) coords */
321 y3 = y0 - 1.0f + 3.0f*G3;
322 z3 = z0 - 1.0f + 3.0f*G3;
323
324 /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
325 ii = i % 256;
326 jj = j % 256;
327 kk = k % 256;
328
329 /* Calculate the contribution from the four corners */
330 t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
331 if(t0 < 0.0f) n0 = 0.0f;
332 else {
333 t0 *= t0;
334 n0 = t0 * t0 * grad3(perm[ii+perm[jj+perm[kk]]], x0, y0, z0);
335 }
336
337 t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
338 if(t1 < 0.0f) n1 = 0.0f;
339 else {
340 t1 *= t1;
341 n1 = t1 * t1 * grad3(perm[ii+i1+perm[jj+j1+perm[kk+k1]]], x1, y1, z1);
342 }
343
344 t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
345 if(t2 < 0.0f) n2 = 0.0f;
346 else {
347 t2 *= t2;
348 n2 = t2 * t2 * grad3(perm[ii+i2+perm[jj+j2+perm[kk+k2]]], x2, y2, z2);
349 }
350
351 t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
352 if(t3<0.0f) n3 = 0.0f;
353 else {
354 t3 *= t3;
355 n3 = t3 * t3 * grad3(perm[ii+1+perm[jj+1+perm[kk+1]]], x3, y3, z3);
356 }
357
358 /* Add contributions from each corner to get the final noise value. */
359 /* The result is scaled to stay just inside [-1,1] */
360 return 32.0f * (n0 + n1 + n2 + n3); /* TODO: The scale factor is preliminary! */
361 }
362
363 /* 4D simplex noise */
364 GLfloat _slang_library_noise4 (GLfloat x, GLfloat y, GLfloat z, GLfloat w)
365 {
366 /* The skewing and unskewing factors are hairy again for the 4D case */
367 #define F4 0.309016994f /* F4 = (Math.sqrt(5.0)-1.0)/4.0 */
368 #define G4 0.138196601f /* G4 = (5.0-Math.sqrt(5.0))/20.0 */
369
370 float n0, n1, n2, n3, n4; /* Noise contributions from the five corners */
371
372 /* Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in */
373 float s = (x + y + z + w) * F4; /* Factor for 4D skewing */
374 float xs = x + s;
375 float ys = y + s;
376 float zs = z + s;
377 float ws = w + s;
378 int i = FASTFLOOR(xs);
379 int j = FASTFLOOR(ys);
380 int k = FASTFLOOR(zs);
381 int l = FASTFLOOR(ws);
382
383 float t = (i + j + k + l) * G4; /* Factor for 4D unskewing */
384 float X0 = i - t; /* Unskew the cell origin back to (x,y,z,w) space */
385 float Y0 = j - t;
386 float Z0 = k - t;
387 float W0 = l - t;
388
389 float x0 = x - X0; /* The x,y,z,w distances from the cell origin */
390 float y0 = y - Y0;
391 float z0 = z - Z0;
392 float w0 = w - W0;
393
394 /* For the 4D case, the simplex is a 4D shape I won't even try to describe. */
395 /* To find out which of the 24 possible simplices we're in, we need to */
396 /* determine the magnitude ordering of x0, y0, z0 and w0. */
397 /* The method below is a good way of finding the ordering of x,y,z,w and */
398 /* then find the correct traversal order for the simplex we're in. */
399 /* First, six pair-wise comparisons are performed between each possible pair */
400 /* of the four coordinates, and the results are used to add up binary bits */
401 /* for an integer index. */
402 int c1 = (x0 > y0) ? 32 : 0;
403 int c2 = (x0 > z0) ? 16 : 0;
404 int c3 = (y0 > z0) ? 8 : 0;
405 int c4 = (x0 > w0) ? 4 : 0;
406 int c5 = (y0 > w0) ? 2 : 0;
407 int c6 = (z0 > w0) ? 1 : 0;
408 int c = c1 + c2 + c3 + c4 + c5 + c6;
409
410 int i1, j1, k1, l1; /* The integer offsets for the second simplex corner */
411 int i2, j2, k2, l2; /* The integer offsets for the third simplex corner */
412 int i3, j3, k3, l3; /* The integer offsets for the fourth simplex corner */
413
414 float x1, y1, z1, w1, x2, y2, z2, w2, x3, y3, z3, w3, x4, y4, z4, w4;
415 int ii, jj, kk, ll;
416 float t0, t1, t2, t3, t4;
417
418 /* simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. */
419 /* Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w */
420 /* impossible. Only the 24 indices which have non-zero entries make any sense. */
421 /* We use a thresholding to set the coordinates in turn from the largest magnitude. */
422 /* The number 3 in the "simplex" array is at the position of the largest coordinate. */
423 i1 = simplex[c][0]>=3 ? 1 : 0;
424 j1 = simplex[c][1]>=3 ? 1 : 0;
425 k1 = simplex[c][2]>=3 ? 1 : 0;
426 l1 = simplex[c][3]>=3 ? 1 : 0;
427 /* The number 2 in the "simplex" array is at the second largest coordinate. */
428 i2 = simplex[c][0]>=2 ? 1 : 0;
429 j2 = simplex[c][1]>=2 ? 1 : 0;
430 k2 = simplex[c][2]>=2 ? 1 : 0;
431 l2 = simplex[c][3]>=2 ? 1 : 0;
432 /* The number 1 in the "simplex" array is at the second smallest coordinate. */
433 i3 = simplex[c][0]>=1 ? 1 : 0;
434 j3 = simplex[c][1]>=1 ? 1 : 0;
435 k3 = simplex[c][2]>=1 ? 1 : 0;
436 l3 = simplex[c][3]>=1 ? 1 : 0;
437 /* The fifth corner has all coordinate offsets = 1, so no need to look that up. */
438
439 x1 = x0 - i1 + G4; /* Offsets for second corner in (x,y,z,w) coords */
440 y1 = y0 - j1 + G4;
441 z1 = z0 - k1 + G4;
442 w1 = w0 - l1 + G4;
443 x2 = x0 - i2 + 2.0f*G4; /* Offsets for third corner in (x,y,z,w) coords */
444 y2 = y0 - j2 + 2.0f*G4;
445 z2 = z0 - k2 + 2.0f*G4;
446 w2 = w0 - l2 + 2.0f*G4;
447 x3 = x0 - i3 + 3.0f*G4; /* Offsets for fourth corner in (x,y,z,w) coords */
448 y3 = y0 - j3 + 3.0f*G4;
449 z3 = z0 - k3 + 3.0f*G4;
450 w3 = w0 - l3 + 3.0f*G4;
451 x4 = x0 - 1.0f + 4.0f*G4; /* Offsets for last corner in (x,y,z,w) coords */
452 y4 = y0 - 1.0f + 4.0f*G4;
453 z4 = z0 - 1.0f + 4.0f*G4;
454 w4 = w0 - 1.0f + 4.0f*G4;
455
456 /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
457 ii = i % 256;
458 jj = j % 256;
459 kk = k % 256;
460 ll = l % 256;
461
462 /* Calculate the contribution from the five corners */
463 t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
464 if(t0 < 0.0f) n0 = 0.0f;
465 else {
466 t0 *= t0;
467 n0 = t0 * t0 * grad4(perm[ii+perm[jj+perm[kk+perm[ll]]]], x0, y0, z0, w0);
468 }
469
470 t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
471 if(t1 < 0.0f) n1 = 0.0f;
472 else {
473 t1 *= t1;
474 n1 = t1 * t1 * grad4(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], x1, y1, z1, w1);
475 }
476
477 t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
478 if(t2 < 0.0f) n2 = 0.0f;
479 else {
480 t2 *= t2;
481 n2 = t2 * t2 * grad4(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], x2, y2, z2, w2);
482 }
483
484 t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
485 if(t3 < 0.0f) n3 = 0.0f;
486 else {
487 t3 *= t3;
488 n3 = t3 * t3 * grad4(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], x3, y3, z3, w3);
489 }
490
491 t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
492 if(t4 < 0.0f) n4 = 0.0f;
493 else {
494 t4 *= t4;
495 n4 = t4 * t4 * grad4(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], x4, y4, z4, w4);
496 }
497
498 /* Sum up and scale the result to cover the range [-1,1] */
499 return 27.0f * (n0 + n1 + n2 + n3 + n4); /* TODO: The scale factor is preliminary! */
500 }
501